JP2003168795A - Solid state image pickup element - Google Patents

Solid state image pickup element

Info

Publication number
JP2003168795A
JP2003168795A JP2001366018A JP2001366018A JP2003168795A JP 2003168795 A JP2003168795 A JP 2003168795A JP 2001366018 A JP2001366018 A JP 2001366018A JP 2001366018 A JP2001366018 A JP 2001366018A JP 2003168795 A JP2003168795 A JP 2003168795A
Authority
JP
Japan
Prior art keywords
solid
state image
horizontal direction
image pickup
channel width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001366018A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nakajima
和敏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001366018A priority Critical patent/JP2003168795A/en
Publication of JP2003168795A publication Critical patent/JP2003168795A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a defect wherein a handling amount of charges is small in the vicinity of a central part of a solid state image pickup element, and blooming resistance is small in the vicinity of a peripheral part of the solid state image pickup element. <P>SOLUTION: Transfer channel width at a central part in a horizontal direction of a solid state image pickup element is made larger than that of a peripheral part. The reading gate length of the peripheral part is made longer than that of the central part in the horizontal direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、デジタルスチール
カメラやビデオカメラ等に用いられる固体撮像素子に関
する。詳しくは、受光部から独立した垂直転送部を有す
る固体撮像素子に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image sensor used in digital still cameras, video cameras and the like. More specifically, the present invention relates to a solid-state image sensor having a vertical transfer section independent of a light receiving section.

【0002】[0002]

【従来の技術】従来のCCD(Charge Coupled Devic
e)固体撮像素子は、図7に示すように、複数の受光部
101,…がマトリクス上に配列され、この受光部10
1の垂直列毎に設けられている各受光部から電荷を転送
する垂直転送部102を有する撮像部と、垂直転送部1
02,…より電荷が転送され、転送された電荷を水平方
向に転送する水平転送部103と、水平転送部103よ
り転送された電荷を電圧として出力する出力部104と
を有し、垂直転送部102には垂直転送クロック105
を画素部領域の両側から入力する構成を採っている。
2. Description of the Related Art A conventional CCD (Charge Coupled Devic)
e) In the solid-state imaging device, as shown in FIG. 7, a plurality of light receiving parts 101, ...
An image pickup unit having a vertical transfer unit 102 for transferring charges from each light receiving unit provided for each vertical column, and the vertical transfer unit 1.
, The horizontal transfer unit 103 that transfers the transferred charges in the horizontal direction and the output unit 104 that outputs the charges transferred from the horizontal transfer unit 103 as a voltage, and the vertical transfer unit. 102 is a vertical transfer clock 105
Is input from both sides of the pixel area.

【0003】そして、この図7に示す従来のCCD固体
撮像素子では、垂直転送部の転送チャネル幅も読み出し
ゲート長も、水平方向のどの位置にあってもそれぞれに
全て同一幅、同一長さとされている。また、垂直転送部
への転送クロックの印加は受光部の両側に設けられたポ
リシリコン等の配線に与えられる構成とされている。
In the conventional CCD solid-state image pickup device shown in FIG. 7, the transfer channel width of the vertical transfer portion and the read gate length are all the same width and the same length at any position in the horizontal direction. ing. Further, the transfer clock is applied to the vertical transfer portion by a wiring such as polysilicon provided on both sides of the light receiving portion.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のCC
D固体撮像素子にあっては、図8に示すように、垂直転
送クロックからの入力波形Aは、ポリシリコンの配線の
電気抵抗および電気容量成分により水平方向の中央付近
の波形Bは、周辺付近、即ち配線部より画面に入る直前
の部分の波形Cよりも垂直転送クロック波形が鈍りパル
スの最大・最小電圧での停止時間が短くなり、電荷転送
能力が低下するために、実用上、垂直転送部の取扱電荷
量が少なくなる。一方、水平方向の周辺部は、垂直転送
クロックの波形の鈍りが少ないため、画素と垂直転送部
の間に設けられた画素から垂直転送部に電荷を掃き出す
ために用いられるゲートである読み出しゲートの電位が
変化し易く、例えば特開昭60−182768号公報に
記載されている様にオーバーフロー構造における読み出
しゲートとオーバーフロー障壁のポテンシャルの差、即
ちブルーミング耐量が実用上少なくなる。即ち、図9中
符号Dで示す取扱電荷量は、水平方向の中央部で小とな
り周辺部で大となり、一方図9中符号Eで示すブルーミ
ング耐量は、水平方向の中央部で大となり周辺部で小と
なり、取扱電荷量とブルーミング耐量との両立が困難で
あるという問題があった。
By the way, the conventional CC
In the D solid-state image pickup device, as shown in FIG. 8, the input waveform A from the vertical transfer clock is a waveform B near the center in the horizontal direction due to the electrical resistance and capacitance components of the polysilicon wiring, and a waveform B near the periphery. That is, the vertical transfer clock waveform becomes dull compared to the waveform C immediately before entering the screen from the wiring portion, and the stop time at the maximum / minimum voltage of the pulse becomes shorter, and the charge transfer capability is reduced. The amount of electric charge handled by the parts is reduced. On the other hand, in the peripheral portion in the horizontal direction, since the waveform of the vertical transfer clock is less blunt, the reading gate, which is a gate used for sweeping charges from the pixel provided between the pixel and the vertical transfer unit to the vertical transfer unit, is used. The potential is apt to change, and the difference in potential between the read gate and the overflow barrier in the overflow structure, that is, the blooming resistance is practically reduced as described in JP-A-60-182768. That is, the handled charge amount indicated by the symbol D in FIG. 9 is small in the horizontal central portion and is large in the peripheral portion, while the blooming resistance indicated by the symbol E in FIG. 9 is large in the horizontal central portion and is in the peripheral portion. However, there is a problem that it is difficult to satisfy both the handling charge amount and the blooming resistance.

【0005】本発明は、以上の点に鑑みて創案されたも
のであって、CCD固体撮像素子の取扱電荷量とブルー
ミング耐量の双方の特性を実用上向上せしめる固体撮像
素子を提供することを目的とするものである。
The present invention was devised in view of the above points, and an object of the present invention is to provide a solid-state image pickup device capable of practically improving both the charge handling amount and the blooming resistance of the CCD solid-state image pickup device. It is what

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る固体撮像素子は、複数の受光部がマ
トリクス上に配列され、前記受光部の垂直列毎に設けら
れた各受光部から電荷を転送する垂直転送部を有する撮
像部と、前記垂直転送部より電荷が転送され、転送され
た電荷を水平方向に転送する水平転送部と、該水平転送
部より転送された電荷を出力する出力部とを有する固体
撮像素子において、水平方向の中央部の垂直転送部の転
送チャネル幅を、周辺部の垂直転送部の転送チャネル幅
より大きくした。
In order to achieve the above object, in a solid-state image pickup device according to the present invention, a plurality of light receiving portions are arranged in a matrix, and each light receiving portion is provided in each vertical column. An image pickup unit having a vertical transfer unit for transferring charges from the light receiving unit, a horizontal transfer unit for transferring charges from the vertical transfer unit and transferring the transferred charges in a horizontal direction, and a charge transferred by the horizontal transfer unit. In the solid-state imaging device having an output section for outputting the above, the transfer channel width of the vertical transfer section in the central part in the horizontal direction is made larger than the transfer channel width of the vertical transfer section in the peripheral part.

【0007】ここで、水平方向の中央部の垂直転送部の
転送チャネル幅を、周辺部の垂直転送部の転送チャネル
幅より大きくしたのは、垂直転送部の取扱電荷量は図1
に示すように転送チャネル幅の大きさに略比例して大と
なるために、中央部の取扱電荷量を大とすることができ
るからである。
Here, the transfer channel width of the vertical transfer unit in the central portion in the horizontal direction is made larger than the transfer channel width of the vertical transfer unit in the peripheral portion because the amount of charges handled by the vertical transfer unit is as shown in FIG.
This is because the transfer channel width increases substantially in proportion to the size of the transfer channel width, so that the amount of charge handled in the central portion can be increased.

【0008】また、上記の目的を達成するために、本発
明に係る固体撮像素子は、複数の受光部がマトリクス上
に配列され、前記受光部の垂直列毎に設けられた各受光
部から電荷を転送する垂直転送部を有する撮像部と、前
記垂直転送部より電荷が転送され、転送された電荷を水
平方向に転送する水平転送部と、該水平転送部より転送
された電荷を出力する出力部とを有する固体撮像素子に
おいて、水平方向の中央部の垂直転送部の転送チャネル
幅を、周辺部の垂直転送部の転送チャネル幅より大きく
し、かつ水平方向の中央部の読み出しゲート長より周辺
部の読み出しゲート長を大きくした。
In order to achieve the above-mentioned object, in the solid-state image pickup device according to the present invention, a plurality of light receiving parts are arranged in a matrix, and an electric charge is supplied from each light receiving part provided in each vertical column of the light receiving parts. An image pickup unit having a vertical transfer unit for transferring the charges, a horizontal transfer unit for transferring the charges from the vertical transfer unit and transferring the transferred charges in the horizontal direction, and an output for outputting the charges transferred by the horizontal transfer unit. And a transfer channel width of the vertical transfer unit in the horizontal center is larger than the transfer channel width of the vertical transfer unit in the peripheral region, and the transfer channel width is larger than the read gate length in the horizontal center. The read gate length of the part was increased.

【0009】ここで、水平方向の中央部の垂直転送部の
転送チャネル幅を大きくしたことで中央部の取扱電荷量
を大とすることができることは前述の通りであり、上記
固体撮像素子は、それに加え水平方向の中央部の読み出
しゲート長より周辺部の読み出しゲート長を大きくした
のは、ブルーミング耐量は図2に示すように読み出しゲ
ート長の大きさに略比例して大となるために、周辺部の
ブルーミング耐量を大とすることができるからである。
As described above, the amount of charge handled in the central portion can be increased by increasing the transfer channel width of the vertical transfer portion in the central portion in the horizontal direction, as described above. In addition, the read gate length in the peripheral portion is made larger than the read gate length in the central portion in the horizontal direction because the blooming resistance becomes large in proportion to the read gate length as shown in FIG. This is because the blooming resistance of the peripheral portion can be increased.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参酌しながら説明し、本発明の理解に供する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings, for the understanding of the present invention.

【0011】図3に、本発明を適用した固体撮像素子の
一例を示すブロック図を示す。図3において、複数の受
光部1,…がマトリクス上に配列されており、受光部1
と受光部1の垂直列毎に設けられている各受光部から電
荷を転送する垂直転送部2によって撮像部が構成されて
いる。そして撮像部の図面上の下側には、水平転送部3
が配列されている。この水平転送部3には、複数本の垂
直転送部2から1ラインに相当する電荷が順次転送され
る。
FIG. 3 is a block diagram showing an example of a solid-state image pickup device to which the present invention is applied. In FIG. 3, a plurality of light receiving portions 1, ... Are arranged in a matrix, and the light receiving portion 1
The vertical transfer section 2 that transfers charges from each light receiving section provided for each vertical column of the light receiving section 1 constitutes an imaging section. The horizontal transfer unit 3 is provided on the lower side of the imaging unit in the drawing.
Are arranged. Electric charges corresponding to one line are sequentially transferred from the plurality of vertical transfer units 2 to the horizontal transfer unit 3.

【0012】水平転送部3の転送先の端部には、例えば
フローティング・ディフュージョン・アンプ構成の電荷
電圧変換部4が設けられている。この電荷電圧変換部4
は、水平転送部3によって水平転送されてきた電荷を順
次電圧信号に変換して出力部5より出力する。また、垂
直転送部2には、画素部領域の両側より垂直転送クロッ
ク6が入力される構成となっている。
At the end of the transfer destination of the horizontal transfer section 3, a charge-voltage conversion section 4 having, for example, a floating diffusion amplifier configuration is provided. This charge-voltage converter 4
The charges are sequentially converted into voltage signals by the horizontal transfer unit 3 and output from the output unit 5. Further, the vertical transfer section 6 is configured so that the vertical transfer clock 6 is input from both sides of the pixel area.

【0013】本発明を適用した固体撮像素子の一例で
は、垂直転送部の取扱電荷量が転送チャネル幅の大きさ
に略比例して大となるという固体撮像素子の特性を利用
して、垂直転送クロック6の波形が鈍る固体撮像素子の
水平方向の中央部の垂直転送部2の水平方向の幅、即ち
転送チャネル幅Dを、垂直転送クロック6の波形が鈍
らない周辺部の垂直転送部2の転送チャネル幅Dより
大きくしている。
In one example of the solid-state image pickup device to which the present invention is applied, vertical transfer can be performed by utilizing the characteristic of the solid-state image pickup device that the amount of charge handled in the vertical transfer portion becomes large in proportion to the size of the transfer channel width. The horizontal width of the vertical transfer unit 2 at the central portion in the horizontal direction of the solid-state imaging device in which the waveform of the clock 6 is dull, that is, the transfer channel width D 1 is the vertical transfer unit 2 in the peripheral portion where the waveform of the vertical transfer clock 6 is not dull. Is larger than the transfer channel width D 1 .

【0014】このように、垂直転送部2の転送チャネル
幅Dを、固体撮像素子の水平方向の中央部を周辺部よ
りも大きくする場合に、転送チャネル幅Dを固体撮像
素子の水平方向の周辺部から中央部に行くに従い順次大
きくしておくと好ましい。
As described above, when the transfer channel width D 1 of the vertical transfer unit 2 is set to be larger than the peripheral central portion of the solid-state image sensor, the transfer channel width D 1 is set to the horizontal direction of the solid-state image sensor. It is preferable to sequentially increase the size from the peripheral part to the central part.

【0015】ここで、固体撮像素子の垂直転送部2の転
送チャネル幅Dを、固体撮像素子の水平方向の周辺部
から中央部に行くに従い順次大きくするのは、中央部の
転送チャネル幅Dが周辺部の転送チャネル幅Dより
も大きければ中央部の取扱電荷量が大となるためであ
り、中央部の取扱電荷量が大となれば充分であって、必
ずしも周辺部から中央部に行くに従い転送チャネル幅D
を順次大きくする必要はなく、中央部の転送チャネル
幅Dを周辺部の転送チャネル幅Dより大きくすれば
よいが、周辺部から中央部に行くに従い垂直転送部2の
取扱電荷量の変化の仕方が順次変化、即ちなだらかに変
化し、中央部ほど増加の仕方が大で周辺部に行くに従い
順次増加量が減少し、周辺端では逆に取扱電荷量が減少
し、固体撮像素子の水平方向の全幅を通じ略同等となる
ので、転送チャネル幅Dは周辺部から中央部に行くに
従い順次大きくしておくと好ましい。
Here, the transfer channel width D 1 of the vertical transfer portion 2 of the solid-state image pickup device is gradually increased from the peripheral portion in the horizontal direction of the solid-state image pickup device toward the central portion thereof. This is because if 1 is larger than the transfer channel width D 1 in the peripheral portion, the handled charge amount in the central portion is large, and it is sufficient if the handled charge amount in the central portion is large. Transfer channel width D
1 need not be successively increased, the transfer channel width D 1 of the central portion may be greater than the transfer channel width D 1 of the peripheral portion, but from the periphery of the handling charge amount of the vertical transfer portion 2 as it goes to the central portion The method of change gradually changes, that is, changes gradually, the increase is larger in the central part and the amount of increase is decreased gradually toward the peripheral part, and conversely the amount of charge handled is decreased at the peripheral end, and The transfer channel width D 1 is preferably increased sequentially from the peripheral portion to the central portion because the transfer channel width D 1 is substantially the same throughout the horizontal width.

【0016】また、垂直転送部2の転送チャネル幅D
を、固体撮像素子の水平方向の中央部を周辺部より大き
くする場合に、数本ずつあるいは数十本ずつ同じ転送チ
ャネル幅とし、周辺部より中央部に向けて段階的に大き
くして行くという方式を採ると実際の設計上は好ましい
ものとなる。
The transfer channel width D 1 of the vertical transfer unit 2
In the case where the horizontal central portion of the solid-state image sensor is made larger than the peripheral portion, the same transfer channel width is set for every several or several tens, and it is gradually increased from the peripheral portion toward the central portion. Adopting the method is preferable in actual design.

【0017】ここで、固体撮像素子の垂直転送部2の転
送チャネル幅Dを、数本ずつあるいは数十本ずつ同じ
転送チャネル幅とし、周辺部より中央部に向けて段階的
に大きくするのは、中央部の転送チャネル幅Dが周辺
部の転送チャネル幅Dよりも大きければ中央部の取扱
電荷量が大となるためであり、中央部の取扱電荷量が大
となれば充分であって、必ずしも数本ずつあるいは数十
本ずつ同じ転送チャネル幅とし、周辺部より中央部に向
けて段階的に大きくする必要はなく、中央部の転送チャ
ネル幅Dを周辺部の転送チャネル幅Dより大きくす
ればよいが、固体撮像素子の垂直転送部2は非常に多数
あるので、転送チャネル幅Dを数本ずつあるいは数十
本ずつ同じ転送チャネル幅とし、周辺部より中央部に向
けて段階的に大きくするのが実際の設計上は好ましい。
Here, the transfer channel width D 1 of the vertical transfer section 2 of the solid-state image pickup device is set to the same transfer channel width every several or several tens, and is gradually increased from the peripheral portion toward the central portion. The reason is that if the transfer channel width D 1 in the central portion is larger than the transfer channel width D 1 in the peripheral portion, the handled charge amount in the central portion becomes large, and it is sufficient if the handled charge amount in the central portion becomes large. Therefore, it is not always necessary to have the same transfer channel width for every several or several tens, and to increase the transfer channel width D 1 in the central portion from the transfer channel width in the peripheral portion in a stepwise manner from the peripheral portion to the central portion. it may be greater than D 1, since the vertical transfer portion 2 of the solid-state imaging device is a very large number, the transfer channel width D 1 is the same transfer channel width by one by several or several tens of, in the central portion than the peripheral portion Step by step Kikusuru of is on the actual design is preferred.

【0018】本発明を適用した固体撮像素子では、固体
撮像素子の水平方向の全ての位置において垂直転送部の
転送チャネル幅が同じである場合における図9に示す様
な現象、即ち、垂直転送部の取扱電荷量が水平方向の中
央部において両周辺部よりも小となる現象が改善され、
中央部の取扱電荷量が大となる。
In the solid-state image sensor to which the present invention is applied, the phenomenon as shown in FIG. 9 in the case where the transfer channel width of the vertical transfer unit is the same at all positions in the horizontal direction of the solid-state image sensor, that is, the vertical transfer unit. The phenomenon that the amount of electric charge handled by the product is smaller in the horizontal center than in both peripheral parts is improved.
The amount of charge handled in the central portion becomes large.

【0019】また、本発明を適用した固体撮像素子の他
の例では、ブルーミング耐量が読み出しゲート長の大き
さに略比例して大となるという固体撮像素子の特性をも
利用して、垂直転送部2の転送チャネル幅Dを中央部
において周辺部よりも大きくすると共に、垂直転送部2
と受光部1の間の長さ、即ち読み出しゲート長Dを周
辺部において中央部よりも大きくしている。
Further, in another example of the solid-state image pickup device to which the present invention is applied, vertical transfer can be performed by utilizing the characteristic of the solid-state image pickup device that the blooming resistance becomes large substantially in proportion to the size of the read gate length. The transfer channel width D 1 of the part 2 is made larger in the central part than in the peripheral part, and the vertical transfer part 2
The length between the light receiving portion 1 and the light receiving portion 1, that is, the read gate length D 2 is made larger in the peripheral portion than in the central portion.

【0020】このように、読み出しゲート長Dを、固
体撮像素子の水平方向の周辺部を中央部よりも大きくす
る場合に、読み出しゲート長Dを固体撮像素子の水平
方向の中央部から周辺部に行くに従い順次大きくしてお
くと好ましい。
As described above, when the read gate length D 2 is made larger in the horizontal peripheral portion of the solid-state image pickup element than in the central portion, the read gate length D 2 is set from the horizontal central portion of the solid-state image pickup element to the peripheral portion. It is preferable to gradually increase the size as it goes to the section.

【0021】ここで、読み出しゲート長Dを、固体撮
像素子の水平方向の中央部から周辺部に行くに従い順次
大きくするのは、中央部の読み出しゲート長Dより周
辺部の読み出しゲート長Dが大きければ周辺部のブル
ーミング耐量が大となるためであり、周辺部のブルーミ
ング耐量が大となれば充分であって、必ずしも読み出し
ゲート長Dを固体撮像素子の水平方向の中央部から周
辺部に行くに従い順次大きくなるようにする必要はな
く、中央部の読み出しゲート長Dより周辺部の読み出
しゲート長Dが大となればよいが、中央部から周辺部
に行くに従いブルーミング耐量の変化の仕方が順次変
化、即ちなだらかに変化し、周辺部ほど増加の仕方が大
で中央部に行くに従い順次増加量が順次小となり、中央
部では逆にブルーミング耐量が減少し、固体撮像素子の
水平方向の全幅を通じブルーミング耐量が略同等となる
ので、読み出しゲート長Dは中央部から周辺部に行く
に従い順次大きくしておくと好ましい。
Here, the read gate length D 2 is gradually increased from the central portion in the horizontal direction of the solid-state image pickup device to the peripheral portion, that is, the read gate length D 2 in the peripheral portion is larger than the read gate length D 2 in the peripheral portion. This is because if the value of 2 is large, the blooming resistance of the peripheral portion is large, and if the blooming resistance of the peripheral portion is large, it is sufficient, and the read gate length D 2 is not necessarily the peripheral portion from the central portion in the horizontal direction of the solid-state imaging device. It is not necessary that the read gate length D 2 in the peripheral portion be larger than the read gate length D 2 in the central portion, as long as the read gate length D 2 in the central portion is larger than the read gate length D 2 in the central portion. The way of change changes gradually, that is, it changes gently, the way of increasing is larger in the peripheral part and the amount of increase is gradually smaller as going to the center part, and in the center part it is blue on the contrary Reduced ring withstanding capability, since blooming capability through the horizontal full width of the solid-state imaging device becomes substantially equal, preferably it is readout gate length D 2 keep sequentially increased as it goes from the central portion to the peripheral portion.

【0022】また、水平方向の中央部の読み出しゲート
長Dより周辺部の読み出しゲート長Dを大きくする
場合に、その読み出しゲート長Dを、数本ずつあるい
は数十本ずつ同じ長さとし、中央部より周辺部に行くに
従い段階的に大きくして行くという方式を採ると実際の
設計上は好ましいものとなる。
Further, when increasing the read gate length D 2 of the peripheral portion than the read gate length D 2 of the central portion in the horizontal direction, the read gate length D 2, the same length Satoshi one by one by several or several tens of In actual design, it is preferable to adopt a method of gradually increasing the size from the central part to the peripheral part.

【0023】ここで、固体撮像素子の読み出しゲート長
を、数本ずつあるいは数十本ずつ同じ長さとし、中
央部より周辺部に行くに従い段階的に大きくするのは、
中央部の読み出しゲート長Dより周辺部の読み出しゲ
ート長Dが大であれば周辺部のブルーミング耐量が大
となるためであり、周辺部のブルーミング耐量が大とな
れば充分であって、必ずしも数本ずつあるいは数十本ず
つ同じ長さとし、中央部より周辺部に行くに従い段階的
に大きくする必要はなく、中央部の読み出しゲート長D
より周辺部の読み出しゲート長Dを大とすればよい
が、実際の固体撮像素子の読み出しゲートは非常に多数
あるので、実際の設計上設計し易く、固体撮像素子の水
平方向の全長を通じ、ブルーミング耐量が略同等となる
という理由から、読み出しゲート長Dを、数本ずつあ
るいは数十本ずつ同じ長さとし、中央部より周辺部に向
けて段階的に大きくするのが好ましい。
Here, the read gate length D 2 of the solid-state image pickup device is made to be the same length every several lines or every several tens lines, and is gradually increased from the central part toward the peripheral part.
Read gate length D 2 of the peripheral portion than the read gate length D 2 of the central portion is because blooming capability at the peripheral portion if the larger is large, blooming capability of the peripheral portion is a sufficient if a large, It is not always necessary to set the same length for every several lines or several dozen lines, and to increase the read gate length D in the central part stepwise from the central part to the peripheral part.
Although the read gate length D 2 in the peripheral portion may be set larger than 2 , the read gate length of the actual solid-state image sensor is very large, so that it is easy to design in the actual design, and the total length of the solid-state image sensor in the horizontal direction is reduced. For the reason that the blooming tolerances are substantially the same, it is preferable to set the read gate length D 2 to the same length by several lines or tens of lines, and gradually increase from the central part toward the peripheral part.

【0024】本発明を適用した固体撮像素子では、固体
撮像素子の水平方向の全ての位置において読出しゲート
長が同じである場合における図9に示す様な現象、即
ち、ブルーミング耐量が水平方向の両周辺部において中
央部よりも小となる現象が改善され、周辺部のブルーミ
ング耐量が大となる。
In the solid-state image pickup device to which the present invention is applied, the phenomenon as shown in FIG. 9 in the case where the read gate length is the same at all positions in the horizontal direction of the solid-state image pickup device, that is, the blooming resistance is horizontal. The phenomenon that the peripheral portion is smaller than the central portion is improved, and the blooming resistance of the peripheral portion is increased.

【0025】図4は、本発明を適用した固体撮像素子の
更に他の例、即ち垂直転送部2の転送チャネル幅D
を、固体撮像素子の水平方向の周辺部から中央部に行
くに従い順次大きくなるようにし、かつ固体撮像素子の
読み出しゲート長Dを、水平方向の中央部から周辺部
に行くに従い順次大きくなるような条件の下で、画素ピ
ッチを維持するために、D+Dを一定とした場合の
水平方向の位置毎の転送チャネル幅Dと読み出しゲー
ト長Dの大きさの変化状態を示すグラフである。図4
中、符号Fは転送チャネル幅Dの変化状態を、符号G
は読み出しゲート長Dの変化状態をそれぞれ示してお
り、垂直転送部2の転送チャネル幅Dを、固体撮像素
子の水平方向の周辺部から中央部に行くに従い順次大き
くなるようにし、かつ固体撮像素子の読み出しゲート長
を、水平方向の中央部から周辺部に行くに従い順次
大きくなるような条件の下で、D+Dを一定するこ
とで、固体撮像素子の画素ピッチは一定に維持しつつ、
水平方向でどの位置においても垂直転送部2の取扱電荷
量も、ブルーミング耐量も一定となる。
FIG. 4 shows still another example of the solid-state image pickup device to which the present invention is applied, that is, the transfer channel width D of the vertical transfer unit 2.
1 sequentially increases from the horizontal peripheral portion to the central portion of the solid-state image sensor, and the read gate length D 2 of the solid-state image sensor sequentially increases from the horizontal central portion to the peripheral portion. Under such conditions, the change state of the transfer channel width D 1 and the read gate length D 2 for each position in the horizontal direction when D 1 + D 2 is kept constant in order to maintain the pixel pitch is shown. It is a graph. Figure 4
In the figure, the code F indicates the change state of the transfer channel width D 1 , and the code G
Shows the change state of the read gate length D 2 , respectively, and the transfer channel width D 1 of the vertical transfer unit 2 is gradually increased from the horizontal peripheral portion to the central portion of the solid-state imaging device, and By setting D 1 + D 2 constant under the condition that the read gate length D 2 of the image pickup device is gradually increased from the central portion in the horizontal direction toward the peripheral portion, the pixel pitch of the solid-state image pickup element is kept constant. While maintaining
The amount of charge handled by the vertical transfer unit 2 and the blooming resistance are constant at any position in the horizontal direction.

【0026】本発明を適用した固体撮像素子では、図5
に示す固体撮像素子の水平方向の位置毎の取扱電荷量お
よび図6に示す固体撮像素子の水平方向の位置毎のブル
ーミング耐量から明らかな如く、図5中符号Hで示す本
発明を適用した場合の垂直転送部の取扱電荷量について
は図5中符号Iで示す従来構造の垂直転送部の取扱電荷
量と比較して中央部付近が増大しており、又ブルーミン
グ耐量については図6中符号Jで示す本発明を適用した
場合のブルーミング耐量は図6中符号Kで示す従来構造
のブルーミング耐量と比較して周辺部付近が増大してい
る。このように取扱電荷量及びブルーミング耐量の両者
共に改善されるものである。
In the solid-state image pickup device to which the present invention is applied, as shown in FIG.
As can be seen from the amount of charge handled in each horizontal position of the solid-state image sensor shown in FIG. 6 and the blooming tolerance of each horizontal position of the solid-state image sensor shown in FIG. The amount of electric charges handled by the vertical transfer unit is larger in the vicinity of the central portion as compared with the amount of electric charges handled by the vertical transfer unit of the conventional structure shown by symbol I in FIG. 5, and the blooming resistance is indicated by symbol J in FIG. The blooming resistance in the case of applying the present invention shown in FIG. 6 is increased in the vicinity of the peripheral portion as compared with the blooming resistance of the conventional structure shown by the symbol K in FIG. In this way, both the handling charge amount and the blooming resistance amount are improved.

【0027】[0027]

【発明の効果】以上述べてきた如く、本発明によれば、
垂直転送部のチャネル幅を、水平方向の中央部を大き
く、周辺部を小さくする構成と、垂直転送クロックの伝
播遅延の影響により、水平方向のどの位置でも取扱電荷
量が略一定となり、従来構造に比較して取扱電荷量が増
大し感度が良くなる。また、受光部からの読み出しゲー
ト長を、画面中央付近は小さく、周辺部は大きくする構
成と、垂直転送クロックの伝播遅延の影響により、水平
方向のどの位置でもブルーミング耐量が略一定となり、
従来構造に比較してブルーミング耐量が大となる。
As described above, according to the present invention,
The vertical transfer section has a channel width that is larger in the central part in the horizontal direction and smaller in the peripheral part, and due to the influence of the propagation delay of the vertical transfer clock, the amount of charge handled becomes substantially constant at any position in the horizontal direction. Compared with, the handling charge amount increases and the sensitivity improves. In addition, due to the configuration that the read gate length from the light receiving part is small near the center of the screen and large near the screen, and due to the influence of the propagation delay of the vertical transfer clock, the blooming resistance becomes substantially constant at any position in the horizontal direction.
The blooming resistance is higher than that of the conventional structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体撮像素子の垂直転送部の転送チャネル幅D
と取扱電荷量との関係を示すグラフである。
FIG. 1 is a transfer channel width D of a vertical transfer unit of a solid-state image sensor.
It is a graph which shows the relationship between 1 and the amount of electric charges handled.

【図2】固体撮像素子の読み出しゲート長Dとブルー
ミング耐量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a read gate length D 2 of a solid-state imaging device and blooming resistance.

【図3】本発明を適用した固体撮像素子の一例を示すブ
ロック図である。
FIG. 3 is a block diagram showing an example of a solid-state image sensor to which the present invention is applied.

【図4】本発明を適用した固体撮像素子の更に他の例の
水平方向の位置毎の転送チャネル幅Dと読み出しゲー
ト長Dの大きさの変化を示すグラフである。
FIG. 4 is a graph showing changes in transfer channel width D 1 and read gate length D 2 for each position in the horizontal direction of still another example of the solid-state imaging device to which the present invention is applied.

【図5】本発明を適用した固体撮像素子の水平方向の位
置毎の取扱電荷量を示すグラフである。
FIG. 5 is a graph showing the amount of charge handled for each horizontal position of the solid-state image sensor to which the present invention is applied.

【図6】本発明を適用した固体撮像素子の水平方向の位
置毎のブルーミング耐量を示すグラフである。
FIG. 6 is a graph showing blooming resistance for each position in the horizontal direction of the solid-state image sensor to which the present invention is applied.

【図7】従来の固体撮像素子のブロック図である。FIG. 7 is a block diagram of a conventional solid-state image sensor.

【図8】従来の固体撮像素子の垂直転送クロックからの
入力波形の部所による変化の状態を示すグラフである。
FIG. 8 is a graph showing the state of changes in the input waveform from the vertical transfer clock of the conventional solid-state imaging device depending on the location.

【図9】従来の固体撮像素子の水平方向位置毎の取扱電
荷量とブルーミング耐量との関係を示すグラフである。
FIG. 9 is a graph showing a relationship between a handled charge amount and a blooming resistance amount for each horizontal position of a conventional solid-state image sensor.

【符号の説明】[Explanation of symbols]

1 受光部 2 垂直転送部 3 水平転送部 4 電荷電圧変換部 5 出力部 6 垂直転送クロック 1 Light receiving part 2 Vertical transfer section 3 Horizontal transfer section 4 Charge-voltage converter 5 Output section 6 Vertical transfer clock

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の受光部がマトリクス上に配列さ
れ、前記受光部の垂直列毎に設けられた各受光部から電
荷を転送する垂直転送部を有する撮像部と、 前記垂直転送部より電荷が転送され、転送された電荷を
水平方向に転送する水平転送部と、 該水平転送部より転送された電荷を出力する出力部とを
有する固体撮像素子において、 水平方向の中央部の垂直転送部の転送チャネル幅を、周
辺部の垂直転送部の転送チャネル幅より大きくしたこと
を特徴とする固体撮像素子。
1. An image pickup unit having a plurality of light receiving units arranged in a matrix and having a vertical transfer unit for transferring charges from each light receiving unit provided for each vertical column of the light receiving units; and a charge from the vertical transfer unit. In the solid-state imaging device having a horizontal transfer section for transferring the transferred charges in the horizontal direction and an output section for outputting the transferred charges from the horizontal transfer section, a vertical transfer section at a central portion in the horizontal direction. The transfer channel width of the solid state image pickup device is larger than the transfer channel width of the vertical transfer section in the peripheral portion.
【請求項2】 垂直転送部の転送チャネル幅を、水平方
向の周辺部から中央部に行くに従い順次大きくしたこと
を特徴とする請求項1記載の固体撮像素子。
2. The solid-state image pickup device according to claim 1, wherein the transfer channel width of the vertical transfer portion is gradually increased from the peripheral portion toward the central portion in the horizontal direction.
【請求項3】 垂直転送部の転送チャネル幅を、水平方
向の周辺部から中央部に行くに従い段階的に大きくした
ことを特徴とする請求項1記載の固体撮像素子。
3. The solid-state image pickup device according to claim 1, wherein the transfer channel width of the vertical transfer unit is gradually increased from the peripheral portion to the central portion in the horizontal direction.
【請求項4】 水平方向の中央部の読み出しゲート長よ
り周辺部の読み出しゲート長を大きくしたことを特徴と
する請求項1記載の固体撮像素子。
4. The solid-state image pickup device according to claim 1, wherein the read gate length of the peripheral portion is made larger than the read gate length of the central portion in the horizontal direction.
【請求項5】 読み出しゲート長を、水平方向の中央部
から周辺部に行くに従い順次大きくしたことを特徴とす
る請求項4記載の固体撮像素子。
5. The solid-state imaging device according to claim 4, wherein the read gate length is gradually increased from the central portion in the horizontal direction toward the peripheral portion.
【請求項6】 読み出しゲート長を、水平方向の中央部
から周辺部に行くに従い段階的に大きくしたことを特徴
とする請求項4記載の固体撮像素子。
6. The solid-state imaging device according to claim 4, wherein the read gate length is increased stepwise from the central portion in the horizontal direction to the peripheral portion.
【請求項7】 垂直転送部の転送チャネル幅と、読み出
しゲート長とを加えた大きさが、水平方向のどの部所に
おいても一定であることを特徴とする請求項4〜6のい
ずれか1項に記載の固体撮像素子。
7. The size of the transfer channel width of the vertical transfer unit plus the read gate length is constant at any position in the horizontal direction. Item 7. The solid-state image sensor according to item.
JP2001366018A 2001-11-30 2001-11-30 Solid state image pickup element Pending JP2003168795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366018A JP2003168795A (en) 2001-11-30 2001-11-30 Solid state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366018A JP2003168795A (en) 2001-11-30 2001-11-30 Solid state image pickup element

Publications (1)

Publication Number Publication Date
JP2003168795A true JP2003168795A (en) 2003-06-13

Family

ID=19175976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366018A Pending JP2003168795A (en) 2001-11-30 2001-11-30 Solid state image pickup element

Country Status (1)

Country Link
JP (1) JP2003168795A (en)

Similar Documents

Publication Publication Date Title
US10685993B2 (en) Imaging device and imaging system
JP4337779B2 (en) Physical information acquisition method, physical information acquisition device, and semiconductor device for physical quantity distribution detection
US8189081B2 (en) Solid-state imaging apparatus, driving method thereof, camera, and copier
JP4423112B2 (en) Solid-state imaging device and imaging system
US8482643B2 (en) Solid-state imaging device including a plurality of pixels and a plurality of signal lines
JP4969771B2 (en) Solid-state imaging device and capacitor adjustment method thereof
US7352399B2 (en) Solid-state imaging device driving method
US8558930B2 (en) Solid-state image sensing device and image pickup apparatus
JP2006303871A (en) Amplification type solid-state imaging apparatus
JP2018006874A (en) Tdi system linear image sensor and imaging apparatus
US20080106623A1 (en) Solid-state imaging device and imaging apparatus
JP2003168795A (en) Solid state image pickup element
WO2011105018A1 (en) Solid-state imaging device and camera system
JP2001119010A (en) Multi-output solid-state image pickup device
JPH0645576A (en) Solid-state image pick-up device
JP2001060681A (en) Solid-state image pickup device and method for driving the same
JPH06268923A (en) Drive method for solid-state image pickup device
JP2008311970A (en) Driving method for solid imaging apparatus, solid imaging apparatus
JPH0324873A (en) Solid-state image pickup device
JP2904180B2 (en) Driving method of charge transfer device
KR100494100B1 (en) Cmos image sensor
JPH0897965A (en) Close contact type image sensor
JPH05292406A (en) Charge transfer device
JP2006049451A (en) Solid state image pickup device and driving method thereof
JP2003209242A (en) Ccd solid-state imaging device