JP2003156441A - Method and device for inspecting quality inside fruit and vegetable - Google Patents

Method and device for inspecting quality inside fruit and vegetable

Info

Publication number
JP2003156441A
JP2003156441A JP2002185203A JP2002185203A JP2003156441A JP 2003156441 A JP2003156441 A JP 2003156441A JP 2002185203 A JP2002185203 A JP 2002185203A JP 2002185203 A JP2002185203 A JP 2002185203A JP 2003156441 A JP2003156441 A JP 2003156441A
Authority
JP
Japan
Prior art keywords
light
intensity
wavelength band
fruits
vegetables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002185203A
Other languages
Japanese (ja)
Other versions
JP3857191B2 (en
Inventor
Hideo Kurashima
秀夫 倉島
Yasutetsu Onozawa
康哲 小野澤
Hodaka Fukahori
穂高 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokan Kogyo Co Ltd
Original Assignee
Tokan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokan Kogyo Co Ltd filed Critical Tokan Kogyo Co Ltd
Priority to JP2002185203A priority Critical patent/JP3857191B2/en
Publication of JP2003156441A publication Critical patent/JP2003156441A/en
Application granted granted Critical
Publication of JP3857191B2 publication Critical patent/JP3857191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of discriminating easily internal deterioration of fruits and vegetables, in particular, the internal deterioration accompanied with discoloration such as browning. SOLUTION: An apple is irradiated with light, the light intensities in peak wavelength bands within 810 nm±20 nm of near infrared area and 710 nm±30 nm of visible ray area are measured in a spectral intensity distribution of transmitted rays transmitted through the apple, specific intensity of the light intensity in the peak wavelength band within the visible ray area to the light intensity in the peak wavelength band within the near infrared area is calculated, and the internal quality of the apple is discriminated based on combination of the light intensity in the peak wavelength band within the visible ray area, and the specific intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、青果物の内部品質
を非破壊で検査する方法及びそのための装置に関し、特
に、青果物の透過光を用いた検査技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for nondestructively inspecting the internal quality of fruits and vegetables and an apparatus therefor, and more particularly to an inspection technique using transmitted light of fruits and vegetables.

【0002】[0002]

【従来の技術】従来、青果物の内部品質は、青果物の形
や色合い等の外見で経験的に判別したり、抜き取り試料
を切断して目視検査により判別されたりしていた。しか
し、内部品質は外見から判別困難な場合が多く、また、
抜き取り検査された青果物は商品価値がなくなる上、残
りの青果物の内部品質は抜き取り検査結果から推定する
しかなかった。
2. Description of the Related Art Conventionally, the internal quality of fruits and vegetables has been empirically determined by the appearance of the shape and color of the fruits and vegetables, or by visual inspection by cutting a sample taken. However, internal quality is often difficult to distinguish from the outside, and
The fruits and vegetables subjected to the sampling inspection have no commercial value, and the internal quality of the remaining fruits and vegetables can only be estimated from the results of the sampling inspection.

【0003】そこで、近年、分光学的手法を用いて青果
物の内部品質を判別する技術が提案されている。例え
ば、果実は、一般に糖度が高いほど商品価値が高い。そ
こで、例えば、特開平4−104041号公報には、特
定波長領域の透過光の強度から青果物の糖度等の内部品
質を検査する方法が記載されている。
Therefore, in recent years, a technique for discriminating the internal quality of fruits and vegetables by using a spectroscopic method has been proposed. For example, fruits generally have higher commercial value as the sugar content is higher. Therefore, for example, Japanese Patent Application Laid-Open No. 4-104041 describes a method of inspecting the internal quality such as sugar content of fruits and vegetables from the intensity of transmitted light in a specific wavelength region.

【0004】また、リンゴの完熟品はいわゆる蜜入り状
態となり、特有の香気と味覚とを発し、高級品として好
まれている。そこで、例えば、「果樹試報 C15 P
14−47 農林水産省 1988」には、単一波長の
光透過によるリンゴ果実の蜜症状の非破壊測定の方法が
記載されている。このように、青果物の透過光を測定す
ることにより、リンゴ等の青果物の糖度や蜜入り状態を
非破壊で検査することができる。
Further, a fully-ripened apple product is in a so-called honey-containing state and emits a unique aroma and taste, and is preferred as a high-grade product. So, for example, "Fruit Tree Trial C15 P
14-47 Ministry of Agriculture, Forestry and Fisheries 1988 ”describes a method for nondestructive measurement of nectar symptoms of apple fruits by light transmission of a single wavelength. Thus, by measuring the transmitted light of fruits and vegetables, it is possible to nondestructively inspect the sugar content and the honey-filled state of fruits and vegetables such as apples.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、温度
や雰囲気ガスを制御することにより、リンゴ等の青果物
を、その鮮度を保ちつつ長期保存する技術が発達してい
る。これにより、青果物を旬以外の季節にも出荷するこ
とができるようになってきている。
By the way, in recent years, a technique has been developed for storing fruits and vegetables such as apples for a long period of time by controlling temperature and atmospheric gas while maintaining their freshness. As a result, fruits and vegetables can be shipped in seasons other than the season.

【0006】ところが、リンゴ等青果物を長期間保存す
ると、果肉が褐色に変色(褐変)して、香気や味覚が落
ちてしまうことがある。そして、褐変等の内部変質が生
じた青果物は、一般に透過率が低下する。
However, when fruits and vegetables such as apples are stored for a long period of time, the flesh may turn brown (browning) and the aroma and taste may be lost. The transmittance of fruits and vegetables that have undergone internal deterioration such as browning generally decreases.

【0007】一方、青果物の透過率は、果肉の含水量が
多いほど高く、含水量が少なくなるにつれて、散乱が多
くなり透過率が低下する傾向にある。ここで、図3に、
リンゴにおける透過分光スペクトルの経時変化の一例を
示す。図3のグラフの横軸は波長(nm)を表し、縦軸
は光強度(カウント数)を表す。グラフ中の曲線IVは、
新鮮なリンゴの透過分光スペクトルを表す。また、破線
Vは、日数が経過後の同一リンゴの透過分光スペクトル
を表す。そして、曲線IV及び破線Vに示すように、日数
が経過すると、果肉の含水量が低下するため、スペクト
ル強度が全体的に低下している。この透過分光スペクト
ルの特徴として、近赤外領域である780nm〜830
nmで一つの山となるピーク波長帯があり、また、可視
光領域である550nm〜780nmで、630nm近
傍及び700nm近傍に二つの山となるピーク波長帯が
ある。
On the other hand, the transmittance of fruits and vegetables is higher as the water content of the pulp is higher, and as the water content is lower, scattering tends to increase and the transmittance tends to decrease. Here, in FIG.
An example of the change over time of the transmission spectrum of an apple is shown. The horizontal axis of the graph of FIG. 3 represents wavelength (nm), and the vertical axis represents light intensity (count number). Curve IV in the graph is
2 shows a transmission spectrum of a fresh apple. The broken line V represents the transmission spectrum of the same apple after the number of days has passed. Then, as indicated by the curve IV and the broken line V, the water content of the pulp decreases with the lapse of days, and therefore the spectrum intensity as a whole decreases. The characteristic of this transmission spectrum is 780 nm to 830 in the near infrared region.
There is a peak wavelength band having one peak in nm, and there are two peak wavelength bands in the vicinity of 630 nm and 700 nm in the visible light region of 550 nm to 780 nm.

【0008】このため、蜜入りリンゴの蜜が少なくなっ
た場合も、透過率は低下する傾向がある。その結果、上
述の従来技術のように、透過率を単に測定しただけで
は、褐変等の内部変質が生じたリンゴと、蜜が減少した
リンゴとの判別を行うことが困難であった。
Therefore, the transmittance tends to decrease even when the honey containing honey is low. As a result, it is difficult to discriminate between apples that have undergone internal deterioration such as browning and apples that have reduced nectar by simply measuring the transmittance, as in the above-mentioned conventional technique.

【0009】本発明は、上記の事情にかんがみてなされ
たものであり、青果物の内部品質、特に褐変等の変色を
伴う内部変質を容易に判別することができる技術の提供
を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique capable of easily discriminating the internal quality of fruits and vegetables, particularly the internal deterioration accompanied by discoloration such as browning.

【0010】[0010]

【課題を解決するための手段】上記目的の達成を図るた
め、本発明に係る発明者は、種々の検討及び実験を重ね
た結果、単に青果物の含水量が低下しただけの場合に
は、図3に示したように、近赤外領域及び可視光領域の
両方の透過率が同程度の割合で低下するのに対して、青
果物に褐変等の変色を伴う内部障害が生じた場合には、
近赤外領域に比べて可視光領域の透過率が大きく低下す
ることに着目し、本発明に想到した。
In order to achieve the above object, the inventor of the present invention has conducted various studies and experiments and as a result, when the water content of fruits and vegetables has simply decreased, As shown in 3, when the transmittance in both the near-infrared region and the visible light region is reduced at the same rate, in the case where an internal disorder accompanied by discoloration such as browning occurs in fruits and vegetables,
The present invention has been conceived, paying attention to the fact that the transmittance in the visible light region is significantly lower than that in the near infrared region.

【0011】そこで、本発明の請求項1に係る青果物の
内部品質検査方法によれば、光を照射した青果物からの
透過光の分光強度分布で、近赤外領域のピーク波長帯に
おける光強度に対する可視光領域のピーク波長帯におけ
る光強度の比強度と、可視光領域のピーク波長帯におけ
る光強度との組合せに基づいて、前記青果物の内部品質
を判別する方法としてある。
Therefore, according to the method for inspecting the internal quality of fruits and vegetables according to claim 1 of the present invention, the spectral intensity distribution of the transmitted light from the fruits and vegetables irradiated with light is compared with the light intensity in the peak wavelength band in the near infrared region. This is a method for determining the internal quality of the fruits and vegetables based on a combination of the specific intensity of the light intensity in the peak wavelength band of the visible light region and the light intensity in the peak wavelength band of the visible light region.

【0012】このように、本発明によれば、褐変等の変
色を伴う内部変質において、可視光領域の透過光強度
が、近赤外領域の透過光強度よりも大きく低下すること
を利用し、透過光強度と、近赤外領域に対する可視光領
域の山となるピーク波長帯での比強度とを組み合わせる
ことにより、内部品質を検査する。これにより、透過光
強度だけ又は比強度だけでは内部品質の判別が困難な場
合であっても、特に、褐変等の変色を伴う内部変質を容
易に判別することができる。
As described above, according to the present invention, in the internal alteration accompanied by discoloration such as browning, the transmitted light intensity in the visible light region is much lower than the transmitted light intensity in the near infrared region. The internal quality is inspected by combining the transmitted light intensity and the specific intensity in the peak wavelength band which is the peak of the visible light region with respect to the near infrared region. Accordingly, even when it is difficult to determine the internal quality only by the transmitted light intensity or the specific intensity, it is possible to easily determine the internal alteration accompanied by discoloration such as browning.

【0013】また、請求項2記載の発明によれば、可視
光領域のピーク波長帯として、550nm±30nm、
600nm±30、630nm±30nm、700nm
±30nmあるいは730nm±30nmの群の中から
少なくとも一つの波長帯を選択するとともに、その光強
度を計測し、一方、近赤外領域のピーク波長帯として、
800乃至810nm±30nmを選択してその光強度
を計測する方法としてある。
According to the second aspect of the invention, the peak wavelength band in the visible light region is 550 nm ± 30 nm,
600nm ± 30, 630nm ± 30nm, 700nm
At least one wavelength band is selected from the group of ± 30 nm or 730 nm ± 30 nm, and the light intensity thereof is measured. On the other hand, as the peak wavelength band in the near infrared region,
This is a method of selecting 800 to 810 nm ± 30 nm and measuring the light intensity thereof.

【0014】リンゴ等の多くの種類の青果物の透過分光
スペクトルは、可視光領域では、700nm附近、60
0nm〜630nm附近及び550nm附近に、山とな
るピーク波長帯を有し、特に、700nm附近の強度が
高いことが分かってきた。また、近赤外領域では、80
0nm〜810nmを中心として±30nm、すなわ
ち、770nm〜840nmに、山となるピークを形成
することが分かってきた。このため、これら波長の光強
度を計測すれば、内部品質の判別がより容易となる。
The transmission spectrum of many kinds of fruits and vegetables such as apples is about 700 nm in the visible light region, 60.
It has been found that there is a peak wavelength band near 0 nm to 630 nm and around 550 nm, and particularly the intensity near 700 nm is high. In the near infrared region, 80
It has been found that a peak serving as a peak is formed at ± 30 nm centered on 0 nm to 810 nm, that is, at 770 nm to 840 nm. Therefore, if the light intensities of these wavelengths are measured, it becomes easier to determine the internal quality.

【0015】また、本発明の請求項3に係る青果物の内
部品質検査装置によれば、検査対象の青果物に光を照射
する光源と、青果物の透過光を波長分光する分光手段
と、近赤外領域及び可視光領域のピーク波長帯における
光強度を計測する光強度計測手段と、近赤外領域のピー
ク波長帯における光強度に対する可視光領域のピーク波
長帯における光強度の比強度を計算する比強度計算手段
と、可視光領域のピーク波長帯における光強度と比強度
との組合せに基づいて、青果物の内部品質を判別する判
別手段とを備える構成としてある。
Further, according to the internal quality inspection apparatus for fruits and vegetables according to claim 3 of the present invention, a light source for irradiating the fruits and vegetables to be inspected with light, a spectroscopic means for wavelength-splitting the transmitted light of the fruits and vegetables, and a near infrared ray. Light intensity measuring means for measuring the light intensity in the peak wavelength band of the visible region and visible light region, and a ratio for calculating the ratio of the light intensity in the peak wavelength band of the visible light region to the light intensity in the peak wavelength band of the near infrared region The intensity calculation means and the determination means for determining the internal quality of fruits and vegetables based on the combination of the light intensity and the specific intensity in the peak wavelength band of the visible light region are provided.

【0016】このように、本発明によれば、透過光強度
だけ又は比強度だけでは内部品質の判別が困難な場合で
あっても、透過光強度と、近赤外領域の光強度を基準と
した比強度とを組み合わせることにより、容易に内部品
質の判別を行うことができる。特に、褐変等の変色を伴
う内部変質を容易に判別することができる。
As described above, according to the present invention, even when it is difficult to determine the internal quality only by the transmitted light intensity or the specific intensity, the transmitted light intensity and the light intensity in the near infrared region are used as references. It is possible to easily determine the internal quality by combining with the specific strength. In particular, internal alteration accompanied by discoloration such as browning can be easily identified.

【0017】また、請求項4記載の発明によれば、分光
手段は、前記透過光を二方向へ分波する少なくとも一つ
以上の分波手段と、分波光が入射し、可視光領域の検出
すべき波長帯の光を選択的に透過する一つ以上の可視光
波長フィルタと、別の分波光が入射し、近赤外領域の波
長帯の光を選択的に透過する近赤外波長フィルタとによ
り構成してあり、光強度計測手段は、第一波長フィルタ
の透過光の光強度を計測する一つ以上の第一光センサ
と、第二波長フィルタの透過光の光強度を計測する第二
光センサとにより構成してある。
According to a fourth aspect of the invention, the spectroscopic means includes at least one demultiplexing means for demultiplexing the transmitted light in two directions, and the demultiplexed light enters to detect the visible light region. One or more visible light wavelength filters that selectively transmit light in the desired wavelength band, and a near-infrared wavelength filter that receives another demultiplexed light and selectively transmits light in the near-infrared wavelength band The light intensity measuring means comprises one or more first optical sensors for measuring the light intensity of the transmitted light of the first wavelength filter, and a first light sensor for measuring the light intensity of the transmitted light of the second wavelength filter. It is composed of two optical sensors.

【0018】このように、可視光領域の透過光強度と、
近赤外領域の透過光強度とを個別に測定すれば、これら
透過光強度を同時に測定することができる。このため、
短時間に大量の青果物の内部品質を検査することができ
る。
Thus, the transmitted light intensity in the visible light region,
If the transmitted light intensities in the near infrared region are individually measured, these transmitted light intensities can be simultaneously measured. For this reason,
It is possible to inspect the internal quality of a large amount of fruits and vegetables in a short time.

【0019】また、請求項5記載の発明によれば、可視
光領域の検出すべき波長帯として、550nm±30n
m、600nm±30、630nm±30nm、700
nm±30nmあるいは730nm±30nmの群の中
から少なくとも一つの波長帯を選択し、一方、前記近赤
外領域のピーク波長帯として、800乃至810nm±
30nmを選択する構成としてある。
According to the invention of claim 5, the wavelength band to be detected in the visible light region is 550 nm ± 30 n.
m, 600 nm ± 30, 630 nm ± 30 nm, 700
nm ± 30 nm or 730 nm ± 30 nm, and at least one wavelength band is selected from the group of wavelengths of 800 to 810 nm ±.
The configuration is such that 30 nm is selected.

【0020】リンゴ等の多くの種類の青果物の透過分光
スペクトルは、可視光領域では、700nm附近、60
0nm〜630nm附近及び550nm附近に、山とな
るピーク波長帯を有し、特に、700nm附近の強度が
高いことが分かってきた。また、近赤外領域では、80
0nm〜810nm附近に、山となるピークを形成する
ことが分かってきた。このため、これら波長の光強度を
計測すれば、内部品質の判別がより容易となる。
The transmission spectra of many kinds of fruits and vegetables such as apples are in the visible light region around 700 nm, 60
It has been found that there is a peak wavelength band near 0 nm to 630 nm and around 550 nm, and particularly the intensity near 700 nm is high. In the near infrared region, 80
It has been found that peaks forming peaks are formed near 0 nm to 810 nm. Therefore, if the light intensities of these wavelengths are measured, it becomes easier to determine the internal quality.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して、本発明の
青果物の内部品質検査方法及び装置(「判別装置)とも
略称する。)の実施の形態について併せて説明する。ま
ず、図1を参照して、判別装置の構成について説明す
る。本実施形態の判別装置は、光源1、集光器3、無偏
光ビームスプリッタ4、第一及び第二波長フィルタ5a
及び5b、第一及び第二光センサ6a及び6b、比強度
計算部7及び判別部8により構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an internal quality inspection method and apparatus (also abbreviated as "discrimination apparatus") of fruits and vegetables according to the present invention will be described below with reference to the drawings. The configuration of the discriminating apparatus will be described with reference to the discriminating apparatus of the present embodiment, which includes a light source 1, a condenser 3, a non-polarizing beam splitter 4, and first and second wavelength filters 5a.
And 5b, the first and second optical sensors 6a and 6b, the specific intensity calculator 7 and the discriminator 8.

【0022】光源1には、キセノンランプやハロゲンラ
ンプを用いるとよい。これら光源は、光強度を計測する
波長を含む波長帯域にわたる発光スペクトルを有してい
る。なお、照射光は、連続発光させてよいし、断続的に
パルス発光させてもよい。また、第一及び第二光センサ
6a及び6bは、可視光領域から近赤外光領域にかけて
分光感度をもつシリコンフォトダイオードを用いたが、
これに限定されるものではなく、光電子倍増管、太陽電
池など要求される分光感度をもつものであればよい。
A xenon lamp or a halogen lamp may be used as the light source 1. These light sources have an emission spectrum over a wavelength band including a wavelength for measuring light intensity. The irradiation light may be emitted continuously or intermittently. Further, the first and second optical sensors 6a and 6b use silicon photodiodes having a spectral sensitivity from the visible light region to the near infrared light region,
The present invention is not limited to this, and may be a photomultiplier tube, a solar cell or the like as long as it has the required spectral sensitivity.

【0023】そして、光源1を出射した光は、検査対象
の青果物2に照射される。本実施形態では、青果物2と
してリンゴの内部品質を検査する。リンゴは、可視光領
域の710nmを中心に±30nmの範囲と、赤外領域
の800nmを中心に±20nmの範囲内とにそれぞれ
透過分光スペクトルの大きな山となるピーク波長帯を有
している。青果物2の透過光は、集光器3によって集光
され、無偏光ビームスプリッタ4へ入射される。無偏光
ビームスプリッタ4は、入射光の一部分を透過し、残り
の部分を側方へ反射することにより、透過光を分波す
る。
The light emitted from the light source 1 is applied to the fruits and vegetables 2 to be inspected. In this embodiment, the internal quality of apples as fruits and vegetables 2 is inspected. The apple has peak wavelength bands that are large peaks of the transmission spectrum in the range of ± 30 nm centered at 710 nm in the visible light region and in the range of ± 20 nm centered at 800 nm in the infrared region. The transmitted light of the fruits and vegetables 2 is condensed by the condenser 3 and is incident on the non-polarization beam splitter 4. The non-polarization beam splitter 4 splits the transmitted light by transmitting a part of the incident light and laterally reflecting the remaining part.

【0024】分波された一方の透過光は、第一波長フィ
ルタ5aへ入射する。第一波長フィルタ5aは、690
〜730nm狭域干渉フィルタであり、入射した透過光
のうち、可視光領域の690〜730nmの範囲の光の
みを選択的に透過する。第一波長フィルタ5aを透過し
た光は、第一光センサ6aへ入射する。第一光センサ6
aは、第一波長フィルタ5aの透過光の光強度を計測す
る。計測結果は、第一光強度信号として出力される。
One of the demultiplexed transmitted lights enters the first wavelength filter 5a. The first wavelength filter 5a is 690
It is a narrow band interference filter of ˜730 nm and selectively transmits only the light in the range of 690 to 730 nm in the visible light region of the incident transmitted light. The light transmitted through the first wavelength filter 5a enters the first optical sensor 6a. First optical sensor 6
a measures the light intensity of the transmitted light of the first wavelength filter 5a. The measurement result is output as the first light intensity signal.

【0025】また、分波された他方の透過光は、第二波
長フィルタ5bへ入射する。第二波長フィルタ5bは、
790nm〜830nm狭域干渉フィルタであり、入射
した透過光のうち、赤外領域の790nm〜830nm
の範囲の光のみを選択的に透過する。第二波長フィルタ
5bを透過した光は、第二光センサ6bへ入射する。第
二光センサ6bは、第二波長フィルタ5bの透過光の光
強度を計測する。計測結果は、第二光強度信号として出
力される。
Further, the other split transmitted light is incident on the second wavelength filter 5b. The second wavelength filter 5b is
It is a narrow band interference filter of 790 nm to 830 nm, and 790 nm to 830 nm in the infrared region of incident transmitted light.
Only the light in the range is selectively transmitted. The light transmitted through the second wavelength filter 5b enters the second optical sensor 6b. The second optical sensor 6b measures the light intensity of the transmitted light of the second wavelength filter 5b. The measurement result is output as the second light intensity signal.

【0026】なお、本実施形態では、無偏光ビームスプ
リッタ4、第一及び第二波長フィルタ5a及び5bが、
分光手段構成し、第一及び第二光センサ6a及び6bが
光強度計測手段を構成している。
In the present embodiment, the non-polarizing beam splitter 4, the first and second wavelength filters 5a and 5b are
It constitutes a spectroscopic unit, and the first and second optical sensors 6a and 6b constitute a light intensity measuring unit.

【0027】第一及び第二光強度信号は、比強度計算部
7へ入力される。比強度計算部7では、第二光強度信号
に対する第一光強度信号の比強度、すなわち、近赤外領
域のピーク波長帯における光強度に対する、可視光領域
のピーク波長帯における光強度の比強度を計算する。計
算結果は、比強度信号として出力される。
The first and second light intensity signals are input to the specific intensity calculator 7. In the specific intensity calculation unit 7, the specific intensity of the first optical intensity signal with respect to the second optical intensity signal, that is, the specific intensity of the optical intensity in the peak wavelength band of the visible light region with respect to the optical intensity in the peak wavelength band of the near infrared region To calculate. The calculation result is output as a specific intensity signal.

【0028】比強度信号は、判別部8へ入力される。判
別部8には、第一光強度信号も入力される。そして、判
別部8は、可視光領域のピーク波長帯における光強度
と、比強度との組合せ、すなわち、第一光強度信号と比
強度信号との組合せに基づいて、青果物2の内部品質を
判別する。
The specific intensity signal is input to the discrimination unit 8. The first light intensity signal is also input to the determination unit 8. Then, the determination unit 8 determines the internal quality of the fruit 2 based on the combination of the light intensity in the peak wavelength band of the visible light region and the specific intensity, that is, the combination of the first light intensity signal and the specific intensity signal. To do.

【0029】ここで、図2に、リンゴの透過光の光強度
及び比強度の一例を示す。ここでは、蜜入りであるが
蜜が中程度に褐変したリンゴ(蜜褐変(中)リンゴ)、
内部の一部分に褐変が生じたリンゴ(中褐変リン
ゴ)、及び、内部の大部分に褐変が生じたリンゴ(大
褐変リンゴ)の三通りのリンゴの内部品質を判別する。
Here, FIG. 2 shows an example of the light intensity and the specific intensity of the transmitted light of the apple. Here, apples with honey, but with a moderate browning of honey (honey browning (medium) apples),
The internal qualities of three types of apples, that is, an apple in which a part of the inside is browned (medium browned apple) and an apple in which a large part of the inside is browned (a large browned apple) are determined.

【0030】図2の(A)は、リンゴの透過光の波長ス
ペクトルを示すグラフである。グラフの横軸は波長(n
m)を表し、縦軸は光強度を表す。ここでは、光強度を
任意のカウント数で表している。そして、グラフ中の曲
線Iaは、蜜褐変(中)リンゴの透過分光スペクトルを
示し、破線IIaは、中褐変リンゴの透過分光スペクト
ルを示し、一点鎖線IIIaは、大褐変リンゴの透過分光
スペクトルを示す。
FIG. 2A is a graph showing the wavelength spectrum of the transmitted light of the apple. The horizontal axis of the graph is the wavelength (n
m) and the vertical axis represents the light intensity. Here, the light intensity is represented by an arbitrary count number. The curve Ia in the graph represents the transmission spectrum of the nectar browning (medium) apple, the broken line IIa represents the transmission spectrum of the medium browning apple, and the alternate long and short dash line IIIa represents the transmission spectrum of the large browning apple. .

【0031】曲線Iaに示すように、蜜褐変(中)リン
ゴの透過分光スペクトルは、690〜730nmの可視
光領域でのピーク強度が、540(カウント数)と高く
なっている。これに対して、破線IIaに示すように、
中褐変リンゴでは、同ピーク強度が、380(カウント
数)と低下している。さらに、一点鎖線IIIaに示すよう
に、大褐変リンゴでは、同ピーク強度が、150(カ
ウント数)と大幅に低下している。したがって、可視光
領域のピーク強度は、蜜の褐変したリンゴでは極めて高
く、果肉が褐変すると大きく低下することが分かる。
As shown by the curve Ia, the transmission spectrum of the nectar-brown (medium) apple has a high peak intensity of 540 (count number) in the visible light region of 690 to 730 nm. On the other hand, as shown by the broken line IIa,
In the medium browning apple, the peak intensity is reduced to 380 (count number). Further, as shown by the alternate long and short dash line IIIa, in the large browning apple, the peak intensity is significantly reduced to 150 (count number). Therefore, it can be seen that the peak intensity in the visible light region is extremely high in an apple with brown nectar and is greatly reduced when the pulp is browned.

【0032】ところで、曲線Iaに示すように、蜜褐変
(中)リンゴでは、790nm〜830nmの赤外領域
のピーク強度も高くなっているが、破線IIa及び一点鎖
線IIIaに示すように、果肉に褐変が生じたリンゴでは、
赤外領域でのピーク強度が互いに同程度に低くなってい
る。
By the way, as shown by the curve Ia, in the nectar browning (medium) apple, the peak intensity in the infrared region of 790 nm to 830 nm is also high, but as shown by the broken line IIa and the alternate long and short dash line IIIa, For browned apples,
The peak intensities in the infrared region are as low as each other.

【0033】そこで、図2の(B)に、赤外領域でのピ
ーク強度を「1」として、規格化したスペクトルを示
す。図2のグラフの横軸は波長(nm)を表し、縦軸は
比強度(相対値)を表す。グラフ中の曲線Ibは、蜜褐
変(中)リンゴの規格化スペクトルを表し、破線IIb
は、中褐変リンゴの規格化スペクトルを表し、一点鎖
線IIIbは、大褐変リンゴの規格化スペクトルを表す。
Therefore, FIG. 2B shows a standardized spectrum in which the peak intensity in the infrared region is "1". The horizontal axis of the graph in FIG. 2 represents wavelength (nm), and the vertical axis represents specific intensity (relative value). The curve Ib in the graph represents the normalized spectrum of the nectar browning (medium) apple, and the broken line IIb
Represents the normalized spectrum of medium browning apple, and the alternate long and short dash line IIIb represents the normalized spectrum of large browning apple.

【0034】破線IIbに示すように、中褐変リンゴ
の、赤外領域のピーク強度に対する可視光領域のピーク
強度の比強度は1.7となっている。これに対して、曲
線Ibに示すように、蜜褐変(中)リンゴの比強度は
1.1となっている。また、一点鎖線IIIbに示すよう
に、大褐変リンゴの比強度は、0.8となっている。
As shown by the broken line IIb, the specific intensity of the peak intensity in the visible light region to the peak intensity in the infrared region of the medium browning apple is 1.7. On the other hand, as shown by the curve Ib, the specific strength of the nectar browning (medium) apple is 1.1. Further, as shown by the alternate long and short dash line IIIb, the specific intensity of the large browning apple is 0.8.

【0035】したがって、図2の(A)に示した光強度
と、図2の(B)に示した比強度とを組み合わせること
により、リンゴの内部品質を判別することができる。例
えば、蜜褐変(中)リンゴの場合は、曲線Iaに示した
ように光強度が540(カウント数)と高く、かつ、曲
線Ibに示したように比強度が1.1と中程度である。こ
れに対して、中褐変リンゴの場合は、破線IIaに示し
たように光強度が380(カウント数)と中程度であ
り、かつ、破線IIbに示したように比強度が1.7と高
くなっている。また、大褐変リンゴの場合は、一点鎖
線IIIaに示したように光強度が150と低く、かつ、一
点鎖線IIIbに示したように比強度も0.8と低くなって
いる。これにより、光強度と比強度との組合せから、
蜜褐変(中)リンゴと、中褐変リンゴ及び大褐変リ
ンゴとの判別を容易に行うことができる。
Therefore, by combining the light intensity shown in FIG. 2A and the specific intensity shown in FIG. 2B, the internal quality of the apple can be determined. For example, in the case of a honey browning (medium) apple, the light intensity is high as 540 (count number) as shown by the curve Ia, and the specific intensity is 1.1 as medium as shown by the curve Ib. . On the other hand, in the case of the medium browning apple, the light intensity is medium as 380 (count number) as shown by the broken line IIa, and the specific intensity is high as 1.7 as shown by the broken line IIb. Has become. Further, in the case of the large browning apple, the light intensity is as low as 150 as shown by the one-dot chain line IIIa, and the specific intensity is as low as 0.8 as shown by the one-dot chain line IIIb. Thereby, from the combination of light intensity and specific intensity,
It is possible to easily discriminate between the nectar browning (medium) apples, the medium browning apples, and the large browning apples.

【0036】上述した実施の形態においては、本発明を
特定の条件で構成した例について説明したが、本発明
は、種々の変更を行うことができる。例えば、上述した
実施の形態においては、青果物としてリンゴを検査対象
とした例について説明したが、本発明では、検査対象は
リンゴに限定されない。例えば、ミカン等の柑橘類やバ
ナナ等の果実、大根やジャガイモ等の根菜、又は、ナ
ス、キュウリ、トマト若しくはメロンやパイナップル等
の一年草の果菜も検査対象として好適である。
In the above-described embodiment, the example in which the present invention is configured under a specific condition has been described, but the present invention can be variously modified. For example, in the above-described embodiment, an example has been described in which apples are used as the fruits and vegetables to be inspected, but in the present invention, the inspection targets are not limited to apples. For example, fruits such as citrus fruits such as tangerines and bananas, root vegetables such as radish and potatoes, and annual fruits such as eggplant, cucumber, tomato or melon and pineapple are also suitable for inspection.

【0037】例えば、図4のグラフに曲線VIで示すよう
に、バナナの透過分光スペクトルも、可視光領域の70
0nm附近と、近赤外領域の810nm附近にピークを
形成している。また、図4のグラフに破線VIIで示すよ
うに、トマトの透過分光スペクトルも、可視光領域の7
10nm附近と近赤外領域の810nm附近とにピーク
を形成している。また、例えば、図5のグラフに曲線VI
IIで示すように、キュウリの透過分光スペクトルは、可
視光領域の550nm及び750nm附近にピークを形
成するとともに、近赤外領域の810nm附近にピーク
の肩としてのピーク波長帯域を有している。また、図5
のグラフに破線IXで示すように、オレンジの透過分光ス
ペクトルも、可視光領域の700nm附近と近赤外領域
の810nm附近とにピークを形成している。したがっ
て、これら青果物についても本発明を適用することがで
きる。
For example, as shown by the curve VI in the graph of FIG. 4, the transmission spectrum of banana is 70% in the visible light region.
A peak is formed near 0 nm and near 810 nm in the near infrared region. In addition, as shown by the broken line VII in the graph of FIG.
A peak is formed near 10 nm and near 810 nm in the near infrared region. Also, for example, in the graph of FIG.
As indicated by II, the transmission spectrum of cucumber has peaks near 550 nm and 750 nm in the visible light region, and has a peak wavelength band as a shoulder of the peak near 810 nm in the near infrared region. Also, FIG.
As indicated by a broken line IX in the graph of No. 3, the orange transmission spectrum also has peaks near 700 nm in the visible light region and around 810 nm in the near infrared region. Therefore, the present invention can be applied to these fruits and vegetables.

【0038】また、例えば、上述した実施形態では、可
視光領域として、690〜730nmの範囲内の光強度
を計測した例について説明したが、本発明では、これ以
外の可視光領域のピーク波長帯の光強度を計測してもよ
い。また、可視光領域として、複数のピーク波長帯を計
測してもよい。
Further, for example, in the above-described embodiment, an example in which the light intensity within the range of 690 to 730 nm is measured as the visible light region has been described, but in the present invention, the peak wavelength band in the visible light region other than this is described. The light intensity of may be measured. Also, a plurality of peak wavelength bands may be measured as the visible light region.

【0039】[0039]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、透過光強度だけ又は比強度だけでは内部品質の
判別が困難な場合であっても、透過光強度と比強度とを
組み合わせることにより、容易に内部品質の判別を行う
ことができる。特に、褐変等の変色を伴う内部変質を容
易に判別することができる。
As described above in detail, according to the present invention, the transmitted light intensity and the specific intensity can be determined even if it is difficult to determine the internal quality only by the transmitted light intensity or the specific intensity. By combining them, the internal quality can be easily determined. In particular, internal alteration accompanied by discoloration such as browning can be easily identified.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の青果物の内部品質検査装置の構成を
説明するためのブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an internal quality inspection device for fruits and vegetables according to an embodiment.

【図2】(A)は、透過光スペクトルの計測結果を示す
グラフであり、(B)は、(A)に示す測定結果を正規
化したグラフである。
FIG. 2A is a graph showing a measurement result of a transmitted light spectrum, and FIG. 2B is a graph obtained by normalizing the measurement result shown in FIG.

【図3】透過光スペクトルの経時変化を示すグラフであ
る。
FIG. 3 is a graph showing changes with time of a transmitted light spectrum.

【図4】バナナ及びトマトの透過分光スペクトルを示す
グラフである。
FIG. 4 is a graph showing transmission spectra of banana and tomato.

【図5】キュウリ及びオレンジの透過分光スペクトルを
示すグラフである。
FIG. 5 is a graph showing transmission spectrums of cucumber and orange.

【符号の説明】[Explanation of symbols]

1 光源 2 青果物 3 集光器 4 無偏光ビームスプリッタ 5a、5b 波長フィルタ 6a、6b 光センサ 7 比強度計算部 8 判定部 1 light source 2 fruits and vegetables 3 light collector 4 Non-polarizing beam splitter 5a, 5b Wavelength filter 6a, 6b optical sensor 7 Specific strength calculator 8 Judgment section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深堀 穂高 神奈川県横浜市保土ヶ谷区岡沢町22番地4 東洋製罐グループ綜合研究所内 Fターム(参考) 2G051 AA05 AB06 BA06 CB02 CC07 EB01 2G059 AA05 BB11 EE01 EE12 GG08 HH01 HH02 HH06 JJ02 JJ03 JJ22 KK02 KK03 MM01 MM05   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hodaka Fukahori             22-4 Okazawa-cho, Hodogaya-ku, Yokohama-shi, Kanagawa               Toyo Seikan Group General Research Institute F term (reference) 2G051 AA05 AB06 BA06 CB02 CC07                       EB01                 2G059 AA05 BB11 EE01 EE12 GG08                       HH01 HH02 HH06 JJ02 JJ03                       JJ22 KK02 KK03 MM01 MM05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光を照射した青果物からの透過光の分光
強度分布で、近赤外領域のピーク波長帯における光強度
に対する可視光領域のピーク波長帯における光強度の比
強度と、可視光領域のピーク波長帯における光強度との
組合せに基づいて、前記青果物の内部品質を判別するこ
とを特徴とする青果物の内部品質検査方法。
1. A spectral intensity distribution of transmitted light from fruits and vegetables irradiated with light, which is a ratio of the light intensity in the peak wavelength band of the visible light region to the light intensity in the peak wavelength band of the near infrared region, and the visible light region. The method for inspecting the internal quality of fruits and vegetables, wherein the internal quality of the fruits and vegetables is determined on the basis of the combination with the light intensity in the peak wavelength band.
【請求項2】 前記可視光領域のピーク波長帯として、
550nm±30nm、600nm±30、630nm
±30nm、700nm±30nmあるいは730nm
±30nmの群の中から少なくとも一つの波長帯を選択
するとともに、その光強度を計測し、一方、前記近赤外
領域のピーク波長帯として、800乃至810nm±3
0nmを選択してその光強度を計測することを特徴とす
る請求項1記載の青果物の内部品質検査方法。
2. The peak wavelength band of the visible light region,
550nm ± 30nm, 600nm ± 30, 630nm
± 30 nm, 700 nm ± 30 nm or 730 nm
At least one wavelength band is selected from the group of ± 30 nm, and the light intensity thereof is measured, while the peak wavelength band in the near infrared region is 800 to 810 nm ± 3.
The method for inspecting the internal quality of fruits and vegetables according to claim 1, wherein 0 nm is selected and the light intensity thereof is measured.
【請求項3】 検査対象の青果物に光を照射する光源
と、前記青果物の透過光を波長分光する分光手段と、近
赤外領域及び可視光領域のピーク波長帯における光強度
を計測する光強度計測手段と、近赤外領域のピーク波長
帯における光強度に対する可視光領域のピーク波長帯に
おける光強度の比強度を計算する比強度計算手段と、可
視光領域のピーク波長帯における光強度と前記比強度と
の組合せに基づいて、前記青果物の内部品質を判別する
判別手段とを備えることを特徴とする青果物の内部品質
検査装置。
3. A light source for irradiating the fruits and vegetables to be inspected with light, a spectroscopic means for wavelength-splitting the transmitted light of the fruits and vegetables, and a light intensity for measuring the light intensity in the peak wavelength band of the near infrared region and the visible light region. Measuring means, a specific intensity calculation means for calculating the specific intensity of the light intensity in the peak wavelength band of the visible light region to the light intensity in the peak wavelength band of the near infrared region, the light intensity in the peak wavelength band of the visible light region and the An internal quality inspection device for fruits and vegetables, comprising: a determination unit that determines the internal quality of the fruits and vegetables based on a combination with a specific intensity.
【請求項4】 前記分光手段は、前記透過光を二方向へ
分波する少なくとも一つ以上の分波手段と、分波光が入
射し、可視光領域の検出すべき波長帯の光を選択的に透
過する一つ以上の可視光波長フィルタと、別の分波光が
入射し、近赤外領域の波長帯の光を選択的に透過する近
赤外波長フィルタとにより構成してあり、前記光強度計
測手段は、前記第一波長フィルタの透過光の光強度を計
測する一つ以上の第一光センサと、前記第二波長フィル
タの透過光の光強度を計測する第二光センサとにより構
成してあることを特徴とする請求項3記載の青果物の内
部品質検査装置。
4. The spectroscopic means selectively outputs at least one demultiplexing means for demultiplexing the transmitted light in two directions and light in a wavelength band to be detected in a visible light region upon incidence of the demultiplexed light. , One or more visible light wavelength filters that are transmitted through, and another demultiplexed light is incident, and is configured by a near-infrared wavelength filter that selectively transmits light in the wavelength band of the near-infrared region. The intensity measuring means includes one or more first optical sensors that measure the light intensity of the transmitted light of the first wavelength filter, and a second optical sensor that measures the light intensity of the transmitted light of the second wavelength filter. The internal quality inspection device for fruits and vegetables according to claim 3, wherein
【請求項5】 前記可視光領域の検出すべき波長帯とし
て、550nm±30nm、600nm±30、630
nm±30nm、700nm±30nmあるいは730
nm±30nmの群の中から少なくとも一つの波長帯を
選択し、一方、前記近赤外領域のピーク波長帯として、
800乃至810nm±30nmを選択することを特徴
とする請求項3又は4記載の青果物の内部品質検査装
置。
5. The wavelength band to be detected in the visible light region is 550 nm ± 30 nm, 600 nm ± 30, 630.
nm ± 30 nm, 700 nm ± 30 nm or 730
nm ± 30 nm, at least one wavelength band is selected from the group, while as the peak wavelength band in the near infrared region,
The internal quality inspection device for fruits and vegetables according to claim 3 or 4, wherein 800 to 810 nm ± 30 nm is selected.
JP2002185203A 2001-09-10 2002-06-25 Method and apparatus for internal quality inspection of fruits and vegetables Expired - Fee Related JP3857191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185203A JP3857191B2 (en) 2001-09-10 2002-06-25 Method and apparatus for internal quality inspection of fruits and vegetables

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-273724 2001-09-10
JP2001273724 2001-09-10
JP2002185203A JP3857191B2 (en) 2001-09-10 2002-06-25 Method and apparatus for internal quality inspection of fruits and vegetables

Publications (2)

Publication Number Publication Date
JP2003156441A true JP2003156441A (en) 2003-05-30
JP3857191B2 JP3857191B2 (en) 2006-12-13

Family

ID=26621919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185203A Expired - Fee Related JP3857191B2 (en) 2001-09-10 2002-06-25 Method and apparatus for internal quality inspection of fruits and vegetables

Country Status (1)

Country Link
JP (1) JP3857191B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071603A (en) * 2005-09-05 2007-03-22 Niigata Univ Nondestructive determination method of japanese radish having internal fault and its device
CN100335886C (en) * 2006-05-09 2007-09-05 江西农业大学 Reflection type fast detector for acidity of fruit confection
ITPD20090081A1 (en) * 2009-04-03 2010-10-04 Univ Bologna Alma Mater METHOD AND DEVICE FOR THE DETERMINATION OF A PARAMETER OF MATURATION AND CONSERVATION OF FRUITS BELONGING TO THE FAMILY OF THE ACTINIDIES
CN105092518A (en) * 2015-06-16 2015-11-25 江西农业大学 Navel orange sugar degree rapid nondestructive detection method and device
CN106596414A (en) * 2016-11-14 2017-04-26 浙江大学 Imaging method for internal hardness space distribution of peach fruit
CN109580501A (en) * 2018-12-25 2019-04-05 上海理工大学 A kind of fruits and vegetables fresh quality intelligent distinguishing device and method of embeddeding refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071603A (en) * 2005-09-05 2007-03-22 Niigata Univ Nondestructive determination method of japanese radish having internal fault and its device
CN100335886C (en) * 2006-05-09 2007-09-05 江西农业大学 Reflection type fast detector for acidity of fruit confection
ITPD20090081A1 (en) * 2009-04-03 2010-10-04 Univ Bologna Alma Mater METHOD AND DEVICE FOR THE DETERMINATION OF A PARAMETER OF MATURATION AND CONSERVATION OF FRUITS BELONGING TO THE FAMILY OF THE ACTINIDIES
CN105092518A (en) * 2015-06-16 2015-11-25 江西农业大学 Navel orange sugar degree rapid nondestructive detection method and device
CN106596414A (en) * 2016-11-14 2017-04-26 浙江大学 Imaging method for internal hardness space distribution of peach fruit
CN109580501A (en) * 2018-12-25 2019-04-05 上海理工大学 A kind of fruits and vegetables fresh quality intelligent distinguishing device and method of embeddeding refrigerator
CN109580501B (en) * 2018-12-25 2023-11-07 上海理工大学 Intelligent judging device and method for fresh quality of fruits and vegetables embedded in refrigerator

Also Published As

Publication number Publication date
JP3857191B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3792175B2 (en) Internal quality inspection method and apparatus for core fruits and vegetables
US8072605B2 (en) Method and apparatus for determining quality of fruit and vegetable products
US6512577B1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
Giovenzana et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine
RU2738593C2 (en) System and method of detecting acrylamide precursors in raw potatoes and potato-based food products
JP3868847B2 (en) Apple internal quality inspection method
JP2006098106A (en) Internal quality evaluation device for produce
JP2002122540A (en) Fresh product evaluating device and method
Kawano Non-destructive NIR quality evaluation of fruits and vegetables in Japan
JP3857191B2 (en) Method and apparatus for internal quality inspection of fruits and vegetables
Novo et al. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa)
Rady et al. Evaluation of carrot quality using visiblenear infrared spectroscopy and multivariate analysis
Nishino et al. Dual-beam spectral measurement improves accuracy of nondestructive identification of internal rot in onion bulbs
JP7169643B2 (en) Nitrate ion concentration nondestructive measuring method, nitrate ion concentration nondestructive measuring device, and nitrate ion concentration nondestructive measuring program
JPH04208842A (en) Method and device for measuring sugar content of vegetable and fruit
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
JP2004294108A (en) Apparatus for measuring sugar concentration
TW202117306A (en) Method for measuring chlorophyll content and method for determining maturity of fruit
JP2011180032A (en) Organism inspection apparatus using transmitted light
Lu et al. NIR measurement of apple fruit soluble solids content and firmness as affected by postharvest storage
Omar et al. Visible spectral linearisation, gradient shift and normalisation in quantifying carambola acidity
Khatiwada et al. Internal defect detection in fruit by using nir spectroscopy
Hong et al. A Comparison between the Post-and Pre-dispersive Near Infrared Spectroscopy in Non-Destructive Brix Prediction Using Artificial Neural Network
Suhandy et al. The measurement of soluble solids content in snake fruit (Salacca Edulis Reinw) cv. pondoh using a portable spectrometer
JP2003035669A (en) Method and apparatus for nondestructive judgment of ripe level of fruit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees