JP2003158440A - Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device - Google Patents

Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device

Info

Publication number
JP2003158440A
JP2003158440A JP2001353861A JP2001353861A JP2003158440A JP 2003158440 A JP2003158440 A JP 2003158440A JP 2001353861 A JP2001353861 A JP 2001353861A JP 2001353861 A JP2001353861 A JP 2001353861A JP 2003158440 A JP2003158440 A JP 2003158440A
Authority
JP
Japan
Prior art keywords
joining member
resin
conductive
core
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001353861A
Other languages
Japanese (ja)
Inventor
Hiroyuki Arimura
有村  博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2001353861A priority Critical patent/JP2003158440A/en
Publication of JP2003158440A publication Critical patent/JP2003158440A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To provide a joining material whose supply amount can be fine and constant and to obtain a piezoelectric vibration device with excellent characteristics by using such a joining member. SOLUTION: The joining member B is a fine particle which is spherical on the whole and comprises a core B1, a conductive film B2 which is formed on the core surface, and a thermoplastic resin film B3 which is formed on the surface of the conductive film. On electrode pads 12 and 16, the joining member B is mounted and a crystal diaphragm 2 is so mounted that lead-out electrodes 211 and 221 face the top part of the joining member B. The joining member B is interposed and heated up to specific temperature and then naturally cooled to carry out electromechanical joining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、接合部材、特に圧
電振動デバイス等において電子素子の接合に用いる接合
部材に関するもので、また当該接合材を用いた圧電振動
デバイスおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining member, particularly to a joining member used for joining an electronic element in a piezoelectric vibrating device or the like, and to a piezoelectric vibrating device using the joining material and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】水晶振動子、水晶フィルタ等の圧電振動
デバイスは、セラミックパッケージを用いた表面実装タ
イプが多くを占めるようになりつつあり、またこのタイ
プにおいても超小型化に対応させるために、水晶振動板
の支持に金属支持体からなる弾性支持体を用いない構成
が増加している。しかしながら弾性支持体を用いない場
合でも耐衝撃性を確保するために、水晶振動板をセラミ
ックパッケージに固定する際はシリコン系導電樹脂接着
剤を用いることが多かった。シリコン系導電樹脂接着剤
は、硬化後も柔軟性を有しており、水晶振動板に働く外
部応力を緩和することができる。なお、硬化後の柔軟性
があまり要求されない場合は、シリコン系樹脂に限ら
ず、ウレタン系あるいはエポキシ系の樹脂を用いること
もあった。
2. Description of the Related Art Piezoelectric vibrating devices such as crystal oscillators and crystal filters are dominated by surface mount type using a ceramic package, and in order to cope with ultra miniaturization in this type as well, An increasing number of configurations do not use an elastic support made of a metal support to support the crystal diaphragm. However, in order to secure impact resistance even when the elastic support is not used, a silicon-based conductive resin adhesive is often used when fixing the crystal diaphragm to the ceramic package. The silicone-based conductive resin adhesive has flexibility even after being cured, and can relieve external stress acting on the crystal diaphragm. In addition, when the flexibility after curing is not so required, not only the silicone resin but also the urethane resin or the epoxy resin may be used.

【0003】導電樹脂接着剤は、周知のとおりシリコン
樹脂等の樹脂内に銀等の導電フィラーを所定割合で添加
し分散させたもので、その導電性は基本的には導電フィ
ラー添加割合に依存するが、添加割合が高くなると適切
な粘度が得られなくなり、接着における作業性が低下す
ることがあった。このような問題を解決するために、例
えば特開平1−294784号には、導電フィラーの構
成を工夫し、大きさの異なる2種類の鱗片状の金属粉を
混練することにより、導電接合の信頼性を向上させる旨
が開示されている。
As is well known, a conductive resin adhesive is a conductive filler such as silver added and dispersed in a resin such as silicon resin at a predetermined ratio, and its conductivity basically depends on the ratio of the conductive filler added. However, if the proportion of addition is high, an appropriate viscosity cannot be obtained, and the workability in bonding may decrease. In order to solve such a problem, for example, in Japanese Patent Application Laid-Open No. 1-294784, the structure of the conductive filler is devised, and two kinds of scale-like metal powders having different sizes are kneaded so that the reliability of the conductive bonding is improved. It is disclosed that the property is improved.

【0004】通常水晶振動板のパッケージへの搭載は、
まず細径のディスペンサによりパッケージの外部導出電
極に対し適量の導電接合材を塗布し、当該塗布領域に引
出電極が対応するように水晶振動板を搭載していた。し
かしながら、最近の電子部品の小型化はめざましく、例
えば圧電振動デバイスに用いる水晶振動板のサイズも超
小型化、超薄型化が進んでいる。このため、水晶振動板
に設けられた引出電極や、これを搭載するパッケージに
設けられた外部導出電極も極めて小さくなっていた。こ
のような小型化に対応させるためにディスペンサの吐出
口も小さくする必要があるが、このような場合、導電フ
ィラーのサイズが相対的に大きいために導電フィラーの
みが詰まり気味になり、結果として吐出される接合材は
樹脂リッチな状態となっていた。樹脂リッチな状態で接
合が行われると、パッケージと水晶振動板の導通不良の
原因となったり、またエージング特性も好ましくないと
いう問題点があった。
Usually, the mounting of the crystal diaphragm on the package is
First, a small-diameter dispenser was used to apply an appropriate amount of a conductive bonding material to the external lead-out electrodes of the package, and a quartz crystal diaphragm was mounted so that the lead-out electrodes correspond to the applied areas. However, recent miniaturization of electronic parts has been remarkable, and for example, the size of a quartz crystal diaphragm used for a piezoelectric vibrating device has been made extremely small and thin. For this reason, the lead-out electrode provided on the crystal diaphragm and the external lead-out electrode provided on the package in which the lead-out electrode is mounted are extremely small. In order to respond to such miniaturization, it is also necessary to make the discharge port of the dispenser small, but in such a case, the conductive filler is relatively large in size, so that only the conductive filler becomes clogged, and as a result, discharge The bonding material used was in a resin-rich state. If the bonding is performed in a resin-rich state, there are problems that it may cause poor conduction between the package and the crystal diaphragm, and that the aging characteristics are also unfavorable.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたもので、接合材の供給量を微少
かつ一定にすることのできる接合材を提供し、またこの
ような接合部材を用いることにより特性の良好な圧電振
動デバイスを得ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a bonding material capable of making the supply amount of the bonding material minute and constant, and further, such bonding The purpose is to obtain a piezoelectric vibrating device having good characteristics by using a member.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】本発明は従来用いていた液状の接合材に代
えて、固体からなる接合材を用いることを基本的な構成
とし、次の特徴的な各構成により上記課題を解決するこ
とができる。
The present invention has a basic structure in which a solid bonding material is used in place of the liquid bonding material that has been conventionally used, and the above-mentioned problems can be solved by the following characteristic structures.

【0007】接合部材の構成として、請求項1に示すよ
うな、微小粒状または極薄シート状の導電性コアと、当
該導電性コアの周囲に形成された被覆樹脂からなる接合
部材や、請求項2に示すような、微小粒状または極薄シ
ート状のコアと、当該コアの周囲に形成された導電膜
と、当該導電膜の上面に形成された被覆樹脂からなる接
合部材をあげることができる。なお、微小粒状の形状は
球状、タブレット状等をあげることができる。また前記
導電膜は請求項4に開示したように、金属メッキ膜また
は導電フィラーを添加した導電樹脂からなる構成を例示
することができる。
As a constitution of the joining member, a joining member made of a fine granular or ultrathin sheet-like conductive core and a coating resin formed around the conductive core as described in claim 1, An example of the joining member is a fine granular or ultrathin sheet-shaped core, a conductive film formed around the core, and a coating resin formed on the upper surface of the conductive film, as shown in FIG. The fine granular shape may be spherical, tablet-like, or the like. Further, as disclosed in claim 4, the conductive film can be exemplified by a configuration made of a metal plating film or a conductive resin to which a conductive filler is added.

【0008】被覆樹脂は熱可塑性樹脂または熱硬化性樹
脂を用いることができるが、熱可塑性樹脂としては、例
えばフッ素重合樹脂あるいはスチレン系樹脂を例示で
き、熱硬化性樹脂としてはエポキシ系樹脂を例示でき
る。被覆樹脂に熱硬化性樹脂を用いた場合、接合時には
加熱により接合部材表面の熱可塑性樹脂が溶解し、下面
の導電性コアあるいは導電膜が被接合部材間の電気的接
合を行う。熱可塑性樹脂は加熱を解除すると硬化する
が、この際当該熱可塑性樹脂が被接合部材を機械的に接
合する。また被覆樹脂に熱硬化性樹脂を用いた場合、例
えばバインダーとともにペースト状にしておき、接合の
初期段階で被接合部材間を粘着させ、下面の導電性コア
あるいは導電膜により電気的接合を行い、加熱により熱
硬化を進行さる。なお、被覆樹脂に導電材料を添加し導
電性を持たせた構成としてもよい。この場合、被接合部
材間の導電接合の信頼性が向上する。以上、基本的に液
状の接合材を用いないので、従来問題となっていた導電
フィラーが詰まる問題や塗布面積が拡大するという問題
がなくなる。
A thermoplastic resin or a thermosetting resin can be used as the coating resin. Examples of the thermoplastic resin include fluoropolymer resin and styrene resin, and examples of the thermosetting resin include epoxy resin. it can. When a thermosetting resin is used as the coating resin, the thermoplastic resin on the surface of the joining member is melted by heating during joining, and the conductive core or the conductive film on the lower surface electrically joins the joined members. The thermoplastic resin cures when the heating is released, but at this time, the thermoplastic resin mechanically joins the members to be joined. When a thermosetting resin is used as the coating resin, for example, it is made into a paste form together with a binder, and the members to be joined are made to adhere to each other in the initial stage of joining, and electrically joined by the conductive core or conductive film on the lower surface. Heat curing proceeds by heating. Note that a conductive material may be added to the coating resin to have conductivity. In this case, the reliability of conductive bonding between the members to be bonded is improved. As described above, since the liquid bonding material is basically not used, there is no problem that the conductive filler is clogged and the application area is enlarged, which have been problems in the past.

【0009】なお、請求項3に示すように、前記コアが
緩衝材からなる構成としてもよく、緩衝材の例として
は、弾性に富んだシリコン樹脂やウレタン樹脂をあげる
ことができる。コアに緩衝機能を持たせることにより、
被接続部材の機械的あるいは熱的な耐衝撃性を向上させ
ることができる。特に超薄型の水晶振動板のように機械
的強度の低下した構成においては有効に作用する。
As described in claim 3, the core may be made of a cushioning material, and examples of the cushioning material include silicone resin and urethane resin having high elasticity. By giving the core a buffering function,
The mechanical or thermal shock resistance of the connected member can be improved. In particular, it works effectively in a structure with reduced mechanical strength such as an ultra-thin crystal diaphragm.

【0010】また請求項7に示すように、樹脂シートに
多数の金属細線を貫通させ、表裏の導通を確保した構成
の接合部材であってもよい。多数の金属細線により表裏
の導通を確実にすることができる。
Further, as described in claim 7, a joining member may be constructed such that a large number of fine metal wires are penetrated through the resin sheet to secure conduction between the front and back sides. Conduction between the front and back can be ensured by a large number of thin metal wires.

【0011】さらに請求項8に示すように、樹脂シート
に微小金属粒を多数個埋設し、表裏の導通を確保した接
合部材であってもよい。微小金属粒は相互に接触する程
度の密度で配置することが望ましい。樹脂シートにて微
小金属粒を一体化しているので取り扱いが良好で、また
多数個の微小金属粒により表裏の導通を確実にすること
ができる。
Further, as described in claim 8, it may be a joining member in which a large number of fine metal particles are embedded in a resin sheet to secure conduction between the front and back. It is desirable to arrange the fine metal particles at a density such that they are in contact with each other. Since the resin sheet integrates the fine metal particles, it is easy to handle, and a large number of fine metal particles can ensure conduction between the front and back.

【0012】なお、これら請求項7または請求項8記載
の接合部材について、表裏に薄い熱可塑性樹脂を形成し
た構成の提案を請求項9に開示している。被接合部材を
当該接合材間に介在させ加熱することにより、熱可塑性
接合材は溶融して機械的接合を行う。また金属細線ある
いは微小金属粒の存在により電気的接続も確実に行うこ
とができる。
It is to be noted that a proposal of a structure in which thin thermoplastic resin is formed on the front and back sides of the joining member according to claim 7 or 8 is disclosed in claim 9. By interposing the member to be joined between the joining materials and heating, the thermoplastic joining material is melted and mechanically joined. In addition, the presence of the fine metal wires or the fine metal particles enables reliable electrical connection.

【0013】また、請求項10に示すように、請求項7
乃至請求項9記載の接合部材に用いる樹脂シートが熱可
塑性樹脂からなる構成としてもよい。樹脂シートを熱可
塑性樹脂とすることで被接合部材間の接合をより効率よ
く行うことができる。
Further, as described in claim 10, claim 7
The resin sheet used for the joining member according to claim 9 may be made of a thermoplastic resin. By using a thermoplastic resin for the resin sheet, the members to be joined can be joined more efficiently.

【0014】上記各接合部材を圧電振動デバイスに適用
すると好適である。すなわち、請求項11に示すよう
に、励振電極形成された圧電振動素子を、1つあるいは
複数の請求項1乃至請求項10記載の接合部材を介し
て、パッケージに導電接合するような構成してもよい。
以上の構成により、従来のように液状の接合材を用いて
いないので、接合材の流れだしを防ぎ、限定された所定
の領域にて圧電振動素子とパッケージを接合することが
できる。
It is preferable to apply each of the above-mentioned joining members to a piezoelectric vibration device. That is, as described in claim 11, the piezoelectric vibrating element having the excitation electrode formed is configured to be conductively bonded to the package through one or more bonding members according to claim 1 to claim 10. Good.
With the above configuration, since a liquid bonding material is not used as in the conventional case, the bonding material can be prevented from flowing out and the piezoelectric vibration element and the package can be bonded in a limited predetermined area.

【0015】また請求項12に示すように、本発明によ
る接合部材を用いた好適な圧電振動デバイスの製造方法
を提案する。すなわち、パッケージに形成された外部導
出電極上に、1つあるいは複数の請求項5または請求項
9または請求項10のいずれかに記載の接合部材を介し
て、励振電極形成された圧電振動素子を搭載する工程
と、少なくとも前記接合部材配置領域を所定温度で加熱
し、前記接合部材の熱可塑性樹脂を溶解させる工程と、
加熱を解除することにより、前記接合部材を介して前記
外部導出電極と前記励振電極を導通させるとともに、前
記熱可塑性樹脂にてパッケージと圧電振動素子とを機械
的接合する工程と、により圧電振動デバイスを製造する
ことにより、接合時には加熱により接合部材表面の熱可
塑性が溶解し、下面の金属コアあるいは導電膜が被接合
部材間の電気的接合を担うという接合部材の特徴を生か
すことができる。熱可塑性樹脂は加熱を解除すると硬化
するが、この際当該熱可塑性樹脂が被接合部材を機械的
に接合し、導電膜等の導電部材により電気的接合を確実
に行うことができる。従来のように基本的に液状の接合
材を用いないので、従来問題となっていた導電フィラー
が詰まる問題や塗布面積が拡大するという問題の危惧が
なくなる。
As a twelfth aspect of the present invention, there is proposed a preferred method of manufacturing a piezoelectric vibration device using the joining member according to the present invention. That is, a piezoelectric vibrating element having an excitation electrode is formed on the external lead electrode formed on the package via one or a plurality of the joining members according to any one of claims 5 or 9 or 10. A step of mounting, and a step of heating at least the joining member arrangement region at a predetermined temperature to dissolve the thermoplastic resin of the joining member,
A step of electrically connecting the external lead-out electrode and the excitation electrode through the joining member by releasing the heating, and mechanically joining the package and the piezoelectric vibrating element with the thermoplastic resin. By manufacturing, it is possible to take advantage of the characteristic of the joining member that the thermoplasticity of the surface of the joining member is melted by heating at the time of joining, and the metal core or the conductive film on the lower surface is responsible for electrical joining between the members to be joined. The thermoplastic resin cures when the heating is released. At this time, the thermoplastic resin mechanically joins the members to be joined, and the electrical joining can be surely performed by the conductive member such as the conductive film. Since a liquid bonding material is basically not used as in the conventional case, there is no fear of the problems of the conductive filler being clogged and the application area being enlarged, which have been conventionally problems.

【0016】[0016]

【発明の実施の形態】本発明による第1の実施の形態を
図1、図2、図3とともに説明する。図1は本実施の形
態に用いる接合部材の断面図、図2は本接合部材を表面
実装型水晶振動子に適用した例を示す内部断面図であ
り、図3は図2の要部拡大図である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment according to the present invention will be described with reference to FIGS. 1, 2 and 3. FIG. 1 is a cross-sectional view of a joining member used in the present embodiment, FIG. 2 is an internal cross-sectional view showing an example in which the present joining member is applied to a surface mount type crystal resonator, and FIG. 3 is an enlarged view of a main part of FIG. Is.

【0017】本実施の形態に用いる接合部材Bは、全体
として球状の微小粒であり、コアB1と、コア表面に形
成された導電膜B2と、導電膜表面に形成された熱可塑
性樹脂膜B3とからなる。コアB1は例えば緩衝機能を
有するシリコン系樹脂からなり、例えば直径0.01〜
0.3mm程度の微小球状である。コアB1上に形成さ
れる導電膜B2は導電性樹脂膜からなる。導電性樹脂膜
は例えばシリコン樹脂に導電フィラーを分散させたもの
で、球全体に導電性を持たせるものである。樹脂内に分
散される導電フィラーの形状はフレーク状あるいは粒状
あるいはこれらの組み合わせの金属であり、例えば金、
銀、銅等の導電性に優れた材料を選択することができ、
また複数の金属材料を分散させてもよい。なお、当該導
電膜は導電性樹脂膜以外に金属メッキ膜等を用いてもよ
い。
The joining member B used in this embodiment is a fine particle having a spherical shape as a whole, and has a core B1, a conductive film B2 formed on the core surface, and a thermoplastic resin film B3 formed on the conductive film surface. Consists of. The core B1 is made of, for example, a silicon-based resin having a buffering function, and has a diameter of, for example, 0.01 to
It has a fine spherical shape of about 0.3 mm. The conductive film B2 formed on the core B1 is made of a conductive resin film. The conductive resin film is, for example, a silicon resin in which a conductive filler is dispersed, and has conductivity over the entire sphere. The shape of the conductive filler dispersed in the resin is flake-like or granular or a metal of a combination thereof, such as gold,
It is possible to select materials with excellent conductivity such as silver and copper,
Also, a plurality of metal materials may be dispersed. Note that, as the conductive film, a metal plating film or the like may be used instead of the conductive resin film.

【0018】導電膜B2上に形成される熱可塑性樹脂膜
B3はフッ素重合樹脂をコーティングした構成であり、
当該樹脂の溶解温度(例えば250℃)以上に接合部分
を加熱することで熱可塑性樹脂膜によるコーティングが
一部除去され、下層の導電膜により被接合部材を電気的
に接続する。
The thermoplastic resin film B3 formed on the conductive film B2 has a structure coated with a fluoropolymer resin,
By heating the joining portion to a temperature above the melting temperature of the resin (for example, 250 ° C.), the coating of the thermoplastic resin film is partially removed, and the members to be joined are electrically connected by the lower conductive film.

【0019】次に上述の接合部材により接合を行った表
面実装型水晶振動子(圧電振動デバイス)について図
2,図3とともに説明する。表面実装型水晶振動子は、
全体として直方体形状で、ベースとなる凹部を有するセ
ラミックパッケージ1と、当該パッケージの中に収納さ
れる圧電振動素子である矩形水晶振動板2と、パッケー
ジの開口部に接合される金属フタ3とからなる。
Next, a surface mount type crystal resonator (piezoelectric vibrating device) bonded by the above-mentioned bonding member will be described with reference to FIGS. Surface mount type crystal unit
From a ceramic package 1 having a rectangular parallelepiped shape as a whole and having a recess serving as a base, a rectangular quartz crystal diaphragm 2 which is a piezoelectric vibrating element housed in the package, and a metal lid 3 joined to an opening of the package. Become.

【0020】断面でみてセラミックパッケージ1は、凹
形のセラミック基体10と、凹形周囲の堤部10a上に
形成される周状の金属層11とからなる。金属層11
は、W(タングステン)からなるメタライズ層と、メタ
ライズ層上に形成される上部金属膜層とからなる。この
上部金属膜層はメタライズ層に接してニッケルメッキ層
と、当該ニッケルメッキ層の上部に形成される極薄の金
メッキ層とからなる。各層の厚さは、例えば、メタライ
ズ層11が約10〜20μm、Niメッキ層12aが約
2〜6μm、Auメッキ層12bが約0.5〜1.0μ
mである。
The ceramic package 1 in cross section comprises a concave ceramic substrate 10 and a circumferential metal layer 11 formed on the bank 10a around the concave. Metal layer 11
Consists of a metallized layer made of W (tungsten) and an upper metal film layer formed on the metallized layer. The upper metal film layer is composed of a nickel plating layer in contact with the metallization layer and an extremely thin gold plating layer formed on the nickel plating layer. The thickness of each layer is, for example, about 10 to 20 μm for the metallized layer 11, about 2 to 6 μm for the Ni plating layer 12 a, and about 0.5 to 1.0 μ for the Au plating layer 12 b.
m.

【0021】また、セラミックパッケージ1の内部底面
(ベースに相当する)には、長辺方向両端に外部導出電
極となる電極パッド12、16が形成されており、これ
ら電極パッドは連結電極13,17を介して、パッケー
ジ外部の底面に引出電極14,15として電気的に引き
出されている。また図示していないが、パッケージ外部
の底面には、前記メタライズ層11と電気的に接続され
たアース電極(図示せず)が形成されている。ベース上
に形成された電極パッドは、W(タングステン)あるい
はMo(モリブデン)からなるメタライズ層の上に,N
i膜層、Au膜層の順にメッキ等により形成された構成
である。
On the inner bottom surface (corresponding to the base) of the ceramic package 1, electrode pads 12 and 16 serving as external lead-out electrodes are formed at both ends in the long side direction, and these electrode pads are connected electrodes 13 and 17, respectively. Via the electrodes, the electrodes are electrically drawn out to the bottom surface outside the package as the extraction electrodes 14 and 15. Although not shown, a ground electrode (not shown) electrically connected to the metallized layer 11 is formed on the bottom surface outside the package. The electrode pad formed on the base is formed by depositing N on the metallization layer made of W (tungsten) or Mo (molybdenum).
The i film layer and the Au film layer are formed in this order by plating or the like.

【0022】前記電極パッド12,16には圧電振動素
子である矩形の水晶振動板2が架設搭載され、長辺方向
の両端を支持する構成となっている。水晶振動板2の表
裏面には一対の励振電極21,22が形成され、引出電
極211,221により各々電極パッド16、12部分
に引き出されている。引出電極211,221の電極パ
ッドとの接合部分の反対面には、それぞれ引出補助電極
212,222が形成され、前記各引出電極と電気的に
接続されている。
A rectangular crystal vibrating plate 2, which is a piezoelectric vibrating element, is mounted on the electrode pads 12, 16 so as to support both ends in the long side direction. A pair of excitation electrodes 21 and 22 are formed on the front and back surfaces of the crystal diaphragm 2, and are led out to the electrode pads 16 and 12 by the lead electrodes 211 and 221. Extraction auxiliary electrodes 212 and 222 are formed on the surfaces of the extraction electrodes 211 and 221 opposite to the joints with the electrode pads, and are electrically connected to the extraction electrodes.

【0023】励振電極と引出電極は水晶振動板2に接し
て、厚さ約16オングストロームの第1のCr膜層21
a,22a、厚さ約5000オングストロームのAu膜
層21b、22bの順にスパッタリング法または真空蒸
着法等により形成されている。また電極パッド側の励振
電極22並びに引出電極の上面(すなわちAu膜層の上
面)には、厚さ約10オングストロームの第2のCr膜
層22cが形成されている。
The excitation electrode and the extraction electrode are in contact with the crystal vibrating plate 2, and the first Cr film layer 21 having a thickness of about 16 Å is provided.
a and 22a, and Au film layers 21b and 22b having a thickness of about 5000 angstroms are formed in this order by a sputtering method or a vacuum deposition method. A second Cr film layer 22c having a thickness of about 10 Å is formed on the upper surfaces of the excitation electrode 22 and the extraction electrode on the electrode pad side (that is, the upper surface of the Au film layer).

【0024】セラミックパッケージ1と水晶振動板との
接合は前述の接合部材Bを用いる。すなわち電極パッド
12,16上に前記接合部材Bを搭載し、各々接合部材
B上部に引出電極211,221が正対応するよう水晶
振動板2を搭載する。そして前記接合部材Bを介在させ
所定温度に加熱し、その後自然冷却することにより電気
的機械的接合を行う。図3に示すように、接合部材の導
電膜により電極パッドと引出電極を導電接合するととも
に、熱可塑性樹脂が表面張力により機械的接合を行う。
加熱温度は前述のとおり熱可塑性樹脂層B3が溶融する
温度を選択すればよいが、完全に溶融していなくても一
部が軟化溶融している状態であってもよい。なお、加熱
方法はセラミックパッケージ全体を加熱してもよいし、
接合部分のみを局所的に加熱する方法でもよいが、いず
れの場合も接合を促進するために水晶振動板の接合部分
を加圧しながら接合を進めると効率よく接合を行うこと
ができる。なお、接合部材Bはその大きさおよび接合面
積にもよるが、一カ所の接合に複数個使用してもよい。
The above-mentioned joining member B is used for joining the ceramic package 1 and the crystal diaphragm. That is, the bonding member B is mounted on the electrode pads 12 and 16, and the crystal vibrating plate 2 is mounted on the bonding member B so that the extraction electrodes 211 and 221 correspond to each other. Then, the joining member B is interposed, the joining member B is heated to a predetermined temperature, and then naturally cooled, thereby performing electromechanical joining. As shown in FIG. 3, the conductive film of the bonding member conductively bonds the electrode pad and the extraction electrode, and the thermoplastic resin mechanically bonds by surface tension.
The heating temperature may be selected as the temperature at which the thermoplastic resin layer B3 is melted as described above, but it may not be completely melted or may be partially softened and melted. The heating method may be to heat the entire ceramic package,
A method of locally heating only the bonding portion may be used, but in any case, the bonding can be efficiently performed by advancing the bonding while applying pressure to the bonding portion of the crystal diaphragm in order to promote the bonding. It should be noted that the bonding member B may be used in plural at one position, although it depends on the size and the bonding area.

【0025】金属フタ3はコバールを母材とし、その表
面にNiメッキ(図示せず)が施されており、さらに銀
ろう材Sが前記金属層11に対応して周状に形成されて
いる。そして真空雰囲気あるいは不活性ガス雰囲気で前
記金属層11上に前記金属フタ3を搭載し、この状態で
ビーム溶接、シーム溶接等の局部加熱法にて加熱し、ろ
う接により気密封止する。
The metal lid 3 has Kovar as a base material, the surface of which is plated with Ni (not shown), and a silver brazing material S is formed in a circumferential shape corresponding to the metal layer 11. . Then, the metal lid 3 is mounted on the metal layer 11 in a vacuum atmosphere or an inert gas atmosphere, and in this state, it is heated by a local heating method such as beam welding or seam welding, and hermetically sealed by brazing.

【0026】上記実施の形態において、接合部材として
微小球状のものを例示したが、球状に限定されるもので
はなく、他の形状であってもよい。例えば図4に示すよ
うに薄いシート状のシリコン樹脂からなるコアB11に
導電膜B21をコーティングし、さらにその上面に熱可
塑性樹脂層B31を形成する構成であってもよい。また
図5に示すようにコアB12の形状を凹凸のある薄板シ
リコン樹脂で形成し、その上部に導電膜B22をコーテ
ィングし、さらにその上面に熱可塑性樹脂層B32を形
成する構成であってもよい。このようにコアに凹凸を形
成することにより、接合部材の導電膜部分が被接合部材
の電極パッド等に接触する機会を増し、電気的接続を確
実にすることができる。上記以外にもタブレット状にす
る等接合部材の形状を選択することができる。
In the above-mentioned embodiment, the bonding member is exemplified as a micro spherical member, but the bonding member is not limited to a spherical member and may have another shape. For example, as shown in FIG. 4, a core B11 made of a thin sheet-shaped silicon resin may be coated with a conductive film B21, and a thermoplastic resin layer B31 may be formed on the upper surface thereof. Further, as shown in FIG. 5, the core B12 may be formed of a thin silicon resin having irregularities, the conductive film B22 may be coated on the core B12, and the thermoplastic resin layer B32 may be formed on the upper surface of the core B12. . By forming the unevenness on the core in this manner, it is possible to increase the chances that the conductive film portion of the bonding member comes into contact with the electrode pad or the like of the member to be bonded, and ensure electrical connection. In addition to the above, the shape of the joining member such as a tablet can be selected.

【0027】また被覆樹脂も熱可塑性樹脂に代えて熱硬
化性樹脂を用いてもよい。この場合、熱硬化性樹脂を例
えばバインダーとともにペースト状にしておき、セラミ
ックパッケージ1と水晶振動板との接合の初期段階で被
接合部材間を粘着させ、下面の導電性コアあるいは導電
膜により電気的接合を行い、加熱により熱硬化を進行さ
せるとよい。
Further, as the coating resin, a thermosetting resin may be used instead of the thermoplastic resin. In this case, a thermosetting resin is made into a paste together with a binder, for example, to adhere the members to be joined at the initial stage of joining the ceramic package 1 and the crystal diaphragm, and to electrically connect them by the conductive core or conductive film on the lower surface. It is advisable to carry out bonding and heat curing to proceed.

【0028】本発明による第2の実施の形態を図6、図
7、図8とともに説明する。図6は本実施の形態に用い
る接合部材の断面図、図7は本接合部材を表面実装型水
晶振動子に適用した例を示す内部断面図であり、図8は
図7の要部拡大図である。なお、第1の実施の形態と同
じ構造部分については同番号を用いて説明するととも
に、一部説明を割愛する。この例では接合部材の構成お
よび水晶振動板の支持形態が異なっている。
A second embodiment according to the present invention will be described with reference to FIGS. 6, 7 and 8. 6 is a cross-sectional view of the joining member used in the present embodiment, FIG. 7 is an internal cross-sectional view showing an example in which the present joining member is applied to a surface mount type crystal resonator, and FIG. 8 is an enlarged view of a main part of FIG. 7. Is. Note that the same structural parts as those of the first embodiment will be described using the same numbers, and a partial description thereof will be omitted. In this example, the structure of the joining member and the supporting form of the crystal diaphragm are different.

【0029】本実施の形態に用いた接合部材Cは、図6
に示すように、シリコン樹脂からなるシート状母材(樹
脂シート)C1に多数の金属ワイヤー(金属細線)C2
を表裏貫通形成した構成であり、シートの表裏面には薄
い熱可塑性樹脂膜C3が形成されている。当該熱可塑性
樹脂膜C3はフッ素重合樹脂からなり、金属ワイヤーの
先端部分と同程度の膜厚に設定されている。なお、当該
熱可塑性樹脂膜を形成せずに、接合部材の表裏に薄い粘
着材を設け、被接合部材の機械的接合を行う構成として
もよい。またシート状母材を熱可塑性樹脂で構成しても
よい。
The joining member C used in this embodiment is shown in FIG.
As shown in FIG. 3, a sheet-shaped base material (resin sheet) C1 made of silicon resin is provided with a large number of metal wires (fine metal wires) C2.
And a thin thermoplastic resin film C3 is formed on the front and back surfaces of the sheet. The thermoplastic resin film C3 is made of a fluoropolymer resin and is set to have a film thickness similar to that of the tip portion of the metal wire. It is also possible to provide a thin adhesive material on the front and back surfaces of the joining member and mechanically join the members to be joined without forming the thermoplastic resin film. Alternatively, the sheet-shaped base material may be made of a thermoplastic resin.

【0030】図7に示すように、前記電極パッド12,
16(図示せず)には圧電振動素子である矩形の水晶振
動板2が搭載され、長辺方向の一端を片持ち支持する構
成となっている。水晶振動板2の表裏面には一対の励振
電極21,22が形成され、引出電極211,221
(211は図示せず)により各々電極パッド12,16
部分に引き出されている。各引出電極211,221の
水晶振動板を介した反対面には各々引出補助電極21
2,222(212は図示せず)が対応して形成されて
いる。また水晶振動板の長辺方向の他端には絶縁性の補
助支持台18がセラミックパッケージ1と一体的に形成
されており、水晶振動板は前記電極パッド12,16と
前記補助支持台18に架設状態に支持される。
As shown in FIG. 7, the electrode pads 12,
A rectangular crystal vibrating plate 2 which is a piezoelectric vibrating element is mounted on 16 (not shown), and one end in the long side direction is cantilevered. A pair of excitation electrodes 21 and 22 are formed on the front and back surfaces of the crystal diaphragm 2, and extraction electrodes 211 and 221 are provided.
(211 is not shown)
It is pulled out to the part. Each of the extraction electrodes 211, 221 is provided with an extraction auxiliary electrode 21 on the opposite surface of the extraction electrode 211, 221 with the crystal diaphragm interposed therebetween.
2, 222 (212 is not shown) are formed correspondingly. An insulating auxiliary support base 18 is integrally formed with the ceramic package 1 on the other end of the crystal diaphragm in the long side direction. The crystal vibration plate is attached to the electrode pads 12 and 16 and the auxiliary support base 18. It is supported in the installed state.

【0031】前記接合部材Cを電極パッド12,16上
に搭載し、各々接合部材C上部に引出電極211,22
1が正対応するよう水晶振動板2を搭載する。そして前
記接合部材Cを介在させた状態で所定温度に加熱し、そ
の後自然冷却することにより電気的機械的接合を行う。
加熱温度は前述のとおり熱可塑性樹脂層C3が溶融する
温度を選択すればよいが、完全に溶融していなくても一
部が軟化溶融している状態であってもよい。なお、加熱
方法はセラミックパッケージ全体を加熱してもよいし、
接合部分のみを局所的に加熱する方法でもよいが、いず
れの場合も接合を促進するために水晶振動板の接合部分
を加圧しながら接合を進めると効率よく接合を行うこと
ができる。
The joining member C is mounted on the electrode pads 12 and 16, and the extraction electrodes 211 and 22 are provided above the joining member C, respectively.
The crystal diaphragm 2 is mounted so that 1 corresponds exactly. Then, the joining member C is heated to a predetermined temperature with the joining member C interposed, and then naturally cooled to perform electromechanical joining.
The heating temperature may be selected as the temperature at which the thermoplastic resin layer C3 is melted as described above, but it may not be completely melted or may be partially softened and melted. The heating method may be to heat the entire ceramic package,
A method of locally heating only the bonding portion may be used, but in any case, the bonding can be efficiently performed by advancing the bonding while applying pressure to the bonding portion of the crystal diaphragm in order to promote the bonding.

【0032】上記実施の形態において、接合部材として
金属ワイヤーを貫通させた構成を例示したが、例えば図
9に示すように導電性樹脂シートD1を導電性コアと
し、その表裏に熱可塑性樹脂膜D2を形成した構成とし
てもよい。また導電性樹脂シートに代えて薄型金属フィ
ルムを導電性コアとしてもよい。
In the above-mentioned embodiment, the structure in which the metal wire is penetrated as the joining member is illustrated. However, as shown in FIG. 9, for example, the conductive resin sheet D1 is used as the conductive core, and the thermoplastic resin film D2 is provided on the front and back sides thereof. May be formed. A thin metal film may be used as the conductive core instead of the conductive resin sheet.

【0033】また図10に示すように、樹脂シートE1
に微小金属粒E2を多数個埋設し、表裏の導通を確保
し、その表裏に熱可塑性樹脂膜を形成した接合部材Eで
あってもよい。なお、微小金属粒E2は相互に接触する
程度の密度で配置することが望ましい。樹脂シートE1
にて微小金属粒を一体化しているので取り扱いが良好
で、また多数個の微小金属粒E2により表裏の導通を確
実にすることができる。
Further, as shown in FIG. 10, the resin sheet E1
It is also possible to use a joining member E in which a large number of fine metal particles E2 are embedded in the above to secure conduction between the front and back surfaces and a thermoplastic resin film is formed on the front and back surfaces. It is desirable that the fine metal particles E2 are arranged at a density such that they are in contact with each other. Resin sheet E1
Since the fine metal particles are integrated with each other, the handling is good, and a large number of fine metal particles E2 can ensure conduction between the front and back.

【0034】また圧電振動デバイスの例として、水晶振
動子の例を示したが、もちろん水晶フィルタ、水晶発振
器あるいは弾性表面波デバイス等の他の圧電振動デバイ
スにも適用できる。
Further, as the example of the piezoelectric vibrating device, the example of the crystal oscillator is shown, but it is of course applicable to other piezoelectric vibrating devices such as a crystal filter, a crystal oscillator or a surface acoustic wave device.

【0035】[0035]

【発明の効果】本発明によれば、接合部材表面の樹脂が
被接合部材間を機械的接続するとともに、金属コアある
いは導電膜が被接合部材間の電気的接合を担う。従来の
ようにディスペンサで供給する液状の接合材を用いない
ので、従来問題となっていた導電フィラーが詰まる問題
や塗布面積が拡大するという問題がなくなる。従って、
接合材の供給量を微少かつ一定にすることのできる、取
り扱いの簡便な接合材を得ることができる。
According to the present invention, the resin on the surface of the joining member mechanically connects the members to be joined, and the metal core or the conductive film serves to electrically join the members to be joined. Since a liquid bonding material supplied by a dispenser is not used unlike the conventional case, the problems that the conductive filler is clogged and the application area is increased, which have been problems in the past. Therefore,
It is possible to obtain a bonding material that is easy to handle and that can supply a minute and constant amount of the bonding material.

【0036】また、請求項3によれば、コアに緩衝機能
を持たせることにより、被接続部材の機械的あるいは熱
的な耐衝撃性を向上させることができる。特に超薄型の
水晶振動板のように耐衝撃性に劣る構成においては有効
に作用し、被接合部材の耐衝撃性を向上させることがで
きる。
According to the third aspect, by providing the core with a cushioning function, the mechanical or thermal shock resistance of the connected member can be improved. In particular, it works effectively in a structure such as an ultra-thin crystal diaphragm having poor impact resistance, and can improve the impact resistance of the members to be joined.

【0037】また請求項7によれば、多数の金属細線に
より表裏の導通を確実にすることができる。
Further, according to claim 7, it is possible to ensure the conduction between the front and back sides by the large number of thin metal wires.

【0038】さらに請求項8によれば、樹脂シートにて
微小金属粒を一体化しているので取り扱いが良好で、ま
た多数個の微小金属粒により表裏の導通を確実にするこ
とができる。
Further, according to the eighth aspect, since the fine metal particles are integrated with the resin sheet, the handling is good, and the plurality of fine metal particles can ensure the conduction between the front and back.

【0039】また、請求項10によれば、樹脂シートを
熱可塑性樹脂とすることで被接合部材間の接合をより効
率よく行うことができる。
According to the tenth aspect, by using the resin sheet as the thermoplastic resin, the members to be joined can be joined more efficiently.

【0040】また請求項11によれば、従来のように液
状の接合材を用いていないので、接合材の流れだしを防
ぎ、限定された所定の領域にて圧電振動素子とパッケー
ジを接合することができ、良好な特性の圧電振動デバイ
スを得ることができる。
According to the eleventh aspect, since the liquid bonding material is not used as in the conventional case, the bonding material is prevented from flowing out and the piezoelectric vibrating element and the package are bonded in a limited predetermined area. It is possible to obtain a piezoelectric vibrating device having good characteristics.

【0041】請求項12によれば、接合時には加熱によ
り接合部材表面の熱可塑性が溶解し、下面の金属コアあ
るいは導電膜が被接合部材間の電気的接合を担うという
接合部材の特徴を生かすことができる。熱可塑性樹脂は
加熱を解除すると硬化するが、この際当該熱可塑性樹脂
が被接合部材を機械的に接合し、導電膜等の導電部材に
より電気的接合を確実に行うことができる。従来のよう
に基本的に液状の接合材を用いないので、従来問題とな
っていた導電フィラーが詰まる問題や塗布面積が拡大す
るという問題がなくなる。よって、良好な特性の圧電振
動デバイスを得ることができる。
According to the twelfth aspect, the thermoplasticity of the surface of the joining member is melted by heating at the time of joining, and the characteristic of the joining member is utilized in that the metal core or the conductive film on the lower surface is responsible for electrical joining between the members to be joined. You can The thermoplastic resin cures when the heating is released. At this time, the thermoplastic resin mechanically joins the members to be joined, and the electrical joining can be surely performed by the conductive member such as the conductive film. Since a liquid bonding material is basically not used as in the conventional case, the problems of the conductive filler clogging and the increase of the coating area, which have been conventionally problems, are eliminated. Therefore, it is possible to obtain a piezoelectric vibration device having good characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態による接合部材の断面図。FIG. 1 is a cross-sectional view of a joining member according to a first embodiment.

【図2】第1の実施の形態による圧電振動デバイスの内
部断面図。
FIG. 2 is an internal cross-sectional view of the piezoelectric vibration device according to the first embodiment.

【図3】図2の要部拡大図。FIG. 3 is an enlarged view of a main part of FIG.

【図4】他の接合部材例を示す断面図。FIG. 4 is a cross-sectional view showing another example of a joining member.

【図5】他の接合部材例を示す断面図。FIG. 5 is a cross-sectional view showing another example of a joining member.

【図6】第2の実施の形態による接合部材の断面図。FIG. 6 is a cross-sectional view of the joining member according to the second embodiment.

【図7】第2の実施の形態による圧電振動デバイスの内
部断面図。
FIG. 7 is an internal cross-sectional view of the piezoelectric vibration device according to the second embodiment.

【図8】図7の要部拡大図。FIG. 8 is an enlarged view of a main part of FIG.

【図9】他の接合部材例を示す断面図。FIG. 9 is a cross-sectional view showing another example of a joining member.

【図10】他の接合部材例を示す断面図。FIG. 10 is a cross-sectional view showing another example of a joining member.

【符号の説明】[Explanation of symbols]

1 セラミックパッケージ 10 セラミック基体 11、71 金属層 2、8 水晶振動板 3、9 金属フタ B、C、D 接合部材 1 Ceramic package 10 Ceramic substrate 11, 71 Metal layer 2,8 Crystal diaphragm 3,9 Metal lid B, C, D joining members

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/92 602D ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01L 21/92 602D

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 微小粒状または極薄シート状の導電性コ
アと、当該導電性コアの周囲に形成された被覆樹脂から
なる接合部材。
1. A joining member comprising a fine granular or ultrathin sheet-like conductive core and a coating resin formed around the conductive core.
【請求項2】 微小粒状または極薄シート状のコアと、
当該コアの周囲に形成された導電膜と、当該導電膜の上
面に形成された被覆樹脂からなる接合部材。
2. A fine granular or ultrathin sheet-shaped core,
A joining member made of a conductive film formed around the core and a coating resin formed on the upper surface of the conductive film.
【請求項3】 前記コアが緩衝材からなることを特徴と
する請求項1または請求項2記載の接合部材。
3. The joining member according to claim 1, wherein the core is made of a cushioning material.
【請求項4】 前記導電膜が金属メッキ膜または導電フ
ィラーを添加した導電樹脂からなることを特徴とする請
求項2または請求項3記載の接合部材。
4. The joining member according to claim 2, wherein the conductive film is made of a metal plating film or a conductive resin to which a conductive filler is added.
【請求項5】 被覆樹脂が熱可塑性樹脂であることを特
徴とする請求項1乃至請求項4いずれかに記載の接合部
材。
5. The joining member according to claim 1, wherein the coating resin is a thermoplastic resin.
【請求項6】 被覆樹脂が熱硬化性樹脂であることを特
徴とする請求項1乃至請求項4いずれかに記載の接合部
材。
6. The joining member according to claim 1, wherein the coating resin is a thermosetting resin.
【請求項7】 樹脂シートに多数の金属細線を貫通さ
せ、表裏の導通を確保した接合部材。
7. A joining member in which a large number of thin metal wires are penetrated through a resin sheet to secure conduction between the front and back.
【請求項8】 樹脂シートに微小金属球を多数個埋設
し、表裏の導通を確保した接合部材。
8. A joining member in which a large number of fine metal spheres are embedded in a resin sheet to secure conduction between the front and back.
【請求項9】 樹脂シート表裏に薄い樹脂を形成したこ
とを特徴とする請求項7または請求項8記載の接合部
材。
9. The joining member according to claim 7, wherein a thin resin is formed on the front and back of the resin sheet.
【請求項10】 樹脂シートが熱可塑性樹脂からなる請
求項7乃至請求項9いづれかに記載の接合部材。
10. The joining member according to claim 7, wherein the resin sheet is made of a thermoplastic resin.
【請求項11】 励振電極形成された圧電振動素子を、
1つあるいは複数の請求項1乃至請求項10いずれかに
記載の接合部材を介して、パッケージに導電接合した圧
電振動デバイス。
11. A piezoelectric vibrating element having an excitation electrode formed,
A piezoelectric vibration device conductively bonded to a package through one or a plurality of bonding members according to any one of claims 1 to 10.
【請求項12】 パッケージに形成された外部導出電極
上に、1つあるいは複数の請求項5または請求項9また
は請求項10のいずれかに記載の接合部材を介して、励
振電極形成された圧電振動素子を搭載する工程と、少な
くとも前記接合部材配置領域を所定温度で加熱し、前記
接合部材の熱可塑性樹脂を溶解させる工程と、加熱を解
除することにより、前記接合部材を介して前記外部導出
電極と前記励振電極を導通させるとともに、前記熱可塑
性樹脂の硬化によりパッケージと圧電振動素子とを機械
的接合する工程と、からなる圧電振動デバイスの製造方
法。
12. A piezoelectric device having an excitation electrode formed on an external lead electrode formed on a package via one or more bonding members according to claim 5, 9 or 10. A step of mounting a vibrating element, a step of heating at least the joining member disposition region at a predetermined temperature to melt the thermoplastic resin of the joining member, and a step of releasing the heating to lead to the outside through the joining member. A method of manufacturing a piezoelectric vibrating device, comprising the steps of electrically connecting an electrode and the excitation electrode and mechanically bonding the package and the piezoelectric vibrating element by curing the thermoplastic resin.
JP2001353861A 2001-11-19 2001-11-19 Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device Pending JP2003158440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353861A JP2003158440A (en) 2001-11-19 2001-11-19 Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353861A JP2003158440A (en) 2001-11-19 2001-11-19 Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device

Publications (1)

Publication Number Publication Date
JP2003158440A true JP2003158440A (en) 2003-05-30

Family

ID=19165804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353861A Pending JP2003158440A (en) 2001-11-19 2001-11-19 Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP2003158440A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218629A (en) * 2007-03-02 2008-09-18 Fujikura Ltd Semiconductor package and electronic component
JP2009212905A (en) * 2008-03-05 2009-09-17 Seiko Epson Corp Substrate for mounting electronic component, and mounting structure for electronic component
JP2010063154A (en) * 2007-10-19 2010-03-18 Seiko Epson Corp Electronic component, mounting structure thereof, and method for mounting electronic component
JP2010081308A (en) * 2008-09-26 2010-04-08 Seiko Epson Corp Mounting structure of electronic component and method of manufacturing electronic component
JP2010239328A (en) * 2009-03-31 2010-10-21 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010239329A (en) * 2009-03-31 2010-10-21 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2011061175A (en) * 2009-09-14 2011-03-24 Samsung Electro-Mechanics Co Ltd Solder ball and semiconductor package
JP2011171370A (en) * 2010-02-16 2011-09-01 Renesas Electronics Corp Method for manufacturing semiconductor device, particle and semiconductor device
JP2011176884A (en) * 2011-06-02 2011-09-08 Seiko Epson Corp Mounting structure of electronic component and method of manufacturing electronic component
US8102099B2 (en) 2007-10-19 2012-01-24 Seiko Epson Corporation Electronic component, mounting structure thereof, and method for mounting electronic component
US10090110B2 (en) 2015-10-06 2018-10-02 Fujitsu Limited Crystal unit and method of adjusting crystal unit
US10644672B2 (en) 2015-10-06 2020-05-05 Fujitsu Limited Crystal unit and method of adjusting crystal unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218629A (en) * 2007-03-02 2008-09-18 Fujikura Ltd Semiconductor package and electronic component
US8102099B2 (en) 2007-10-19 2012-01-24 Seiko Epson Corporation Electronic component, mounting structure thereof, and method for mounting electronic component
JP2010063154A (en) * 2007-10-19 2010-03-18 Seiko Epson Corp Electronic component, mounting structure thereof, and method for mounting electronic component
US8274201B2 (en) 2007-10-19 2012-09-25 Seiko Epson Corporation Electronic component, mounting structure thereof, and method for mounting electronic component
JP2009212905A (en) * 2008-03-05 2009-09-17 Seiko Epson Corp Substrate for mounting electronic component, and mounting structure for electronic component
JP2010081308A (en) * 2008-09-26 2010-04-08 Seiko Epson Corp Mounting structure of electronic component and method of manufacturing electronic component
JP2010239329A (en) * 2009-03-31 2010-10-21 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010239328A (en) * 2009-03-31 2010-10-21 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2011061175A (en) * 2009-09-14 2011-03-24 Samsung Electro-Mechanics Co Ltd Solder ball and semiconductor package
JP2012089898A (en) * 2009-09-14 2012-05-10 Samsung Electro-Mechanics Co Ltd Solder ball and semiconductor package
JP2011171370A (en) * 2010-02-16 2011-09-01 Renesas Electronics Corp Method for manufacturing semiconductor device, particle and semiconductor device
JP2011176884A (en) * 2011-06-02 2011-09-08 Seiko Epson Corp Mounting structure of electronic component and method of manufacturing electronic component
US10090110B2 (en) 2015-10-06 2018-10-02 Fujitsu Limited Crystal unit and method of adjusting crystal unit
US10644672B2 (en) 2015-10-06 2020-05-05 Fujitsu Limited Crystal unit and method of adjusting crystal unit

Similar Documents

Publication Publication Date Title
US7486160B2 (en) Electronic component and manufacturing method thereof
US7583162B2 (en) Piezoelectric device and method for manufacturing the piezoelectric device
JP5076166B2 (en) Piezoelectric device and sealing method thereof
JP2003158440A (en) Joining member, piezoelectric vibration device using the joining member, and manufacturing method for the piezoelectric vibration device
JP2001053178A (en) Electronic component with electronic circuit device sealed and mounted on circuit board, and manufacture of the electronic component
US8022594B2 (en) Surface acoustic wave device
JP3351402B2 (en) Electronic element, surface acoustic wave element, mounting method thereof, electronic component or surface acoustic wave device manufacturing method, and surface acoustic wave device
JP2007013444A (en) Piezo-electric oscillating device and method for manufacturing the same
JP3438711B2 (en) Piezoelectric device and method of manufacturing the same
JP5101201B2 (en) Piezoelectric oscillator
US6192562B1 (en) Method of producing piezoelectric component
JP2000232332A (en) Surface mounted piezoelectric resonator
JP3911838B2 (en) Method for manufacturing piezoelectric vibrator
JP4051452B2 (en) Piezoelectric vibrator
JP2002537669A (en) Surface acoustic wave device bonded to base using conductive adhesive
JP2014049966A (en) Crystal device
JP2017130827A (en) Piezoelectric device and method of manufacturing the same
JP2002084160A (en) Piezoelectric device
JP2017212622A (en) Crystal device and manufacturing method of the same
JP2006101244A (en) Piezoelectric vibrator, and manufacturing method therefor
JP4720846B2 (en) Crystal vibration device
JP6741434B2 (en) Piezoelectric device manufacturing method
JP2000216660A (en) Mount structure for element device and its manufacture
US8860285B2 (en) Electronic component and method for producing electronic component
JP2011055033A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070115