JP2003163240A - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor

Info

Publication number
JP2003163240A
JP2003163240A JP2001361938A JP2001361938A JP2003163240A JP 2003163240 A JP2003163240 A JP 2003163240A JP 2001361938 A JP2001361938 A JP 2001361938A JP 2001361938 A JP2001361938 A JP 2001361938A JP 2003163240 A JP2003163240 A JP 2003163240A
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
semiconductor device
substrates
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361938A
Other languages
Japanese (ja)
Inventor
Takanori Hirano
孝典 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001361938A priority Critical patent/JP2003163240A/en
Publication of JP2003163240A publication Critical patent/JP2003163240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of cracks in a semiconductor device with a three-dimensional wiring structure where a semiconductor chip is buried between several substrates. <P>SOLUTION: In the semiconductor device 1, which comprises several substrates (a bare substrate 10, a window frame substrate 11, and an upper substrate 12) where conductor patterns are formed and the semiconductor chip 2 buried between several substrates, a convexoconcave part 2b is formed on the surface of the semiconductor chip 2. In addition, in a method for manufacturing the semiconductor device where the semiconductor chip is buried between several substrates, the convexoconcave part is formed on the surface of the semiconductor chip 2, and then the semiconductor chip 2 is buried via a resin between several substrates (the bare substrate 10, the window frame substrate 11, and the upper substrate 12). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導体パターンが形
成された複数枚の基板の間に半導体チップが埋め込まれ
て成る半導体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a semiconductor chip is embedded between a plurality of substrates on which conductor patterns are formed, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、多機能化の要
求を満たすために、電子回路の高密度実装が盛んに行わ
れている。このような電子回路の高密度実装としては、
プリント配線基板の表面に抵抗、コイル、コンデンサ等
の部品を実装する、いわゆる表面実装法が一般的となっ
ている。
2. Description of the Related Art In recent years, in order to meet the demands for downsizing and multi-functionalization of electronic equipment, high density mounting of electronic circuits has been actively carried out. For high-density mounting of such electronic circuits,
A so-called surface mounting method in which parts such as resistors, coils, and capacitors are mounted on the surface of a printed wiring board has become common.

【0003】具体的には、導通バンプを用いて基板に電
気的、機械的に接続されるリード無しの半導体チップで
あるフリップチップを用いるフリップチップ実装や、プ
リント基板上に直接半導体チップをダイボンドし、ワイ
ヤーボンド、樹脂封止を施して他の部品とともに搭載す
るCOB(Chip On Board)などが挙げられる。
Specifically, flip-chip mounting using a flip-chip which is a leadless semiconductor chip electrically and mechanically connected to a substrate by using a conductive bump, or die-bonding the semiconductor chip directly onto a printed circuit board. , Wire bond, COB (Chip On Board) which is resin-sealed and mounted together with other components.

【0004】また、更なる高密度実装を実現する手法と
して三次元実装がある。三次元実装は、表面実装のよう
にプリント配線基板の表面のみに電子部品を実装するの
ではなく、プリント配線基板を構成する樹脂等の基材の
内部に半導体チップを埋め込むことで実装密度を高める
技術である。つまり、表面実装ではプリント配線基板を
構成する基材の部分がデッドスペースとなっており、こ
の部分に半導体チップを配置することによって表面実装
よりも高密度な実装を実現している。
Further, there is three-dimensional mounting as a method for realizing higher density mounting. In three-dimensional mounting, electronic components are not mounted only on the surface of the printed wiring board like surface mounting, but the mounting density is increased by embedding a semiconductor chip inside the base material such as resin that constitutes the printed wiring board. It is a technology. In other words, in surface mounting, the base material forming the printed wiring board becomes a dead space, and by arranging the semiconductor chip in this portion, higher density mounting than surface mounting is realized.

【0005】このような3次元実装から成る半導体装置
の表面は平坦となることから、この表面にも半導体チッ
プ等の電子部品を実装することができる。表面への電子
部品実装は、通常のリフロー工法が採用される。このリ
フロー工法とは、基板の電気配線ランド上にクリーム半
田を塗布し、その上に半導体チップ等の電子部品の端子
を接触させて搭載した状態で、半田の融点以上の加熱に
よって半田を溶融し、凝固させることで、電子部品を物
理的、電気的に接続する方法である。
Since the surface of the semiconductor device formed by such three-dimensional mounting is flat, electronic parts such as semiconductor chips can be mounted also on this surface. A normal reflow method is used to mount electronic components on the surface. This reflow method is a state in which cream solder is applied on the electric wiring land of the board, and the terminals of electronic components such as semiconductor chips are mounted in contact therewith, and the solder is melted by heating above the melting point of the solder. It is a method of physically and electrically connecting electronic components by solidifying.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、複数の
基板間に半導体チップ等を埋め込んだ3次元実装から成
る半導体装置では、曲げや熱膨張に対する耐性が表面実
装の半導体装置に比べて弱いという問題がある。例え
ば、外部からの応力や熱ストレスにより、基板間に埋め
込んだ半導体チップと基板との接着部分にクラックが発
生しやすい。つまり、半導体チップと基板との接合に用
いる樹脂等の吸湿による高温水蒸気爆発、半導体チップ
と基板との熱膨張係数の差異による破断、基板変形字に
おける半導体チップへの応力集中などによってクラック
が発生しやすいという問題が生じる。
However, a semiconductor device formed by three-dimensional mounting in which semiconductor chips and the like are embedded between a plurality of substrates has a problem that the resistance to bending and thermal expansion is weaker than that of the surface mounting semiconductor device. is there. For example, due to external stress or thermal stress, cracks are likely to occur in the bonding portion between the semiconductor chip embedded between the substrates and the substrate. That is, cracks occur due to high temperature steam explosion due to moisture absorption of resin used for joining the semiconductor chip and the substrate, breakage due to difference in thermal expansion coefficient between the semiconductor chip and the substrate, stress concentration on the semiconductor chip in the deformed substrate, etc. The problem of being easy arises.

【0007】[0007]

【課題を解決するための手段】本発明は、このような課
題を解決するために成されたものである。すなわち、本
発明は、導体パターンが形成された複数枚の基板と、こ
の複数枚の基板の間に埋め込まれる半導体チップとを備
える半導体装置であり、半導体チップの表面に凹凸部を
形成したものである。
The present invention has been made to solve the above problems. That is, the present invention is a semiconductor device including a plurality of substrates on which a conductor pattern is formed and a semiconductor chip embedded between the plurality of substrates, in which an uneven portion is formed on the surface of the semiconductor chip. is there.

【0008】また、この半導体装置の製造方法において
は、半導体チップの表面に凹凸を形成した後、その半導
体チップを複数枚の基板の間に樹脂を介して埋め込むよ
うにしたものである。
Further, in this method of manufacturing a semiconductor device, after the unevenness is formed on the surface of the semiconductor chip, the semiconductor chip is embedded between a plurality of substrates with a resin interposed therebetween.

【0009】このような本発明では、半導体チップの表
面に凹凸部を形成しているため、半導体チップを複数枚
の基板の間に埋め込んで樹脂等で接着した場合、この凹
凸部に樹脂が入り込んで半導体チップと基板との密着性
を高めることができるようになる。
In the present invention as described above, since the uneven portion is formed on the surface of the semiconductor chip, when the semiconductor chip is embedded between a plurality of substrates and bonded with resin or the like, the resin enters the uneven portion. Thus, the adhesion between the semiconductor chip and the substrate can be improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本実施形態に係る半導体装
置を説明する模式断面図であり、(a)は完成図、
(b)は分解図である。すなわち、本実施形態に係る半
導体装置1は、複数枚の基板を重ね合わせて3次元配線
を構成するとともに、この複数枚の基板の間に半導体チ
ップ2を埋め込んで高密度実装を実現するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating a semiconductor device according to this embodiment, in which (a) is a completed view,
(B) is an exploded view. That is, the semiconductor device 1 according to the present embodiment is configured to stack a plurality of substrates to form a three-dimensional wiring and to embed the semiconductor chip 2 between the plurality of substrates to realize high-density mounting. is there.

【0011】本実施形態の半導体装置1における複数枚
の基板としては、半導体チップ2を実装するベア基板1
0と、略中央に半導体チップ2をはめ込むための開口を
備える窓枠基板11と、最上面に取り付けられる上部基
板12とを備える。また、これらの基板の間は、各々熱
硬化性樹脂から成るプリプレグ13によって接着され
る。
As the plurality of substrates in the semiconductor device 1 of this embodiment, the bare substrate 1 on which the semiconductor chips 2 are mounted is used.
0, a window frame substrate 11 having an opening for fitting the semiconductor chip 2 substantially in the center, and an upper substrate 12 attached to the uppermost surface. Further, these substrates are adhered to each other by a prepreg 13 made of a thermosetting resin.

【0012】基板のうちベア基板10は実装用基板10
aと下部基板10bとを張り合わせた構成となってお
り、実装用基板10aには半導体チップ2のバンプ2a
と接続されるパッド(図示せず)と下部基板10bとの
接続を得るための金属バンプBが形成されている。ま
た、下部基板10bには実装用基板10aとの接続を得
るための金属バンプBが形成され、下表面には外部との
接続を得るための電極ランドLが形成されている。
Of the substrates, the bare substrate 10 is the mounting substrate 10
a and the lower substrate 10b are bonded together, and the bumps 2a of the semiconductor chip 2 are mounted on the mounting substrate 10a.
A metal bump B is formed to obtain a connection between a pad (not shown) connected to the lower substrate 10b. Further, the lower substrate 10b is provided with a metal bump B for obtaining a connection with the mounting substrate 10a, and the lower surface is provided with an electrode land L for obtaining a connection with the outside.

【0013】窓枠基板11には、埋め込まれる半導体チ
ップ2の外形とほぼ等しい開口が設けられるとともに、
ベア基板10の金属バンプBや上部基板12の金属バン
プBとの接続を得るための電極ランドLが形成されてい
る。
The window frame substrate 11 is provided with an opening that is substantially the same as the outer shape of the semiconductor chip 2 to be embedded, and
Electrode lands L for connecting to the metal bumps B of the bare substrate 10 and the metal bumps B of the upper substrate 12 are formed.

【0014】上部基板12には、窓枠基板6の電極ラン
ドLとの接続を得るための金属バンプBが形成されてい
るとともに、表面には表面実装する電子部品20を接続
するための電極ランドLが設けられている。
The upper substrate 12 is formed with metal bumps B for connecting to the electrode lands L of the window frame substrate 6, and the surface thereof has electrode lands for connecting the surface-mounted electronic components 20. L is provided.

【0015】プリプレグ13は熱硬化性樹脂を半硬化さ
せて板状にしたもので、必要に応じて隣接する基板との
接続を得るための電極ランドLが形成されている。
The prepreg 13 is formed by semi-curing a thermosetting resin into a plate shape, and if necessary, electrode lands L for connecting to an adjacent substrate are formed.

【0016】このような複数の基板をプリプレグ13を
介して重ね合わせ、3次元配線構造を構成する本実施形
態の半導体装置1では、基板間に埋め込まれる半導体チ
ップ2の表面に凹凸部2bを備えている点に特徴があ
る。
In the semiconductor device 1 of this embodiment in which a plurality of such substrates are stacked via the prepreg 13 to form a three-dimensional wiring structure, the semiconductor chip 2 embedded between the substrates is provided with the uneven portion 2b. There is a feature in that.

【0017】この半導体チップ2の表面の凹凸部2b
は、表面粗さ(10点平均粗さ)が0.1μm以上、
0.5μm以下となっている。表面粗さを0.1μm以
上にすることで、半導体チップ2の表面とプリプレグ1
3との接触面積が増加して、半導体チップ2と基板との
密着性を増加できるようになる。
Concavo-convex portion 2b on the surface of the semiconductor chip 2
Has a surface roughness (10-point average roughness) of 0.1 μm or more,
It is 0.5 μm or less. By making the surface roughness 0.1 μm or more, the surface of the semiconductor chip 2 and the prepreg 1
The contact area with the semiconductor chip 3 is increased, and the adhesion between the semiconductor chip 2 and the substrate can be increased.

【0018】従来の半導体装置では、基板間に埋め込ん
だ半導体チップと基板との間でクラックが発生するとい
う問題が生じるが、本実施形態の半導体装置1では、半
導体チップ2と基板との密着性が増加しているため、外
部からの応力や熱ストレスが加わっても半導体チップ2
と基板との間にクラックが発生しなくなり、信頼性の高
い装置を構成できるようになる。
In the conventional semiconductor device, a problem occurs that a crack is generated between the semiconductor chip embedded between the substrates and the substrate, but in the semiconductor device 1 of this embodiment, the adhesiveness between the semiconductor chip 2 and the substrate is high. Therefore, even if external stress or heat stress is applied, the semiconductor chip 2
A crack is not generated between the substrate and the substrate, and a highly reliable device can be configured.

【0019】次に、本実施形態の半導体装置1の製造方
法を順に説明する。先ず、図2に示すように、半導体チ
ップ2の表面に凹凸部2bを形成する。この凹凸部2b
の形成方法としては、半導体チップ2の表面(バンプ2
aの形成されていない面)に研磨を施す際、例えば#6
00以下で研磨を行うことで所定の粗さから成る凹凸部
2bを形成する。
Next, a method of manufacturing the semiconductor device 1 of this embodiment will be described in order. First, as shown in FIG. 2, the uneven portion 2b is formed on the surface of the semiconductor chip 2. This uneven portion 2b
As a method of forming the
When polishing (the surface on which a is not formed), for example, # 6
Polishing is performed at a pressure of 00 or less to form the uneven portion 2b having a predetermined roughness.

【0020】この研磨は、半導体チップ2を形成する際
のウェハ状態で行う。通常は#2000での研磨を行う
ことにより、表面粗さが10点平均粗さで0.01μm
〜0.02μmとなる。本実施形態では、この研磨にお
いて#600以下で行う(もしくは粗研磨のみで終了す
る)ことにより、10点平均粗さで0.1μm以上0.
5μm以下の凹凸部2bを形成する。
This polishing is performed in a wafer state when the semiconductor chip 2 is formed. Normally, by polishing with # 2000, the surface roughness is 0.01 μm in 10-point average roughness.
Is about 0.02 μm. In the present embodiment, by performing this polishing at # 600 or less (or finishing only by rough polishing), the 10-point average roughness is 0.1 μm or more and 0.1.
The uneven portion 2b of 5 μm or less is formed.

【0021】次に、図3に示すように、ベア基板10、
窓枠基板11、上部基板12に所定の導体パターン、電
極ランドLおよび金属バンプBを形成する。そして、ベ
ア基板10に半導体チップ2を実装する。その後、ベア
基板10にプリプレグ13を介して窓枠基板11を積
み、窓枠基板11にプリプレグ13を介して上部基板1
2を積み上げる。この際、窓枠基板11の開口部に半導
体チップ2がはめ込まれる状態となる。
Next, as shown in FIG. 3, the bare substrate 10,
A predetermined conductor pattern, electrode lands L and metal bumps B are formed on the window frame substrate 11 and the upper substrate 12. Then, the semiconductor chip 2 is mounted on the bare substrate 10. Then, the window frame substrate 11 is stacked on the bare substrate 10 via the prepreg 13, and the upper substrate 1 is placed on the window frame substrate 11 via the prepreg 13.
Stack two. At this time, the semiconductor chip 2 is fitted into the opening of the window frame substrate 11.

【0022】次いで、図4に示すように、ベア基板1
0、窓枠基板11、上部基板12をプリプレグ13を介
して重ね合わせた状態で加熱圧接する。プリプレグ13
は、この加熱によって一旦溶融した後に熱硬化し、重ね
られた基板どうしを物理的に接続する。
Next, as shown in FIG. 4, the bare substrate 1
0, the window frame substrate 11, and the upper substrate 12 are heated and pressure-contacted in a state of being overlapped with each other via the prepreg 13. Prepreg 13
Is melted by this heating and then thermally cured to physically connect the superposed substrates.

【0023】また、プリプレグ13が加熱されると窓枠
基板11と半導体チップ2との隙間が埋め込まれるとと
もに、各基板に設けられた金属バンプBがプリプレグ1
3を貫通して対向する基板の電極ランドLと接触する状
態となる。プリプレグ13は、半導体チップ2の凹凸部
2bにも密着し、半導体チップ2と基板とを強固に接続
するようになる。これにより、本実施形態の半導体装置
1が完成する。
When the prepreg 13 is heated, the gap between the window frame substrate 11 and the semiconductor chip 2 is filled, and the metal bumps B provided on each substrate are connected to the prepreg 1.
3 and the electrode lands L of the opposing substrate are contacted. The prepreg 13 also comes into close contact with the uneven portion 2b of the semiconductor chip 2 and firmly connects the semiconductor chip 2 and the substrate. As a result, the semiconductor device 1 of this embodiment is completed.

【0024】また、本実施形態の半導体装置1が完成し
た後は、図5に示すように、上部基板12の表面に設け
られた電極ランドLに表面実装用の電子部品20を搭載
してもよい。この電子部品20の表面実装では通常のリ
フロー法を用いるが、リフロー時に加熱しても半導体チ
ップ2と基板とが強固に接続されていることから、半導
体チップと基板との間にクラックが発生することはな
い。
After the semiconductor device 1 of this embodiment is completed, as shown in FIG. 5, even if the electronic component 20 for surface mounting is mounted on the electrode land L provided on the surface of the upper substrate 12. Good. A normal reflow method is used for the surface mounting of the electronic component 20, but cracks occur between the semiconductor chip and the substrate because the semiconductor chip 2 and the substrate are firmly connected even when heated during reflow. There is no such thing.

【0025】図6は、半導体チップを基板間に埋め込ん
だ半導体装置の吸湿リフロー試験の結果を説明する図で
ある。ここで、表面粗さは半導体チップの表面の10点
平均粗さ、剥離の発生率は吸湿リフロー試験を行った全
サンプル数に対する剥離発生のサンプル数の割合となっ
ている。また、構成した半導体装置のプリプレグとして
は、利昌製エポキシES3305Hを用いている。
FIG. 6 is a diagram for explaining the results of a moisture absorption reflow test of a semiconductor device in which a semiconductor chip is embedded between substrates. Here, the surface roughness is the 10-point average roughness of the surface of the semiconductor chip, and the rate of occurrence of peeling is the ratio of the number of peeled samples to the total number of samples that have undergone the moisture absorption reflow test. Further, Rissho's epoxy ES3305H is used as the prepreg of the configured semiconductor device.

【0026】すなわち、表面粗さが0.01μm(従来
例)の場合には、剥離(半導体チップと基板との間の剥
離)の発生率が約48%であるのに対し、表面粗さが
0.1μm以上、0.5μm以下(本実施形態)の場合
には、剥離の発生率が1%〜7%と非常に少なくなって
いる。一方、表面粗さが0.5μmを超えると半導体チ
ップの製造工程上での割れが発生してしまうとともに、
半導体チップを真空吸着する際のハンドリング性が悪化
してしまう。
That is, when the surface roughness is 0.01 μm (conventional example), the incidence of peeling (peeling between the semiconductor chip and the substrate) is about 48%, whereas the surface roughness is In the case of 0.1 μm or more and 0.5 μm or less (the present embodiment), the rate of occurrence of peeling is very small, 1% to 7%. On the other hand, if the surface roughness exceeds 0.5 μm, cracks may occur in the semiconductor chip manufacturing process, and
The handling property when vacuum-sucking a semiconductor chip deteriorates.

【0027】したがって、半導体チップの表面の凹凸
は、10点平均粗さで0.1μm以上、0.5μm以下
が望ましいことになる。
Therefore, it is desirable that the unevenness on the surface of the semiconductor chip has a 10-point average roughness of 0.1 μm or more and 0.5 μm or less.

【0028】なお、半導体チップ2の表面の凹凸部2b
は、全体であっても一部であってもよい。また、凹凸部
2bは、研磨以外にも次のような方法で形成することも
可能である。すなわち、半導体チップ2の表面にドリル
(特殊超硬ドリル)によって穴(窪み)を形成したり、
半導体チップ2の表面にYAGレーザ等からレーザビー
ムを照射して凹凸を形成したり、エッチング液による化
学処理で形成してもよい。
The uneven portion 2b on the surface of the semiconductor chip 2
May be wholly or partially. Further, the uneven portion 2b can be formed by the following method other than polishing. That is, a hole (recess) is formed on the surface of the semiconductor chip 2 by a drill (special carbide drill),
Irregularities may be formed by irradiating the surface of the semiconductor chip 2 with a laser beam from a YAG laser or the like, or may be formed by chemical treatment with an etching solution.

【0029】また、上記実施形態では、基板としてベア
基板10、窓枠基板11、上部基板12を重ね合わせる
例を示したが、本発明はこれ以外の基板を重ね合わせる
場合であっても、基板間に内蔵される半導体チップ2の
表面に凹凸部2bを設けることで同様の効果を得ること
ができる。
In the above embodiment, the bare substrate 10, the window frame substrate 11 and the upper substrate 12 are stacked as substrates, but the present invention is applicable to the case where other substrates are stacked. The same effect can be obtained by providing the uneven portion 2b on the surface of the semiconductor chip 2 built in between.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば次
のような効果がある。すなわち、複数枚の基板間に半導
体チップを埋め込む3次元配線構造であっても、外部応
力や熱ストレスによる半導体チップと基板との間のクラ
ック発生を抑制でき、信頼性の高い半導体装置を提供す
ることが可能となる。
As described above, the present invention has the following effects. That is, even with a three-dimensional wiring structure in which a semiconductor chip is embedded between a plurality of substrates, it is possible to suppress the occurrence of cracks between the semiconductor chip and the substrate due to external stress or thermal stress, and to provide a highly reliable semiconductor device. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る半導体装置を説明する模式断
面図である。
FIG. 1 is a schematic cross-sectional view illustrating a semiconductor device according to this embodiment.

【図2】半導体チップの状態を説明する模式斜視図であ
る。
FIG. 2 is a schematic perspective view illustrating a state of a semiconductor chip.

【図3】半導体チップを間にした基板の重ね合わせを説
明する模式断面図である。
FIG. 3 is a schematic cross-sectional view illustrating superposition of substrates with a semiconductor chip in between.

【図4】半導体チップを埋め込んだ基板の重ね合わせ状
態を示す模式断面図である。
FIG. 4 is a schematic cross-sectional view showing a superposed state of substrates in which semiconductor chips are embedded.

【図5】表面実装を施した状態を説明する模式断面図で
ある。
FIG. 5 is a schematic cross-sectional view illustrating a state where surface mounting is performed.

【図6】半導体チップを基板間に埋め込んだ半導体装置
の吸湿リフロー試験の結果を説明する図である。
FIG. 6 is a diagram illustrating a result of a moisture absorption reflow test of a semiconductor device in which a semiconductor chip is embedded between substrates.

【符号の説明】[Explanation of symbols]

1…半導体装置、2…半導体チップ、2b…凹凸部、1
0…ベア基板、10a…実装用基板、10b…下部基
板、11…窓枠基板、12…上部基板、13…プリプレ
グ、B…金属バンプ、L…電極ランド
DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Semiconductor chip, 2b ... Concavo-convex part, 1
0 ... Bare substrate, 10a ... Mounting substrate, 10b ... Lower substrate, 11 ... Window frame substrate, 12 ... Upper substrate, 13 ... Prepreg, B ... Metal bump, L ... Electrode land

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導体パターンが形成された複数枚の基板
と、この複数枚の基板の間に埋め込まれる半導体チップ
とを備える半導体装置において、 前記半導体チップの表面に凹凸部が形成されていること
を特徴とする半導体装置。
1. A semiconductor device comprising a plurality of substrates on which a conductor pattern is formed and a semiconductor chip embedded between the plurality of substrates, wherein an uneven portion is formed on the surface of the semiconductor chip. A semiconductor device characterized by:
【請求項2】 前記凹凸部の表面粗さは、10点平均粗
さで0.1μm以上0.5μm以下になっていることを
特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the unevenness has a surface roughness of 0.1 μm or more and 0.5 μm or less in 10-point average roughness.
【請求項3】 導体パターンが形成された複数枚の基板
の間に半導体チップを埋め込んで成る半導体装置の製造
方法において、 前記半導体チップの表面に凹凸を形成した後、その半導
体チップを前記複数枚の基板の間に樹脂を介して埋め込
むことを特徴とする半導体装置の製造方法。
3. A method of manufacturing a semiconductor device, which comprises embedding a semiconductor chip between a plurality of substrates on which a conductor pattern is formed, the method comprising: forming irregularities on a surface of the semiconductor chip; A method for manufacturing a semiconductor device, characterized by embedding a resin between the substrates.
【請求項4】 前記半導体チップの表面への凹凸の形成
は、研磨によって行うことを特徴とする請求項3記載の
半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 3, wherein the unevenness is formed on the surface of the semiconductor chip by polishing.
【請求項5】 前記半導体チップの表面への凹凸の形成
は、ドリルによる穴開けによって行うことを特徴とする
請求項3記載の半導体装置の製造方法。
5. The method for manufacturing a semiconductor device according to claim 3, wherein the unevenness is formed on the surface of the semiconductor chip by drilling.
【請求項6】 前記半導体チップの表面への凹凸の形成
は、レーザビームの照射によって行うことを特徴とする
請求項3記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 3, wherein the unevenness is formed on the surface of the semiconductor chip by irradiation with a laser beam.
【請求項7】 前記半導体チップの表面への凹凸の形成
は、エッチング液による化学処理によって行うことを特
徴とする請求項3記載の半導体装置の製造方法。
7. The method for manufacturing a semiconductor device according to claim 3, wherein the unevenness is formed on the surface of the semiconductor chip by a chemical treatment with an etching solution.
JP2001361938A 2001-11-28 2001-11-28 Semiconductor device and manufacturing method therefor Pending JP2003163240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361938A JP2003163240A (en) 2001-11-28 2001-11-28 Semiconductor device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361938A JP2003163240A (en) 2001-11-28 2001-11-28 Semiconductor device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003163240A true JP2003163240A (en) 2003-06-06

Family

ID=19172523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361938A Pending JP2003163240A (en) 2001-11-28 2001-11-28 Semiconductor device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003163240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019341A (en) * 2004-06-30 2006-01-19 Tdk Corp Substrate incorporating semiconductor ic
JP2008060426A (en) * 2006-08-31 2008-03-13 Tdk Corp Electronic component module
JP2015002240A (en) * 2013-06-14 2015-01-05 日立金属株式会社 Flip-chip packaging method
WO2017094185A1 (en) 2015-12-04 2017-06-08 ルネサスエレクトロニクス株式会社 Semiconductor chip, semiconductor device, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019341A (en) * 2004-06-30 2006-01-19 Tdk Corp Substrate incorporating semiconductor ic
JP2008060426A (en) * 2006-08-31 2008-03-13 Tdk Corp Electronic component module
JP2015002240A (en) * 2013-06-14 2015-01-05 日立金属株式会社 Flip-chip packaging method
WO2017094185A1 (en) 2015-12-04 2017-06-08 ルネサスエレクトロニクス株式会社 Semiconductor chip, semiconductor device, and electronic device
US10777475B2 (en) 2015-12-04 2020-09-15 Renesas Electronics Corporation Semiconductor chip, semiconductor device, and electronic device

Similar Documents

Publication Publication Date Title
US6985362B2 (en) Printed circuit board and electronic package using same
JP4205749B2 (en) Electronic module manufacturing method and electronic module
US7420128B2 (en) Electronic component embedded substrate and method for manufacturing the same
US8222747B2 (en) Multilayer wiring substrate mounted with electronic component and method for manufacturing the same
KR100537972B1 (en) Chip scale ball grid array for integrated circuit package
JP4361826B2 (en) Semiconductor device
US7161242B2 (en) Semiconductor device, semiconductor device substrate, and manufacturing method thereof that can increase reliability in mounting a semiconductor element
JP2768650B2 (en) Printed circuit board having solder ball mounting groove and ball grid array package using the same
US8780572B2 (en) Printed circuit board having electronic component
US9338886B2 (en) Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
JP2004335641A (en) Method of manufacturing substrate having built-in semiconductor element
JP3277997B2 (en) Ball grid array package and manufacturing method thereof
KR20070045929A (en) Electronic-part built-in substrate and manufacturing method therefor
JPH11233678A (en) Manufacture of ic package
JP2008251702A (en) Manufacturing method for wiring board, manufacturing method for semiconductor device, and wiring board
US7923835B2 (en) Package, electronic device, substrate having a separation region and a wiring layers, and method for manufacturing
WO2001059839A1 (en) Mounting structure for semiconductor chip, semiconductor device, and method of manufacturing semiconductor device
JP4070470B2 (en) Multilayer circuit board for semiconductor device, manufacturing method thereof, and semiconductor device
US20220238482A1 (en) Embedded copper structure for microelectronics package
TW201603665A (en) Printed circuit board, method for manufacturing the same and package on package having the same
JP2000277649A (en) Semiconductor and manufacture of the same
JP4638657B2 (en) Electronic component built-in multilayer board
JP2003163240A (en) Semiconductor device and manufacturing method therefor
US20030201544A1 (en) Flip chip package
JP3394479B2 (en) Semiconductor device