JP2003160804A - Method for manufacturing copper powder, copper powder, electroconductive paste, and laminated ceramic electronic component - Google Patents

Method for manufacturing copper powder, copper powder, electroconductive paste, and laminated ceramic electronic component

Info

Publication number
JP2003160804A
JP2003160804A JP2001357429A JP2001357429A JP2003160804A JP 2003160804 A JP2003160804 A JP 2003160804A JP 2001357429 A JP2001357429 A JP 2001357429A JP 2001357429 A JP2001357429 A JP 2001357429A JP 2003160804 A JP2003160804 A JP 2003160804A
Authority
JP
Japan
Prior art keywords
copper powder
copper
conductive paste
calcium
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001357429A
Other languages
Japanese (ja)
Other versions
JP3922001B2 (en
Inventor
Takeji Nakamura
武治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001357429A priority Critical patent/JP3922001B2/en
Publication of JP2003160804A publication Critical patent/JP2003160804A/en
Application granted granted Critical
Publication of JP3922001B2 publication Critical patent/JP3922001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper powder which is superior in dispersibility and heat contraction and has a high sintering-initiation temperature, to provide the copper powder manufactured by the method, an electroconductive paste using the copper powder and a laminated ceramic electronic component provided with an electrode formed by the use of the conductive paste. <P>SOLUTION: This manufacturing method comprises reducing a raw liquid containing copper salts, calcium compounds and water with a hydrazine-based reducing agent, to precipitate the copper powder containing calcium. A ratio (Ca/(Cu+Ca)) of calcium (Ca) to copper (Cu) in the raw liquid is in a range of 0.05-1.0 wt.%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、銅粉末の製造方
法、該製造方法により製造された銅粉末、該銅粉末を用
いた導電性ペースト、及び該導電性ペーストを用いて形
成した電極を備えた積層セラミック電子部品に関する。
TECHNICAL FIELD The present invention comprises a method for producing a copper powder, a copper powder produced by the production method, a conductive paste using the copper powder, and an electrode formed using the conductive paste. Relates to multilayer ceramic electronic components.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】例え
ば、代表的な積層セラミック電子部品の1つである積層
セラミックコンデンサは、通常、金属粉末を有機ビヒク
ルなどと混合、混練して作製した導電性ペーストを印刷
することにより、表面に所定の内部電極パターンを形成
したセラミックグリーンシートを複数枚積層し、さらに
その上下両面側に、内部電極パターンの形成されていな
いセラミックグリーンシート(外層用シート)を積層
し、圧着することにより得られた積層体をカットして、
個々の素子に分割した後、焼成し、得られた焼結体(積
層セラミック素子)の所定の位置に、内部電極と導通す
る外部電極を設けることにより製造されている。
2. Description of the Related Art For example, a monolithic ceramic capacitor, which is one of typical monolithic ceramic electronic components, is usually made of a conductive material prepared by mixing and kneading metal powder with an organic vehicle or the like. By printing the paste, a plurality of ceramic green sheets having a predetermined internal electrode pattern formed on the surface are laminated, and ceramic green sheets (outer layer sheet) having no internal electrode pattern are formed on both upper and lower sides thereof. Cut the laminate obtained by stacking and crimping,
After being divided into individual elements, firing is performed, and external electrodes that are electrically connected to the internal electrodes are provided at predetermined positions of the obtained sintered body (multilayer ceramic element).

【0003】従来、積層セラミックコンデンサなどの内
部電極の形成に用いられる導電性ペーストとしては、パ
ラジウムや銀などの貴金属粉末を導電成分とする導電性
ペーストが広く用いられていたが、焼成技術の向上など
により、現在は安価な卑金属粉末を導電成分とする導電
性ペーストも広く用いられるに至っている。なお、現状
では、ニッケル粉末を導電成分とする導電性ペーストが
多く用いられているが、電気抵抗が低く、より積層セラ
ミック電子部品の高性能化に寄与することが可能な、銅
粉末を導電成分とする導電性ペーストも一部使用されつ
つある。
Conventionally, as a conductive paste used for forming an internal electrode of a monolithic ceramic capacitor or the like, a conductive paste containing a precious metal powder such as palladium or silver as a conductive component has been widely used. Due to these reasons, conductive pastes containing inexpensive base metal powder as a conductive component are now widely used. At present, a conductive paste containing nickel powder as a conductive component is often used, but copper powder is a conductive component that has low electric resistance and can contribute to higher performance of multilayer ceramic electronic components. A part of the conductive paste is being used.

【0004】ところで、近年、積層セラミックコンデン
サなどの積層セラミック電子部品の小型化が進むに伴
い、所望の特性を確保しようとすると、薄く、均一な内
部電極を形成することが必要となる。したがって、銅粉
末を導電成分とする導電性ペーストを使用する場合、銅
粉末として、粒径が均一で、分散性の高いものを用いる
ことが必要になる。
By the way, in recent years, as monolithic ceramic electronic components such as monolithic ceramic capacitors have been miniaturized, in order to secure desired characteristics, it is necessary to form thin and uniform internal electrodes. Therefore, when using a conductive paste containing copper powder as a conductive component, it is necessary to use a copper powder having a uniform particle size and high dispersibility.

【0005】また、積層セラミック電子部品が小型化す
るほど、セラミックと内部電極(銅電極)の焼結のミス
マッチに起因するデラミネーションやクラックなどの不
良が発生しやすく、特に、銅は焼結開始温度が500℃
程度と、セラミックと比較して大幅に低いことから、焼
結のミスマッチに起因するデラミネーションやクラック
などの不良が発生しやすいという問題点がある。
Further, as the monolithic ceramic electronic component becomes smaller, defects such as delamination and cracks are more likely to occur due to a mismatch in the sintering of the ceramic and the internal electrode (copper electrode). In particular, copper starts to be sintered. Temperature is 500 ℃
Since the degree is significantly lower than that of ceramics, there is a problem that defects such as delamination and cracks are likely to occur due to sintering mismatch.

【0006】従って、銅粉末を導電成分とする導電性ペ
ーストを用いて、小型、高積層の積層セラミックコンデ
ンサなどを製造しようとすると、銅粉末として、分散性
に優れ、かつ、焼結開始温度の高いものを用いることが
必要となる。
Therefore, when an attempt is made to manufacture a small-sized, high-multilayer monolithic ceramic capacitor or the like by using a conductive paste containing copper powder as a conductive component, copper powder is excellent in dispersibility and has a sintering starting temperature. It is necessary to use expensive ones.

【0007】従来の銅粉末の製造方法としては、溶湯の
粉化法,機械的粉砕法,電解法,還元析出法などがあ
り、還元析出法としては、例えば特開昭57−1553
02号公報には、炭酸銅を含む銅含有溶液とヒドラジン
あるいはヒドラジン化合物とを混合し、これを加熱する
ことにより銅粉末を製造する方法が開示されている。し
かし、この方法は、固液反応であるため、反応が不均一
になりやすく、分散性の高い銅粉末を得ることは困難で
ある。
Conventional methods for producing copper powder include a powdering method of molten metal, a mechanical pulverizing method, an electrolysis method and a reduction precipitation method. Examples of the reduction precipitation method include, for example, JP-A-57-1553.
No. 02 discloses a method of producing a copper powder by mixing a copper-containing solution containing copper carbonate with hydrazine or a hydrazine compound and heating the mixture. However, since this method is a solid-liquid reaction, the reaction tends to be non-uniform, and it is difficult to obtain a copper powder having high dispersibility.

【0008】また、特開平9−256007号公報に
は、銅化合物及びリン酸塩が共存する銅含有溶液中に還
元剤を添加して金属銅を析出させることにより、分散性
の高い銅粉末の得る方法が開示されている。この方法に
よれば、分散性の高い銅粉末を製造することは可能であ
るが、銅粉末特有の焼結温度が低いという問題点は解消
されていないのが実情である。
Further, in Japanese Patent Laid-Open Publication No. 9-256007, a reducing agent is added to a copper-containing solution in which a copper compound and a phosphate coexist to precipitate metallic copper, whereby copper powder having high dispersibility is obtained. A method of obtaining is disclosed. According to this method, it is possible to produce a copper powder having a high dispersibility, but the fact that the sintering temperature peculiar to the copper powder is low has not been solved.

【0009】また、特開2000−345201号公報
には、銅粉末を後処理して、表面に酸化物を固着させる
ことにより、銅粉末の焼結温度を改善する方法が開示さ
れている。しかし、この方法の場合には、処理中に摩擦
熱などにより粉末がかなりの高温にさらされることにな
り、銅粉末自体の酸化などの問題点があるとともに、技
術的に困難で、コスト面でも不利であるという問題点が
ある。
Further, Japanese Patent Laid-Open No. 2000-345201 discloses a method of improving the sintering temperature of copper powder by post-treating the copper powder and fixing an oxide on the surface. However, in the case of this method, the powder is exposed to a considerably high temperature due to frictional heat during the treatment, and there are problems such as oxidation of the copper powder itself, and it is technically difficult and costly. There is a problem that it is disadvantageous.

【0010】本願発明は、上記問題点を解決するもので
あり、分散性に優れ、焼結開始温度が高く、熱収縮特性
に優れた銅粉末の製造方法、該製造方法により製造され
た銅粉末、該銅粉末を用いた導電性ペースト、及び該導
電性ペーストを用いて形成した電極を備えた積層セラミ
ック電子部品を提供することを目的とする。
The present invention solves the above-mentioned problems and is a method for producing a copper powder having excellent dispersibility, a high sintering starting temperature, and excellent heat shrinkage characteristics, and a copper powder produced by the method. Another object of the present invention is to provide a conductive paste using the copper powder, and a laminated ceramic electronic component provided with an electrode formed using the conductive paste.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本願発明(請求項1)の銅粉末の製造方法は、主成
分である銅塩と、副成分であるカルシウム化合物と、水
とを含有する原料液を調製する工程と、ヒドラジン及び
/又はヒドラジン化合物を含有する還元剤水溶液を調製
する工程と、前記原料液と、前記還元剤水溶液とを混合
し、還元反応を行わせることにより、銅粉末を析出させ
る工程とを具備することを特徴としている。
In order to achieve the above object, a method for producing a copper powder according to the present invention (claim 1) comprises a copper salt as a main component, a calcium compound as an accessory component, and water. A step of preparing a raw material liquid containing, a step of preparing a reducing agent aqueous solution containing a hydrazine and / or a hydrazine compound, the raw material solution and the reducing agent aqueous solution are mixed, by performing a reduction reaction And a step of depositing copper powder.

【0012】本願発明(請求項1)の銅粉末の製造方法
は、主成分である銅塩と、副成分であるカルシウム化合
物と、水とを含有する原料液と、ヒドラジン及び/又は
ヒドラジン化合物を含有する還元剤水溶液を用意し、原
料液と還元剤水溶液を混合して、還元反応を行わせ、C
a分を含む銅粉末を析出させるようにしているので、原
料液と還元剤水溶液を混合するだけで、容易に、分散性
に優れ、焼結開始温度が高く、熱収縮特性に優れた銅粉
末を製造することができるようになる。
The method for producing a copper powder according to the present invention (claim 1) comprises a raw material liquid containing a copper salt as a main component, a calcium compound as an accessory component, and water, a hydrazine and / or a hydrazine compound. Prepare a reducing agent aqueous solution to be contained, mix the raw material liquid and the reducing agent aqueous solution, and carry out a reduction reaction.
Since the copper powder containing the a component is deposited, the copper powder easily has excellent dispersibility, a high sintering start temperature, and excellent heat shrinkage characteristics simply by mixing the raw material liquid and the reducing agent aqueous solution. Will be able to be manufactured.

【0013】なお、原料液と、還元剤水溶液とを混合し
て、還元反応を行わせる方法としては、例えば、塩基性
炭酸銅とカルシウム化合物を純水中に分散させ、これに
ヒドラジンを純水に溶解させた還元剤水溶液を一定速度
で投入した後、所定の温度に達するまで徐々に加熱し、
その温度で一定時間保持して還元反応を行わせる方法な
どが例示される。
As a method of mixing the raw material liquid and the reducing agent aqueous solution to carry out the reduction reaction, for example, basic copper carbonate and a calcium compound are dispersed in pure water, and hydrazine is added to the pure water. After adding the reducing agent aqueous solution dissolved in a constant speed, gradually heated until reaching a predetermined temperature,
An example is a method of holding the temperature for a certain period of time to carry out the reduction reaction.

【0014】また、本願発明(請求項1)の方法によ
り、分散性に優れ、焼結開始温度が高く、熱収縮特性に
優れた銅粉末が得られることについて、その詳細なメカ
ニズムは必ずしも明らかではないが、共存するカルシウ
ム(Ca)分が、銅粉末の形成過程における凝集や銅粉
末どうしのネッキングを抑制して、銅粉末の分散性を飛
躍的に向上させるものと推測される。
Further, the detailed mechanism of the fact that the copper powder having excellent dispersibility, high sintering starting temperature and excellent heat shrinkability is obtained by the method of the present invention (claim 1) is not always clear. Although not present, it is speculated that the coexisting calcium (Ca) content suppresses agglomeration and necking between the copper powders during the formation process of the copper powders and dramatically improves the dispersibility of the copper powders.

【0015】また、Ca分は、銅粉末に残留して銅粉末
の焼結を抑制し、焼結開始温度(熱収縮開始温度)を高
温側ヘシフトさせる機能を果たす。したがって、液相還
元反応において、銅塩を含む原料液中にカルシウム分を
添加するようにした、本願発明(請求項1)の銅粉末の
製造方法によれば、分散性に優れ、焼結開始温度が高
く、熱収縮特性に優れた銅粉末を効率よく製造すること
ができるようになる。なお、本願発明において用いるこ
とが可能な銅塩としては、硫酸銅,炭酸銅、塩化銅など
を使用することが可能であり、さらに他の銅塩を使用す
ることも可能である。
The Ca content remains in the copper powder, suppresses the sintering of the copper powder, and functions to shift the sintering start temperature (heat shrinkage start temperature) to the high temperature side. Therefore, according to the method for producing a copper powder of the present invention (claim 1) in which the calcium component is added to the raw material liquid containing the copper salt in the liquid phase reduction reaction, the dispersibility is excellent and the sintering starts. It becomes possible to efficiently produce a copper powder having a high temperature and excellent heat shrinkage characteristics. As the copper salt that can be used in the present invention, it is possible to use copper sulfate, copper carbonate, copper chloride, etc., and it is also possible to use other copper salts.

【0016】また、カルシウム化合物としては、炭酸カ
ルシウム、水酸化カルシウム、酸化カルシウムなどを用
いることが可能である。なお、カルシウム分は、不純物
として銅塩中に含まれていてもよい。カルシウム分が不
純物として銅塩中に含まれている場合において、その量
が所要量を満足しない場合には、不足分を別途添加する
ことにより、不純物として銅塩中に含まれているカルシ
ウム分と、添加するカルシウム分の総量を、銅との関係
において制御することが可能である。
As the calcium compound, it is possible to use calcium carbonate, calcium hydroxide, calcium oxide or the like. The calcium content may be contained in the copper salt as an impurity. When the calcium content is contained in the copper salt as an impurity and the amount does not satisfy the required amount, the calcium content contained in the copper salt as an impurity is added by adding the shortage separately. It is possible to control the total amount of calcium added in relation to copper.

【0017】また、請求項2の銅粉末の製造方法は、前
記原料液中の銅(Cu)とカルシウム(Ca)の割合
が、Ca/(Cu+Ca)(重量%)で表した場合に、
0.05〜1.0重量%の範囲にあることを特徴として
いる。
Further, in the method for producing copper powder according to claim 2, when the ratio of copper (Cu) and calcium (Ca) in the raw material liquid is expressed by Ca / (Cu + Ca) (wt%),
It is characterized by being in the range of 0.05 to 1.0% by weight.

【0018】原料液中の銅(Cu)とカルシウム(C
a)の割合を、Ca/(Cu+Ca)(重量%)で表し
た場合に、0.05〜1.0重量%の範囲とすることに
より、分散性に優れ、焼結開始温度が高く、熱収縮特性
に優れた銅粉末を確実に製造することが可能になる。
Copper (Cu) and calcium (C
When the ratio of a) is represented by Ca / (Cu + Ca) (wt%), by setting it in the range of 0.05 to 1.0 wt%, the dispersibility is excellent, the sintering start temperature is high, and the heat It is possible to reliably produce a copper powder having excellent shrinkage characteristics.

【0019】なお、Ca/(Cu+Ca)(重量%)
を、0.05〜1.0重量%の範囲とするのが望ましい
のは、Ca/(Cu+Ca)が、0.05重量%未満に
なると、得られる銅粉末の分散性が不十分になるばかり
でなく、銅粉末中に残留するCa分が少なくなるため、
十分な焼結抑制効果が得られなくなり、また、Ca/
(Cu+Ca)を、1.0重量%を超える領域で大きく
しても、銅粉末の微細化や高分散化、あるいは焼結抑制
の効果に顕著な向上は認められないことによる。
Ca / (Cu + Ca) (% by weight)
Is preferably in the range of 0.05 to 1.0% by weight, because when Ca / (Cu + Ca) is less than 0.05% by weight, the dispersibility of the obtained copper powder becomes insufficient. Instead, the amount of Ca remaining in the copper powder decreases,
Sufficient sintering suppression effect cannot be obtained, and Ca /
This is because even if the content of (Cu + Ca) is increased in the range of more than 1.0% by weight, no remarkable improvement is observed in the effect of making the copper powder finer, more dispersed, or suppressing sintering.

【0020】また、本願発明(請求項3)の銅粉末は、
請求項1又は2記載の銅粉末の製造方法により製造され
たものであることを特徴としている。
The copper powder of the present invention (claim 3) is
It is manufactured by the method for manufacturing a copper powder according to claim 1 or 2.

【0021】本願発明(請求項3)の銅粉末は、請求項
1又は2記載の銅粉末の製造方法により製造されたもの
であって、分散性に優れ、焼結開始温度が高く、熱収縮
特性に優れていることから、本願発明の銅粉末を導電性
ペーストの導電成分として用いることにより、小型、高
積層数の積層セラミック電子部品の製造に用いた場合
に、焼結時の収縮が少なく、形状精度が良好で、均一な
内部電極を備えた信頼性の高い積層セラミック電子部品
を得ることが可能になる。
The copper powder of the present invention (Claim 3) is produced by the method for producing a copper powder according to Claim 1 or 2, and has excellent dispersibility, high sintering initiation temperature, and heat shrinkage. Due to its excellent characteristics, by using the copper powder of the present invention as a conductive component of a conductive paste, it is possible to reduce shrinkage at the time of sintering when used for manufacturing a small-sized, high-stack-number multilayer ceramic electronic component. Thus, it is possible to obtain a highly reliable laminated ceramic electronic component having a good shape accuracy and having uniform internal electrodes.

【0022】また、本願発明(請求項4)の導電性ペー
ストは、請求項3記載の銅粉末と、有機ビヒクルとを含
有することを特徴としている。
Further, the conductive paste of the present invention (claim 4) is characterized by containing the copper powder according to claim 3 and an organic vehicle.

【0023】本願発明(請求項4)の導電性ペーストに
おいては、請求項3記載の、分散性に優れ、焼結開始温
度が高く、熱収縮特性に優れた銅粉末が導電成分として
用いられているので、本願発明の導電性ペーストを、小
型、高積層数の積層セラミック電子部品の製造に用いた
場合に、焼結時の収縮が少なく、形状精度が良好で、均
一な内部電極を備えた信頼性の高い積層セラミック電子
部品を得ることが可能になる。
In the conductive paste of the present invention (claim 4), the copper powder having excellent dispersibility, high sintering start temperature and excellent heat shrinkage property according to claim 3 is used as a conductive component. Therefore, when the conductive paste of the present invention is used for manufacturing a small-sized, high-lamination number multilayer ceramic electronic component, shrinkage during sintering is small, shape accuracy is good, and a uniform internal electrode is provided. It is possible to obtain a highly reliable laminated ceramic electronic component.

【0024】また、本願発明(請求項5)の積層セラミ
ック電子部品は、請求項4記載の導電性ペーストの焼結
体である内部電極が、セラミック層間に配設された構造
を有していることを特徴としている。
The laminated ceramic electronic component of the present invention (Claim 5) has a structure in which internal electrodes, which are sintered bodies of the conductive paste according to Claim 4, are arranged between the ceramic layers. It is characterized by that.

【0025】本願発明(請求項5)の積層セラミック電
子部品は、請求項4記載の導電性ペーストの焼結体であ
る内部電極を備えており、かかる内部電極は、焼結時の
収縮が少なく、形状精度が良好で、均一であることか
ら、所望の特性を備えた信頼性の高い積層セラミック電
子部品を提供することが可能になる。
The multilayer ceramic electronic component of the present invention (Claim 5) is provided with the internal electrode which is the sintered body of the conductive paste according to Claim 4, and the internal electrode has a small shrinkage during sintering. Since the shape accuracy is good and the shape is uniform, it is possible to provide a highly reliable multilayer ceramic electronic component having desired characteristics.

【0026】[0026]

【実施例】以下、本願発明の実施例を示して、本願発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below by showing Examples of the present invention.

【0027】[実施例1] (1)銅塩として、異なる量のカルシウム不純物を含有す
る塩基性炭酸銅200gを、30℃の純水2300mL中
に分散させることにより、原料液を調製した。 (2)また、還元剤であるヒドラジン200gを、純水3
00mLに溶解させることにより、還元剤水溶液(ヒドラ
ジン水溶液)を調製した。 (3)それから、原料液に、還元剤水溶液を13mL/min
の一定速度で投入し、90分間で90℃に達するように
徐々に加熱するとともに、90℃で60分間保持し、還
元反応を行わせることにより、還元生成物(銅粉末)を
析出させた。 (4)次に、銅粉末を分離し、洗浄した後、さらに、純水
中に投入して、沈降分離を数回繰り返し、アセトンにて
洗浄した後、真空乾燥機にて乾燥させることにより銅粉
末を得た。
Example 1 (1) As a copper salt, 200 g of basic copper carbonate containing different amounts of calcium impurities was dispersed in 2300 mL of pure water at 30 ° C. to prepare a raw material liquid. (2) Also, 200 g of hydrazine, which is a reducing agent, was added to pure water 3
A reducing agent aqueous solution (hydrazine aqueous solution) was prepared by dissolving it in 00 mL. (3) Then, the reducing agent aqueous solution was added to the raw material liquid at 13 mL / min.
At a constant rate, the mixture was gradually heated so as to reach 90 ° C. in 90 minutes, and held at 90 ° C. for 60 minutes to carry out a reduction reaction to precipitate a reduction product (copper powder). (4) Next, after the copper powder is separated and washed, it is further put into pure water, sedimentation separation is repeated several times, washed with acetone, and then dried by a vacuum dryer to obtain copper. A powder was obtained.

【0028】[実施例2] (1)カルシウム不純物の含有量が0.005重量%の塩
基性炭酸銅200gを、30℃の純水2300mL中に分
散させ、さらに炭酸カルシウムを0〜7.4gの範囲で
添加し、分散させることにより、原料液を調製した。 (2)また、還元剤であるヒドラジン200gを純水30
0mLに溶解させることにより、還元剤水溶液(ヒドラジ
ン水溶液)を調製した。 (3)それから、原料液に、還元剤水溶液を13mL/min
の一定速度で投入し、90分間で90℃に達するように
徐々に加熱するとともに、90℃で60分間保持し、還
元反応を行わせることにより、還元生成物(銅粉末)を
析出させた。 (4)次に、銅粉末を分離し、洗浄した後、さらに、純水
中に投入して、沈降分離を数回繰り返し、アセトンにて
洗浄した後、真空乾燥機にて乾燥させることにより銅粉
末を得た。
Example 2 (1) 200 g of basic copper carbonate having a calcium impurity content of 0.005% by weight was dispersed in 2300 mL of pure water at 30 ° C., and 0 to 7.4 g of calcium carbonate was added. The raw material liquid was prepared by adding and dispersing in the range of. (2) Also, 200 g of hydrazine, which is a reducing agent, was added to pure water 30
A reducing agent aqueous solution (hydrazine aqueous solution) was prepared by dissolving it in 0 mL. (3) Then, the reducing agent aqueous solution was added to the raw material liquid at 13 mL / min.
At a constant rate, the mixture was gradually heated so as to reach 90 ° C. in 90 minutes, and held at 90 ° C. for 60 minutes to carry out a reduction reaction to precipitate a reduction product (copper powder). (4) Next, after the copper powder is separated and washed, it is further put into pure water, sedimentation separation is repeated several times, washed with acetone, and then dried by a vacuum dryer to obtain copper. A powder was obtained.

【0029】[実施例1及び2で得た銅粉末の特性評
価]上記実施例1、2で得た銅粉末について1次粒径を
測定したところ、Caの含有量の多少に関わらず、比表
面積が約0.9m2/gで、略一定であることが確認さ
れた。
[Characteristic Evaluation of Copper Powders Obtained in Examples 1 and 2] The primary particle diameters of the copper powders obtained in Examples 1 and 2 were measured. It was confirmed that the surface area was about 0.9 m 2 / g and was substantially constant.

【0030】さらに、上記実施例1、2で得た銅粉末に
ついて、レーザー回折式の粒度分布計を用いて粒度分布
を測定した。その結果を図1に示す。
Further, the particle size distributions of the copper powders obtained in Examples 1 and 2 above were measured using a laser diffraction type particle size distribution meter. The result is shown in FIG.

【0031】図1より、銅粉中のCaの割合Ca/(C
u+Ca)が多くなるにつれて、粒度分布の値が減少し
ており、Caの割合Ca/(Cu+Ca)を多くするこ
とにより、銅粉末どうしの凝集が改善され、分散性が向
上することがわかる。また、図1より、分散性を十分に
向上させるためには、Caの割合Ca/(Cu+Ca)
を、0.05重量%以上とすることが望ましいことがわ
かる。
From FIG. 1, the ratio of Ca in the copper powder Ca / (C
It can be seen that the value of the particle size distribution decreases as the amount of (u + Ca) increases, and that by increasing the Ca ratio Ca / (Cu + Ca), the aggregation of the copper powders is improved and the dispersibility is improved. Further, from FIG. 1, in order to sufficiently improve the dispersibility, the ratio of Ca is Ca / (Cu + Ca)
It can be seen that it is desirable to set the content to 0.05% by weight or more.

【0032】また、図1より、Caの割合Ca/(Cu
+Ca)を、1.0重量%を超える領域において増加さ
せても、分散性向上の効果はほとんど増大しないことが
わかる。これより、CuとCaの割合Ca/(Cu+C
a)は、0.05〜1.0重量%の範囲とすることが望
ましいことがわかる。
Further, from FIG. 1, the ratio of Ca Ca / (Cu
It can be seen that the effect of improving the dispersibility is hardly increased even if + Ca) is increased in the region exceeding 1.0% by weight. From this, the ratio of Cu and Ca Ca / (Cu + C
It is understood that the content of a) is preferably in the range of 0.05 to 1.0% by weight.

【0033】また、原料液中のCuとCaの割合Ca/
(Cu+Ca)と、得られた銅粉中のCuとCaの割合
Ca/(Cu+Ca)を調べた。その結果を図2に示
す。図2より、原料液中のCuとCaの割合Ca/(C
u+Ca)と、得られた銅粉中のCaの割合Ca/(C
u+Ca)がほぼ同じであり、原料液中のCaは、全量
が銅粉とともに析出していることがわかる。
The ratio of Cu and Ca in the raw material liquid Ca /
(Cu + Ca) and Cu / Ca ratio Ca / (Cu + Ca) in the obtained copper powder were examined. The result is shown in FIG. From FIG. 2, the ratio of Cu and Ca in the raw material liquid Ca / (C
u + Ca) and the ratio of Ca in the obtained copper powder Ca / (C
u + Ca) is almost the same, and it can be seen that the total amount of Ca in the raw material liquid is precipitated together with the copper powder.

【0034】また、得られた銅粉末について、TMA
(熱機械分析)を用いて焼結開始温度を測定した。その
結果を図3に示す。図3より、Caの割合Ca/(Cu
+Ca)が多くなるにしたがって、焼結開始温度が高く
なることが確認された。また、図3より、Caの割合C
a/(Cu+Ca)を、1.0重量%を超える領域にお
いて増加させても、焼結開始温度を向上させる効果はほ
とんど増大しないことがわかる。
Further, regarding the obtained copper powder, TMA
The sintering start temperature was measured using (thermo-mechanical analysis). The result is shown in FIG. From FIG. 3, the ratio of Ca Ca / (Cu
It was confirmed that the sintering start temperature increased as + Ca) increased. Further, from FIG. 3, the proportion C of Ca
It can be seen that even if a / (Cu + Ca) is increased in the region exceeding 1.0% by weight, the effect of improving the sintering start temperature is hardly increased.

【0035】これらのデータから、CuとCaの割合C
a/(Cu+Ca)は、0.05〜1.0重量%の範囲
とすることが望ましいことがわかる。
From these data, the ratio of Cu to Ca, C
It is understood that a / (Cu + Ca) is preferably in the range of 0.05 to 1.0% by weight.

【0036】[実施例3]上記実施例1において得た銅
粉末(CuとCaの割合Ca/(Cu+Ca)を0.5
重量%とした銅粉末)を導電成分とする導電性ペースト
を調製し、この導電性ペーストを用いて、図4に示すよ
うな積層セラミックコンデンサを製造した。
[Embodiment 3] The copper powder (the ratio of Cu to Ca, Ca / (Cu + Ca)) obtained in the above Embodiment 1 is 0.5.
A conductive paste containing a copper powder in a weight percentage) as a conductive component was prepared, and this conductive paste was used to manufacture a laminated ceramic capacitor as shown in FIG.

【0037】この実施例3にかかる積層セラミックコン
デンサは、図4に示すように、セラミックコンデンサ素
子(積層体)1中に、静電容量を取得するための複数の
内部電極2と、誘電体セラミック層3が交互に積層さ
れ、かつ、内部電極2が交互に積層体1の逆側の端部に
引き出されているとともに、セラミックコンデンサ素子
1の両端部に、所定の内部電極2と導通するように外部
電極4a,4bが配設された構造を有している。
As shown in FIG. 4, the monolithic ceramic capacitor according to the third embodiment includes a ceramic capacitor element (multilayer body) 1, a plurality of internal electrodes 2 for obtaining electrostatic capacitance, and a dielectric ceramic. The layers 3 are alternately laminated, and the internal electrodes 2 are alternately drawn out to the opposite ends of the laminated body 1, and both ends of the ceramic capacitor element 1 are electrically connected to the predetermined internal electrodes 2. It has a structure in which external electrodes 4a and 4b are disposed.

【0038】以下、この積層セラミックコンデンサの製
造方法について説明する。 (1)実施例1において製造した銅粉末、すなわち、Cu
とCaの割合Ca/(Cu+Ca)を0.5重量%とし
た銅粉末を、エチルセルロース系樹脂及びテルピネオー
ルと混練して導電性ペーストを調製した。 (2)それから、この導電性ペーストを、約7.5μm厚
のチタン酸バリウム系セラミックを主成分とする誘電体
シート(セラミックグリーンシート)に印刷して、表面
に内部電極パターン(電極層)が配設された電極配設シ
ートを形成した。 (3)次に、この電極配設シートを積層し、電極層と誘電
体層を交互に100層積み重ねるとともに、さらに上下
両面側に電極層が配設されていないセラミックグリーン
シート(外層用シート)を積層した後、圧着し、これを
切断し、脱バインダー処理を施した後、還元雰囲気中で
焼成した。 (4)そして、この焼結後の積層体の所定の位置に、外部
電極形成用の導電性ペーストを塗布して焼成することに
より、内部電極と導通する外部電極を形成して、図4に
示すような積層セラミックコンデンサを得た。なお、こ
の実施例3で作製した積層セラミックコンデンサの寸法
は、縦3.2mm×横1.6mm×厚み1.2mmである。
The method of manufacturing this laminated ceramic capacitor will be described below. (1) Copper powder produced in Example 1, that is, Cu
A copper powder having a Ca / (Cu + Ca) ratio of 0.5% by weight was mixed with an ethyl cellulose resin and terpineol to prepare a conductive paste. (2) Then, this conductive paste is printed on a dielectric sheet (ceramic green sheet) having a thickness of about 7.5 μm and containing barium titanate-based ceramic as a main component, and an internal electrode pattern (electrode layer) is formed on the surface. An electrode-arranged sheet was formed. (3) Next, this electrode-disposed sheet is laminated, 100 layers of electrode layers and dielectric layers are alternately stacked, and further, a ceramic green sheet in which no electrode layers are disposed on both upper and lower surfaces (outer layer sheet) Was laminated, pressure-bonded, cut, subjected to binder removal treatment, and then fired in a reducing atmosphere. (4) Then, by applying a conductive paste for forming an external electrode and firing it at a predetermined position of the laminated body after sintering, an external electrode that is electrically connected to the internal electrode is formed. A monolithic ceramic capacitor as shown was obtained. The dimensions of the monolithic ceramic capacitor produced in Example 3 are 3.2 mm in length × 1.6 mm in width × 1.2 mm in thickness.

【0039】この実施例3で製造した積層セラミックコ
ンデンサは、焼結時の収縮が少なく、形状精度が良好
で、均一な内部電極を備えており、所望の特性を有して
いることが確認された。
It was confirmed that the monolithic ceramic capacitor manufactured in Example 3 had a small shrinkage during sintering, had a good shape accuracy, was equipped with uniform internal electrodes, and had desired characteristics. It was

【0040】なお、上記の実施例3では、本願発明の方
法により製造した銅粉末を含有する導電性ペーストを用
いて積層セラミックコンデンサを製造したが、本願発明
の方法により製造した銅粉末を含有する導電性ペースト
は、積層セラミックコンデンサ以外の積層セラミック電
子部品(例えば、積層LC複合部品や、積層インダク
タ、多層基板など)にも適用することが可能である。
In Example 3, the multilayer ceramic capacitor was manufactured by using the conductive paste containing the copper powder manufactured by the method of the present invention. However, it contains the copper powder manufactured by the method of the present invention. The conductive paste can be applied to multilayer ceramic electronic components other than the multilayer ceramic capacitor (for example, multilayer LC composite components, multilayer inductors, multilayer substrates, etc.).

【0041】本願発明は、さらにその他の点において
も、上記実施例に限定されるものではなく、銅塩と、カ
ルシウム化合物と、水とを含有する原料液を、ヒドラジ
ン系還元剤により還元して、銅粉末を析出させる際の具
体的な条件や操作方法などに関し、発明の範囲内におい
て、種々の応用、変形を加えることが可能である。
In other respects, the present invention is not limited to the above-mentioned examples, and a raw material solution containing a copper salt, a calcium compound and water is reduced by a hydrazine reducing agent. With regard to specific conditions and operating methods for depositing copper powder, various applications and modifications can be made within the scope of the invention.

【0042】[0042]

【発明の効果】上述のように、本願発明(請求項1)の
銅粉末の製造方法は、主成分である銅塩と、副成分であ
るカルシウム化合物と、水とを含有する原料液と、ヒド
ラジン及び/又はヒドラジン化合物を含有する還元剤水
溶液を用意し、原料液と、還元剤水溶液とを混合し、還
元反応を行わせて、Ca分を含む銅粉末を析出させるよ
うにしているので、原料液と還元剤水溶液を混合するだ
けで、容易に、分散性に優れ、焼結開始温度が高く、熱
収縮特性に優れた銅粉末を製造することが可能になる。
As described above, the method for producing copper powder according to the present invention (Claim 1) comprises a raw material liquid containing a copper salt as a main component, a calcium compound as a secondary component, and water. Since a reducing agent aqueous solution containing hydrazine and / or a hydrazine compound is prepared, a raw material solution and a reducing agent aqueous solution are mixed, a reduction reaction is performed, and copper powder containing Ca is deposited. By mixing the raw material liquid and the reducing agent aqueous solution, it becomes possible to easily produce a copper powder having excellent dispersibility, a high sintering start temperature, and excellent heat shrinkage characteristics.

【0043】また、請求項2の銅粉末の製造方法のよう
に、銅(Cu)とカルシウム(Ca)の割合Ca/(C
u+Ca)を、0.05〜1.0重量%の範囲とするこ
とにより、分散性に優れ、焼結開始温度が高く、熱収縮
特性に優れた銅粉末を確実に製造することが可能にな
る。
Further, as in the method for producing a copper powder according to claim 2, the ratio Ca / (C) of copper (Cu) and calcium (Ca).
(u + Ca) in the range of 0.05 to 1.0% by weight makes it possible to reliably produce a copper powder having excellent dispersibility, a high sintering start temperature, and excellent heat shrinkage characteristics. .

【0044】また、本願発明(請求項3)の銅粉末は、
請求項1又は2記載の銅粉末の製造方法により製造され
たものであって、分散性に優れ、焼結開始温度が高く、
熱収縮特性に優れているので、本願発明の銅粉末を導電
性ペーストの導電成分として用いることにより、小型、
高積層数の積層セラミック電子部品の製造に用いた場合
に、焼結時の収縮が少なく、形状精度が良好で、均一な
内部電極を備えた信頼性の高い積層セラミック電子部品
を得ることが可能になる。
The copper powder of the present invention (claim 3) is
It is manufactured by the method for manufacturing a copper powder according to claim 1 or 2, and has excellent dispersibility, a high sintering start temperature,
Since it has excellent heat shrinkage characteristics, by using the copper powder of the present invention as a conductive component of a conductive paste, a small size,
When used to manufacture a high number of laminated ceramic electronic components, it is possible to obtain a highly reliable multilayer ceramic electronic component with less shrinkage during sintering, good shape accuracy, and uniform internal electrodes. become.

【0045】また、本願発明(請求項4)の導電性ペー
ストにおいては、請求項3記載の、分散性に優れ、焼結
開始温度が高く、熱収縮特性に優れた銅粉末が導電成分
として用いられているので、本願発明の導電性ペースト
を、小型、高積層数の積層セラミック電子部品の製造に
用いた場合に、焼結時の収縮が少なく、形状精度が良好
で、均一な内部電極を備えた信頼性の高い積層セラミッ
ク電子部品を得ることが可能になる。
Further, in the conductive paste of the present invention (claim 4), copper powder having excellent dispersibility, high sintering starting temperature and excellent heat shrinkage property according to claim 3 is used as a conductive component. Therefore, when the conductive paste of the present invention is used in the production of a small-sized, high-lamination number monolithic ceramic electronic component, shrinkage during sintering is small, the shape accuracy is good, and a uniform internal electrode is formed. It is possible to obtain a highly reliable multilayer ceramic electronic component provided with the electronic component.

【0046】また、本願発明(請求項5)の積層セラミ
ック電子部品は、請求項4記載の導電性ペーストの焼結
体である内部電極を備えており、かかる内部電極は、焼
結時の収縮が少なく、形状精度が良好で、均一であるこ
とから、所望の特性を備えた信頼性の高い積層セラミッ
ク電子部品を提供することができる。
Further, the multilayer ceramic electronic component of the present invention (Claim 5) is provided with an internal electrode which is a sintered body of the conductive paste according to Claim 4, and the internal electrode shrinks during sintering. It is possible to provide a highly reliable monolithic ceramic electronic component having desired characteristics because it has a small amount, good shape accuracy, and is uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】Caの割合と銅粉末粒度分布D50(μm)の
関係を示す図である。
FIG. 1 is a diagram showing a relationship between a Ca content and a copper powder particle size distribution D50 (μm).

【図2】原料液中のCaの割合Ca/(Cu+Ca)
と、得られた銅粉中のCaの割合Ca/(Cu+Ca)
の関係を示す図である。
FIG. 2 Ratio of Ca in raw material liquid Ca / (Cu + Ca)
And the ratio of Ca in the obtained copper powder Ca / (Cu + Ca)
It is a figure which shows the relationship of.

【図3】銅粉中のCaの割合Ca/(Cu+Ca)と焼
結開始温度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the ratio Ca / (Cu + Ca) of Ca in copper powder and the sintering start temperature.

【図4】本願発明の一実施例にかかる方法により製造さ
れた銅粉末を含む導電性ペーストを用いて製造した積層
セラミックコンデンサを模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing a monolithic ceramic capacitor manufactured using a conductive paste containing copper powder manufactured by a method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックコンデンサ素子(積層体) 2 内部電極 3 誘電体セラミック層 4a,4b 外部電極 1 Ceramic capacitor element (multilayer body) 2 internal electrodes 3 Dielectric ceramic layer 4a, 4b external electrodes

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】主成分である銅塩と、副成分であるカルシ
ウム化合物と、水とを含有する原料液を調製する工程
と、 ヒドラジン及び/又はヒドラジン化合物を含有する還元
剤水溶液を調製する工程と、 前記原料液と、前記還元剤水溶液とを混合し、還元反応
を行わせることにより、銅粉末を析出させる工程とを具
備することを特徴とする銅粉末の製造方法。
1. A step of preparing a raw material liquid containing a copper salt as a main component, a calcium compound as a subcomponent, and water, and a step of preparing an aqueous reducing agent solution containing hydrazine and / or a hydrazine compound. And a step of precipitating copper powder by mixing the raw material liquid and the reducing agent aqueous solution and performing a reduction reaction.
【請求項2】前記原料液中の銅(Cu)とカルシウム
(Ca)の割合が、Ca/(Cu+Ca)(重量%)で
表した場合に、0.05〜1.0重量%の範囲にあるこ
とを特徴とする請求項1記載の銅粉末の製造方法。
2. The ratio of copper (Cu) and calcium (Ca) in the raw material liquid is in the range of 0.05 to 1.0 wt% when expressed by Ca / (Cu + Ca) (wt%). The method for producing copper powder according to claim 1, wherein the copper powder is present.
【請求項3】請求項1又は2記載の銅粉末の製造方法に
より製造されたものであることを特徴とする銅粉末。
3. A copper powder produced by the method for producing a copper powder according to claim 1 or 2.
【請求項4】請求項3記載の銅粉末と、有機ビヒクルと
を含有することを特徴とする導電性ペースト。
4. A conductive paste containing the copper powder according to claim 3 and an organic vehicle.
【請求項5】請求項4記載の導電性ペーストの焼結体で
ある内部電極が、セラミック層間に配設された構造を有
していることを特徴とする積層セラミック電子部品。
5. A laminated ceramic electronic component, wherein the internal electrode, which is a sintered body of the conductive paste according to claim 4, has a structure arranged between ceramic layers.
JP2001357429A 2001-11-22 2001-11-22 Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component Expired - Lifetime JP3922001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357429A JP3922001B2 (en) 2001-11-22 2001-11-22 Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357429A JP3922001B2 (en) 2001-11-22 2001-11-22 Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2003160804A true JP2003160804A (en) 2003-06-06
JP3922001B2 JP3922001B2 (en) 2007-05-30

Family

ID=19168776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357429A Expired - Lifetime JP3922001B2 (en) 2001-11-22 2001-11-22 Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP3922001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160113012A (en) 2015-03-19 2016-09-28 가부시키가이샤 노리타케 캄파니 리미티드 Coated copper powder, copper paste and copper conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160113012A (en) 2015-03-19 2016-09-28 가부시키가이샤 노리타케 캄파니 리미티드 Coated copper powder, copper paste and copper conductive film

Also Published As

Publication number Publication date
JP3922001B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
TWI701345B (en) Nickel powder, manufacturing method of nickel powder, internal electrode paste and electronic parts using nickel powder
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
WO2010021202A1 (en) Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
WO2001033588A1 (en) Multilayer capacitor
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP2010053409A (en) Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP4303715B2 (en) Conductive paste and method for manufacturing multilayer electronic component
JP4100244B2 (en) Nickel powder and method for producing the same
JP5206246B2 (en) Nickel powder and method for producing the same
JP2014037614A (en) Metal powder, electronic component and method of producing the same
JP3473548B2 (en) Method for producing metal powder, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP2004096010A (en) Laminated ceramic electronic component fabricating process
JP4940520B2 (en) Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component
JP3922001B2 (en) Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component
WO2010035573A1 (en) Nickel-copper alloy powder, process for producing the nickel-copper alloy powder, conductive paste, and electronic component
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP4453214B2 (en) Method for producing copper powder, copper powder, conductive paste and ceramic electronic component
JP5348918B2 (en) Nickel powder, base metal powder manufacturing method, conductor paste, and electronic components
KR20120066945A (en) A paste for inner electrode, a laminated ceramic electronic parts by using the same and a process thereof
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP3772726B2 (en) Nickel powder manufacturing method, nickel powder, nickel paste, multilayer ceramic electronic parts
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130302