JP2003163211A - Film forming method for low dielectric constant, film forming device and electronic device using the film - Google Patents

Film forming method for low dielectric constant, film forming device and electronic device using the film

Info

Publication number
JP2003163211A
JP2003163211A JP2002264691A JP2002264691A JP2003163211A JP 2003163211 A JP2003163211 A JP 2003163211A JP 2002264691 A JP2002264691 A JP 2002264691A JP 2002264691 A JP2002264691 A JP 2002264691A JP 2003163211 A JP2003163211 A JP 2003163211A
Authority
JP
Japan
Prior art keywords
film
boron
gas
film forming
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002264691A
Other languages
Japanese (ja)
Other versions
JP4312437B2 (en
Inventor
Takashi Sugino
隆 杉野
Masaki Kusuhara
昌樹 楠原
Masaru Umeda
優 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watanabe Shoko KK
M Watanabe and Co Ltd
Original Assignee
Watanabe Shoko KK
M Watanabe and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe Shoko KK, M Watanabe and Co Ltd filed Critical Watanabe Shoko KK
Priority to JP2002264691A priority Critical patent/JP4312437B2/en
Publication of JP2003163211A publication Critical patent/JP2003163211A/en
Application granted granted Critical
Publication of JP4312437B2 publication Critical patent/JP4312437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming device capable of forming a boron, carbon and nitrogen thin film with a low dielectric constant. <P>SOLUTION: The film forming device has a process for generating plasma in a film forming chamber, reacting nitrogen atoms with boron and carbon in the film forming chamber and being irradiated with light after the boron, carbon and nitrogen film is formed on a substrate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はホウ素炭素窒素を含
む膜を生成する成膜方法およびそれを用いた電子装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method for forming a film containing boron carbon nitrogen and an electronic device using the same.

【0002】[0002]

【従来の技術】これまで半導体集積回路においては配線
の層間絶縁体薄膜や保護膜としてプラズマCVD(Chemi
cal Vapor Deposition)法によるSiOやSiN膜が
用いられていた。しかし、トランジスタの高集積化に伴
い、配線間の容量による配線遅延が起こり、素子のスイ
ッチング動作の高速化を阻害する要因として問題となっ
てきた。また、液晶デイスプレーパネルにおける配線遅
延の改善も望まれている。これを解決するためには配線
層間絶縁体薄膜の低誘電率化が必要であり、新しい低誘
電率を有する材料が層間絶縁膜として求められている。
このような状況で有機系材料や多孔質材料が注目され、
極めて低い誘電率(比誘電率κ〜2.5以下)を実現す
ることが可能であるが、化学的、機械的耐性や熱伝導性
の点で問題がある。また、近年、窒化ホウ素薄膜におい
て2.2という極めて低い低誘電率が達成されている
が、耐吸湿性に問題があることが知られている。
2. Description of the Related Art Up to now, in a semiconductor integrated circuit, plasma CVD (Chemi
A SiO 2 or SiN film formed by the cal vapor deposition method has been used. However, with the high integration of transistors, wiring delay occurs due to capacitance between wirings, which has been a problem as a factor that impedes the speeding up of switching operation of elements. Further, improvement of wiring delay in a liquid crystal display panel is also desired. In order to solve this, it is necessary to reduce the dielectric constant of the wiring interlayer insulating thin film, and a new material having a low dielectric constant is required for the interlayer insulating film.
Under such circumstances, attention has been paid to organic materials and porous materials,
It is possible to realize an extremely low dielectric constant (relative permittivity κ to 2.5 or less), but there is a problem in terms of chemical and mechanical resistance and thermal conductivity. Further, in recent years, an extremely low dielectric constant of 2.2 has been achieved in a boron nitride thin film, but it is known that there is a problem in moisture absorption resistance.

【0003】[0003]

【発明が解決しようとする課題】このような状況で耐熱
性、耐吸湿性に優れ、極めて低い誘電率を持つホウ素炭
素窒素薄膜が注目されるが、プラズマCVD法による成
膜技術は確立されていないのが現状であり、更に低誘電
率化が望まれている。本発明は上記の状況に鑑みてなさ
れたもので、低誘電率ホウ素炭素窒素薄膜を成膜するこ
とができる成膜方法を提供することを日的とする。
Under such circumstances, a boron-carbon-nitrogen thin film having excellent heat resistance and moisture absorption resistance and an extremely low dielectric constant is drawing attention, but a film formation technique by the plasma CVD method has been established. At present, there is no such thing, and further reduction of dielectric constant is desired. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a film forming method capable of forming a low dielectric constant boron carbon nitrogen thin film.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
の本発明の成膜方法は、成膜室内にプラズマを生成し、
成膜室内で窒素原子をホウ素および炭素と反応させ、基
板にホウ素炭素窒素膜を成膜した後、光照射を行う工程
を有することを特徴とする。光照射工程は成膜室内で行
っても、成膜後の作製工程のいずれかの部分で行っても
同様の低誘電率化の効果が得られる。
A film forming method of the present invention for solving the above problems is to generate plasma in a film forming chamber,
The method is characterized by including a step of reacting nitrogen atoms with boron and carbon in a film forming chamber to form a boron-carbon-nitrogen film on a substrate, and then performing light irradiation. The same effect of lowering the dielectric constant can be obtained whether the light irradiation step is performed in the film forming chamber or in any part of the manufacturing step after the film formation.

【0005】また、上記目的を達成するための本発明の
成膜方法は成膜後、水銀ランプを用いて紫外光の照射を
数分間行うことを特徴とする。照射光強度と照射時間で
最適条件が得られる。
Further, the film forming method of the present invention for achieving the above object is characterized in that after film formation, irradiation of ultraviolet light is carried out for several minutes using a mercury lamp. Optimal conditions can be obtained by the irradiation light intensity and irradiation time.

【0006】また、光源として、キセノンランプ、重水
素ランプのいずれかを用いることも可能である。
Further, either a xenon lamp or a deuterium lamp can be used as the light source.

【0007】また、上記目的を達成するための本発明の
成膜方法は成膜後、赤外線ランプを用いて赤外光の照射
を行い、薄膜を昇温する。この保持温度を250℃〜5
50℃に設定することが好ましい。350℃〜450℃
がより好ましく、400℃〜450℃が更に好ましい。
250℃未満では低誘電率化の効果が顕著に見られず、
550℃を超えると誘電率の増加が起こる。
Further, in the film forming method of the present invention for achieving the above object, after the film formation, infrared rays are irradiated using an infrared lamp to raise the temperature of the thin film. This holding temperature is 250 ° C to 5
It is preferably set to 50 ° C. 350 ° C-450 ° C
Is more preferable, and 400 ° C. to 450 ° C. is further preferable.
Below 250 ° C, the effect of lowering the dielectric constant is not noticeable,
When it exceeds 550 ° C, the dielectric constant increases.

【0008】[0008]

【発明の実施の形態】以下に、本発明の成膜方法および
成膜装置について図面を用いて詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The film forming method and film forming apparatus of the present invention will be described in detail below with reference to the drawings.

【0009】(実施例1)図1は本発明の第1実施例の
成膜方法を実施する成膜装置を示す概略側面図である。
円筒状容器1内に誘導結合プラズマ生成部2が設けら
れ、整合器3を介して高周波電源4に接続されている。
高周波電源4は1kw〜10kwまでの高周波電力を供
給することができる。窒素ガス導入部5より窒素ガスを
供給し、プラズマ50を生成する。基板保持部6に基板
60が置かれ、基板保持部6内にはヒータ7が装着され
ている。ヒータ7によって基板60の温度は室温から6
00℃の範囲で設定できるようになっている。円筒状容
器1には、水素ガスをキャリアとした塩化ホウ素ガスを
導入する導入部8が設けられている。
(Embodiment 1) FIG. 1 is a schematic side view showing a film forming apparatus for carrying out the film forming method of the first embodiment of the present invention.
An inductively coupled plasma generation unit 2 is provided in the cylindrical container 1, and is connected to a high frequency power source 4 via a matching unit 3.
The high frequency power supply 4 can supply high frequency power of 1 kw to 10 kw. Nitrogen gas is supplied from the nitrogen gas introduction unit 5 to generate plasma 50. A substrate 60 is placed on the substrate holder 6, and a heater 7 is mounted inside the substrate holder 6. The temperature of the substrate 60 is changed from room temperature to 6 by the heater 7.
It can be set in the range of 00 ° C. The cylindrical container 1 is provided with an introduction part 8 for introducing a boron chloride gas using hydrogen gas as a carrier.

【0010】また、円筒状容器1に炭化水素系ガスを導
入する導入部9設けられている。基板保持部6より下方
に排気部10が装着されている。
An introducing portion 9 for introducing a hydrocarbon gas into the cylindrical container 1 is provided. An exhaust unit 10 is mounted below the substrate holding unit 6.

【0011】各ガスの供給流量範囲については窒素ガス
の流量と塩化ホウ素の流量比(窒素ガス/塩化ホウ素)
が0.1〜10.0、炭化水素ガスの流量と塩化ホウ素
の流量比(炭化水素ガス/塩化ホウ素)が0.01〜
5.0、水素ガスの流量と塩化ホウ素の流量比(水素ガ
ス/塩化ホウ素)が0.05〜5.0となるように設定
できるようになっている。
Regarding the supply flow rate range of each gas, the flow rate ratio of nitrogen gas and boron chloride (nitrogen gas / boron chloride)
Is 0.1 to 10.0, and the flow rate ratio of hydrocarbon gas to boron chloride (hydrocarbon gas / boron chloride) is 0.01 to
5.0, the flow rate ratio of hydrogen gas and boron chloride (hydrogen gas / boron chloride) can be set to be 0.05 to 5.0.

【0012】p型シリコン基板60を基板保持部6に置
き、容器1内を1×10-6Torrまで排気する。基
板温度を300℃に設定する。その後、窒素ガスを導入
部5から円筒状容器1内に導入する。高周波電力(1
3.56MHz)を1kw供給することにより、プラズ
マ50を生成する。続いて水素ガスをキャリアガスとし
て塩化ホウ素を容器1内に搬送する。また、メタンガス
を容器1内に供給する。容器1内のガス圧力を0.6T
orrに調整して窒化ホウ素炭素膜61の合成を行う。
塩化ホウ素およびメタンガスはプラズマにするのではな
く窒素プラズマによって塩化ホウ素およびメタンガスを
分解し、ホウ素原子および炭素原子を生成し、窒素原子
と反応させ、窒化ホウ素炭素膜61の合成を行う。塩素
は水素原子と化合して塩化水素になり、塩素原子の膜内
への取り込みが抑制される。成膜後、水銀ランプを用い
て膜表面に光照射を行う。室温大気中で4分間の照射を
行う。
The p-type silicon substrate 60 is placed on the substrate holding portion 6, and the inside of the container 1 is evacuated to 1 × 10 −6 Torr. Set the substrate temperature to 300 ° C. Then, nitrogen gas is introduced into the cylindrical container 1 from the introduction part 5. High frequency power (1
Plasma 50 is generated by supplying 1 kW of 3.56 MHz. Then, using hydrogen gas as a carrier gas, boron chloride is transported into the container 1. Further, methane gas is supplied into the container 1. The gas pressure in the container 1 is 0.6T
The boron nitride carbon film 61 is synthesized by adjusting to orr.
Boron chloride and methane gas decomposes boron chloride and methane gas by nitrogen plasma instead of plasma, generates boron atoms and carbon atoms, and reacts with nitrogen atoms to synthesize boron nitride carbon film 61. Chlorine combines with hydrogen atoms to become hydrogen chloride, and the incorporation of chlorine atoms into the film is suppressed. After film formation, the film surface is irradiated with light using a mercury lamp. Irradiate for 4 minutes in room temperature atmosphere.

【0013】p型シリコン基板60上に100nmの窒
化ホウ素炭素膜61を堆積させ、窒化ホウ素炭素膜61
上にAuを蒸着し、電極を形成した後、容量―電圧特性
を測定し、金属/窒化ホウ素炭素膜/P型シリコン構造
の蓄積領域の容量値と窒化ホウ素炭素膜61の厚さを用
いて比誘電率を評価した。光照射前に2.8〜3.0の
比誘電率を有する膜において4分間の光照射後、比誘電
率が2.2〜2.4の低い値が得られた。
A boron nitride carbon film 61 having a thickness of 100 nm is deposited on a p-type silicon substrate 60 to form a boron nitride carbon film 61.
After depositing Au on the electrode and forming the electrode, the capacitance-voltage characteristics were measured, and the capacitance value of the metal / boron carbon nitride film / accumulation region of the P-type silicon structure and the thickness of the boron nitride carbon film 61 were used. The relative permittivity was evaluated. In the film having a relative dielectric constant of 2.8 to 3.0 before the light irradiation, a low relative dielectric constant of 2.2 to 2.4 was obtained after the light irradiation for 4 minutes.

【0014】また、光照射前後での膜の比誘電率の比
と、照射時問との関係を調べ、図2に示す。水銀ランプ
(800mmW/cm、レンズとの距離15cm、大
気中)を用いて光照射を施した場合、3分間から6分間
の照射時間で比誘電率の低下が認められた。
The relationship between the relative permittivity of the film before and after light irradiation and the time of irradiation is examined and shown in FIG. When light irradiation was performed using a mercury lamp (800 mmW / cm 2 , distance to lens: 15 cm, in air), a decrease in relative permittivity was observed in an irradiation time of 3 minutes to 6 minutes.

【0015】本実施例では材料ガスとして窒素ガス、塩
化ホウ素、メタンガスを用いたが、窒素材料としてアン
モニアガスを用いることもできる。また、塩化ホウ素の
代わりにジボランガスを用いることができる。また、炭
素の供給としてメタンガス以外のエ夕ンガスやアセチレ
ンガス等の炭化水素ガスやトリメチルボロンをはじめホ
ウ素や窒素の有機化合物も用いることができる。また、
光照射のための光源として水銀ランプを用いたが、キセ
ノンランプや重水素ランプも用いることができる。
Although nitrogen gas, boron chloride and methane gas are used as the material gas in this embodiment, ammonia gas can also be used as the nitrogen material. Further, diborane gas can be used instead of boron chloride. Further, as the carbon supply, it is possible to use hydrocarbon gas such as ethane gas or acetylene gas other than methane gas, and organic compounds of boron and nitrogen as well as trimethylboron. Also,
Although a mercury lamp was used as a light source for light irradiation, a xenon lamp or a deuterium lamp can also be used.

【0016】(実施例2)本発明の第2実施例は第1実
施例と同様の成膜装置を用いる。円筒状容器1内に誘導
結合プラズマ生成部2が設けられ、整合器3を介して高
周波電源4に接続されている。高周波電源4は1kw〜
10kwの高周波電力を供給することができる。窒素ガ
ス導入部5より窒素ガスを供給し、プラズマ50を生成
する。基板保持部6に基板60が置かれ、基板保持部6
内にはヒータ7が装着されている。ヒータ7によって基
板60の温度は室温から600℃の範囲で設定できるよ
うになっている。円筒状容器1には、水素ガスをキャリ
アとした塩化ホウ素ガスを導入する導入部8が設けられ
ている。また、円筒状容器1に炭化水素系ガスを導入す
る導入部9設けられている。基板保持部6より下方に排
気部10が装着されている。
(Embodiment 2) A second embodiment of the present invention uses the same film forming apparatus as that of the first embodiment. An inductively coupled plasma generation unit 2 is provided in the cylindrical container 1, and is connected to a high frequency power source 4 via a matching unit 3. High frequency power source 4 is 1kW
A high frequency power of 10 kW can be supplied. Nitrogen gas is supplied from the nitrogen gas introduction unit 5 to generate plasma 50. The substrate 60 is placed on the substrate holder 6, and the substrate holder 6
A heater 7 is mounted inside. The heater 7 allows the temperature of the substrate 60 to be set within the range of room temperature to 600 ° C. The cylindrical container 1 is provided with an introduction part 8 for introducing a boron chloride gas using hydrogen gas as a carrier. Further, an introduction part 9 for introducing a hydrocarbon-based gas into the cylindrical container 1 is provided. An exhaust unit 10 is mounted below the substrate holding unit 6.

【0017】各ガスの供給流量範囲については窒素ガス
の流量と塩化ホウ素の流量比(窒素ガス/塩化ホウ素)
が0.1〜10.0、炭化水素ガスの流量と塩化ホウ素
の流量比(炭化水素ガス/塩化ホウ素)が0.01〜
5.0、水素ガスの流量と塩化ホウ素の流量比(水素ガ
ス/塩化ホウ素)が0.05〜5.0となるように設定
できるようになっている。
Regarding the supply flow rate range of each gas, the flow rate ratio of nitrogen gas and boron chloride (nitrogen gas / boron chloride)
Is 0.1 to 10.0, and the flow rate ratio of hydrocarbon gas to boron chloride (hydrocarbon gas / boron chloride) is 0.01 to
5.0, the flow rate ratio of hydrogen gas and boron chloride (hydrogen gas / boron chloride) can be set to be 0.05 to 5.0.

【0018】p型シリコン基板60を基板保持部6に置
き、容器1内を1×10−6Torrまで排気する。基
板温度を300℃に設定する。その後、窒素ガスを導入
部5から円筒状容器1内に導入する。高周波電力(1
3.56MHz)を1kw供給することにより、プラズ
マ50を生成する。続いて水素ガスをキャリアガスとし
て塩化ホウ素を容器1内に搬送する。また、メタンガス
を容器1内に供給する。容器1内のガス圧力を0.6T
orrに調整して窒化ホウ素炭素膜61の合成を行う。
塩化ホウ素およびメタンガスはプラズマにするのではな
く窒素プラズマによって塩化ホウ素およびメタンガスを
分解し、ホウ素原子および炭素原子を生成し、窒素原子
と反応させ、窒化ホウ素炭素膜61の合成を行う。
The p-type silicon substrate 60 is placed on the substrate holder 6, and the inside of the container 1 is evacuated to 1 × 10 −6 Torr. Set the substrate temperature to 300 ° C. Then, nitrogen gas is introduced into the cylindrical container 1 from the introduction part 5. High frequency power (1
Plasma 50 is generated by supplying 1 kW of 3.56 MHz. Then, using hydrogen gas as a carrier gas, boron chloride is transported into the container 1. Further, methane gas is supplied into the container 1. The gas pressure in the container 1 is 0.6T
The boron nitride carbon film 61 is synthesized by adjusting to orr.
Boron chloride and methane gas decomposes boron chloride and methane gas by nitrogen plasma instead of plasma, generates boron atoms and carbon atoms, and reacts with nitrogen atoms to synthesize boron nitride carbon film 61.

【0019】塩素は水素原子と化合して塩化水素にな
り、塩素原子の膜内への取り込みが抑制される。成膜
後、赤外線ランプ加熱により成膜した試料を昇温し、4
00℃で10分間保持する。
Chlorine combines with hydrogen atoms to become hydrogen chloride, and the incorporation of chlorine atoms into the film is suppressed. After forming the film, the temperature of the formed sample was raised by heating with an infrared lamp and 4
Hold at 00 ° C for 10 minutes.

【0020】p型シリコン基板60上に100nmの窒
化ホウ素炭素膜61を堆積させ、窒化ホウ素炭素膜61
上にAuを蒸着し、電極を形成した後、容量―電圧特性
を測定し、金属/窒化ホウ素炭素膜/p型シリコン構造
の蓄積領域の容量値と窒化ホウ素炭素膜61の厚さを用
いて比誘電率を評価した。昇温前に2.8〜3.0の比
誘電率を有する膜において400℃の保持温度で熱処理
後、比誘電率が2.2〜2.4の低い値が得られた。ま
た、温度を変化させ熱処理を施した膜の比誘電率と、同
様に作製した膜を昇温せずに評価した比誘電率との比を
調べ、熱処理温度の関数として図3に示す。保持時間は
10分間とした。250℃〜550℃での保持温度で昇
温保持後比誘電率の低下が認められた。
A boron nitride carbon film 61 having a thickness of 100 nm is deposited on a p-type silicon substrate 60 to form a boron nitride carbon film 61.
After Au was vapor-deposited thereon to form an electrode, the capacitance-voltage characteristic was measured, and the capacitance value of the metal / boron carbon nitride film / accumulation region of the p-type silicon structure and the thickness of the boron nitride carbon film 61 were used. The relative permittivity was evaluated. A low relative dielectric constant of 2.2 to 2.4 was obtained after heat treatment at a holding temperature of 400 ° C. in a film having a relative dielectric constant of 2.8 to 3.0 before temperature increase. Further, the ratio between the relative permittivity of the film subjected to the heat treatment while changing the temperature and the relative permittivity evaluated without raising the temperature of the film produced in the same manner was examined and shown in FIG. 3 as a function of the heat treatment temperature. The holding time was 10 minutes. At the holding temperature of 250 to 550 ° C., a decrease in the relative dielectric constant was observed after the temperature was maintained.

【0021】本発明の成膜方法で成膜した窒化ホウ素炭
素膜の集積回路への適用例を、図6を用いて説明する。
トランジスタ501の高集積化によって配線502を多
層構造にするためには配線間には低誘電率を有する層間
絶縁体薄膜503を用いることが必要であり、本成膜方
法で成膜した窒化ホウ素炭素膜を用いることができる。
An example of application of the boron nitride carbon film formed by the film forming method of the present invention to an integrated circuit will be described with reference to FIG.
In order to make the wiring 502 have a multi-layered structure by increasing the integration of the transistor 501, it is necessary to use an interlayer insulating thin film 503 having a low dielectric constant between the wirings, and the boron nitride carbon film formed by the present film forming method. Membranes can be used.

【0022】また、層間絶縁体薄膜503として有機薄
膜や多孔質膜を用いた場合、機械的強度や吸湿性などが
問題となるが、図7に示すように本発明の成膜方法で成
膜した窒化ホウ素炭素膜を有機薄膜や多孔質膜の保護膜
504として用いることができる。このような有機薄膜
や多孔質膜と窒化ホウ素炭素膜との合体により窒化ホウ
素炭素膜単層での比誘電率より低い誘電率が達成され、
1.9程度の実効的な比誘電率が得られた。
Further, when an organic thin film or a porous film is used as the interlayer insulating thin film 503, mechanical strength and hygroscopicity become problems, but as shown in FIG. 7, the film is formed by the film forming method of the present invention. The boron nitride carbon film described above can be used as a protective film 504 of an organic thin film or a porous film. By combining such an organic thin film or a porous film and a boron nitride carbon film, a dielectric constant lower than that of a boron nitride carbon film single layer is achieved,
An effective relative permittivity of about 1.9 was obtained.

【0023】(実施例3)図4は本発明の第3実施例の
成膜方法を実施する成膜装置を示す概略側面図である。
円筒状容器工内に誘導結合プラズマ生成部2が設けら
れ、整合器3を介して高周波電源4に接続されている。
高周波電源4は1kw〜10kwまでの高周波電力を供
給することができる。窒素ガス導入部5より窒素ガスを
供給し、プラズマ50を生成する。基板保持部6に基板
60が置かれ、基板保持部6内にはヒータ7が装着され
ている。ヒータ7によって基板60の温度は室温から6
00℃の範囲で設定できるようになっている。更に成膜
室の基板保持部上方に窓が設けられ、試料表面への水銀
ランプによる光照射ができるようになっている。水銀ラ
ンプによる光照射の際には基板保持部6が窓の方ヘ移動
できるようになっている。円筒状容器1には、水素ガス
をキャリアとした塩化ホウ素ガスを導入する導入部8が
設けられている。また、円筒状容器1に炭化水素系ガス
を導入する導入部9が設けられている。基板保持部6よ
り下方に排気部10が装着されている。
(Embodiment 3) FIG. 4 is a schematic side view showing a film forming apparatus for carrying out the film forming method of the third embodiment of the present invention.
An inductively coupled plasma generating unit 2 is provided inside the cylindrical container, and is connected to a high frequency power source 4 via a matching unit 3.
The high frequency power supply 4 can supply high frequency power of 1 kw to 10 kw. Nitrogen gas is supplied from the nitrogen gas introduction unit 5 to generate plasma 50. A substrate 60 is placed on the substrate holder 6, and a heater 7 is mounted inside the substrate holder 6. The temperature of the substrate 60 is changed from room temperature to 6 by the heater 7.
It can be set in the range of 00 ° C. Further, a window is provided above the substrate holding portion of the film forming chamber so that the sample surface can be irradiated with light from a mercury lamp. The substrate holder 6 can be moved toward the window during light irradiation by the mercury lamp. The cylindrical container 1 is provided with an introduction part 8 for introducing a boron chloride gas using hydrogen gas as a carrier. Further, an introduction part 9 for introducing a hydrocarbon-based gas into the cylindrical container 1 is provided. An exhaust unit 10 is mounted below the substrate holding unit 6.

【0024】各ガスの供給流量範囲については窒素ガス
の流量と塩化ホウ素の流量比(窒素ガス/塩化ホウ素)
が0.1〜10.0、炭化水素ガスの流量と塩化ホウ素
の流量比(炭化水素ガス/塩化ホウ素)が0.01〜
5.0、水素ガスの流量と塩化ホウ素の流量比(水素ガ
ス/塩化ホウ素)が0.05〜5.0となるように設定
できるようになっている。
Regarding the supply flow rate range of each gas, the flow rate ratio of nitrogen gas and boron chloride (nitrogen gas / boron chloride)
Is 0.1 to 10.0, and the flow rate ratio of hydrocarbon gas to boron chloride (hydrocarbon gas / boron chloride) is 0.01 to
5.0, the flow rate ratio of hydrogen gas and boron chloride (hydrogen gas / boron chloride) can be set to be 0.05 to 5.0.

【0025】p型シリコン基板60を基板保持部6に置
き、容器1内を1×10−6Torrまで排気する。基
板温度を300℃に設定する。その後、窒素ガスを導入
部5から円筒状容器1内に導入する。高周波電力(1
3.56MHz)を1kw供給することにより、プラズ
マ50を生成する。続いて水素ガスをキャリアガスとし
て塩化ホウ素を容器1内に搬送する。また、メタンガス
を容器1内に供給する。容器1内のガス圧力を0.6T
orrに調整して窒化ホウ素炭素膜61の合成を行う。
塩化ホウ素およびメタンガスはブラズマにするのではな
く窒素プラズマによって塩化ホウ素およびメタンガスを
分解し、ホウ素原子および炭素原子を生成し、窒素原子
と反応させ、窒化ホウ素炭素膜61の合成を行う。
The p-type silicon substrate 60 is placed on the substrate holder 6, and the inside of the container 1 is evacuated to 1 × 10 −6 Torr. Set the substrate temperature to 300 ° C. Then, nitrogen gas is introduced into the cylindrical container 1 from the introduction part 5. High frequency power (1
Plasma 50 is generated by supplying 1 kW of 3.56 MHz. Then, using hydrogen gas as a carrier gas, boron chloride is transported into the container 1. Further, methane gas is supplied into the container 1. The gas pressure in the container 1 is 0.6T
The boron nitride carbon film 61 is synthesized by adjusting to orr.
Boron chloride and methane gas are not made into plasma but decompose nitrogen chloride and methane gas by nitrogen plasma to generate boron atoms and carbon atoms and react with nitrogen atoms to synthesize boron nitride carbon film 61.

【0026】塩素は水素原子と化合して塩化水素にな
り、塩素原子の膜内への取り込みが抑制される。成膜
後、基板保持部6に水銀ランプ(800mmW/c
、レンズとの距離15cm、大気中)を用いて光照
射を3分間から6分間施した。
Chlorine combines with hydrogen atoms to form hydrogen chloride, and the incorporation of chlorine atoms into the film is suppressed. After film formation, a mercury lamp (800 mmW / c
Light irradiation was performed for 3 to 6 minutes by using m 2 and a distance from the lens of 15 cm in the atmosphere.

【0027】p型シリコン基板60上に100nmの窒
化ホウ素炭素膜61を堆積させ、窒化ホウ素炭素膜61
上にAuを蒸着し、電極を形成した後、容量−電圧特性
を測定し、金属/窒化ホウ素炭素膜/p型シリコン構造
の蓄積領域の容量値と窒化ホウ素炭素膜61の厚さを用
いて比誘電率を評価したところ、比誘電率の低い好適な
値が得られた。
A boron nitride carbon film 61 having a thickness of 100 nm is deposited on a p-type silicon substrate 60 to form a boron nitride carbon film 61.
After Au was vapor-deposited thereon to form an electrode, the capacitance-voltage characteristic was measured, and the capacitance value of the metal / boron carbon nitride film / accumulation region of the p-type silicon structure and the thickness of the boron carbon nitride film 61 were used. When the relative permittivity was evaluated, a suitable value having a low relative permittivity was obtained.

【0028】(実施例4)図5は本発明の第4実施例の
成膜方法を実施する成膜装置を示す概略側面図である。
円筒状容器1内に誘導結合プラズマ生成部2が設けら
れ、整合器3を介して高周波電源4に接続されている。
高周波電源4は1kw〜10kwまでの高周波電力を供
給することができる。窒素ガス導入部5より窒素ガスを
供給し、プラズマ50を生成する。基板保持部6に基板
60が置かれ、基板保持部6内にはヒータ7が装着され
ている。ヒータ7によって基板60の温度は室温から6
00℃の範囲で設定できるようになっている。円筒状容
器1には、水素ガスをキャリアとした塩化ホウ素ガスを
導入する導入部8が設けられている。また、円筒状容器
1に炭化水素系ガスを導入する導入部9が設けられてい
る。基板保持部6より下方に排気部10が装着されてい
る。成膜室とゲートバルブを介して膜の昇温保持のため
にアニールチェンバーが装着され、水銀ランプにより光
照射できるようになっている。
(Embodiment 4) FIG. 5 is a schematic side view showing a film forming apparatus for carrying out the film forming method of the fourth embodiment of the present invention.
An inductively coupled plasma generation unit 2 is provided in the cylindrical container 1, and is connected to a high frequency power source 4 via a matching unit 3.
The high frequency power supply 4 can supply high frequency power of 1 kw to 10 kw. Nitrogen gas is supplied from the nitrogen gas introduction unit 5 to generate plasma 50. A substrate 60 is placed on the substrate holder 6, and a heater 7 is mounted inside the substrate holder 6. The temperature of the substrate 60 is changed from room temperature to 6 by the heater 7.
It can be set in the range of 00 ° C. The cylindrical container 1 is provided with an introduction part 8 for introducing a boron chloride gas using hydrogen gas as a carrier. Further, an introduction part 9 for introducing a hydrocarbon-based gas into the cylindrical container 1 is provided. An exhaust unit 10 is mounted below the substrate holding unit 6. An annealing chamber is attached to hold the temperature of the film through the film forming chamber and the gate valve, and light can be emitted from a mercury lamp.

【0029】各ガスの供給流量範囲については窒素ガス
の流量と塩化ホウ素の流量比(窒素ガス/塩化ホウ素)
が0.1〜10.0、炭化水素ガスの流量と塩化ホウ素
の流量比(炭化水素ガス/塩化ホウ素)が0.01〜
5.0、水素ガスの流量と塩化ホウ素の流量比(水素ガ
ス/塩化ホウ素)が0.05〜5.0となるように設定
できるようになっている。
Regarding the supply flow rate range of each gas, the flow rate ratio of nitrogen gas and boron chloride (nitrogen gas / boron chloride)
Is 0.1 to 10.0, and the flow rate ratio of hydrocarbon gas to boron chloride (hydrocarbon gas / boron chloride) is 0.01 to
5.0, the flow rate ratio of hydrogen gas and boron chloride (hydrogen gas / boron chloride) can be set to be 0.05 to 5.0.

【0030】p型シリコン基板60を基板保持部6に置
き、容器1内を1×10−6Torrまで排気する。基
板温度を300℃に設定する。その後、窒素ガスを導入
部5から円筒状容器1内に導入する。高周波電力(1
3.56MHz)を1kw供給することにより、プラズ
マ50を生成する。続いて水素ガスをキャリアガスとし
て塩化ホウ素を容器1内に搬送する。また、メタンガス
を容器1内に供給する。容器1内のガス圧力を0.6T
orrに調整して窒化ホウ素炭素膜61の合成を行う。
塩化ホウ素およびメタンガスはブラズマにするのではな
く窒素プラズマによって塩化ホウ素およびメタンガスを
分解し、ホウ素原子および炭素原子を生成し、窒素原子
と反応させ、窒化ホウ素炭素膜61の合成を行う。
The p-type silicon substrate 60 is placed on the substrate holding portion 6, and the inside of the container 1 is evacuated to 1 × 10 −6 Torr. Set the substrate temperature to 300 ° C. Then, nitrogen gas is introduced into the cylindrical container 1 from the introduction part 5. High frequency power (1
Plasma 50 is generated by supplying 1 kW of 3.56 MHz. Then, using hydrogen gas as a carrier gas, boron chloride is transported into the container 1. Further, methane gas is supplied into the container 1. The gas pressure in the container 1 is 0.6T
The boron nitride carbon film 61 is synthesized by adjusting to orr.
Boron chloride and methane gas are not made into plasma but decompose nitrogen chloride and methane gas by nitrogen plasma to generate boron atoms and carbon atoms and react with nitrogen atoms to synthesize boron nitride carbon film 61.

【0031】塩素は水素原子と化合して塩化水素にな
り、塩素原子の膜内への取り込みが抑制される。成膜
後、基板保持部6内に装着されているヒータ7によって
基板温度を400℃に設定し、10分間保持する。
Chlorine combines with hydrogen atoms to form hydrogen chloride, and the incorporation of chlorine atoms into the film is suppressed. After the film formation, the substrate temperature is set to 400 ° C. by the heater 7 mounted in the substrate holding unit 6, and the substrate is held for 10 minutes.

【0032】p型シリコン基板60上に100nmの窒
化ホウ素炭素膜61を堆積させ、窒化ホウ素炭素膜61
上にAuを蒸着し、電極を形成した後、容量−電圧特性
を測定し、金属/窒化ホウ素炭素膜/p型シリコン構造
の蓄積領域の容量値と窒化ホウ素炭素膜61の厚さを用
いて比誘電率を評価したところ、比誘電率の低い好適な
値が得られた。
A boron nitride carbon film 61 having a thickness of 100 nm is deposited on the p-type silicon substrate 60 to form a boron nitride carbon film 61.
After Au was vapor-deposited thereon to form an electrode, the capacitance-voltage characteristic was measured, and the capacitance value of the metal / boron carbon nitride film / accumulation region of the p-type silicon structure and the thickness of the boron carbon nitride film 61 were used. When the relative permittivity was evaluated, a suitable value having a low relative permittivity was obtained.

【0033】[0033]

【発明の効果】本発明の成膜方法はプラズマ気相合成法
によって作製された窒化ホウ素炭素膜に光を照射するこ
とにより機械的化学的に安定で耐吸湿性、高熱伝導性を
有し、低誘電率を持つた窒化ホウ素炭素膜が成膜できる
ようになる。プラズマ気相合成を行う成膜装置は円筒状
容器内に窒素ガス導入手段、プラズマ生成手段とその下
方に基板の保持手段を設け、窒素導入手段と基板保持手
段の間に塩化ホウ素および炭素供給源としての炭化水素
や有機材料の導入手段を設けたもので、窒素プラズマと
ホウ素および炭素原子を反応させ、基板に窒化ホウ素炭
素膜が成膜し、その後、成膜試料に光照射工程を設ける
ことにより、耐吸湿性、高熱伝導性を有し、低誘電率を
持った窒化ホウ素炭素膜が高速に成膜できる。
Effects of the Invention The film forming method of the present invention has mechanical and chemical stability, moisture absorption resistance, and high thermal conductivity by irradiating a boron nitride carbon film produced by a plasma vapor phase synthesis method with light. A boron nitride carbon film having a low dielectric constant can be formed. A film forming apparatus for performing plasma vapor phase synthesis is provided with a nitrogen gas introducing unit, a plasma generating unit and a substrate holding unit below the cylindrical gas introducing unit, and a boron chloride and carbon supply source between the nitrogen introducing unit and the substrate holding unit. A means for introducing hydrocarbons and organic materials as described above is provided, and nitrogen plasma is allowed to react with boron and carbon atoms to form a boron nitride carbon film on the substrate, and then a light irradiation step is provided to the film formation sample. As a result, a boron nitride carbon film having moisture absorption resistance, high thermal conductivity, and low dielectric constant can be formed at high speed.

【0034】本発明による窒化ホウ素炭素膜は集積回路
の配線層間絶縁体薄膜または保護膜として用いることが
できる。
The boron carbon nitride film according to the present invention can be used as a wiring interlayer insulating thin film or a protective film of an integrated circuit.

【0035】本発明による窒化ホウ素炭素膜は集積回路
の配線層間絶縁体薄膜または保護膜として用いることが
できる。この膜を化合物半導体(GaAs系、InP
系、GaN系など)で作製される高周波動作を目指した
電界効果トランジスタ(FET)やバイポーラトランジ
スタのソース−ゲート間やゲート−ドレイン間の半導体
表面に保護膜として用いることにより浮遊容量が低下で
き、周波数特性を改善することができる。
The boron nitride carbon film according to the present invention can be used as a wiring interlayer insulating thin film or a protective film of an integrated circuit. This film is a compound semiconductor (GaAs, InP)
Stray capacitance can be reduced by using it as a protective film on the semiconductor surface between the source and gate or between the gate and drain of a field effect transistor (FET) or a bipolar transistor aiming at high frequency operation made of a GaN system, a GaN system, etc. The frequency characteristic can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による成膜装置を示す断面図
である。
FIG. 1 is a sectional view showing a film forming apparatus according to a first embodiment of the present invention.

【図2】光照射時間に対する光照射前後の比誘電率の比
を示すグラフ。
FIG. 2 is a graph showing the ratio of relative permittivity before and after light irradiation with respect to light irradiation time.

【図3】熱処理温度に対する熱処理前後の比誘電率の比
を示すグラフ。
FIG. 3 is a graph showing a ratio of a relative dielectric constant before and after heat treatment with respect to a heat treatment temperature.

【図4】本発明の実施例3による成膜装置を示す断面図
である。
FIG. 4 is a sectional view showing a film forming apparatus according to a third embodiment of the present invention.

【図5】本発明の実施例4による成膜装置を示す断面図
である。
FIG. 5 is a sectional view showing a film forming apparatus according to a fourth embodiment of the present invention.

【図6】本発明の実施例に係る成膜方法で成膜した窒化
ホウ素炭素膜を用いた集積回路の断面概略図。
FIG. 6 is a schematic cross-sectional view of an integrated circuit using a boron nitride carbon film formed by a film forming method according to an example of the present invention.

【図7】本発明の実施例に係る成膜方法で成膜した窒化
ホウ素炭素膜を用いた集積回路の断面概略図。
FIG. 7 is a schematic cross-sectional view of an integrated circuit using a boron nitride carbon film formed by a film forming method according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1・・円筒状容器 2・・誘導結合プラズマ生成部 3・・整合器 4・・高周波電源 5・・窒素ガス導入部 6・・基板保持部 7・・ヒータ 8、9・・導入部 10・・排気部 50・・プラズマ 60・・基板 61・・窒化ホウ素炭素膜 501・・トランジスタ 502・・配線 503・・層間絶縁体薄膜 504・・保護膜 1 ... Cylindrical container 2 ... Inductively coupled plasma generator 3 ... Matching device 4. High frequency power supply 5. Nitrogen gas introduction section 6 ... Board holding part 7 ... Heater 8, 9 ... Introduction section 10 ... Exhaust section 50 ... Plasma 60 ... Board 61 .. Boron nitride carbon film 501 ... Transistor 502..Wiring 503 .. Interlayer insulator thin film 504 ... Protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楠原 昌樹 東京都中央区日本橋室町4丁目2番16号 株式会社渡邊商行内 (72)発明者 梅田 優 東京都中央区日本橋室町4丁目2番16号 株式会社渡邊商行内 Fターム(参考) 4K030 AA03 AA09 AA13 AA17 AA18 BA26 BA27 BA49 CA04 FA04 FA15 5F058 BA07 BC20 BF07 BF22 BF26 BF30 BJ02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaki Kusuhara             4-2-1 Nihonbashi Muromachi, Chuo-ku, Tokyo             Watanabe Shokai Co., Ltd. (72) Inventor Yu Umeda             4-2-1 Nihonbashi Muromachi, Chuo-ku, Tokyo             Watanabe Shokai Co., Ltd. F-term (reference) 4K030 AA03 AA09 AA13 AA17 AA18                       BA26 BA27 BA49 CA04 FA04                       FA15                 5F058 BA07 BC20 BF07 BF22 BF26                       BF30 BJ02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素炭素窒素原子を含む膜を成膜した
後、光を照射する工程を有することを特徴とする低誘電
率膜の成膜方法。
1. A method for forming a low dielectric constant film, which comprises the step of irradiating light after forming a film containing boron carbon nitrogen atoms.
【請求項2】 照射光の光源として水銀ランプ、キセノ
ンランプ、重水素ランプのいずれかを用いることを特徴
とする低誘電率膜の成膜方法。
2. A method for forming a low dielectric constant film, wherein any one of a mercury lamp, a xenon lamp and a deuterium lamp is used as a light source of irradiation light.
【請求項3】 照射光の光源として赤外線ランプを用い
ることを特徴とする低誘電率膜の成膜方法。
3. A method for forming a low dielectric constant film, wherein an infrared lamp is used as a light source of irradiation light.
【請求項4】 請求項1に記載の方法により作製した膜
を配線層間膜とすることを特徴とする半導体装置。
4. A semiconductor device, wherein the film produced by the method according to claim 1 is used as a wiring interlayer film.
【請求項5】 請求項1に記載の方法により作製した膜
を保護膜とすることを特徴とする半導体装置。
5. A semiconductor device using the film produced by the method according to claim 1 as a protective film.
【請求項6】 請求項4または5に記載の装置を有する
ことを特徴とする情報処理・通信システム。
6. An information processing / communication system comprising the device according to claim 4 or 5.
【請求項7】 請求項1ないし3のいずれか1項記載の
方法により作製した膜を、化合物半導体で作製される電
界効果トランジスタ、バイポーラトランジスタのソース
−ゲート間及び/又はゲートドレイン間の半導体表面保
護膜とすることを特徴とする半導体装置。
7. A semiconductor surface formed by a method according to claim 1, wherein a source-gate and / or a gate-drain of a field effect transistor or a bipolar transistor made of a compound semiconductor is used as a semiconductor surface. A semiconductor device comprising a protective film.
JP2002264691A 2001-09-10 2002-09-10 Electronic devices using boron carbon nitrogen Expired - Fee Related JP4312437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264691A JP4312437B2 (en) 2001-09-10 2002-09-10 Electronic devices using boron carbon nitrogen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-274345 2001-09-10
JP2001274345 2001-09-10
JP2002264691A JP4312437B2 (en) 2001-09-10 2002-09-10 Electronic devices using boron carbon nitrogen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008030866A Division JP5074946B2 (en) 2001-09-10 2008-02-12 Low dielectric constant film, film forming method thereof, and electronic device using the film

Publications (2)

Publication Number Publication Date
JP2003163211A true JP2003163211A (en) 2003-06-06
JP4312437B2 JP4312437B2 (en) 2009-08-12

Family

ID=26621955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264691A Expired - Fee Related JP4312437B2 (en) 2001-09-10 2002-09-10 Electronic devices using boron carbon nitrogen

Country Status (1)

Country Link
JP (1) JP4312437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243802A (en) * 2004-02-25 2005-09-08 Watanabe Shoko:Kk Semiconductor device and its semiconductor device application system
CN103165438A (en) * 2011-12-09 2013-06-19 株式会社日立国际电气 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243802A (en) * 2004-02-25 2005-09-08 Watanabe Shoko:Kk Semiconductor device and its semiconductor device application system
CN103165438A (en) * 2011-12-09 2013-06-19 株式会社日立国际电气 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus
TWI479045B (en) * 2011-12-09 2015-04-01 Hitachi Int Electric Inc A semiconductor device manufacturing method, a substrate processing method, a substrate processing apparatus, and a recording medium
CN103165438B (en) * 2011-12-09 2016-04-06 株式会社日立国际电气 The manufacture method of semiconductor device, Method of processing a substrate and lining processor

Also Published As

Publication number Publication date
JP4312437B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP3517934B2 (en) Method of forming silicon film
JP3514186B2 (en) Thin film forming method and apparatus
US6150265A (en) Apparatus for forming materials
JPS60254614A (en) Method of chemically depositing conductive titanium silicidefilm by light induction
KR20060131681A (en) Substrate processing method, computer readable recording medium and substrate processing apparatus
JP4406178B2 (en) Deposition equipment
JP5074946B2 (en) Low dielectric constant film, film forming method thereof, and electronic device using the film
US20010035241A1 (en) Method for forming metal nitride film
JP2974376B2 (en) Method for manufacturing semiconductor device
JP2008187186A (en) Device for depositing film of low dielectric constant
JP2003163211A (en) Film forming method for low dielectric constant, film forming device and electronic device using the film
JP2002517912A (en) Method and apparatus for forming a Ti-doped Ta2O5 layer
JP2758247B2 (en) Organic metal gas thin film forming equipment
JP2008053562A (en) Method for forming gate insulating film, and method and device for manufacturing semiconductor device
US5990006A (en) Method for forming materials
JP2010225792A (en) Film forming device and film forming method
JP4520688B2 (en) Low dielectric constant film and method for forming the same
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JP2726149B2 (en) Thin film forming equipment
JP2002241945A (en) Thin film deposition apparatus
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JPH09315890A (en) Synthesizing method of semiconductor diamond
JP2006073608A (en) Method and device for forming thin film
JP5221840B2 (en) Film forming method, insulating film, and semiconductor integrated circuit
JP2002075980A (en) Method for depositing low dielectric film by vacuum ultraviolet cvd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees