JP2008284636A - Coated cutting tool - Google Patents

Coated cutting tool Download PDF

Info

Publication number
JP2008284636A
JP2008284636A JP2007130951A JP2007130951A JP2008284636A JP 2008284636 A JP2008284636 A JP 2008284636A JP 2007130951 A JP2007130951 A JP 2007130951A JP 2007130951 A JP2007130951 A JP 2007130951A JP 2008284636 A JP2008284636 A JP 2008284636A
Authority
JP
Japan
Prior art keywords
particles
cutting tool
particle layer
coated cutting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130951A
Other languages
Japanese (ja)
Other versions
JP5065756B2 (en
Inventor
Tomoyuki Ishida
友幸 石田
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2007130951A priority Critical patent/JP5065756B2/en
Publication of JP2008284636A publication Critical patent/JP2008284636A/en
Application granted granted Critical
Publication of JP5065756B2 publication Critical patent/JP5065756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated cutting tool and a manufacturing method for the coated cutting tool, which provides excellent abrasion resistance and toughness. <P>SOLUTION: The coated cutting tool includes: a base material 1 laminated with a fine grain layer 1p made of WC group cemented carbide using WC particles 10p of fine grain as a hard layer and a coarse grain layer 1g made of WC group cemented carbide using WC particles 10g of coarse grain as a hard layer; and a coated film 2 formed on the base material 1 surface. The mean particle diameter of WC particles 10p of the fine grain layer 1p is 1 μm or less, and the mean particle diameter of WC particles 10g of the coarse grain layer 1g is 3 μm or more. The fine grain layer 1p is disposed on the surface side of the base material, and the coated film 2 is formed on this layer 1p by means of physical vapor deposition. Crystal grain 20 developed by direct contact with the WC particles 10p of the fine grain layer 1p exists among the crystal grain 20 forming the coated film 2, and the grain diameter of the crystal grain 20 is the size approximately same as the WC particles 10p of the fine grain layer 1p. The coated cutting tool is manufactured by forming the coated film 2 after performing bombardment process on the base material 1 surface using dilute gas ion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超硬合金からなる基材表面に被覆膜を具える被覆切削工具、及びこの切削工具の製造方法に関する。特に、耐摩耗性、耐欠損性、及び靭性に優れる被覆切削工具に関するものである。   The present invention relates to a coated cutting tool having a coating film on a substrate surface made of a cemented carbide, and a method for manufacturing the cutting tool. In particular, the present invention relates to a coated cutting tool having excellent wear resistance, fracture resistance, and toughness.

WC(炭化タングステン)を主成分とし、Co(コバルト)といった鉄族元素を結合相とした超硬合金を基材とし、基材表面に被覆膜を具える被覆切削工具が開発されてきている(例えば、特許文献1,2参照)。   Coated cutting tools with a coating film on the surface of a cemented carbide based on WC (tungsten carbide) and cemented carbide with iron group elements such as Co (cobalt) as a binder have been developed. (For example, see Patent Documents 1 and 2).

切削工具に求められる代表的な特性として、耐摩耗性(例えば、耐逃げ面摩耗性、耐クレーター摩耗性)、強度(例えば、抗折力)、靭性(例えば、耐欠損性、耐チッピング性、耐熱亀裂性)がある。特許文献1に記載の切削工具は、組成が異なる超硬合金で表面層と内部層とを構成し、二つの表面層で内部層を挟む積層構造の基材とすることで、耐クレーター摩耗性の向上を図っている。特許文献2に記載の切削工具は、平均粒径が異なるWC粒子を硬質相とするWC基超硬合金で表面層と内部層とを構成し、二つの表面層で内部層を挟む積層構造の基材とすることで、強度及び靭性の向上を図っている。   Typical properties required for cutting tools include wear resistance (e.g., flank wear resistance, crater wear resistance), strength (e.g., bending strength), toughness (e.g., chipping resistance, chipping resistance, (Heat cracking resistance). The cutting tool described in Patent Document 1 is composed of a cemented carbide alloy having a different composition, a surface layer and an inner layer, and a substrate having a laminated structure in which the inner layer is sandwiched between two surface layers, thereby providing crater wear resistance. We are trying to improve. The cutting tool described in Patent Document 2 is a laminated structure in which a surface layer and an inner layer are composed of a WC-based cemented carbide having WC particles having different average particle diameters as a hard phase, and the inner layer is sandwiched between two surface layers. By using the base material, the strength and toughness are improved.

特開昭58-52003号公報JP-A-58-52003 特開平7-197265号公報Japanese Unexamined Patent Publication No. Hei 7-197265

しかし、従来は、基材と被覆膜との双方について十分な検討がなされておらず、従来の被覆切削工具は、全体としての特性を向上させることが難しい。   However, conventionally, sufficient examination has not been made on both the base material and the coating film, and it is difficult for conventional coated cutting tools to improve the overall characteristics.

特許文献1,2に記載の技術は、被覆膜が無くなってもある程度使用できるように基材の特性の向上を図っている。しかし、基材だけでなく被覆膜をも合わせた被覆切削工具全体としての特性の向上を図ることは考慮されていない。従って、被覆膜は、単に存在させているだけであり、十分に活用しているとは言えない。   The techniques described in Patent Documents 1 and 2 attempt to improve the properties of the base material so that they can be used to some extent even if the coating film is lost. However, it is not considered to improve the characteristics of the entire coated cutting tool including not only the substrate but also the coating film. Therefore, the coating film is merely present and cannot be fully utilized.

被覆膜の特性を向上するには、例えば、被覆膜の組成や成膜条件を調整することが考えられる。しかし、被覆膜の組成は数多の種類が考えられ、所望の特性を得るための最適な組成を選択するには、多大な研究が必要である。従って、組成に依らず優れた特性を有する被覆膜を具える被覆切削工具の開発が望まれる。   In order to improve the properties of the coating film, for example, it is conceivable to adjust the composition of the coating film and the film formation conditions. However, there are many types of coating film compositions, and a great deal of research is required to select an optimal composition for obtaining desired characteristics. Accordingly, it is desired to develop a coated cutting tool having a coating film having excellent characteristics regardless of the composition.

本発明は、上記事情を鑑みて成されたものであり、その目的の一つは、耐摩耗性、耐欠損性、及び靭性に優れる被覆切削工具を提供することにある。また、本発明の他の目的は、上記被覆切削工具の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a coated cutting tool having excellent wear resistance, fracture resistance, and toughness. Moreover, the other object of this invention is to provide the manufacturing method of the said coated cutting tool.

本発明者らは、WC基超硬合金からなる基材表面に被覆膜を具える被覆切削工具を開発するに当たり、以下の知見を得た。   The present inventors have obtained the following knowledge in developing a coated cutting tool having a coating film on a substrate surface made of a WC-based cemented carbide.

平均粒径が異なるWC粒子を硬質相とするWC基超硬合金で基材を構成することで、耐摩耗性及び靭性の双方に優れた基材が得られる。   A base material excellent in both wear resistance and toughness can be obtained by forming the base material with a WC-based cemented carbide having WC particles having different average particle diameters as a hard phase.

一方、被覆膜の形成方法として、化学蒸着法(CVD法)と物理蒸着法(PVD法)とが知られている。CVD法は、成膜時の基材温度が比較的高いため、基材との密着性に優れる膜が得られるものの、成膜時の熱応力により引張応力が残留して膜表面に亀裂が発生し易く、切削加工時にこの亀裂が基材にまで伝搬して、工具の耐欠損性を低下させる。また、成膜時の加熱により基材自体も損傷する恐れがある。これに対してPVD法は、成膜時の基材温度が比較的低いため、上記膜の亀裂による欠損や成膜時の基材の損傷の恐れが少なく、かつ得られた膜は、圧縮残留応力が付与されるため、耐欠損性に優れると共に、高硬度で耐摩耗性に優れる。しかし、PVD法は基材温度が低いことから、得られた膜は、CVD法による膜と比較して基材との密着性に劣る。   On the other hand, chemical vapor deposition (CVD) and physical vapor deposition (PVD) are known as coating film formation methods. The CVD method has a relatively high substrate temperature during film formation, so a film with excellent adhesion to the substrate can be obtained, but tensile stress remains due to thermal stress during film formation and cracks occur on the film surface. The crack propagates to the base material at the time of cutting and reduces the fracture resistance of the tool. In addition, the substrate itself may be damaged by heating during film formation. In contrast, the PVD method has a relatively low substrate temperature during film formation, so there is little risk of damage due to cracks in the film or damage to the substrate during film formation. Since stress is applied, it has excellent fracture resistance, high hardness and excellent wear resistance. However, since the PVD method has a low substrate temperature, the obtained film is inferior in adhesion to the substrate as compared with the film formed by the CVD method.

これらのことから、本発明者らは、基材と被覆膜との双方が優れた特性を発揮できる被覆切削工具を開発するにあたり、基材として、微粒のWC粒子を硬質相とするWC基超硬合金からなる微粒層と、粗粒のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とを積層した積層部を有するものを採用した。また、本発明者らは、研究開発の結果、CVD法では、Coといった結合相上に膜の核生成がなされるのに対し、PVD法では、WCといった硬質相上に膜の核生成がなされることを見出し、基材直上に形成する被覆膜の形成方法として、PVD法を採用した。そして、PVD法で成膜するにあたり、PVD法で形成された膜(以下、PVD膜と呼ぶ)と基材との密着性の向上を検討した。   Based on these facts, the present inventors have developed a coated cutting tool capable of exhibiting excellent properties of both the base material and the coating film, and as a base material, the WC group having fine WC particles as a hard phase is used. A layer having a laminated portion in which a fine particle layer made of a cemented carbide and a coarse particle layer made of a WC-based cemented carbide having coarse WC particles as a hard phase was adopted. As a result of research and development, the present inventors have nucleated a film on a bonded phase such as Co in the CVD method, whereas the PVD method nucleated a film on a hard phase such as WC. As a result, the PVD method was adopted as a method for forming a coating film formed directly on the substrate. Then, in the film formation by the PVD method, improvement in adhesion between a film formed by the PVD method (hereinafter referred to as a PVD film) and the substrate was examined.

その結果、積層部の微粒層を基材の表面側とし、この微粒層表面にPVD法で成膜すると、微粒のWC粒子上に微細な結晶粒が形成され、膜において基材側の結晶粒が微細に分散されることから、基材と膜との密着性が向上するとの知見を得た。但し、焼結したままの超硬合金基材の表面は、焼結中に液相となったCoなどの結合相が局部的に浸み出し、結合相がWC粒子を覆っている場合がある。従って、上述のように基材とPVD膜との密着性を良好にするには、特定の前処理(クリーニング)を施してから成膜することが好ましいとの知見を得た。具体的には、希ガスのイオンを用いたボンバードメント処理を基材表面に施すと、基材表面側に存在する結合相が除去され、基材表面側に配置された微粒層中のWC粒子が露出された状態となり易い。この状態でPVD法により成膜すると、基材表面に存在する上記微粒層のWC粒子に接してPVD膜の結晶粒が形成され成長する。即ち、被覆膜を構成する結晶粒において基材直上に存在するPVD膜の結晶粒の中には、微粒層のWC粒子に直接接して成長するものが多数存在するようになる。このように被覆膜において基材直上部分を構成する結晶粒の中に、基材表面側のWC粒子(特に微粒層中のWC粒子)と連続的に形成された結晶粒が存在することで、基材と被覆膜(特に、PVD膜)との間で十分な密着性を得ることができる。   As a result, when the fine particle layer of the laminated portion is set to the surface side of the base material, and the film is formed on the surface of the fine particle layer by the PVD method, fine crystal grains are formed on the fine WC particles. From the fact that is dispersed finely, it has been found that the adhesion between the substrate and the film is improved. However, the surface of the cemented carbide substrate as-sintered may have a binder phase such as Co, which has become a liquid phase during sintering, leached locally, and the binder phase may cover the WC particles. . Therefore, as described above, in order to improve the adhesion between the base material and the PVD film, it has been found that it is preferable to form a film after performing a specific pretreatment (cleaning). Specifically, when a bombardment treatment using rare gas ions is performed on the substrate surface, the binder phase present on the substrate surface side is removed, and the WC particles in the fine particle layer arranged on the substrate surface side are removed. Is likely to be exposed. When a film is formed by the PVD method in this state, crystal grains of the PVD film are formed and grown in contact with the WC particles of the fine particle layer existing on the substrate surface. That is, among the crystal grains of the PVD film that exist directly on the base material in the crystal grains constituting the coating film, there are many that grow directly in contact with the WC particles of the fine particle layer. In this way, in the crystal grains constituting the portion immediately above the base material in the coating film, there are crystal grains continuously formed with the WC particles on the surface side of the base material (particularly WC particles in the fine particle layer). Adequate adhesion can be obtained between the substrate and the coating film (particularly the PVD film).

ここで、基材に被覆膜を形成する前の前処理として、メタルイオン(例えば、Tiイオン)を用いるボンバードメント処理がある。この処理は、エッチングレートが高く、クリーニング作業性に優れる。しかし、この処理は、Tiなどのクリーニングに使用した不純物が基材表面に残留し易い。そして、不純物が基材表面に存在すると、基材のWC粒子に連続してPVD膜の結晶粒が実質的に形成できないため、基材とPVD膜との密着性が低下する。   Here, as a pretreatment before forming the coating film on the substrate, there is a bombardment treatment using metal ions (for example, Ti ions). This process has a high etching rate and excellent cleaning workability. However, in this treatment, impurities used for cleaning such as Ti tend to remain on the substrate surface. If impurities are present on the surface of the base material, the crystal grains of the PVD film cannot be substantially formed continuously with the WC particles of the base material, so that the adhesion between the base material and the PVD film is lowered.

上述のように基材のWC粒子に連続してPVD膜の結晶粒が形成され成長することで、被覆膜において基材直上に存在するPVD膜の結晶粒と、基材表面に存在するWC粒子とが概ね同等の大きさとなる。即ち、被覆膜において基材との境界近傍に存在する結晶粒は、微粒層中のWC粒子同様に微細化される。この微細化により、被覆膜自体も耐チッピング性や耐摩耗性を向上することができる。更に、PVD膜の結晶粒を柱状に成長させると、基材に対して優れた密着性を維持し易いことに加えて、微細なWC粒子上に形成された微細なPVD膜の結晶粒の細かさが膜の基材側から表面側に向かって維持され易い。   As described above, the PVD film crystal grains are formed and grown continuously on the WC particles of the base material, so that the PVD film crystal grains present immediately above the base material in the coating film and the WC present on the base material surface. Particles are approximately the same size. That is, the crystal grains present in the vicinity of the boundary with the base material in the coating film are refined in the same manner as the WC particles in the fine particle layer. With this miniaturization, the coating film itself can also improve chipping resistance and wear resistance. Furthermore, when the crystal grains of the PVD film are grown in a columnar shape, it is easy to maintain excellent adhesion to the substrate, and in addition, the fine grains of the fine PVD film formed on the fine WC particles Sag is easily maintained from the substrate side to the surface side of the film.

このように特定の構造の基材に、特定の前処理を施してから、PVD法により成膜すると、基材との密着性に優れる被覆膜とすることができる上に、膜自体の特性をも向上することができる。即ち、膜自体を単に微細化した以上の効果が得られる。従って、得られた被覆切削工具は、優れた特性を有する被覆膜を十分に活用することができ、かつ被覆膜が無くなっても優れた特性を有する基材を十分に活用することができる。本発明は、これらの知見に基づくものである。   In this way, when a specific pretreatment is performed on a base material having a specific structure and then formed by the PVD method, a coating film having excellent adhesion to the base material can be obtained, and the characteristics of the film itself can be obtained. Can also be improved. That is, an effect more than that obtained by simply miniaturizing the film itself is obtained. Therefore, the obtained coated cutting tool can fully utilize a coating film having excellent characteristics, and can sufficiently utilize a base material having excellent characteristics even when the coating film disappears. . The present invention is based on these findings.

本発明被覆切削工具の製造方法は、WC基超硬合金からなる基材表面の少なくとも一部に被覆膜を形成して被覆切削工具を製造するものであり、以下の工程を具える。
1. 平均粒径1μm以下のWC粒子を硬質相とするWC基超硬合金からなる微粒層と、平均粒径3μm以上のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とが積層された積層部を有する基材を用意する工程。
2. 上記積層部の微粒層を基材の表面側とし、この積層部の表面の少なくとも一部に希ガスのイオンを用いてボンバードメント処理を施す工程。
3. 上記ボンバードメント処理が施された微粒層上に物理蒸着法により成膜する工程。
The method for producing a coated cutting tool of the present invention is a method for producing a coated cutting tool by forming a coating film on at least a part of a substrate surface made of a WC-based cemented carbide, and includes the following steps.
1. a fine-grained layer made of a WC-based cemented carbide with WC particles having an average particle size of 1 μm or less as a hard phase, and a coarse-grained layer made of a WC-based cemented carbide with WC particles having an average particle size of 3 μm or more as a hard phase; The process of preparing the base material which has the laminated part on which was laminated | stacked.
2. A step in which the fine particle layer of the laminated portion is set to the surface side of the base material, and at least a part of the surface of the laminated portion is subjected to bombardment treatment using rare gas ions.
3. A step of forming a film by physical vapor deposition on the fine particle layer subjected to the bombardment treatment.

上記本発明製造方法により、基材と被覆膜とが十分に密着し、かつ耐摩耗性、耐欠損性、耐チッピング性及び靭性に優れる本発明被覆切削工具が得られる。本発明被覆切削工具は、微粒のWC粒子を硬質相とするWC基超硬合金からなる微粒層と粗粒のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とが積層された積層部を有する基材と、基材表面の少なくとも一部に形成された被覆膜とを具える。微粒層は、平均粒径1μm以下のWC粒子を硬質相とし、粗粒層は、平均粒径3μm以上のWC粒子を硬質相とする。被覆膜は、基材の表面側に配された上記積層部の微粒層上に物理蒸着法により形成された膜(以下、PVD膜と呼ぶ)を含む。このPVD膜は、微粒層の表面側に存在するWC粒子に直接接して成長した結晶粒を具える。そして、本発明被覆切削工具は、微粒層のWC粒子の平均粒径をd1、上記PVD膜の結晶粒の平均粒径をd2とするとき、d1/d2が0.7以上1.3以下を満たす。以下、本発明を詳細に説明する。   By the manufacturing method of the present invention, the coated cutting tool of the present invention can be obtained in which the base material and the coating film are sufficiently adhered and are excellent in wear resistance, chipping resistance, chipping resistance and toughness. The coated cutting tool of the present invention is formed by laminating a fine particle layer made of a WC-based cemented carbide having fine WC particles as a hard phase and a coarse particle layer made of a WC-based cemented carbide having coarse WC particles as a hard phase. A substrate having a laminated portion and a coating film formed on at least a part of the surface of the substrate. The fine particle layer has WC particles having an average particle size of 1 μm or less as a hard phase, and the coarse particle layer has WC particles having an average particle size of 3 μm or more as a hard phase. The coating film includes a film (hereinafter referred to as a PVD film) formed by a physical vapor deposition method on the fine particle layer of the laminated portion disposed on the surface side of the substrate. This PVD film includes crystal grains grown in direct contact with the WC particles present on the surface side of the fine particle layer. The coated cutting tool of the present invention satisfies d1 / d2 of 0.7 or more and 1.3 or less, where d1 is the average particle size of the WC particles in the fine particle layer and d2 is the average particle size of the crystal grains of the PVD film. Hereinafter, the present invention will be described in detail.

<基材>
《組成》
基材は、WCを主成分とする硬質相と、CoやNiといった鉄族金属を主成分とする結合相とからなるWC基超硬合金で構成される。基材は、更に、周期律表IVa,Va,VIa族の金属元素群から選択される1種以上の元素や、同金属元素群から選択される1種以上の元素と、炭素、窒素、酸素及び硼素からなる群から選択される1種以上の元素とからなる化合物(固溶体)を含有していてもよい。具体的には、元素:Cr,Ta,V,Ti、化合物:(Ta,Nb)C,VC,Cr2C3,NbC,TiCNなどが挙げられ、これらの元素や化合物は、焼結中においてWC粒子の粒成長を抑制する働きを有するものが多い。WC粒子が少な過ぎると、耐摩耗性や靭性が低下したり、PVD膜を構成する結晶粒がWC粒子に倣って形成され難くなるため、微粒層及び粗粒層のWC粒子の含有量はいずれも、70〜98質量%が好ましい。公知の組成の超硬合金を利用してもよい。微粒層の組成と粗粒層の組成とは同じでも異なっていてもよい。
<Base material>
"composition"
The base material is composed of a WC-based cemented carbide composed of a hard phase mainly composed of WC and a binder phase mainly composed of an iron group metal such as Co or Ni. The base material is further composed of one or more elements selected from the group of metal elements of groups IVa, Va, VIa of the periodic table, one or more elements selected from the group of metal elements, and carbon, nitrogen, oxygen And a compound (solid solution) consisting of one or more elements selected from the group consisting of boron. Specifically, elements: Cr, Ta, V, Ti, compounds: (Ta, Nb) C, VC, Cr 2 C 3 , NbC, TiCN, etc., these elements and compounds are used during sintering. Many have the function of suppressing the grain growth of WC particles. If the amount of WC particles is too small, the wear resistance and toughness are reduced, and the crystal grains constituting the PVD film are difficult to be formed following the WC particles. Is preferably 70 to 98% by mass. A cemented carbide having a known composition may be used. The composition of the fine particle layer and the composition of the coarse particle layer may be the same or different.

《構造》
基材は、WC粒子の平均粒径が異なる複数種の超硬合金を積層してなる積層部を有するものとする。基材の少なくとも一部、特に、刃先及びその近傍は積層部からなり、すくい面側に微粒層が配された構造が好ましい。基材全体が積層構造でもよいし、刃先及びその近傍のみが積層部で構成され、ブレーカ部などの刃先及びその近傍以外の箇所が粗粒層又は微粒層のみで構成されていてもよい。基材全体を積層構造とすると、基材の製造性がよい。具体的な積層構造としては、例えば、微粒のWC粒子を硬質相とする微粒層と粗粒のWC粒子を硬質相とする粗粒層とが積層された断面二層構造や、二つの微粒層で一つの粗粒層を挟んだ断面三層構造が挙げられる。また、粗粒層を直方体状といった多角柱状とする場合、粗粒層を構成する面において隣接する少なくとも二面側に微粒層が配された構造や、粗粒層を構成する全面を覆うように微粒層が配された内包構造が挙げられる。基材の表面側、即ち被覆膜が形成される側に積層部の微粒層が配される。
"Construction"
A base material shall have the laminated part formed by laminating | stacking the multiple types of cemented carbide alloy from which the average particle diameter of WC particle | grains differs. A structure in which at least a part of the substrate, in particular, the blade edge and the vicinity thereof is composed of a laminated portion and the fine particle layer is disposed on the rake face side is preferable. The whole base material may have a laminated structure, or only the blade edge and its vicinity may be constituted by a laminated portion, and the blade edge such as a breaker portion and other portions in the vicinity thereof may be constituted only by a coarse particle layer or a fine particle layer. If the entire base material has a laminated structure, the manufacturability of the base material is good. Specific laminated structures include, for example, a cross-sectional two-layer structure in which a fine particle layer having fine WC particles as a hard phase and a coarse particle layer having coarse WC particles as a hard phase are laminated, or two fine particle layers And a cross-sectional three-layer structure sandwiching one coarse layer. In addition, when the coarse particle layer is formed in a polygonal column shape such as a rectangular parallelepiped shape, a structure in which the fine particle layer is arranged on at least two sides adjacent to the surface constituting the coarse particle layer, or the entire surface constituting the coarse particle layer is covered. An encapsulated structure in which a fine particle layer is arranged. The fine particle layer of the laminated portion is arranged on the surface side of the substrate, that is, the side on which the coating film is formed.

《微粒層》
[WC粒子の大きさ]
微粒層のWC粒子は、平均粒径1μm以下とする。平均粒径が小さいほど基材が高硬度になり易く、耐摩耗性を高められるため、特に下限を設けない。0.8μm以下がより好ましい。逆に、1μm超となると摩耗の進行が速まる。微粒層のWC粒子の平均粒径を1μm以下とするには、原料として、平均粒径1μm以下の微細なWC粒子を利用することが挙げられる。原料となる微細なWC粒子は、市販のものでも、市販のものを粉砕して細かくして利用してもよい。また、原料として、粒成長抑制剤を含有するものを利用してもよい。
<Fine particle layer>
[WC particle size]
The WC particles in the fine particle layer have an average particle size of 1 μm or less. The smaller the average particle size, the more easily the substrate becomes harder and the wear resistance can be improved. 0.8 μm or less is more preferable. Conversely, when it exceeds 1 μm, the progress of wear is accelerated. In order to set the average particle size of the WC particles in the fine particle layer to 1 μm or less, it is possible to use fine WC particles having an average particle size of 1 μm or less as a raw material. The fine WC particles used as a raw material may be a commercially available product or a commercially available product may be pulverized and used finely. Moreover, you may utilize what contains a grain growth inhibitor as a raw material.

[微粒層の厚さ]
微粒層は、基材自体の高硬度化や耐摩耗性の向上に寄与すると共に、基材の表面側に配されて、基材と被覆膜(特に、PVD膜)との密着性を高め、かつ被覆膜の特性を向上させることにも寄与する。このような効果を十分に得るためには、微粒層の厚さは比較的薄いことが好ましい。また、微粒層が厚過ぎると、耐クレーター摩耗性や靭性が低下する傾向にある。従って、微粒層の厚さは、100μm以下、特に10μm以下が好ましい。耐クレーター摩耗性の低下を抑制するために究極的には、微粒層のWC粒子が厚さ方向に一つ存在する構成、即ち、微粒層の厚さがWC粒子の最大径と同等な構成が好ましい。
[Thickness of fine particle layer]
The fine particle layer contributes to increasing the hardness and wear resistance of the substrate itself, and is arranged on the surface side of the substrate to improve the adhesion between the substrate and the coating film (particularly the PVD film). And it contributes to improving the characteristics of the coating film. In order to sufficiently obtain such an effect, it is preferable that the thickness of the fine particle layer is relatively thin. On the other hand, if the fine particle layer is too thick, crater wear resistance and toughness tend to decrease. Therefore, the thickness of the fine particle layer is preferably 100 μm or less, particularly preferably 10 μm or less. In order to suppress the deterioration of crater wear resistance, there is ultimately a configuration in which one WC particle in the fine particle layer exists in the thickness direction, that is, a constitution in which the thickness of the fine particle layer is equivalent to the maximum diameter of the WC particles. preferable.

《粗粒層》
粗粒層のWC粒子は、平均粒径3μm以上とする。平均粒径が大きいほど基材が高靭性になり易く、3μm未満では靭性向上効果が十分に得られない。より好ましい平均粒径は、3μm以上10μm以下である。粗粒層のWC粒子の原料は、市販のものや、市販のものを所定の大きさとなるように粉砕したものを利用できる。
<< Coarse Grain Layer >>
The WC particles in the coarse layer have an average particle size of 3 μm or more. The larger the average particle size, the more easily the base material becomes tough, and if it is less than 3 μm, the effect of improving toughness cannot be sufficiently obtained. A more preferable average particle diameter is 3 μm or more and 10 μm or less. As the raw material for the WC particles of the coarse layer, a commercially available product or a product obtained by pulverizing a commercially available product to have a predetermined size can be used.

《基材の形成》
微粒層と粗粒層とを積層した積層部を有する基材は、例えば、微粒層用のプレス成形体と粗粒層用のプレス成形体とをそれぞれ別個に形成し、所望の箇所が積層部となるようにこれらを重ね合わせて焼結して一体にしたり、微粒層用の原料と粗粒層用の原料とを用意し、所望の箇所が積層部となるように両原料を成形型に積層配置して一体のプレス成形体を形成して焼結することで製造できる。特に、一体のプレス成形体を形成すると、微粒層と粗粒層とを十分に接合させ易く好ましい。
<Formation of substrate>
The base material having a laminated portion in which a fine particle layer and a coarse particle layer are laminated is formed, for example, by separately forming a press-formed product for a fine particle layer and a press-formed product for a coarse particle layer, and a desired portion is a laminated portion These materials are stacked and sintered so as to be integrated, or a raw material for a fine particle layer and a raw material for a coarse particle layer are prepared, and both raw materials are formed into a mold so that a desired portion becomes a laminated portion. It can be manufactured by laminating and forming an integrated press-formed body and sintering. In particular, it is preferable to form an integrated press-molded body because it is easy to sufficiently bond the fine particle layer and the coarse particle layer.

<被覆膜>
《前処理》
上記基材の少なくとも一部に被覆膜を形成する。被覆膜の形成箇所は適宜選択することができ、基材表面の一部、特に刃先及びその近傍にのみ被覆膜を形成してもよいし、基材表面の全面に亘って被覆膜を形成してもよい。そして、基材に被覆膜を形成する前に、希ガスのイオンを用いたボンバードメント処理を基材表面の少なくとも被覆膜を形成する箇所、特に基材表面側に配された積層部の微粒層に施して基材表面を清浄にすると共に、微粒層の表面側に存在する複数のWC粒子のうち、少なくとも一部のWC粒子は、その基材表面側部分が露出されるようにする。希ガスは、Ar,Kr,Xeなどの種々のものが利用できる。特に、この処理は、希ガスに対して電子源から熱電子を放出しながら希ガスのイオンを発生させて行うと、WC粒子表面の清浄化を高品位に行うことができ、WC粒子と膜の密着力を高めることができる上、エッチングレートを向上することができ、生産性に優れる。電子源は、タングステンフィラメントといった熱電子を放出可能な熱フィラメントが利用できる。なお、処理時間を長くしたり、バイアス電圧を大きくすると、WC粒子の基材表面側部分が露出されたWC粒子の数を多くすることができ、WC粒子に直接接して形成された結晶粒の数を多くすることができる。
<Coating film>
"Preprocessing"
A coating film is formed on at least a part of the substrate. The formation location of the coating film can be appropriately selected, and the coating film may be formed only on a part of the surface of the base material, particularly the blade edge and the vicinity thereof, or the coating film is formed over the entire surface of the base material. May be formed. And before forming the coating film on the base material, the bombardment treatment using rare gas ions is performed at the position where the coating film is formed at least on the surface of the base material, particularly in the laminated portion arranged on the base material surface side. Apply to the fine particle layer to clean the substrate surface, and among the plurality of WC particles present on the surface side of the fine particle layer, at least a part of the WC particles should expose the substrate surface side portion. . Various rare gases such as Ar, Kr, and Xe can be used. In particular, when this treatment is performed by generating noble gas ions while emitting thermionic electrons from the electron source to the rare gas, the surface of the WC particles can be cleaned with high quality. In addition to improving the adhesion, the etching rate can be improved and the productivity is excellent. As the electron source, a hot filament capable of emitting thermal electrons such as a tungsten filament can be used. If the treatment time is increased or the bias voltage is increased, the number of WC particles exposed on the substrate surface side of the WC particles can be increased, and the crystal grains formed in direct contact with the WC particles can be increased. You can increase the number.

《形成方法》
被覆膜は、PVD法にて形成された膜(PVD膜)を含むものとする。少なくとも基材直上、特に基材表面側に配置された微粒層上にPVD膜が存在することが好ましく、基材側から表面側に亘って全てPVD膜でもよいし、基材側をPVD膜、表面側をCVD法にて形成された膜(CVD膜)というようにCVD膜を組み合わせてもよい。具体的なPVD法としては、バランスドマグネトロンスパッタリング法、アンバランスドマグネトロンスパッタリング法、イオンプレーティング法などが挙げられる。特に、原料元素のイオン化率が高いアーク式イオンプレーティング(カソードアークイオンプレーティング)法が好適である。なお、成膜時の基材温度が高過ぎたり低過ぎると、PVD膜の結晶粒が大きくなったり小さくなることで、基材のWC粒子に倣って結晶粒が形成され難くなる。基材において被覆膜を形成しない箇所は、マスキングなどを施してから成膜する。
<Formation method>
The coating film includes a film (PVD film) formed by the PVD method. It is preferable that the PVD film is present at least directly on the base material, particularly on the fine particle layer arranged on the base material surface side, and may be all PVD films from the base material side to the surface side, or the base material side is a PVD film, A CVD film may be combined such that the surface side is a film formed by a CVD method (CVD film). Specific examples of the PVD method include a balanced magnetron sputtering method, an unbalanced magnetron sputtering method, and an ion plating method. In particular, the arc ion plating (cathode arc ion plating) method in which the ionization rate of the raw material elements is high is suitable. If the substrate temperature during film formation is too high or too low, the crystal grains of the PVD film become larger or smaller, making it difficult to form crystal grains following the WC particles of the base material. The part where the coating film is not formed on the substrate is formed after masking or the like.

《組成》
被覆膜の組成は、特に問わない。PVD膜は、PVD法で形成可能なあらゆる組成が適用できる。特に、被覆膜は、周期律表IVa、Va、VIa族の金属元素,Al,Si及びBからなる群から選択される1種以上の元素と、炭素、窒素、酸素及び硼素からなる群から選択される1種以上の元素との化合物からなる化合物膜を少なくとも一つを有することが好ましい。具体的には、TiCN,Al2O3,TiAlN,TiN,AlCrNなどが挙げられる。被覆膜は、一つの組成からなる膜だけでも、組成の異なる複数種の膜からなる多層構造でもよい。厚さ(多層構造の場合合計厚さ)は、1〜10μmが好ましい。厚さは、成膜時間を調整することで変化させることができる。
"composition"
The composition of the coating film is not particularly limited. Any composition that can be formed by the PVD method can be applied to the PVD film. In particular, the coating film is composed of one or more elements selected from the group consisting of group IVa, Va and VIa metal elements, Al, Si and B, and a group consisting of carbon, nitrogen, oxygen and boron. It is preferable to have at least one compound film made of a compound with one or more selected elements. Specific examples include TiCN, Al 2 O 3 , TiAlN, TiN, and AlCrN. The coating film may be a single film having a single composition or a multilayer structure having a plurality of types of films having different compositions. The thickness (total thickness in the case of a multilayer structure) is preferably 1 to 10 μm. The thickness can be changed by adjusting the film formation time.

《組織》
上述のように特定の前処理後にPVD法で成膜することで、被覆膜を構成する結晶粒のうち、基材直上に存在するPVD膜の結晶粒(以下、直上結晶粒と呼ぶ)の中には、微粒層の表面側に存在するWC粒子(以下、表面WC粒子と呼ぶ)に直接接して形成され成長したもの(以下、連続結晶粒と呼ぶ)が存在する。特に、表面WC粒子が基材表面側に密に分散している場合、直上結晶粒は、主として連続結晶粒により構成される。そして、連続結晶粒は、概ね表面WC粒子と同程度の大きさである。具体的には、微粒層のWC粒子(表面WC粒子を含む)の平均粒径をd1とし、PVD膜の連続結晶粒の平均粒径をd2とするとき、d1/d2が0.7以上1.3以下を満たす。
《Organization》
By forming a film by PVD method after a specific pretreatment as described above, among the crystal grains constituting the coating film, the crystal grains of the PVD film existing directly above the substrate (hereinafter referred to as crystal grains immediately above) Some of them are formed and grown directly in contact with WC particles (hereinafter referred to as surface WC particles) existing on the surface side of the fine particle layer (hereinafter referred to as continuous crystal grains). In particular, when the surface WC particles are densely dispersed on the substrate surface side, the crystal grains directly above are mainly composed of continuous crystal grains. The continuous crystal grains are approximately the same size as the surface WC particles. Specifically, when the average particle diameter of WC particles (including surface WC particles) in the fine particle layer is d1, and the average particle diameter of continuous crystal grains of the PVD film is d2, d1 / d2 is 0.7 or more and 1.3 or less. Fulfill.

上述のように前処理により基材表面に不純物が存在すると、基材直上のPVD膜の結晶粒は、表面WC粒子に直接接して形成できないため、密着性が低下する。また、基材直上のPVD膜の結晶粒が表面WC粒子よりも大きく、d1/d2が0.7未満であると、膜が剥離し易く、表面WC粒子よりも小さく、d1/d2が1.3超となると、耐摩耗性が低下する。特に、d1/d2は、0.8以上1.2以下が好ましい。d1/d2の大きさは、クリーニング条件や成膜条件などにより変化させることができる。d1/d2を0.7以上1.3以下とするには、クリーニングの処理時間:10〜60分、処理時のバイアス電圧:-500〜-1500V、成膜時の基材温度:400〜600℃、成膜時のバイアス電圧:-10〜-200V、成膜時の雰囲気の圧力:0.5〜5Paとすることが好ましい。   As described above, when impurities are present on the surface of the base material due to the pretreatment, the crystal grains of the PVD film immediately above the base material cannot be formed in direct contact with the surface WC particles, so that the adhesion is deteriorated. Also, when the crystal grain of the PVD film directly above the substrate is larger than the surface WC particles and d1 / d2 is less than 0.7, the film is easy to peel off, smaller than the surface WC particles, and d1 / d2 exceeds 1.3. , Wear resistance decreases. In particular, d1 / d2 is preferably 0.8 or more and 1.2 or less. The size of d1 / d2 can be changed depending on the cleaning conditions, film forming conditions, and the like. To set d1 / d2 to 0.7 or more and 1.3 or less, cleaning processing time: 10 to 60 minutes, bias voltage during processing: -500 to -1500V, substrate temperature during film formation: 400 to 600 ° C, film formation Preferably, the bias voltage at the time is −10 to −200 V, and the pressure of the atmosphere during film formation is 0.5 to 5 Pa.

基材表面側に配された微粒層に表面WC粒子が密に分散している場合、直上結晶粒のうち、表面WC粒子に連続して形成されていない結晶粒は、連続結晶粒に挟まれることで、連続結晶粒と同程度の大きさとなり得る。このとき、d2として、実質的に直上結晶粒の平均粒径を採り得る。   When the surface WC particles are densely dispersed in the fine particle layer arranged on the surface side of the base material, the crystal grains that are not continuously formed on the surface WC particles are sandwiched between the continuous crystal grains. Thus, it can be as large as continuous crystal grains. At this time, the average particle diameter of the crystal grains immediately above can be taken as d2.

PVD膜を構成する結晶粒は、柱状であることが好ましい。特に、直上結晶粒を表面WC粒子に倣って形成させ成長させて微粒化し、アスペクト比が大きい、具体的には5以上の柱状組織であると、高硬度化による耐摩耗性の向上や靭性の向上を更に図ることができて好ましい。柱状組織は、成膜条件を調整することで形成することができる。具体的には、基材温度:400〜600℃、バイアス電圧:-10〜-200V、雰囲気の圧力:0.5〜5Paにすることで得られる。また、上記成膜条件に加えて、成膜速度を大きくする、具体的には0.6〜3μm/hとすると柱状組織が得られ易い。アスペクト比は、例えば、バイアス電圧を変化させることで変化させることができ、アスペクト比を5以上にするには、バイアス電圧を大きくする(-200V側にする)ことが挙げられる。   The crystal grains constituting the PVD film are preferably columnar. In particular, when the crystal grains directly above are formed and grown to follow the surface WC grains and are atomized, and the aspect ratio is large, specifically a columnar structure of 5 or more, improvement in wear resistance and toughness due to high hardness Further improvement is preferable. The columnar structure can be formed by adjusting the film forming conditions. Specifically, the substrate temperature is 400 to 600 ° C., the bias voltage is −10 to −200 V, and the atmospheric pressure is 0.5 to 5 Pa. In addition to the above film forming conditions, a columnar structure is easily obtained when the film forming speed is increased, specifically, 0.6 to 3 μm / h. The aspect ratio can be changed, for example, by changing the bias voltage. To increase the aspect ratio to 5 or more, the bias voltage is increased (to the −200 V side).

《面粗さ》
PVD膜を構成する直上結晶粒が表面WC粒子に倣って形成されることで、膜成長が安定し、PVD膜の表面が滑らかになる。具体的には、面粗さがRaで0.1μm以下を満たす。このような平滑なPVD膜を工具表面に具えることで、本発明被覆切削工具は、加工精度を向上することができる。面粗さRaは、微粒層のWC粒子の平均粒径d1が小さくなると、小さくなる傾向にある。
<Roughness>
Since the crystal grains immediately above the PVD film are formed following the surface WC particles, the film growth is stabilized and the surface of the PVD film becomes smooth. Specifically, the surface roughness satisfies Ra of 0.1 μm or less. By providing such a smooth PVD film on the tool surface, the coated cutting tool of the present invention can improve machining accuracy. The surface roughness Ra tends to decrease as the average particle diameter d1 of the WC particles in the fine particle layer decreases.

<用途>
上記構成を具える本発明被覆切削工具は、耐摩耗性、耐欠損性、靭性に優れることから、例えば、熱亀裂が生じ易い鋼のフライス加工用工具に適する。また、本発明工具は、耐チッピング性にも優れる。従って、チッピングが生じ易いため高靭性が望まれる断続切削を行う工具、即ち断続旋削用工具に本発明工具は適する。
<Application>
The coated cutting tool of the present invention having the above configuration is excellent in wear resistance, fracture resistance, and toughness, and is therefore suitable, for example, as a steel milling tool that is prone to thermal cracking. The tool of the present invention is also excellent in chipping resistance. Therefore, the tool of the present invention is suitable for a tool that performs intermittent cutting where high toughness is desired since chipping is likely to occur, that is, an intermittent turning tool.

本発明被覆切削工具は、耐摩耗性及び靭性に優れ、かつ基材と被覆膜とが十分に密着しており、基材と被覆膜との双方を十分に活用することができる。本発明被覆切削工具の製造方法は、上記本発明被覆切削工具を製造することができる。   The coated cutting tool of the present invention is excellent in wear resistance and toughness, and the base material and the coating film are sufficiently in close contact with each other, so that both the base material and the coating film can be fully utilized. The manufacturing method of this invention coated cutting tool can manufacture the said this invention coated cutting tool.

(試験例1)
微粒のWC粒子を硬質相とするWC基超硬合金からなる微粒層と粗粒のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とを積層してなる基材表面にPVD法で被覆膜を形成した被覆切削工具を作製し、耐摩耗性と被覆膜の耐剥離性とを調べた。
(Test Example 1)
PVD is formed on the surface of a substrate formed by laminating a fine particle layer made of WC-based cemented carbide with fine WC particles as a hard phase and a coarse particle layer made of WC-based cemented carbide with coarse WC particles as a hard phase. A coated cutting tool having a coating film formed thereon was prepared, and the wear resistance and the peeling resistance of the coating film were examined.

基材は、以下のように作製する。表1に示す組成(質量%)の原料粉末をそれぞれ用意して湿式混合粉砕し、粉末種I,IIを作製する。粗粒のWC粒子(平均粒径3.5μm)を含む粉末種Iを成形型に給粉して、0.5t/cm2の圧力でプレス成形した後、微粒のWC粒子(同0.8μm)を含む粉末種IIを更に成形型に給粉し、1.5t/cm2の圧力でプレス成形し、積層プレス成形体を作製する。原料粉末は、市販のものを用いた。 A base material is produced as follows. Raw material powders having the composition (mass%) shown in Table 1 are prepared and wet-mixed and pulverized to produce powder types I and II. Powder type I containing coarse WC particles (average particle size 3.5 μm) is fed into a mold and press-molded at a pressure of 0.5 t / cm 2 and then contains fine WC particles (0.8 μm). Powder type II is further fed into a mold and press-molded at a pressure of 1.5 t / cm 2 to produce a laminated press-molded body. A commercially available powder was used as the raw material powder.

Figure 2008284636
Figure 2008284636

上記積層プレス成形体を1400℃で真空焼結することにより、粗粒層と微粒層とが断面二層構造となるように積層されたJIS規格形状SNGN120408の基材(スローアウェイチップ)が得られる。なお、焼結後の粗粒層の厚さが4750μm、微粒層の厚さが10μmとなるように粉末種I,IIを用いた。   By subjecting the above-mentioned laminated press-formed body to vacuum sintering at 1400 ° C., a base material (throw away tip) of JIS standard shape SNGN120408 in which the coarse layer and the fine layer are laminated so as to have a two-layer structure is obtained. . Powder types I and II were used so that the coarse layer after sintering had a thickness of 4750 μm and the fine layer had a thickness of 10 μm.

上記基材にガスボンバードメント処理によりクリーニングを行ってから、アークイオンプレーティング法により成膜を行う。例えば、試料No.1-2は、以下のように作製する。成膜装置のチャンバ内に微粒層が基材表面側となるように基材を配置し、チャンバ内を真空引きして減圧した後、基材を加熱する。次に、チャンバ内にアルゴンガスを導入して、チャンバ内の圧力を3.0Paに保持し、基材バイアス電圧を徐々に上げていって-1000Vとし、タングステン(W)フィラメントを用いて熱電子を放出しながら、アルゴンイオンを発生させて基材表面のクリーニングを30分行う。その後、チャンバ内からアルゴンガスを排気し、引き続いて成膜を行う。成膜は、基材温度を所定の温度とし、真空状態、或いは反応ガスとして窒素、メタン及び酸素のいずれか1種以上のガスを導入させながら、蒸発源とチャンバとの間のアーク放電により、蒸発源を部分的に融解させてカソード物質を蒸発させて行う。この試験では、被覆膜としてTiAlN膜(厚さ4μm)を形成した。成膜は、基材温度:450℃、バイアス電圧:-150V、雰囲気の圧力:4Paとして行った。この工程により、被覆切削工具(被覆チップ)が得られる。   After the substrate is cleaned by a gas bombardment process, a film is formed by an arc ion plating method. For example, Sample No. 1-2 is produced as follows. The base material is disposed in the chamber of the film forming apparatus so that the fine particle layer is on the surface side of the base material. Next, argon gas is introduced into the chamber, the pressure in the chamber is maintained at 3.0 Pa, the substrate bias voltage is gradually increased to -1000 V, and thermoelectrons are emitted using a tungsten (W) filament. While releasing, argon ions are generated to clean the substrate surface for 30 minutes. Thereafter, argon gas is exhausted from the chamber, and film formation is subsequently performed. Film formation is carried out by setting the substrate temperature to a predetermined temperature, in a vacuum state, or by arc discharge between the evaporation source and the chamber while introducing at least one of nitrogen, methane and oxygen as the reaction gas. This is done by partially melting the evaporation source and evaporating the cathode material. In this test, a TiAlN film (thickness 4 μm) was formed as a coating film. Film formation was performed at a substrate temperature of 450 ° C., a bias voltage of −150 V, and an atmospheric pressure of 4 Pa. By this step, a coated cutting tool (coated chip) is obtained.

この試験では、クリーニング条件や成膜条件を変えることで、被覆膜を構成する結晶粒の平均粒径を異ならせた複数の被覆チップを作製した(試料No.1-1〜1-5)。試料No.1-3,1-4は、クリーニングの処理時間:10〜60分、処理時のバイアス電圧:-500〜-1500V、成膜時の基材温度:450〜550℃、成膜時のバイアス電圧:-10〜-200V、成膜時の雰囲気の圧力:0.5〜5Paとして、クリーニング及び成膜を行った。   In this test, a plurality of coated chips with different average grain sizes of the crystal grains constituting the coating film were prepared by changing the cleaning conditions and film formation conditions (Sample Nos. 1-1 to 1-5). . Sample Nos. 1-3 and 1-4 have cleaning processing time: 10 to 60 minutes, bias voltage during processing: -500 to -1500 V, substrate temperature during film formation: 450 to 550 ° C, during film formation Cleaning and film formation were performed at a bias voltage of −10 to −200 V and an atmospheric pressure during film formation of 0.5 to 5 Pa.

得られた被覆チップについて切断面を顕微鏡観察したところ、図1に示すように基材1の表面は、結合相11の一部が除去されて、微粒層1pの表面側に存在するWC粒子10pの中に、基材表面側部分が露出した状態のWC粒子10pが存在する。このような基材1の表面にPVD法によって形成された被覆膜2は、微粒層1pの表面側に存在するWC粒子10pに直接接して成長した結晶粒20pが多数存在している。結晶粒20pの大きさは、被覆チップによって異なっており、接触しているWC粒子10pと同程度の大きさのもの、WC粒子10pよりも小さい或いは大きいものがある。なお、図1に示す被覆膜は、基材側から表面側に向かって一つの結晶粒が連続した柱状形状となっているが、成膜条件を変化させることで、基材側の結晶粒と表面側の結晶粒とを連続しない別の粒子としたり、粒状の結晶粒と柱状の結晶粒との混合組織としたり、粒状の結晶粒のみとすることができる。試料No.1-2〜1-4はいずれも柱状組織を有しており、例えば、試料No.1-2の結晶粒のアスペクト比は5以上であった。また、上述のようにプレス成形体を形成する際に十分に加圧することで、微粒層1pと粗粒層1gとの境界において、粗粒層1gのWC粒子10g間に微粒層1pのWC粒子10pと思われる微粒のWC粒子が存在する基材とすることができる。   When the cut surface of the obtained coated chip was observed with a microscope, as shown in FIG. 1, the surface of the base material 1 had a part of the binder phase 11 removed, and the WC particles 10p existing on the surface side of the fine particle layer 1p. The WC particles 10p in a state where the substrate surface side portion is exposed are present. The coating film 2 formed on the surface of the substrate 1 by the PVD method has a large number of crystal grains 20p grown in direct contact with the WC particles 10p existing on the surface side of the fine particle layer 1p. The size of the crystal grain 20p varies depending on the coated chip, and there are those having the same size as the contacting WC particles 10p and those smaller or larger than the WC particles 10p. The coating film shown in FIG. 1 has a columnar shape in which one crystal grain is continuous from the substrate side to the surface side. And the crystal grains on the surface side may be different particles that are not continuous, a mixed structure of granular crystal grains and columnar crystal grains, or only granular crystal grains. Samples Nos. 1-2 to 1-4 all have a columnar structure. For example, the aspect ratio of the crystal grains of sample No. 1-2 was 5 or more. Further, by sufficiently applying pressure when forming the press-molded body as described above, the WC particles of the fine particle layer 1p are between the WC particles 10g of the coarse particle layer 1g at the boundary between the fine particle layer 1p and the coarse particle layer 1g. It can be used as a base material in which fine WC particles that appear to be 10p are present.

各被覆チップについて、微粒層1pのWC粒子10pの平均粒径d1(μm)と、被覆膜2において微粒層1pのWC粒子10pに直接接して成長している結晶粒20pの平均粒径d2(μm)とを測定し、d1/d2を求めた。また、粗粒層1gのWC粒子10gの平均粒径d3(μm)を求めた。その結果、いずれの試料も、微粒層のWC粒子の平均粒径d1は、0.8μm、粗粒層のWC粒子の平均粒径d3は、3.5μmであった。   For each coated chip, the average particle diameter d1 (μm) of the WC particles 10p of the fine particle layer 1p and the average particle diameter d2 of the crystal grains 20p grown in direct contact with the WC particles 10p of the fine particle layer 1p in the coating film 2 (μm) was measured to determine d1 / d2. Further, the average particle diameter d3 (μm) of 10 g of WC particles in 1 g of the coarse layer was determined. As a result, in each sample, the average particle diameter d1 of the WC particles in the fine particle layer was 0.8 μm, and the average particle diameter d3 of the WC particles in the coarse particle layer was 3.5 μm.

平均粒径d1,d2は、以下のように測定した。被覆チップを切断し、切断面をラッピングしてSEM(走査電子顕微鏡)による結晶解析を行い、解析画像を画像解析装置に取り込んで解析して、切断面におけるWC粒子や被覆膜(PVD膜)の結晶粒の粒径(μm)を測定して、これらの平均値を平均粒径とする。WC粒子の平均粒径d1は、基材において被覆膜との境界近傍に存在する任意のWC粒子を複数(ここでは30個)測定して、その平均値とする。被覆膜の結晶粒の平均粒径d2は、WC粒子に直接接して成長している結晶粒を任意に複数(ここでは30個)測定して、その平均値とする。結晶解析は、例えば、ECP(Electron channeling pattern)法、より微細な領域の解析が行えるEBSD(Electron Back
Scatter Diffraction Patterns)法が挙げられる。ここではEBSD法により解析した。
The average particle diameters d1 and d2 were measured as follows. Cut the coated chip, wrap the cut surface, perform crystal analysis by SEM (scanning electron microscope), import the analysis image into the image analyzer and analyze it, and analyze the WC particles and coating film (PVD film) on the cut surface The grain size (μm) of the crystal grains is measured, and the average value of these is taken as the average grain size. The average particle diameter d1 of the WC particles is an average value obtained by measuring a plurality (30 in this case) of arbitrary WC particles existing in the vicinity of the boundary with the coating film on the substrate. The average particle diameter d2 of the crystal grains of the coating film is an average value obtained by arbitrarily measuring a plurality (30 in this case) of crystal grains growing directly in contact with the WC particles. Crystal analysis can be performed using, for example, ECP (Electron channeling pattern) method, EBSD (Electron Back
Scatter Diffraction Patterns) method. Here, we analyzed by EBSD method.

平均粒径d3は、上記切断面の一定の範囲(ここでは微粒層から十分に離れた基材内部における100μm角内)に存在する全てのWC粒子の粒径を測定し、その平均値とする。平均粒径d1,d3は、上記平均値をフルマンの式により適宜修正してもよい。   The average particle diameter d3 is the average value obtained by measuring the particle diameters of all WC particles existing within a certain range of the cut surface (here, within a 100 μm square inside the substrate sufficiently away from the fine particle layer). . For the average particle diameters d1 and d3, the above average value may be appropriately modified by the Fullman equation.

得られた被覆チップを用いて以下の切削条件で切削試験を行った。表2に切削条件及び評価方法を示す。また、切削試験の結果を表3に示す。   A cutting test was performed using the obtained coated tip under the following cutting conditions. Table 2 shows cutting conditions and evaluation methods. Table 3 shows the results of the cutting test.

Figure 2008284636
Figure 2008284636

Figure 2008284636
Figure 2008284636

表3に示すように、微粒層の表面側に存在するWC粒子と、被覆膜において基材との境界近傍に存在する結晶粒とが同程度である、即ちd1/d2が0.7〜1.3であると、被覆膜の密着性が向上できることが分かる。また、d1/d2が0.7〜1.3である試料は、耐摩耗性にも優れている。これは、被覆膜が十分に密着していることで被覆膜を十分に活用することができ、被覆切削工具全体として耐摩耗性を向上することができたためであると考えられる。更に、d1/d2が0.7〜1.3である試料について被覆膜の面粗さを調べたところ、いずれの試料もRaで0.1μm以下であり、被覆膜表面が非常に平滑であった。   As shown in Table 3, the WC particles present on the surface side of the fine particle layer and the crystal grains present in the vicinity of the boundary with the base material in the coating film are comparable, that is, d1 / d2 is 0.7 to 1.3. When it exists, it turns out that the adhesiveness of a coating film can be improved. A sample having d1 / d2 of 0.7 to 1.3 is also excellent in wear resistance. This is considered to be because the coating film can be fully utilized because the coating film is sufficiently adhered, and the wear resistance of the entire coated cutting tool can be improved. Further, when the surface roughness of the coating film was examined for samples having d1 / d2 of 0.7 to 1.3, the Ra was 0.1 μm or less in all samples, and the coating film surface was very smooth.

(試験例2)
試験例1で作製した基材に代えて、微粒層のWC粒子の大きさと粗粒層のWC粒子の大きさを変化させた基材を作製し、この基材を具える被覆切削工具について耐摩耗性と耐欠損性とを調べた。
(Test Example 2)
Instead of the base material prepared in Test Example 1, a base material in which the size of the WC particles in the fine layer and the size of the WC particles in the coarse layer was changed was prepared, and the coated cutting tool including the base material was resistant to the coating. Abrasion and fracture resistance were investigated.

基材は、WC粒子の平均粒径が異なる以外は試験例1と同様の組成の原料粉末を用いて、実施例1と同様の条件で作製した(微粒層の厚さ:10μm、粗粒層の厚さ:4750μm)。   The base material was prepared under the same conditions as in Example 1 using raw material powder having the same composition as in Test Example 1 except that the average particle diameter of WC particles was different (thickness of fine particle layer: 10 μm, coarse particle layer) Thickness: 4750 μm).

得られた基材に試験例1の試料No.1-2と同様の条件でクリーニングを行った後、試料No.1-2と同様の条件でアークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。この工程により、被覆チップが得られる。   After cleaning the obtained substrate under the same conditions as Sample No. 1-2 in Test Example 1, the TiAlN film (thickness) was obtained by arc ion plating under the same conditions as Sample No. 1-2. 4 μm) was formed. By this step, a coated chip is obtained.

得られた被覆チップについて、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、いずれの試料もd1/d2=0.7〜1.3を満たしていた(例えば、試料No.2-3はd1/d2=0.9である)。そのため、いずれの試料も、被覆膜が基材に十分に密着していると考えられる。   For the coated chip obtained, the average particle diameter d1, d3 (μm) of the WC particles and the average particle diameter d2 (μm) of the crystal grains of the coating film were measured in the same manner as in Test Example 1, and d1 / d2 was calculated. Asked. As a result, all the samples satisfied d1 / d2 = 0.7 to 1.3 (for example, sample No. 2-3 has d1 / d2 = 0.9). Therefore, it is considered that the coating film is sufficiently adhered to the substrate in any sample.

得られた被覆チップを用いて以下の切削条件で切削試験を行った。表4に切削条件及び評価方法を示す。また、切削試験の結果を表5に示す。更に、被覆膜の表面粗さRa(μm)も測定した。その結果を表5に示す。   A cutting test was performed using the obtained coated tip under the following cutting conditions. Table 4 shows cutting conditions and evaluation methods. Table 5 shows the results of the cutting test. Furthermore, the surface roughness Ra (μm) of the coating film was also measured. The results are shown in Table 5.

Figure 2008284636
Figure 2008284636

Figure 2008284636
Figure 2008284636

表5に示すように、微粒層のWC粒子の平均粒径d1が小さいほど、耐摩耗性に優れることが分かる。また、粗粒層のWC粒子の平均粒径d3が大きいほど、耐欠損性に優れることが分かる。これらのことから、d1を1μm以下、かつd3を3μm以上とすることで、高硬度で高靭性となり、耐摩耗性と耐欠損性との双方に優れる被覆切削工具が得られることが分かる。特に、この被覆切削工具は、切削抵抗が高く、表面が高硬度であることが望まれる鋼の切削加工や、高靭性であることが望まれる断続切削に有用であると期待される。   As shown in Table 5, it can be seen that the smaller the average particle diameter d1 of the WC particles in the fine particle layer, the better the wear resistance. It can also be seen that the larger the average particle diameter d3 of the WC particles in the coarse-grained layer, the better the fracture resistance. From these facts, it can be seen that by setting d1 to 1 μm or less and d3 to 3 μm or more, a coated cutting tool having high hardness and high toughness and excellent in both wear resistance and fracture resistance can be obtained. In particular, this coated cutting tool is expected to be useful for steel cutting, which has a high cutting resistance, and whose surface is desired to have high hardness, and for intermittent cutting, which is desired to have high toughness.

(試験例3)
試験例1で作製した基材に代えて、微粒層の厚さを変化させた基材を作製し、この基材を具える被覆切削工具について、耐摩耗性と耐欠損性とを調べた。
(Test Example 3)
Instead of the base material prepared in Test Example 1, a base material having a changed fine particle layer thickness was prepared, and the coated cutting tool including the base material was examined for wear resistance and fracture resistance.

基材は、微粒層の厚さが異なるように粉末種IIの給粉量を変化させた以外は、試験例1と同様の組成の原料粉末を用いて、実施例1と同様の条件で作製した。なお、微粒層の厚さに応じて、成形時の圧力を変化させてもよい。また、粗粒の粉末種Iのみを用いた基材(試料No.3-1)、及び微粒の粉末種IIのみを用いた基材(試料No.3-9)も作製した。成形時の圧力は、試料No.3-1,3-9のいずれとも1.5t/cm2とし、焼結条件は、試験例1と同様とした。 The base material was prepared under the same conditions as in Example 1, using raw material powder having the same composition as in Test Example 1, except that the amount of powder type II was changed so that the thickness of the fine particle layer was different. did. The pressure during molding may be changed according to the thickness of the fine particle layer. In addition, a base material (sample No. 3-1) using only coarse powder type I and a base material (sample No. 3-9) using only fine powder type II were also prepared. The pressure during molding was 1.5 t / cm 2 for both Sample Nos. 3-1 and 3-9, and the sintering conditions were the same as in Test Example 1.

得られた基材に試験例1の試料No.1-2と同様の条件でクリーニングを行った後、試料No.1-2と同様の条件でアークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。この工程により、被覆チップが得られる。   After cleaning the obtained substrate under the same conditions as Sample No. 1-2 in Test Example 1, the TiAlN film (thickness) was obtained by arc ion plating under the same conditions as Sample No. 1-2. 4 μm) was formed. By this step, a coated chip is obtained.

得られた被覆チップについて、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、微粒層及び粗粒層の双方を有する試料はいずれも、d1が0.8μm、d3が3.5μmであり、d1/d2=0.7〜1.3を満たしており(例えば、試料No.3-3はd1/d2=0.9である)、被覆膜が基材に十分に密着していると考えられる。また、微粒層及び粗粒層の双方を有する試料について被覆膜の面粗さを調べたところ、いずれの試料もRaで0.1μm以下であった。   For the coated chip obtained, the average particle diameter d1, d3 (μm) of the WC particles and the average particle diameter d2 (μm) of the crystal grains of the coating film were measured in the same manner as in Test Example 1, and d1 / d2 was calculated. Asked. As a result, all the samples having both the fine particle layer and the coarse particle layer have d1 of 0.8 μm, d3 of 3.5 μm, and satisfy d1 / d2 = 0.7 to 1.3 (for example, sample No. 3-3 Is d1 / d2 = 0.9), and it is considered that the coating film is sufficiently adhered to the substrate. Further, when the surface roughness of the coating film was examined for the sample having both the fine particle layer and the coarse particle layer, Ra was 0.1 μm or less in all samples.

得られた被覆チップを用いて以下の切削条件で切削試験を行った。表6に切削条件及び評価方法を示す。また、切削試験の結果を表7に示す。   A cutting test was performed using the obtained coated tip under the following cutting conditions. Table 6 shows cutting conditions and evaluation methods. Table 7 shows the results of the cutting test.

Figure 2008284636
Figure 2008284636

Figure 2008284636
Figure 2008284636

表7に示すように、粗粒層のみの場合と比較して、粗粒層と微粒層を具えると逃げ面摩耗量を低減できると共に、耐欠損性を高められるが、微粒層が厚くなると、クレーター摩耗量が多くなる。しかし、微粒層の厚さが100μm以下であると、クレーター摩耗量を低減でき、特に10μm以下とすると、微粒層を有していない場合と同程度のクレーター摩耗量にすることができる。   As shown in Table 7, compared to the case of only the coarse particle layer, if the coarse particle layer and the fine particle layer are provided, the flank wear amount can be reduced and the fracture resistance can be improved, but the fine particle layer becomes thicker. The amount of crater wear increases. However, if the thickness of the fine particle layer is 100 μm or less, the amount of crater wear can be reduced, and if it is particularly 10 μm or less, the crater wear amount can be the same as when the fine particle layer is not provided.

(試験例4)
被覆膜を柱状組織とする場合、被覆膜の成膜条件を変化させて結晶粒のアスペクト比を異ならせ、この被覆膜を具える被覆切削工具について、耐摩耗性を調べた。
(Test Example 4)
When the coating film has a columnar structure, the film forming conditions of the coating film were changed to change the aspect ratio of the crystal grains, and the wear resistance of the coated cutting tool having this coating film was examined.

試験例1と同様に作製した基材に試験例1の試料No.1-2と同様の条件でクリーニングを行った後、アークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。成膜の際、試験例1の試料No.1-2の成膜条件に対して、基材バイアス電圧を変化させ、r1(後述)を変化させることで、アスペクト比が異なる被覆膜を形成した(例えば、試料No.4-3の基材バイアス電圧:-180Vである)。この工程により、被覆チップが得られる。   A substrate produced in the same manner as in Test Example 1 was cleaned under the same conditions as Sample No. 1-2 in Test Example 1, and then a TiAlN film (thickness 4 μm) was formed by arc ion plating. During film formation, the substrate bias voltage was changed and r1 (described later) was changed with respect to the film formation conditions of Sample No. 1-2 in Test Example 1 to form coating films with different aspect ratios. (For example, the substrate bias voltage of sample No. 4-3 is -180V). By this step, a coated chip is obtained.

得られた被覆チップについて、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、いずれの試料もd1が0.8μm、d3が3.5μmであり、d1/d2=0.9であった。また、いずれの試料も被覆膜の面粗さは、Raで0.1μm以下であった。   For the coated chip obtained, the average particle diameter d1, d3 (μm) of the WC particles and the average particle diameter d2 (μm) of the crystal grains of the coating film were measured in the same manner as in Test Example 1, and d1 / d2 was calculated. Asked. As a result, in all samples, d1 was 0.8 μm, d3 was 3.5 μm, and d1 / d2 = 0.9. In all samples, the surface roughness of the coating film was Ra of 0.1 μm or less.

アスペクト比の測定は、以下のようにして行う。被覆チップの縦断面(被覆膜の厚さ方向の断面)に対して、平行或いは角度をつけて(10°以下が好ましい)研磨し、沸酸と硝酸と蒸留水の混合溶液などの腐食液を用いて結晶粒界を浮かび上がらせた後、SEMで観察して高倍率(5000〜20000倍が好ましい)で撮影した写真を用いる。図1に示すように被覆膜2においてその表面から被覆膜2の厚さW2の15%(0.15×W2)の地点を通る直線L1を引き、基材1との境界から被覆膜2の厚さW2の15%(0.15×W2)の地点を通る直線L2を引く。直線L1,L2は、被覆膜の厚さ方向に直交する直線、端的に言うと被覆膜2の表面に平行な直線とする。各結晶粒20において直線L1,L2上の粒径r1,r2を測定し、粒径の平均値((r1+r2)/2)を求める。複数(ここでは10個)の結晶粒20について粒径の平均値((r1+r2)/2)を求め、複数の粒径の平均値についての平均値ave.CS(ここでは{Σ((r1+r2)/2)}/10)と、厚さW2との比(W2/ave.CS)をアスペクト比とする。ここでは、柱状の結晶粒20が基材側から被覆膜の表面側にまで連続する場合を考える。柱状の結晶粒が基材側から被覆膜の中間部までしか連続しない場合、即ち、基材側の結晶粒と膜表面側の結晶粒とが連続しない別の粒子である場合、基材側に存在する柱状の結晶粒の平均粒径と、基材側から連続する地点の平均厚さとの比をアスペクト比とする。 The aspect ratio is measured as follows. Corrosive solution such as a mixed solution of boiling acid, nitric acid and distilled water, polished parallel or at an angle (preferably 10 ° or less) to the longitudinal section of the coated chip (cross section in the thickness direction of the coating film) The crystal grain boundary is lifted up using, and a photograph taken at a high magnification (preferably 5000 to 20000 times) is observed with an SEM. As shown in FIG. 1, in the coating film 2, a straight line L 1 passing through a point 15% (0.15 × W 2 ) of the thickness W 2 of the coating film 2 is drawn from the surface, and the coating film 2 is covered from the boundary with the base material 1. A straight line L 2 passing through a point of 15% (0.15 × W 2 ) of the thickness W 2 of the covering film 2 is drawn. The straight lines L 1 and L 2 are straight lines orthogonal to the thickness direction of the coating film, in other words, straight lines parallel to the surface of the coating film 2. The particle size r 1, r 2 on the straight line L 1, L 2 measured in each crystal grain 20, the average value of the particle size ((r 1 + r 2) / 2). An average value ((r 1 + r 2 ) / 2) of a plurality of (here 10) crystal grains 20 is obtained, and an average value ave.CS (here, {Σ A ratio (W 2 /ave.CS) between ((r 1 + r 2 ) / 2)} / 10) and the thickness W 2 is defined as an aspect ratio. Here, a case is considered where the columnar crystal grains 20 are continuous from the substrate side to the surface side of the coating film. When the columnar crystal grains are continuous only from the substrate side to the middle part of the coating film, that is, when the crystal grains on the substrate side and the crystal grains on the film surface side are different particles, the substrate side The aspect ratio is defined as the ratio between the average grain size of the columnar crystal grains present in the column and the average thickness at points continuous from the substrate side.

得られた被覆チップを用いて表6に示す切削条件(耐摩耗性(逃げ面摩耗量))で切削試験を行った。切削試験の結果を表8に示す。   Using the obtained coated tip, a cutting test was performed under the cutting conditions shown in Table 6 (wear resistance (flank wear amount)). Table 8 shows the results of the cutting test.

Figure 2008284636
Figure 2008284636

表8に示すように、アスペクト比が大きいと耐摩耗性に優れることが分かる。これは、被覆膜の硬度が向上したためであると考えられる。   As shown in Table 8, it can be seen that when the aspect ratio is large, the wear resistance is excellent. This is considered to be because the hardness of the coating film was improved.

(試験例5)
試験例1で作製した基材に対し、被覆膜形成前のクリーニング条件を変化させた被覆切削工具を作製し、クリーニング条件と被覆膜の面粗さとの関係を調べた。
(Test Example 5)
A coated cutting tool in which the cleaning conditions before forming the coating film were changed was produced for the substrate produced in Test Example 1, and the relationship between the cleaning conditions and the surface roughness of the coating film was examined.

試料No.5-1,5-2は、試験例1と同様に作製した基材に試験例1の試料No.1-2と同様の条件でガスボンバードメント処理によりクリーニングを行った後、試料No.1-2と同様の条件でアークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。但し、クリーニング時間は、表9に示す時間とした。この工程により、被覆チップが得られる。   Sample Nos. 5-1 and 5-2 were prepared by cleaning the base material prepared in the same manner as in Test Example 1 by gas bombardment treatment under the same conditions as Sample No. 1-2 in Test Example 1. A TiAlN film (thickness 4 μm) was formed by arc ion plating under the same conditions as in No. 1-2. However, the cleaning time was the time shown in Table 9. By this step, a coated chip is obtained.

試料No.5-3は、試験例1と同様に作製した基材にメタルイオンを用いたボンバードメント処理(メタルボンバードメント処理)によりクリーニングを行った後、試料No.1-2と同様の条件でアークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。この処理は、アルゴン雰囲気中でTiイオンを発生させて行った(クリーニング時間:10分)。この工程により、被覆チップが得られる。   Sample No. 5-3 was cleaned by bombardment treatment using metal ions (metal bombardment treatment) on the base material prepared in the same manner as in Test Example 1, and then the same conditions as Sample No. 1-2 Then, a TiAlN film (thickness 4 μm) was formed by arc ion plating. This treatment was performed by generating Ti ions in an argon atmosphere (cleaning time: 10 minutes). By this step, a coated chip is obtained.

得られた被覆チップについて、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、いずれの試料もd1が0.8μm、d3が3.5μmであった。また、試料No.5-1,5-2は、d1/d2=0.7〜1.3を満たしており(例えば、試料No.5-1はd1/d2=0.9である)、被覆膜が基材に十分に密着していると考えられる。一方、試料No.5-3は、切断面を顕微鏡観察したところ、被覆膜において基材のWC粒子に直接接して形成され成長し、同WC粒子と同程度の大きさの結晶粒が実質的に存在しなかった。   For the coated chip obtained, the average particle diameter d1, d3 (μm) of the WC particles and the average particle diameter d2 (μm) of the crystal grains of the coating film were measured in the same manner as in Test Example 1, and d1 / d2 was calculated. Asked. As a result, all samples had d1 of 0.8 μm and d3 of 3.5 μm. Sample Nos. 5-1 and 5-2 satisfy d1 / d2 = 0.7 to 1.3 (for example, sample No. 5-1 has d1 / d2 = 0.9), and the coating film is a base material. It is thought that it is closely attached to On the other hand, Sample No. 5-3, when the cut surface was observed with a microscope, was formed and grown in direct contact with the WC particles of the base material in the coating film, and the crystal grains having the same size as the WC particles were substantially formed. Did not exist.

得られた被覆チップを用いて表6に示す切削条件(耐摩耗性(逃げ面摩耗量))で切削試験を行った。切削試験の結果を表9に示す。また、被覆膜の面粗さRa、及び被削材の加工面の面粗さRaを測定した。その結果も表9に示す。加工面の面粗さRaは、切削初期に測定した。   Using the obtained coated tip, a cutting test was performed under the cutting conditions shown in Table 6 (wear resistance (flank wear amount)). Table 9 shows the results of the cutting test. Further, the surface roughness Ra of the coating film and the surface roughness Ra of the processed surface of the work material were measured. The results are also shown in Table 9. The surface roughness Ra of the processed surface was measured at the beginning of cutting.

Figure 2008284636
Figure 2008284636

表9に示すように、ガスボンバードメント処理を行うことで被覆膜表面を平滑にでき、良好な加工面が得られることが分かる。特に、ガスボンバードメント処理の時間を長くして十分にクリーニングを行うことで、更に被覆膜の平滑化、加工面の精度の向上を図ることができる。更に、ガスボンバードメント処理を行うことで耐摩耗性にも優れる被覆切削工具が得られることが分かる。これは、クリーニングに伴う不純物が基材表面に存在しないことで、被覆膜と基材とが十分に密着できて、被覆膜の特性を向上することができたためであると考えられる。   As shown in Table 9, it can be seen that by performing the gas bombardment treatment, the surface of the coating film can be smoothed and a good processed surface can be obtained. In particular, it is possible to further smooth the coating film and improve the accuracy of the processed surface by sufficiently cleaning the gas bombardment process for a long time. Furthermore, it turns out that the coated cutting tool which is excellent also in abrasion resistance is obtained by performing a gas bombardment process. This is probably because the impurities accompanying the cleaning are not present on the surface of the base material, so that the coating film and the base material can be sufficiently adhered to each other and the characteristics of the coating film can be improved.

(試験例6)
更に、ガスボンバードメント処理の効果を確認するために、ガスボンバードメント処理を行った場合、メタルボンバードメント処理を行った場合、ボンバードメント処理を行わない場合を比較した。
(Test Example 6)
Furthermore, in order to confirm the effect of the gas bombardment process, the case where the gas bombardment process was performed, the case where the metal bombardment process was performed, and the case where the bombardment process was not performed were compared.

試験例1で作製した微粒層と粗粒層とを有する基材と、試験例3で作製した粗粒層のみの基材、即ち微粒層を有していない基材とを用意し、被覆膜形成前のクリーニング条件を変化させて前処理を行った後、試料No.1-2と同様の条件でアークイオンプレーティング法により、TiAlN膜(厚さ4μm)を形成した。この工程により、被覆チップが得られる。   Prepare a substrate having a fine particle layer and a coarse particle layer prepared in Test Example 1 and a substrate having only a coarse particle layer produced in Test Example 3, that is, a substrate having no fine particle layer, and coat After pre-treatment by changing the cleaning conditions before film formation, a TiAlN film (thickness 4 μm) was formed by arc ion plating under the same conditions as Sample No. 1-2. By this step, a coated chip is obtained.

試料No.6-1,6-2は、試験例1の試料No.1-2と同様の条件でガスボンバードメント処理によりクリーニングを行った。試料No.6-3,6-4は、試験例5の試料No.5-3に施したメタルボンバードメント処理と同様の条件でクリーニングを行った。試料No.6-5,6-6は、いずれの処理も施さず、クリーニングを行っていない。   Samples Nos. 6-1 and 6-2 were cleaned by gas bombardment treatment under the same conditions as Sample No. 1-2 of Test Example 1. Samples Nos. 6-3 and 6-4 were cleaned under the same conditions as the metal bombardment treatment applied to Sample No. 5-3 of Test Example 5. Samples Nos. 6-5 and 6-6 were not subjected to any treatment and were not cleaned.

得られた被覆チップのうち、微粒層と粗粒層との双方を具える試料No.6-2について、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、d1が0.8μm、d3が3.5μm、d1/d2=0.9であり、被覆膜が基材に十分に密着していると考えられる。また、試料No.6-2の被覆膜の面粗さは、Raで0.1μm以下であった。   Among the obtained coated chips, for sample No. 6-2 having both a fine particle layer and a coarse particle layer, the average particle diameter d1, d3 (μm) of WC particles was coated in the same manner as in Test Example 1. The average grain size d2 (μm) of the crystal grains of the film was measured, and d1 / d2 was determined. As a result, d1 is 0.8 μm, d3 is 3.5 μm, d1 / d2 = 0.9, and it is considered that the coating film is sufficiently adhered to the substrate. The surface roughness of the coating film of Sample No. 6-2 was 0.1 μm or less in terms of Ra.

得られた被覆チップを用いて表6に示す切削条件(耐摩耗性(逃げ面摩耗量))で切削試験を行った。切削試験の結果を表10に示す。   Using the obtained coated tip, a cutting test was performed under the cutting conditions shown in Table 6 (wear resistance (flank wear amount)). Table 10 shows the results of the cutting test.

Figure 2008284636
Figure 2008284636

表10に示すように、微粒層を有する試料の方が微粒層を有していない試料よりも逃げ面摩耗量が少ない。しかし、ガスボンバードメント処理を行っていない試料は、耐摩耗性の向上度合いが小さい。従って、粗粒層と微粒層とを有する基材にガスボンバードメント処理を行ってから成膜すると、耐摩耗性の向上度合いが大きく、耐摩耗性に優れる被覆切削工具が得られると考えられる。   As shown in Table 10, the sample with the fine particle layer has less flank wear than the sample without the fine particle layer. However, a sample not subjected to gas bombardment treatment has a small degree of improvement in wear resistance. Therefore, it is considered that when a film having a coarse particle layer and a fine particle layer is subjected to gas bombardment treatment, a coated cutting tool having a high degree of improvement in wear resistance and excellent wear resistance can be obtained.

(試験例7)
試験例1で作製した基材に対し、被覆膜の組成や形成方法を変化させた被覆切削工具を作製し、耐摩耗性を調べた。
(Test Example 7)
A coated cutting tool in which the composition of the coating film and the formation method were changed was produced from the substrate produced in Test Example 1, and the wear resistance was examined.

試験例1で作製した微粒層と粗粒層とを有する基材と、試験例3で作製した粗粒層のみの基材、即ち微粒層を有していない基材とを用意し、いずれの基材も試験例1の試料No.1-2と同様の条件でクリーニングを行った後、表11に示す組成の被覆膜を表11に示す形成方法で形成した。表11のPVD法の成膜条件は、試験例1の試料No.1-3と同様の成膜条件とし、CVD法の成膜条件は、公知の条件とした。被覆膜の組成の横に付した括弧内の数字は、各組成の被覆膜の厚さ(μm)である。   Prepare a substrate having a fine particle layer and a coarse particle layer prepared in Test Example 1 and a substrate having only a coarse particle layer prepared in Test Example 3, that is, a substrate having no fine particle layer. The substrate was also cleaned under the same conditions as Sample No. 1-2 in Test Example 1, and then a coating film having the composition shown in Table 11 was formed by the forming method shown in Table 11. The film formation conditions for the PVD method in Table 11 were the same as those for Sample No. 1-3 in Test Example 1, and the film formation conditions for the CVD method were known conditions. The number in parentheses attached to the side of the composition of the coating film is the thickness (μm) of the coating film of each composition.

得られた被覆チップのうち、粗粒層と微粒層との双方を具え、PVD法により被覆膜を形成した試料No.7-2,7-4について、試験例1と同様にしてWC粒子の平均粒径d1,d3(μm)、被覆膜の結晶粒の平均粒径d2(μm)を測定すると共に、d1/d2を求めた。その結果、いずれの試料もd1:0.8μm、d3:3.5μm、d1/d2=0.9であり、被覆膜が基材に十分に密着していると考えられる。また、試料No.7-2,7-4の被覆膜の面粗さはいずれも、Raで0.1μm以下であった。   Among the obtained coated chips, WC particles were prepared in the same manner as in Test Example 1 for sample Nos. 7-2 and 7-4 that had both a coarse layer and a fine layer and formed a coating film by the PVD method. The average particle diameters d1, d3 (μm) and the average particle diameter d2 (μm) of the crystal grains of the coating film were measured, and d1 / d2 was determined. As a result, in all samples, d1: 0.8 μm, d3: 3.5 μm, d1 / d2 = 0.9, and it is considered that the coating film is sufficiently adhered to the substrate. Further, the surface roughness of the coating films of Sample Nos. 7-2 and 7-4 were both Ra and 0.1 μm or less.

得られた被覆チップを用いて表6に示す切削条件(耐摩耗性(逃げ面摩耗量))で切削試験を行った。切削試験の結果を表11に示す。   Using the obtained coated tip, a cutting test was performed under the cutting conditions shown in Table 6 (wear resistance (flank wear amount)). Table 11 shows the results of the cutting test.

Figure 2008284636
Figure 2008284636

表11に示すように、基材に粗粒層と微粒層とを具え、かつガスボンバードメント処理を施した後、PVD法により被覆膜を形成した試料は、被覆膜の組成に依らず、耐摩耗性に優れることが分かる。特に、PVD法により被覆膜を形成した試料は、同じ組成の被覆膜をCVD法により形成した試料と比較して、微粒層を有することによる耐摩耗性の向上度合いが大きい。従って、粗粒層と微粒層とを具える基材とし、この基材にガスボンバードメント処理によるクリーニング後にPVD法により被覆膜を形成することで、耐摩耗性に優れる被覆切削工具が得られると考えられる。   As shown in Table 11, the sample with a coarse layer and a fine particle layer on the base material, and after the gas bombardment treatment was performed, the coating film was formed by the PVD method, regardless of the composition of the coating film. It can be seen that the wear resistance is excellent. In particular, the sample in which the coating film is formed by the PVD method has a higher degree of improvement in wear resistance due to the fine particle layer than the sample in which the coating film having the same composition is formed by the CVD method. Therefore, a coated cutting tool with excellent wear resistance can be obtained by forming a coating film by the PVD method after cleaning by gas bombardment treatment on a substrate having a coarse particle layer and a fine particle layer. it is conceivable that.

なお、上述した被覆切削工具は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、基材の組成や積層部の配置、被覆膜の組成や厚さを適宜変更することができる。   Note that the above-described coated cutting tool can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the base material, the arrangement of the laminated portions, and the composition and thickness of the coating film can be appropriately changed.

本発明被覆切削工具は、鋼のフライス加工や断続切削に好適に利用することができる。本発明被覆切削工具の製造方法は、上記本発明被覆切削工具の製造に好適に利用することができる。   The coated cutting tool of the present invention can be suitably used for steel milling and intermittent cutting. The manufacturing method of this invention coated cutting tool can be utilized suitably for manufacture of the said this invention coated cutting tool.

本発明被覆切削工具の断面を模式的に示す部分説明図である。It is a partial explanatory view showing the section of the present coated cutting tool typically.

符号の説明Explanation of symbols

1 基材 1p 微粒層 1g 粗粒層 10p,10g WC粒子 11 結合相
2 被覆膜 20 被覆膜の結晶粒 20p WC粒子に直接接して成長した結晶粒
1 Substrate 1p Fine particle layer 1g Coarse particle layer 10p, 10g WC particles 11 Bonded phase
2 Coated film 20 Coated crystal grains 20p Crystal grains grown directly in contact with WC particles

Claims (9)

微粒のWC粒子を硬質相とするWC基超硬合金からなる微粒層と粗粒のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とが積層された積層部を有する基材と、この基材表面の少なくとも一部に形成された被覆膜とを具える被覆切削工具であって、
前記微粒層は、平均粒径1μm以下のWC粒子を硬質相とし、
前記粗粒層は、平均粒径3μm以上のWC粒子を硬質相とし、
前記被覆膜は、基材の表面側に配された前記積層部の微粒層上に物理蒸着法により形成された膜を含み、この膜は、微粒層の表面側に存在するWC粒子に直接接して成長した結晶粒を具え、
前記微粒層のWC粒子の平均粒径をd1、前記結晶粒の平均粒径をd2とするとき、d1/d2が0.7以上1.3以下であることを特徴とする被覆切削工具。
A base material having a laminated portion in which a fine particle layer made of a WC-based cemented carbide alloy having fine WC particles as a hard phase and a coarse particle layer made of a WC-based cemented carbide alloy having coarse WC particles as a hard phase are laminated. And a coated cutting tool comprising a coating film formed on at least a part of the surface of the substrate,
The fine particle layer has WC particles having an average particle size of 1 μm or less as a hard phase,
The coarse layer has WC particles having an average particle size of 3 μm or more as a hard phase,
The coating film includes a film formed by physical vapor deposition on the fine particle layer of the laminated portion disposed on the surface side of the substrate, and this film is directly applied to the WC particles existing on the surface side of the fine particle layer. With crystal grains grown in contact,
A coated cutting tool, wherein d1 / d2 is 0.7 or more and 1.3 or less, where d1 is an average particle diameter of WC particles of the fine particle layer and d2 is an average particle diameter of the crystal grains.
前記微粒層は、その厚さが100μm以下であることを特徴とする請求項1に記載の被覆切削工具。   2. The coated cutting tool according to claim 1, wherein the fine particle layer has a thickness of 100 μm or less. 前記微粒層は、その厚さが10μm以下であることを特徴とする請求項1に記載の被覆切削工具。   2. The coated cutting tool according to claim 1, wherein the fine particle layer has a thickness of 10 μm or less. 前記物理蒸着法により形成された膜を構成する結晶粒のうち、基材直上の結晶粒が柱状組織であることを特徴とする請求項1に記載の被覆切削工具。   2. The coated cutting tool according to claim 1, wherein among the crystal grains constituting the film formed by the physical vapor deposition method, the crystal grains immediately above the base material have a columnar structure. 前記柱状組織を構成する結晶粒は、そのアスペクト比が5以上であることを特徴とする請求項4に記載の被覆切削工具。   5. The coated cutting tool according to claim 4, wherein the crystal grains constituting the columnar structure have an aspect ratio of 5 or more. 前記物理蒸着法により形成された膜表面の面粗さがRaで0.1μm以下であることを特徴とする請求項1に記載の被覆切削工具。   2. The coated cutting tool according to claim 1, wherein the surface roughness of the film formed by the physical vapor deposition method is Ra of 0.1 μm or less. 被覆切削工具は、鋼のフライス加工用工具、又は断続旋削用工具であることを特徴とする請求項1に記載の被覆切削工具。   2. The coated cutting tool according to claim 1, wherein the coated cutting tool is a steel milling tool or an intermittent turning tool. WC基超硬合金からなる基材表面の少なくとも一部に被覆膜を形成して被覆切削工具を製造する被覆切削工具の製造方法であって、
平均粒径1μm以下のWC粒子を硬質相とするWC基超硬合金からなる微粒層と、平均粒径3μm以上のWC粒子を硬質相とするWC基超硬合金からなる粗粒層とが積層された積層部を有する基材を用意する工程と、
前記積層部の微粒層を基材の表面側とし、この積層部の表面の少なくとも一部に希ガスのイオンを用いてボンバードメント処理を施す工程と、
前記ボンバードメント処理が施された微粒層上に物理蒸着法により成膜する工程とを具えることを特徴とする被覆切削工具の製造方法。
A method for producing a coated cutting tool for producing a coated cutting tool by forming a coated film on at least a part of a substrate surface made of a WC-based cemented carbide,
A fine particle layer made of WC-base cemented carbide with WC particles having an average particle size of 1 μm or less as a hard phase and a coarse particle layer made of WC-base cemented carbide with WC particles having an average particle size of 3 μm or more as a hard phase are laminated. Preparing a base material having a laminated portion formed;
A step of performing a bombardment process using ions of a rare gas on at least a part of the surface of the laminated part, with the fine particle layer of the laminated part being a surface side of the substrate;
A method of manufacturing a coated cutting tool comprising: forming a film by physical vapor deposition on the fine particle layer subjected to the bombardment treatment.
前記ボンバードメント処理は、前記希ガスに対して電子源から熱電子を放出しながら希ガスのイオンを発生させて行うことを特徴とする請求項8に記載の被覆切削工具の製造方法。   9. The method of manufacturing a coated cutting tool according to claim 8, wherein the bombardment process is performed by generating ions of a rare gas while emitting thermal electrons from an electron source to the rare gas.
JP2007130951A 2007-05-16 2007-05-16 Coated cutting tool Expired - Fee Related JP5065756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130951A JP5065756B2 (en) 2007-05-16 2007-05-16 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130951A JP5065756B2 (en) 2007-05-16 2007-05-16 Coated cutting tool

Publications (2)

Publication Number Publication Date
JP2008284636A true JP2008284636A (en) 2008-11-27
JP5065756B2 JP5065756B2 (en) 2012-11-07

Family

ID=40144849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130951A Expired - Fee Related JP5065756B2 (en) 2007-05-16 2007-05-16 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP5065756B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157916A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2012157915A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2013252583A (en) * 2012-06-06 2013-12-19 Sumitomo Electric Hardmetal Corp Base material for cutting tool, and surface coated cutting tool containing the same
JP2014105353A (en) * 2012-11-27 2014-06-09 Sumitomo Electric Ind Ltd Wc-based hard metal alloy and cutting tool
JP2014105354A (en) * 2012-11-27 2014-06-09 Sumitomo Electric Ind Ltd Wc-based hard metal alloy and cutting tool
WO2014129530A1 (en) * 2013-02-22 2014-08-28 京セラ株式会社 Cutting tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129368A (en) * 1988-11-08 1990-05-17 Citizen Watch Co Ltd Hard black film
JPH05269617A (en) * 1992-03-24 1993-10-19 Mitsubishi Materials Corp Physical vapor depopsition hard-layer coated drill and manufacture thereof
JPH0617230A (en) * 1992-07-02 1994-01-25 Mitsubishi Materials Corp Cutting tool made of gradient hard layer coated sintered hard alloy
JPH07197265A (en) * 1993-12-28 1995-08-01 Hitachi Tool Eng Ltd Surface coated high strength sintered cemented carbide
JPH09193293A (en) * 1995-11-16 1997-07-29 Polyplastics Co Thermoplastic resin molding with metal layer formed on surface
JP2001234328A (en) * 2000-02-25 2001-08-31 Toshiba Tungaloy Co Ltd Combined hard coating member
JP2003165003A (en) * 2001-11-28 2003-06-10 Hitachi Tool Engineering Ltd Hard film coated member
JP2004098205A (en) * 2002-09-09 2004-04-02 Mitsubishi Materials Corp End mill made of surface-coated hard metal exerting excellent resistant against thermoplastic deformation in high-speed machining

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129368A (en) * 1988-11-08 1990-05-17 Citizen Watch Co Ltd Hard black film
JPH05269617A (en) * 1992-03-24 1993-10-19 Mitsubishi Materials Corp Physical vapor depopsition hard-layer coated drill and manufacture thereof
JPH0617230A (en) * 1992-07-02 1994-01-25 Mitsubishi Materials Corp Cutting tool made of gradient hard layer coated sintered hard alloy
JPH07197265A (en) * 1993-12-28 1995-08-01 Hitachi Tool Eng Ltd Surface coated high strength sintered cemented carbide
JPH09193293A (en) * 1995-11-16 1997-07-29 Polyplastics Co Thermoplastic resin molding with metal layer formed on surface
JP2001234328A (en) * 2000-02-25 2001-08-31 Toshiba Tungaloy Co Ltd Combined hard coating member
JP2003165003A (en) * 2001-11-28 2003-06-10 Hitachi Tool Engineering Ltd Hard film coated member
JP2004098205A (en) * 2002-09-09 2004-04-02 Mitsubishi Materials Corp End mill made of surface-coated hard metal exerting excellent resistant against thermoplastic deformation in high-speed machining

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157916A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2012157915A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2013252583A (en) * 2012-06-06 2013-12-19 Sumitomo Electric Hardmetal Corp Base material for cutting tool, and surface coated cutting tool containing the same
JP2014105353A (en) * 2012-11-27 2014-06-09 Sumitomo Electric Ind Ltd Wc-based hard metal alloy and cutting tool
JP2014105354A (en) * 2012-11-27 2014-06-09 Sumitomo Electric Ind Ltd Wc-based hard metal alloy and cutting tool
WO2014129530A1 (en) * 2013-02-22 2014-08-28 京セラ株式会社 Cutting tool
CN104981310A (en) * 2013-02-22 2015-10-14 京瓷株式会社 Cutting tool

Also Published As

Publication number Publication date
JP5065756B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
EP3153259B1 (en) Surface-coated tool and method for manufacturing same
KR101211256B1 (en) Hard coating layer and method for forming the same
KR101830251B1 (en) Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
WO2012005275A1 (en) Coated polycrystalline cbn tool
EP3715026B1 (en) Coated cutting tool
KR102167200B1 (en) Cloth cutting tool
JP2008162008A (en) Coated cutting tool
JP5065756B2 (en) Coated cutting tool
KR20140002661A (en) Surface coated sintered body
JP5038017B2 (en) Coated cutting tool
JP5065758B2 (en) Coated cutting tool
JP5065757B2 (en) Coated cutting tool
JP4951101B2 (en) Method for producing hard coating with excellent wear resistance
KR102085536B1 (en) Coated cutting insert
JP5276392B2 (en) Cutting tool and method of manufacturing cutting tool
WO2020213264A1 (en) Cutting tool
JP2009125914A (en) Surface coated tool
JP2009072837A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed milling, and its manufacturing method
JP6743350B2 (en) Cutting tools
US11524339B2 (en) Cutting tool
WO2020213263A1 (en) Cutting tool
JP2007056356A (en) Hard film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees