JP2003165003A - Hard film coated member - Google Patents

Hard film coated member

Info

Publication number
JP2003165003A
JP2003165003A JP2001361860A JP2001361860A JP2003165003A JP 2003165003 A JP2003165003 A JP 2003165003A JP 2001361860 A JP2001361860 A JP 2001361860A JP 2001361860 A JP2001361860 A JP 2001361860A JP 2003165003 A JP2003165003 A JP 2003165003A
Authority
JP
Japan
Prior art keywords
film
hard
coating
member according
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361860A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shima
順彦 島
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001361860A priority Critical patent/JP2003165003A/en
Publication of JP2003165003A publication Critical patent/JP2003165003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extremely improve adhesion property, and to improve all characteristics of abrasion resistance, oxidation resistance, and lubricity without degrading any of them, and achieving stable long service life even in heavy cutting. <P>SOLUTION: In a hard film coated member coated with a hard film, the hard film contains Al, Ti, Cr, N, and O. When composition of respective elements is AlaTibCrcNwO1-w, 30≤a≤70, 30≤b≤70, 0.5≤c≤20, a+b+c=100, 0.7≤w≤0.99. A half-value width of diffraction peak of (200) face in X-ray diffraction in 2θ lies between 0.4 and 0.7 degrees. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本願発明は固体潤滑性に優れると
ともに高い耐摩耗性、耐酸化性を有し、かつ密着性に極
めて優れる耐摩耗性部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant member having excellent solid lubricity, high wear resistance and oxidation resistance, and excellent adhesion.

【0002】[0002]

【従来技術】工具や金型及び機械部品において耐摩耗
性、耐酸化性、潤滑性を付与するために各種硬質皮膜を
被覆することが一般的になっている。代表的なTiN、
TiCN皮膜は耐摩耗性は優れるものの、耐酸化性に問
題を有する。また、TiAlN系皮膜は耐摩耗性、耐酸
化性に優れるものの(例として、特開平7−31017
3号公報)、潤滑性は低い。CrN、CrCN系皮膜は
潤滑性は優れるものの皮膜硬度が低く耐摩耗性に劣る。
このように従来の皮膜は耐摩耗性、耐酸化性、潤滑性の
いずれかが劣り、各用途において何らかの問題点を有す
る結果であるのが現状である。また潤滑性を付与するた
めに硬質皮膜表面に潤滑性に優れるMoS系皮膜を被覆
する提案もなされてはいるが、この皮膜自体密着性が悪
く十分な結果を得るには至っていない。また従来の皮膜
においては、皮膜全体の密着性も今だ十分ではなく、重
切削で皮膜の剥離が発生し、安定した切削を実現するに
は至っていない。
2. Description of the Related Art It has become common to coat various hard coatings on tools, molds and machine parts in order to impart wear resistance, oxidation resistance and lubricity. Typical TiN,
Although the TiCN coating has excellent wear resistance, it has a problem in oxidation resistance. Further, the TiAlN-based coating has excellent wear resistance and oxidation resistance (for example, Japanese Patent Application Laid-Open No. 7-31017).
No. 3), the lubricity is low. CrN and CrCN type coatings have excellent lubricity, but have low coating hardness and poor wear resistance.
As described above, the conventional coating is inferior in wear resistance, oxidation resistance, and lubricity, and the present situation is that it has some problems in each application. Although a proposal has been made to coat the surface of the hard coating with a MoS-based coating having excellent lubricity in order to impart lubricity, this coating itself has poor adhesion and it has not been possible to obtain sufficient results. Further, in conventional coatings, the adhesion of the coating as a whole is still insufficient, and peeling of the coating occurs in heavy cutting, and stable cutting has not been realized.

【0003】[0003]

【発明が解決しようとする課題】このように従来の皮膜
では何らかの問題点があり、それを解決するためにMo
S系以外において、特開平11−156992号公報に
示されるようにTiAlN系皮膜の上層にCrN系皮膜
を被覆する提案もなされているが、全体の膜厚はある程
度の制限があるため耐摩耗性の点で十分に満足されるも
のではない。本発明は密着性に極めて優れ、耐摩耗性、
耐酸化性、潤滑性のいずれかが劣化することなく、これ
らいずれの特性を向上させ、重切削でも安定した長寿命
を達成することを目的とする。
As described above, there are some problems in the conventional film, and in order to solve them, Mo is required.
In addition to the S type, it has been proposed to coat a CrN type coating on the upper layer of the TiAlN type coating as shown in Japanese Patent Application Laid-Open No. 11-156992, but since the total thickness is limited to some extent, abrasion resistance Is not completely satisfactory in terms of. The present invention is extremely excellent in adhesion, wear resistance,
The object of the present invention is to improve any of these properties without deteriorating either the oxidation resistance or the lubricity and achieve a stable long life even in heavy cutting.

【0004】[0004]

【発明を解決するための手段】上記目的を達成するため
に、本発明はTiとAlとCrとNを必須成分とし、こ
れに酸素を添加した硬質皮膜を採用するものである。更
に、皮膜の成膜速度を最適化することにより、極めて優
れる密着性を有するものである。ここで組成面において
は、当然ながら、TiとAlが耐摩耗性成分として寄与
し、Crが潤滑性を付与する成分として寄与するわけで
あるが、さらにこれに酸素を添加することにより、いっ
そう耐酸化性、潤滑性を付与する結果となる。さらに密
着性、耐摩耗性を改善するために、成膜速度を最適化す
ることにより、基体中に含有されるWC粒子と皮膜との
結晶格子の連続的成長、いわゆるエピタキシャル成長を
可能にし、結果母材と極めて優れた密着性を有し、重切
削においても、より安定した長寿命切削を達成させるも
のである。
In order to achieve the above object, the present invention employs a hard coating in which Ti, Al, Cr and N are essential components and oxygen is added to them. Furthermore, by optimizing the film formation rate of the film, it has extremely excellent adhesion. In terms of composition, naturally Ti and Al contribute as wear-resistant components, and Cr contributes as a component that imparts lubricity. This results in imparting chemical conversion properties and lubricity. Further, in order to improve the adhesion and wear resistance, by optimizing the film formation rate, continuous growth of the crystal lattice of the WC particles contained in the substrate and the film, that is, so-called epitaxial growth is made possible. It has extremely excellent adhesion to the material and achieves more stable long-life cutting even in heavy cutting.

【0005】[0005]

【発明の実施の形態】まず、皮膜組成の検討において
は、TiAlNを基本とし、これにCrを添加する効果
においては、第一に、切削工具において耐酸化性のさら
なる向上が挙げられる。TiAlNの場合、酸化に伴い
皮膜内部でAlが表面に拡散し、Alの酸化物を形成す
ることにより酸素の外部からの浸入を抑制し、耐酸化性
が向上することは周知の事実である。しかし、この場合
Alの酸化物の直下には、非常にポーラスなTiの酸化
物が形成されるため、特に切削工具などの衝撃が加わる
ような場合、Alの酸化物は容易に脱落してしまい、そ
の効果を継続して発揮することが難しい。金型等の場合
でも同様である。Crの添加によりAlの酸化物直下に
形成されるポーラスなTiの酸化物がTiCrの酸化物
となり、この酸化物は非常に緻密な層を形成することが
明らかとなった。従って、最表層に形成されるAlの酸
化物は密着性が保たれ、結果耐酸化性が向上することに
なる。
BEST MODE FOR CARRYING OUT THE INVENTION First, in the study of the coating composition, based on TiAlN, and the effect of adding Cr to this is, firstly, further improvement in the oxidation resistance of the cutting tool. In the case of TiAlN, it is a well-known fact that Al diffuses to the surface inside the film due to oxidation and forms an oxide of Al, thereby suppressing the intrusion of oxygen from the outside and improving the oxidation resistance. However, in this case, since a very porous Ti oxide is formed immediately below the Al oxide, the Al oxide easily falls off when a shock is applied to a cutting tool or the like. , It is difficult to exert the effect continuously. The same applies to molds and the like. It has been clarified that the porous Ti oxide formed immediately below the Al oxide by the addition of Cr becomes a TiCr oxide, and this oxide forms a very dense layer. Therefore, the Al oxide formed on the outermost layer maintains the adhesiveness, and as a result, the oxidation resistance is improved.

【0006】Cr添加の第二の効果は、Crそのものが
有する優れた潤滑性をTiAlN皮膜に付与することで
ある。TiAlNの鋼との摩擦係数は0.7−0.8で
あるが、Cr添加に伴い0.3−0.6に改善される。
この摩擦係数はCrの添加量に依存する。ただしCrの
添加量が多すぎると皮膜硬度が低下し、耐摩耗性が悪く
なるため、添加量には上限を設定することが好ましい。
The second effect of Cr addition is to give the TiAlN coating the excellent lubricity of Cr itself. The friction coefficient of TiAlN with steel is 0.7-0.8, but it improves to 0.3-0.6 with the addition of Cr.
This friction coefficient depends on the amount of Cr added. However, if the addition amount of Cr is too large, the film hardness decreases and the wear resistance deteriorates. Therefore, it is preferable to set the upper limit of the addition amount.

【0007】Cr添加のみでも上述のようにTiAlN
系皮膜の潤滑性、耐酸化性を向上せしめる効果が確認さ
れるが、Crのみでは十分ではなく、これに酸素を添加
することにより、さらに一層の改善が認められる。酸素
の添加効果については、第一に、耐酸化性の飛躍的向
上、潤滑性の飛躍的向上が挙げられる。耐酸化性の飛躍
的向上に対しては、皮膜内部に酸素を添加することに添
加に伴い、皮膜の結晶が微細化し皮膜そのものが緻密に
なると同時に結晶粒界も緻密になることにより、外部か
らの酸素の浸入に対する酸素拡散速度が著しく抑制され
ることが理由と考えられる。潤滑性に関しては、十分に
解明されてはいないが、酸素添加により鋼との親和性が
低下することが理由であると考えられる。
Even if only Cr is added, as described above, TiAlN
Although the effect of improving the lubricity and oxidation resistance of the system film is confirmed, Cr alone is not sufficient, and further improvement is recognized by adding oxygen to this. With respect to the effect of adding oxygen, the first is a dramatic improvement in oxidation resistance and a dramatic improvement in lubricity. In order to dramatically improve the oxidation resistance, by adding oxygen to the inside of the film, the crystal of the film becomes finer and the film itself becomes dense, and at the same time the crystal grain boundaries become dense, It is considered that the reason is that the oxygen diffusion rate with respect to the infiltration of oxygen is significantly suppressed. Although the lubricity has not been fully clarified, it is considered that the reason is that the affinity with steel decreases due to the addition of oxygen.

【0008】酸素添加効果の第二は、皮膜の残留圧縮応
力が低下し、皮膜の密着性が向上することに起因する耐
摩耗性の向上が挙げられる。特に重切削条件下や鍛造金
型分野においては皮膜の密着性が極めて重要な要素とな
る。皮膜の微小剥離により摩耗が進行する傾向にあると
ともに、大きな剥離が発生すると突発的寿命となる。T
iAlCrN系の皮膜のスクラッチテストによる剥離臨
界荷重は60−80Nであるのに対し、これに酸素を添
加することによりその強度は100N以上に改善され
る。
The second effect of oxygen addition is that the residual compressive stress of the coating is reduced and the adhesion of the coating is improved, resulting in improved wear resistance. In particular, under heavy cutting conditions and in the field of forging dies, the adhesion of the coating is a very important factor. Abrasion tends to progress due to minute peeling of the coating, and if a large amount of peeling occurs, the life becomes sudden. T
The peeling critical load of the iAlCrN-based film by the scratch test is 60-80N, while the strength is improved to 100N or more by adding oxygen.

【0009】しかしながら、酸素の添加量増加に伴い、
上述の耐酸化性、潤滑性、密着性向上に起因する耐摩耗
性は向上するものの、一方皮膜硬度そのものが軟化して
しまいアブレッシブ摩耗性が劣化する結果となる。従っ
て、耐酸化性、潤滑性に寄与するための最適組成層と、
アブレッシブ磨耗に寄与する最適組成層の多層化するこ
とがより好ましく、多層化により双方の利点が複合化さ
れる結果となる。多層化は酸素量の相違のみではなく、
Cr含有量の異なる層の多層化においても、潤滑性と耐
摩耗性の調整も可能である。
However, as the amount of oxygen added increases,
Although the wear resistance resulting from the above-mentioned oxidation resistance, lubricity, and adhesion improvement is improved, on the other hand, the coating hardness itself is softened, resulting in deterioration of the abrasive wear resistance. Therefore, an optimum composition layer for contributing to oxidation resistance and lubricity,
It is more preferred to have multiple layers of optimal composition layers that contribute to abrasive wear, which results in a combination of both advantages. Multilayering is not only the difference in oxygen content,
The lubricity and wear resistance can be adjusted even when the layers having different Cr contents are formed in multiple layers.

【0010】しかし、極めて高い衝撃が発生するいわゆ
る重切削分野においては、これら組成面における改善で
は、密着性が十分とはいえず、十分に安定した切削が実
現できない場合がある。本発明者らは、特に本問題に対
し、鋭意研究を重ねた結果、皮膜の成膜速度が密着性に
大きな影響を及ぼす事実を確認するに至った。成膜速度
は出きる限り遅いほうが、望ましい。本発明者の観察結
果では、成膜速度が遅いほど母材中に含有されるWC粒
子に対し、皮膜はエピタキシャルに成長することが透過
電子顕微鏡観察により確認された。これにより、基体に
含まれるWC粒子と皮膜はファンデンワールス力で結合
され極めて強固な理論上最も優れる密着性を有する結果
となった。
However, in the so-called heavy cutting field where extremely high impact is generated, improvement in these compositional aspects may not be sufficient in adhesion, and may not realize sufficiently stable cutting. As a result of earnestly researching this problem in particular, the present inventors have confirmed the fact that the deposition rate of the coating has a great influence on the adhesion. It is desirable that the film formation rate be as slow as possible. According to the observation result of the present inventor, it was confirmed by transmission electron microscope observation that the film grows epitaxially with respect to the WC particles contained in the base material as the film formation rate becomes slower. As a result, the WC particles contained in the substrate and the film were bonded by Van den Waals force, resulting in extremely strong theoretically the best adhesion.

【0011】結晶組織の観点においては、通常の柱状結
晶が耐摩耗性に優れるが、より細かい柱状晶、もしくは
細かい柱状結晶が縦方向において分断されたいわゆるブ
ロック状結晶がより好ましい耐摩耗性を発揮する。また
成膜時間に伴う成膜温度調整により、皮膜の深さ方向で
の結晶粒径の制御が可能であり、成膜時間に伴う低温化
により、皮膜の表面に近いほど、微細化することが可能
である。前述のように、皮膜全体を微細化することによ
り耐摩耗を向上せしめることも可能であるが、皮膜全体
の残留圧縮応力も幾分増加する傾向にあるため、このよ
うな、皮膜の表面側ほど微細化させる手段は残留応力の
増加、すなわち、密着性の劣化を抑えながら耐摩耗性を
付与できる観点からより好ましい組織制御であるといえ
る。特に最表面を柱状結晶ではなく、非晶質のような形
態にすることにより、耐摩耗性が著しく向上するととも
に、大幅な耐酸化性の向上が可能である。これは粒界が
緻密で酸素が拡散し難いことにより、酸化進行が抑制さ
れることによるものである。
From the viewpoint of crystal structure, ordinary columnar crystals are excellent in abrasion resistance, but finer columnar crystals or so-called block crystals in which fine columnar crystals are divided in the longitudinal direction exhibit more preferable abrasion resistance. To do. In addition, the crystal grain size in the depth direction of the film can be controlled by adjusting the film formation temperature according to the film formation time, and the lower the temperature along with the film formation time, the finer the film becomes as it gets closer to the surface of the film. It is possible. As mentioned above, it is possible to improve wear resistance by refining the entire film, but since the residual compressive stress of the entire film tends to increase somewhat, such a surface side It can be said that finer means is more preferable microstructure control from the viewpoint of increasing the residual stress, that is, imparting wear resistance while suppressing deterioration of adhesion. In particular, when the outermost surface is formed into an amorphous form instead of columnar crystals, the wear resistance is significantly improved and the oxidation resistance can be greatly improved. This is because the grain boundaries are dense and oxygen is difficult to diffuse, so that the progress of oxidation is suppressed.

【0012】次に、数値を限定した理由を説明する。成
膜速度は皮膜の半値幅と相関を有し、成膜速度がゆっく
りであるほど、皮膜の半値幅は小さくなる傾向にあっ
た。前述エピタキシャル成長が十分に達成されるために
は成膜速度は0.1μm/hrから0.8μm/hrの
範囲であり、それに対応する(200)面半値幅が2θ
で0.4度から0.7度に対応する。0.8μm/hr
の成膜速度を越えると2θ値は0.7度を越え、エピタ
キシャル成長の確率が低く、密着性が十分でなくなる。
0.4度未満を得る極めて低成膜速度においては、所定
の厚さの皮膜を得るのに1日以上を有し、経済性、実用
性の観点から問題を残す結果となる。
Next, the reason for limiting the numerical values will be described. The film formation rate had a correlation with the full width at half maximum of the film, and the slower the film formation speed, the smaller the full width at half maximum of the film. In order to achieve the above-mentioned epitaxial growth sufficiently, the film formation rate is in the range of 0.1 μm / hr to 0.8 μm / hr, and the corresponding (200) plane half width is 2θ.
Corresponds to 0.4 to 0.7 degrees. 0.8 μm / hr
When the film forming rate is exceeded, the 2θ value exceeds 0.7 degrees, the probability of epitaxial growth is low, and the adhesion is insufficient.
At an extremely low deposition rate of less than 0.4 degrees, it takes one day or more to obtain a film having a predetermined thickness, resulting in a problem from the viewpoint of economy and practicality.

【0013】ここで、0.1μm/hrから0.8μm
/hrの範囲の成膜速度であっても、経済性、実用性の
観点においては十分ではないため、成膜初期はこの範囲
の成膜速度で基体WCとエピタキシャル成長をさせ、成
膜途中から徐々に、もしくは段階的に成膜速度を高める
ことが、極めて優れる密着性を維持しつつ、経済性を解
決する最も好ましい方法といえる。
Here, from 0.1 μm / hr to 0.8 μm
Even if the film forming rate is in the range of / hr, it is not sufficient from the viewpoint of economy and practicality. Therefore, the film is formed at the film forming rate in this range at the beginning of film formation, and the substrate WC is epitaxially grown. It can be said that increasing the film formation rate stepwise or stepwise is the most preferable method for solving the economical problem while maintaining the extremely excellent adhesion.

【0014】組成面においては、Alは30原子%未満
であると皮膜の耐酸化性が劣化し70原子%を超えると
皮膜中にhcp構造を有するAlNが形成され皮膜強度
が劣化するため好ましくない。Tiは30原子%未満で
あると皮膜の耐摩耗性が劣化し、70原子%を超えると
皮膜の耐酸化性が劣化するため好ましくない。Crは
0.5原子%未満ではポーラスなTi酸化物が形成され
耐酸化性向上に寄与せず、20原子%を超えると皮膜の
硬度が軟化し耐摩耗性が劣化し好ましくない。酸素は窒
素に対し1原子%未満では、耐酸化性、潤滑性、密着性
の向上に寄与せず、30原子%を超えると皮膜硬度の軟
化を来すため好ましくない。
In terms of composition, if Al is less than 30 atomic%, the oxidation resistance of the coating deteriorates, and if it exceeds 70 atomic%, AlN having an hcp structure is formed in the coating and the coating strength deteriorates, which is not preferable. . If Ti is less than 30 atomic%, the wear resistance of the coating deteriorates, and if it exceeds 70 atomic%, the oxidation resistance of the coating deteriorates, which is not preferable. If Cr is less than 0.5 atom%, a porous Ti oxide is formed and does not contribute to the improvement of oxidation resistance, and if it exceeds 20 atom%, the hardness of the film is softened and wear resistance is deteriorated, which is not preferable. If oxygen is less than 1 atomic% with respect to nitrogen, it does not contribute to the improvement of oxidation resistance, lubricity and adhesion, and if it exceeds 30 atomic%, the film hardness is softened, which is not preferable.

【0015】層数における皮膜数は単層でも十分な性能
を発揮するが、2層以上の多層化することにより、いろ
いろな性質を有する層の複合効果が認められより優れた
性能を発揮する。1000層を超えると各層の膜厚が薄
くなり、時には超格子を形成し、残留応力が高くなり、
密着性を損なう結果となり好ましくない。各層の膜厚も
同様であり、5nm未満では残留応力が高くなり、20
00nmを超えると単層と類似の性能となる。
The number of coatings in terms of the number of layers is sufficient even if it is a single layer, but by forming two or more layers, a combined effect of layers having various properties is recognized and more excellent performance is exhibited. When the number of layers exceeds 1000, the thickness of each layer becomes thin, sometimes forming a superlattice, and the residual stress becomes high.
It is not preferable because the adhesion is impaired. The film thickness of each layer is the same, and if the thickness is less than 5 nm, the residual stress becomes high,
When it exceeds 00 nm, the performance is similar to that of a single layer.

【0016】皮膜の結晶配向は被覆条件に依存し、比較
的低エネルギーで成膜すると(200)面に強く配向
し、高エネルギーで成膜すると(111)面に配向する
傾向を有する。低エネルギーで成膜した場合が皮膜の成
膜速度は遅くなるが、皮膜密度が向上し、耐酸化性、耐
磨耗性に優れた結果となることが確認された。従って
(200)面回折強度が(111)面回折強度より強い
場合、さらに優れた耐酸化性、耐摩耗性を発揮し、より
好ましいと考えられる。尚、潤滑性においては結晶配向
は大きな影響を及ぼすものではなかった。しかしなが
ら、(200)面回折強度が(111)の回折強度の2
0倍を超えるような低エネルギーでは密着性は劣化する
傾向にある。
The crystal orientation of the film depends on the coating conditions. When the film is formed with a relatively low energy, it has a strong orientation on the (200) plane, and when it is formed with a high energy, it tends to the (111) plane. It was confirmed that when the film was formed with low energy, the film formation rate was slower, but the film density was improved, and the results were excellent in oxidation resistance and abrasion resistance. Therefore, when the (200) plane diffraction intensity is stronger than the (111) plane diffraction intensity, it is considered to be more preferable because it exhibits further excellent oxidation resistance and abrasion resistance. The crystal orientation did not have a great influence on the lubricity. However, the diffraction intensity of the (200) plane is 2 of the diffraction intensity of (111).
At low energy exceeding 0 times, the adhesiveness tends to deteriorate.

【0017】皮膜に残留する圧縮応力は主に被覆条件に
依存するが、3.5Gpaを超えると密着性が劣化して
しまうため、好ましくない。尚、本発明の皮膜はアーク
イオンプレーティング方式、スパッタリング方式、電子
銃蒸発方式、プラズマアシストCVD方式のいずれであ
っても傾向は同様であり、またこれら各方式の組み合わ
せであってもよい。以下、本発明の好ましい実施例を比
較例とともに説明する。
The compressive stress remaining in the film mainly depends on the coating conditions, but if it exceeds 3.5 Gpa, the adhesiveness deteriorates, which is not preferable. The coating of the present invention has the same tendency regardless of whether it is an arc ion plating method, a sputtering method, an electron gun evaporation method or a plasma assisted CVD method, or a combination of these methods may be used. Hereinafter, preferred examples of the present invention will be described together with comparative examples.

【0018】[0018]

【実施例】アークイオンプレーティング方式により本発
明例1〜27と、比較例28〜43の皮膜を作成した。
その組成、構造、層数等を表1に示す。尚、皮膜の厚さ
は本発明例及び比較例においてすべて3000nm〜3
200nmで統一した。
EXAMPLES Coatings of Examples 1 to 27 of the present invention and Comparative Examples 28 to 43 were prepared by the arc ion plating method.
Table 1 shows the composition, structure, number of layers, and the like. The thickness of the film is 3000 nm to 3 in all the examples of the present invention and comparative examples.
It was unified at 200 nm.

【0019】[0019]

【表1】 [Table 1]

【0020】本発明例のAlTiCrの組成は蒸発源で
あるカソードターゲットの金属組成を調整することによ
り調整した。酸素含有量は窒素と酸素の混合ガスを使用
しその混合比を調整することにより調整するとともに、
ガスの切り替えにより多層化した。異なる金属成分硬質
膜の多層化は異なる組成のカソードターゲットを設置し
行った。結晶配向上は基本的には被覆条件で調整し、
(200)配向皮膜は被覆条件を基体に印可するバイア
ス電圧を70V、反応圧力を1Paとし、(111)配
向皮膜はバイアス電圧を200V反応圧力を0.5Pa
とすることにより作成した。I(200)/I(11
1)比はこの他皮膜組成、酸素含有量にも多少依存する
ものである。組織制御においては通常の柱状結晶をえる
には被覆温度450℃、2Pa、微細柱状結晶をえるに
は400℃、2Pa、ブロック状を得るには400℃、
0.5Pa、非晶質状を得るには350℃、0.5Pa
と被覆条件を制御することにより実施した。残留応力調
整は被覆温度450℃、反応圧2Paにおいて、バイア
ス電圧を20V〜250Vの範囲内で選定し、応力を変
化させた。また、本発明例においては、カソードターゲ
ットを蒸発させるためのアーク電流は50〜70Aと低
い条件を用い成膜速度がおおむね0.2〜0.7μ/h
rとなるように調整した。本発明例16、17において
は前半を低成膜速度、後半はアーク電流値を120Aと
し、1.7μ/hrの比較的速い成膜速度で被覆した。
半値幅の調整はアーク電流値を調整することにより調整
したが、その他の被覆条件により多少変化するものであ
る。比較例はいずれも被覆温度450℃、反応圧2P
a、バイアス電圧40〜100V、アーク電流100A
の一般的条件にて被覆した。
The composition of AlTiCr of the present invention was adjusted by adjusting the metal composition of the cathode target which is the evaporation source. The oxygen content is adjusted by using a mixed gas of nitrogen and oxygen and adjusting the mixing ratio thereof,
The gas was changed to form multiple layers. Multiple layers of different metal component hard films were formed by installing cathode targets having different compositions. In terms of crystal orientation, basically adjust the coating conditions,
The (200) oriented film has a bias voltage of 70 V and a reaction pressure of 1 Pa for applying the coating conditions to the substrate, and the (111) oriented film has a bias voltage of 200 V and a reaction pressure of 0.5 Pa.
It was created by I (200) / I (11
1) The ratio is somewhat dependent on the film composition and oxygen content. In controlling the texture, the coating temperature is 450 ° C., 2 Pa to obtain normal columnar crystals, 400 ° C. and 2 Pa to obtain fine columnar crystals, 400 ° C. to obtain block-like crystals,
0.5 Pa, 350 ° C. for obtaining an amorphous state, 0.5 Pa
And coating conditions were controlled. The residual stress was adjusted by selecting the bias voltage within the range of 20 V to 250 V at a coating temperature of 450 ° C. and a reaction pressure of 2 Pa to change the stress. Further, in the present invention example, the arc current for evaporating the cathode target is as low as 50 to 70 A, and the film forming rate is generally 0.2 to 0.7 μ / h.
It was adjusted to be r. In Examples 16 and 17 of the present invention, the film formation rate was low in the first half and the arc current value was 120 A in the second half, and the coating was performed at a relatively high film formation rate of 1.7 μ / hr.
The adjustment of the full width at half maximum was performed by adjusting the arc current value, but it slightly changes depending on other coating conditions. In the comparative examples, the coating temperature is 450 ° C and the reaction pressure is 2P.
a, bias voltage 40 to 100 V, arc current 100 A
Was coated under the general conditions of.

【0021】表1で示した本発明例及び比較例の耐酸化
性、潤滑性及び耐摩耗性に寄与すべき皮膜硬度等の測定
結果及びX線回折結果を表2に示す。表2の耐酸化性
は、大気中900℃において保持した場合の酸化による
単位時間あたりの重量増を測定した。潤滑性は炭素鋼と
の摩擦係数を測定することにより評価した。硬度はナノ
インデンターを用い1g荷重における圧子侵入深さより
ビッカース硬さを算出した。
Table 2 shows the measurement results of the film hardness and the like and the X-ray diffraction results which should contribute to the oxidation resistance, lubricity and wear resistance of the examples of the present invention and the comparative examples shown in Table 1. The oxidation resistance in Table 2 was determined by measuring the weight increase per unit time due to oxidation when kept at 900 ° C. in the atmosphere. The lubricity was evaluated by measuring the coefficient of friction with carbon steel. Vickers hardness was calculated from the indenter penetration depth under a load of 1 g using a nano indenter.

【0022】[0022]

【表2】 [Table 2]

【0023】表2より、本発明例1〜27は、いずれに
おいても比較例28〜43より優れる結果であることが
明らかである。
From Table 2, it is clear that Examples 1-27 of the present invention are superior to Comparative Examples 28-43 in all cases.

【0024】表1に示した例を、以下の諸元下でのエン
ドミル切削の結果を寿命を表3に示す。 母材組成:90WC−9.5Co−0.5Cr WC粒径:0.8μm 工具:6枚刃、刃径8mmのエンドミル 被削材:SKD11(HRC63) 切削速度:100m/min 切り込み:8mm×0.8mm 送り:50μm/刃 乾式 寿命判定基準はエンドミルが折れる時点とした。
Table 3 shows the results of end mill cutting under the following specifications based on the examples shown in Table 1. Base material composition: 90WC-9.5Co-0.5Cr WC grain size: 0.8 μm Tool: 6 blades, end mill with a blade diameter of 8 mm Work material: SKD11 (HRC63) Cutting speed: 100 m / min Cutting depth: 8 mm x 0 2.8 mm feed: 50 μm / blade dry type life criterion was when the end mill was broken.

【0025】[0025]

【表3】 [Table 3]

【0026】表3より、いずれにおいても本発明例1〜
27は、長寿命であり50〜91m切削でき、TiAl
N系にCrと酸素を添加した多層構造の効果が明らかで
ある。
From Table 3, the invention examples 1 to 1 are shown in each case.
No. 27 has a long life and can cut 50 to 91 m, TiAl
The effect of the multilayer structure in which Cr and oxygen are added to the N system is clear.

【0027】表1に示した例を、以下に示す諸元で穴明
け加工した場合の結果を表3に併記する。スラスト力は
切削初期10穴目において測定した結果である。寿命は
ドリルが折損した時の穴数で評価した。 母材組成:91、5WC−8Co−0.5Cr WC粒径:0.8μm 被削材:SKD61(HRC42) ドリル径8mm 切削速度:80m/min 送り:0.2mm/rev 穴深さ:32mm 乾式
Table 3 also shows the results when the examples shown in Table 1 were drilled with the following specifications. The thrust force is the result measured at the 10th hole in the initial stage of cutting. The life was evaluated by the number of holes when the drill was broken. Base material composition: 91, 5WC-8Co-0.5Cr WC grain size: 0.8 μm Work material: SKD61 (HRC42) Drill diameter 8 mm Cutting speed: 80 m / min Feed: 0.2 mm / rev Hole depth: 32 mm Dry type

【0028】表3より、本発明例1〜27は、極めてス
ラスト力が低く、その結果、長寿命であることが明らか
である。
From Table 3, it is apparent that Examples 1 to 27 of the present invention have extremely low thrust force and, as a result, long life.

【0029】次に、超硬インサートにて本発明例1〜2
7及び比較例28〜43を試作し、以下の切削諸元で切
削を実施した。その結果も表3に併記する。本切削諸元
は、正面フライス切削では切削速度が速く、工具の耐酸
化性が重要となる条件である。 母材:P30グレード超硬合金 インサート:SEE42TN(20°逃げ) 被削材:SKD61(HRC22) 切削速度:400m/min 切り込み:1mm 送り:0.1mm/刃 乾式 寿命判定は逃げ面平均摩耗が0.4mmに達するまでの
切削時間とした。
Next, Examples 1 and 2 of the present invention were prepared using a cemented carbide insert.
7 and Comparative Examples 28 to 43 were prototyped, and cutting was performed with the following cutting specifications. The results are also shown in Table 3. These cutting specifications are conditions under which the cutting speed is high in face milling and the oxidation resistance of the tool is important. Base material: P30 grade cemented carbide insert: SEE42TN (20 ° clearance) Work material: SKD61 (HRC22) Cutting speed: 400 m / min Depth of cut: 1 mm Feed: 0.1 mm / Average flank wear is 0 for blade dry type life judgment The cutting time was taken to reach 0.4 mm.

【0030】表3より、本発明例では著しい寿命向上が
確認された。
From Table 3, it was confirmed that the examples of the present invention significantly improved the life.

【0031】[0031]

【発明の効果】TiAlN系皮膜にCrと酸素を添加し
たTiAlCrON系多層膜は耐酸化性を向上せしめる
のみでなく、耐摩耗性の劣化なく潤滑性を付与するこ
と、並びに、低応力化による皮膜密着性の向上が可能で
あり高速乾式切削において優れた特性を発揮することが
可能である。さらに、成膜速度を調整することにより、
基体に含まれるWC粒子と皮膜とのエピタキシャル成長
を実現し、極めて密着性に優れる被覆硬質部材を実現す
るものであり、重切削においても皮膜の剥離は発生しな
く、安定した切削を実現するものである。また、熱間鍛
造の用途等においてもその効果は同様である。
EFFECT OF THE INVENTION A TiAlCrON-based multilayer film obtained by adding Cr and oxygen to a TiAlN-based film not only improves oxidation resistance, but also imparts lubricity without deterioration of wear resistance, and a film by reducing stress. Adhesion can be improved and excellent characteristics can be exhibited in high speed dry cutting. Furthermore, by adjusting the film formation speed,
Achieves epitaxial growth of WC particles contained in the base material and the coating, and realizes a coated hard member with extremely excellent adhesion, and achieves stable cutting without peeling of the coating even in heavy cutting. is there. Further, the same effect is obtained in the application of hot forging.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 硬質皮膜が被覆された硬質皮膜被覆部材
において、硬質皮膜がAl、Ti、Cr、N、Oを含有
する皮膜であり、各元素の組成がAlaTibCrcN
wO1−wとした時、30≦a≦70、30≦b≦7
0、0.5≦c≦20、a+b+c=100、0.7≦
w≦0.99、であり、X線回折における(200)面
回折ピークの半値幅が2θで0.4度以上0.7度以下
であることを特徴とする硬質皮膜被覆部材。
1. A hard coating member coated with a hard coating, wherein the hard coating is a coating containing Al, Ti, Cr, N and O, and the composition of each element is AlaTibCrcN.
When wO1-w, 30 ≦ a ≦ 70, 30 ≦ b ≦ 7
0, 0.5 ≦ c ≦ 20, a + b + c = 100, 0.7 ≦
w ≦ 0.99, and the half value width of the (200) plane diffraction peak in X-ray diffraction is 0.4 ° or more and 0.7 ° or less at 2θ, the hard coating member.
【請求項2】 請求項1記載の硬質皮膜被覆部材におい
て、該硬質被膜の層数が1層であることを特徴とする硬
質皮膜被覆部材。
2. The hard film-coated member according to claim 1, wherein the number of layers of the hard film is one.
【請求項3】 請求項1記載の硬質皮膜被覆部材におい
て、該層数が2層以上1000層以下の多層であること
を特徴とする硬質皮膜被覆部材。
3. The hard film-coated member according to claim 1, wherein the hard film-coated member is a multilayer having two or more layers and 1,000 or less layers.
【請求項4】 請求項1乃至3記載の硬質皮膜被覆部材
において、該各層の膜厚が5nm以上2000nm以下
であることを特徴とする硬質皮膜被覆部材。
4. The hard coating member according to claim 1, wherein the film thickness of each layer is 5 nm or more and 2000 nm or less.
【請求項5】 請求項1乃至4記載の硬質皮膜被覆部材
において、該硬質皮膜がNaCl型の結晶構造を有する
ことを特徴とする硬質皮膜被覆部材。
5. The hard coating member according to any one of claims 1 to 4, wherein the hard coating has a NaCl type crystal structure.
【請求項6】 請求項1乃至5記載の硬質皮膜被覆部材
において、(111)面からの回折ピークの回折強度を
I(111)、(200)面からの回折ピークの回折強
度をI(200)とした時、I(200)/I(11
1)の値が1以上20以下であることを特徴とする硬質
皮膜被覆部材。
6. The hard coating member according to claim 1, wherein the diffraction intensity of the diffraction peak from the (111) plane is I (111) and the diffraction intensity of the diffraction peak from the (200) plane is I (200). ), I (200) / I (11
A hard film-coated member having a value of 1) of 1 or more and 20 or less.
【請求項7】 請求項1乃至6記載の硬質皮膜被覆部材
において、該硬質被膜の結晶粒が柱状結晶もしくは柱状
結晶が分断されたブロック状結晶であることを特徴とす
る硬質皮膜被覆部材。
7. The hard coating member according to any one of claims 1 to 6, wherein the crystal grains of the hard coating are columnar crystals or block-shaped crystals in which the columnar crystals are divided.
【請求項8】 請求項1乃至7記載の硬質皮膜被覆部材
において、該硬質被膜の皮膜結晶形態が母材表面側から
皮膜表面に向かい、結晶粒径が減少することを特徴とす
る硬質皮膜被覆部材。
8. The hard film coating member according to claim 1, wherein the film crystal morphology of the hard film decreases from the base material surface side to the film surface, and the crystal grain size decreases. Element.
【請求項9】 請求項1乃至8記載の硬質皮膜被覆部材
において、該皮膜結晶形態が皮膜最表面側で非晶質状形
態であることを特徴とする硬質皮膜被覆部材。
9. The hard coating member according to claim 1, wherein the coating crystal form is an amorphous form on the outermost surface side of the coating.
【請求項10】 請求項1乃至9記載の硬質皮膜被覆部
材において、該皮膜の残留圧縮応力が0.5Gpa以上
3.5Gpa以下であることを特徴とする硬質皮膜被覆
部材。
10. The hard coating member according to claim 1, wherein the residual compressive stress of the coating is 0.5 Gpa or more and 3.5 Gpa or less.
【請求項11】 請求項1乃至10記載の硬質皮膜被覆
部材において、該母材表面の成膜速度が相対的に遅く、
皮膜表面側の成膜速度が相対的に速く被覆されたことを
特徴とする硬質皮膜被服部材。
11. The hard film-coated member according to claim 1, wherein the film forming rate on the surface of the base material is relatively low,
A hard-coating member coated with a film having a relatively high film-forming rate on the surface side.
JP2001361860A 2001-11-28 2001-11-28 Hard film coated member Pending JP2003165003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361860A JP2003165003A (en) 2001-11-28 2001-11-28 Hard film coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361860A JP2003165003A (en) 2001-11-28 2001-11-28 Hard film coated member

Publications (1)

Publication Number Publication Date
JP2003165003A true JP2003165003A (en) 2003-06-10

Family

ID=19172455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361860A Pending JP2003165003A (en) 2001-11-28 2001-11-28 Hard film coated member

Country Status (1)

Country Link
JP (1) JP2003165003A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049785A1 (en) * 2005-10-28 2007-05-03 Kyocera Corporation Surface-coated member, method for manufacture thereof, and cutting tool
JP2008264971A (en) * 2007-04-24 2008-11-06 Nisshin Kogu Kk Hard coat cutting tool
JP2008284638A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284636A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284637A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2009167498A (en) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd Hard film-coated member, and method for producing hard film-coated member
JP2009269096A (en) * 2008-04-30 2009-11-19 Sumitomo Electric Ind Ltd Surface-coated cutting tool
CN101297061B (en) * 2005-10-28 2012-07-18 京瓷株式会社 Surface-coated member, method for manufacture thereof, and cutting tool
JP2012528732A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
US8500966B2 (en) 2002-03-14 2013-08-06 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
WO2013128673A1 (en) * 2012-02-27 2013-09-06 住友電工ハードメタル株式会社 Coated surface cutting tool and manufacturing method therefor
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
JP2013188834A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Surface coated cutting tool
WO2014119212A1 (en) * 2013-01-29 2014-08-07 株式会社神戸製鋼所 Hard coating film having adhesion resistance to soft metal
US9551062B2 (en) 2013-03-28 2017-01-24 Osg Corporation Hard film for machining tools and hard film-coated metal machining tool
US20170037502A1 (en) * 2013-11-26 2017-02-09 Osg Corporation Hard lubricating coating film and hard lubricating coating film-covered tool
WO2020137325A1 (en) 2018-12-27 2020-07-02 日本特殊陶業株式会社 Surface-coated cutting tool
JP2020531300A (en) * 2017-08-31 2020-11-05 ヴァルター アーゲー Abrasion resistant PVD tool coating with TiAlN nanolayer film

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500966B2 (en) 2002-03-14 2013-08-06 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
CN101297061B (en) * 2005-10-28 2012-07-18 京瓷株式会社 Surface-coated member, method for manufacture thereof, and cutting tool
WO2007049785A1 (en) * 2005-10-28 2007-05-03 Kyocera Corporation Surface-coated member, method for manufacture thereof, and cutting tool
JP2008264971A (en) * 2007-04-24 2008-11-06 Nisshin Kogu Kk Hard coat cutting tool
JP2008284638A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284636A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284637A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2009167498A (en) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd Hard film-coated member, and method for producing hard film-coated member
JP2009269096A (en) * 2008-04-30 2009-11-19 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2012528732A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
WO2013128673A1 (en) * 2012-02-27 2013-09-06 住友電工ハードメタル株式会社 Coated surface cutting tool and manufacturing method therefor
US9381575B2 (en) 2012-02-27 2016-07-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
CN104136156A (en) * 2012-02-27 2014-11-05 住友电工硬质合金株式会社 Coated surface cutting tool and manufacturing method therefor
JPWO2013128673A1 (en) * 2012-02-27 2015-07-30 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
JP2013212574A (en) * 2012-03-05 2013-10-17 Mitsubishi Materials Corp Surface-clad cutting tool
US9440293B2 (en) 2012-03-05 2016-09-13 Mitsubishi Materials Corporation Surface coating cutting tool
JP2013188834A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Surface coated cutting tool
JP2014145114A (en) * 2013-01-29 2014-08-14 Kobe Steel Ltd Hard film excellent in adhesion resistance to soft metal
CN104937130A (en) * 2013-01-29 2015-09-23 株式会社神户制钢所 Hard coating film having adhesion resistance to soft metal
US9410235B2 (en) 2013-01-29 2016-08-09 Kobe Steel, Ltd. Hard coating film having anti-adhesion property to soft metal
EP2952609A4 (en) * 2013-01-29 2016-09-07 Kobe Steel Ltd Hard coating film having adhesion resistance to soft metal
WO2014119212A1 (en) * 2013-01-29 2014-08-07 株式会社神戸製鋼所 Hard coating film having adhesion resistance to soft metal
CN104937130B (en) * 2013-01-29 2017-07-28 株式会社神户制钢所 The hard film of adhesion resistance with relative to soft metal
JPWO2014155633A1 (en) * 2013-03-28 2017-02-16 オーエスジー株式会社 Hard coating for machining tools and hard coating coated metal working tools
US9551062B2 (en) 2013-03-28 2017-01-24 Osg Corporation Hard film for machining tools and hard film-coated metal machining tool
US20170037502A1 (en) * 2013-11-26 2017-02-09 Osg Corporation Hard lubricating coating film and hard lubricating coating film-covered tool
US10227687B2 (en) * 2013-11-26 2019-03-12 Osg Corporation Hard lubricating coating film and hard lubricating coating film-covered tool
JP2020531300A (en) * 2017-08-31 2020-11-05 ヴァルター アーゲー Abrasion resistant PVD tool coating with TiAlN nanolayer film
JP7217740B2 (en) 2017-08-31 2023-02-03 ヴァルター アーゲー Wear-resistant PVD tool coating with TiAlN nanolayer film
WO2020137325A1 (en) 2018-12-27 2020-07-02 日本特殊陶業株式会社 Surface-coated cutting tool
KR20210063427A (en) 2018-12-27 2021-06-01 니뽄 도쿠슈 도교 가부시키가이샤 surface-coated cutting tools
US11623284B2 (en) 2018-12-27 2023-04-11 Ngk Spark Plug Co., Ltd. Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP3877124B2 (en) Hard coating coated member
JP3934136B2 (en) Hard film coating member and coating method thereof
US8304098B2 (en) Hard-coated member, and its production method
JP5060714B2 (en) Hard coating excellent in wear resistance and oxidation resistance, and target for forming the hard coating
JP2003165003A (en) Hard film coated member
JP3417907B2 (en) Multi-layer coating tool
CN1853832B (en) Cutting tool coated with hard alloy and spraying target material for producing same
KR101170396B1 (en) Hard coating and its production method
EP1710032B1 (en) Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof
JP2013528252A (en) Multilayer nitride hard coating
JP5695720B2 (en) Hard coating with excellent wear and oxidation resistance
WO2009150887A1 (en) Hard coating layer and method for forming the same
JP3392115B2 (en) Hard coating tool
KR20170059421A (en) Coated cutting tool
EP1316627B1 (en) Hard coating coated parts
CN110603342B (en) Metal cutting tool with multi-layer coating
JP5450400B2 (en) Al-Ti-Ru-N-C hard material coating
JP2010188460A (en) Surface coated cutting tool
CN114945708A (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP5035980B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2008132564A (en) Surface-coated cutting tool
JP2002337003A (en) Abrasive-resistant coating coated tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041018

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A521 Written amendment

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070530