JP2004294108A - Apparatus for measuring sugar concentration - Google Patents

Apparatus for measuring sugar concentration Download PDF

Info

Publication number
JP2004294108A
JP2004294108A JP2003083464A JP2003083464A JP2004294108A JP 2004294108 A JP2004294108 A JP 2004294108A JP 2003083464 A JP2003083464 A JP 2003083464A JP 2003083464 A JP2003083464 A JP 2003083464A JP 2004294108 A JP2004294108 A JP 2004294108A
Authority
JP
Japan
Prior art keywords
sugar content
fruit
light
ripening
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083464A
Other languages
Japanese (ja)
Inventor
Norio Taniguchi
典男 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003083464A priority Critical patent/JP2004294108A/en
Publication of JP2004294108A publication Critical patent/JP2004294108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sugar concentration measuring apparatus for performing sugar concentration measurement with respect to unripe after-ripening type fruit, and for precisely predicting the sugar concentration of the ripe after-ripening type fruit after the after-ripening treatment. <P>SOLUTION: The sugar concentration measuring apparatus for measuring the quantity of light absorption by fruit juice contained in fruit and vegetables and for measuring the sugar concentration of the fruit and vegetables, based on the measurement result has a light reception section 4 comprising a spectral section 4a for receiving light L2 transmitted from the after-ripening type fruit 10 and for dispensing the light L2; a photoelectric conversion section 4b for photoelectrically converting light L3 inputted from the spectral section 4a and for outputting light absorption information S3 corresponding to the light L3; and an arithmetic processing section 4c for measuring the quantity of absorption light by the sugar of the fruit and vegetables, based on the light absorption information S3 and CH group and OH group in starch, and predicting the sugar of the after-ripening type fruit 10 after ripening by using a calibration curve for indicating the relationship between the amount of light absorption obtained in advance and sugar after ripening of the after-ripening type fruit 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、果実や野菜等の青果物の糖度を計測する糖度計測装置に関し、特にキウイやマンゴウ等の追熟型果実の糖度計測に好適な糖度計測装置に関するものである。
【0002】
【従来の技術】
従来から、果実や野菜等の青果物に含まれるショ糖、ブドウ糖、または果糖などの糖類の割合(糖度)を非破壊計測する糖度計測装置として、計測対象の青果物に投光して得られる散乱透過光を用いて近赤外線域の所定の波長帯域(たとえば750〜1100nm)における光吸収量を計測し、この計測結果によって得られる吸光度と、吸光2次微分スペクトル法を用いて作成された検量線とをもとに、この青果物の糖度を非破壊計測するものがある(非特許文献1参照)。
【0003】
なお、ショ糖、ブドウ糖、または果糖などの糖類は、炭化水素基(CH基)や水酸基(OH基)などの官能基によって構成される水溶性物質であり、750〜1100nmの波長帯域の光が照射された場合、伸縮運動等の分子振動を起こし、この照射された光のエネルギーを消費する性質を有する。すなわち、この糖類を構成するCH基およびOH基は、750〜1100nmの波長帯域の光を吸収する。
【0004】
【非特許文献1】
「光による青果物の内部品質計測装置」木村美紀夫著 レーザ協会誌、第25巻、第4号、p.23−28
【0005】
【発明が解決しようとする課題】
しかしながら、上述した非特許文献1に記載された糖度計測装置では、ショ糖、ブドウ糖、または果糖などの水溶性の糖類を構成するCH基およびOH基による光吸収量の計測結果から得られる吸光度を用いて青果物の糖度を計測するようにしているので、水に難溶であるデンプンを構成するCH基およびOH基による光吸収量を計測することは困難である。
【0006】
一方、キウイやマンゴウなどの未熟の果肉にデンプンを含む追熟型果実は、収穫してすぐの時期では未熟であり、果肉におけるデンプンの占める割合が糖に比して非常に多い。そして、この未熟な追熟型果実の果肉に含まれるデンプンは、時間の経過とともに水溶性の糖に徐々に変化し、この追熟型果実が完熟した場合、この果肉に含まれるデンプンは全て水溶性の糖に変化する。
【0007】
すなわち、上述した非特許文献1に記載された糖度計測装置では、未熟の果肉にデンプンを含む追熟型果実の糖度を計測する場合に、この追熟型果実が完熟するまで待たなければならず、収穫後から糖度計測が完了するまでに多大な時間がかかるという問題点があるとともに、市場流通を考慮すると、完熟した追熟型果実の糖度計測は非現実的であるという問題点があった。
【0008】
また、追熟型果実の糖度は上述したように時間の経過とともに変化し、さらに、その糖度計測結果には各果実間において個体差があるため、完熟前の追熟型果実の糖度を一律に決定することは困難な場合が多く、完熟前の追熟型果実の糖度計測値を用いて完熟時の糖度を予測しても、その糖度予測結果には実用に耐えないバラツキが生じるという問題点があった。
【0009】
一方、青果物を糖度等の内部品質を示す等級別および大きさを示す階級別に選別する青果選別処理においては、出荷後に完熟した状態になるように、未熟の青果物を選別することが多く、このため、未熟の追熟型果実の糖度計測結果から完熟時の糖度を予測可能な糖度計測装置の実現が要望されている。
【0010】
この発明は、上記事情に鑑みてなされたものであって、未熟の追熟型果実に対して糖度計測処理を行って、追熟処理後の完熟した追熟型果実の糖度を高精度に予測することが可能な糖度計測装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる糖度計測装置は、計測対象の青果物に近赤外線の波長帯域を含む光を照射し、発生する内部散乱光の透過光を受光して前記青果物の果汁による前記内部散乱光の吸収量を計測し、前記吸収量の計測結果をもとに前記青果物の糖度を計測する糖度計測装置において、前記青果物に含まれる糖分子およびデンプン分子内の炭化水素基および水酸基に吸収される所定波長帯域内の複数波長の各吸収量を少なくとも計測し、予め求められた前記各吸収量と前記青果物の完熟後の糖度との関係を示す検量線を用いて前記計測された各吸収量に対する前記青果物の完熟後の糖度を予測する糖度予測演算手段を備えたことを特徴とする。
【0012】
この請求項1の発明によれば、糖度予測演算手段が、前記青果物から受光する前記内部散乱光の透過光をもとに、前記青果物に含まれる糖分子およびデンプン分子内の炭化水素基および水酸基に吸収される所定波長帯域内の複数波長の各吸収量を少なくとも計測し、予め求められた前記各吸収量と前記青果物の完熟後の糖度との関係を示す検量線を用いて前記計測された各吸収量に対する前記青果物の完熟後の糖度を予測するようにし、果肉に含まれるデンプンを時間の経過とともに糖に変化させる追熟型果実の完熟後の糖度を収穫時期近傍の未熟な追熟型果実を用いて予測可能な糖度計測装置を実現している。
【0013】
また、請求項2にかかる糖度計測装置は、上記発明において、前記所定波長帯域は、840nmから960nmまでの範囲であることを特徴とする。
【0014】
この請求項2の発明によれば、前記所定波長帯域が、840nmから960nmの範囲の複数波長からなるようにし、前記検量線が、完熟後の前記追熟型果実の糖度予測値を計測するうえで最適化され、これによって、完熟後の追熟型果実の糖度を一層高精度に予測できる。
【0015】
【発明の実施の形態】
以下、添付図面を参照して、この発明にかかる糖度計測装置の好適な実施の形態を詳細に説明する。なお、以下では、この発明にかかる糖度計測装置によって計測される青果物の例として、時間の経過とともに果肉に含まれるデンプンが糖に変化する追熟型果実について説明する。
【0016】
まず、この発明にかかる糖度計測装置による糖度計測処理の基本原理について説明する。キウイやマンゴウなどの上述した追熟型果実は、収穫後に行う予冷保管等の追熟処理によって、未熟な果肉に含まれるデンプンをショ糖などの糖に変化させ、これによって、追熟型果実の甘味成分としての糖を生成する。したがって、この追熟型果実の完熟後の糖度B0[%]は、果実の収穫時期から完熟時期までの任意の時期tにおける糖度B1(t)[%]と時期tにおける潜在糖度B2(t)[%]を用いて、次式(1)によって示される。
B0=B1(t)+B2(t) (収穫時期≦t≦完熟時期)・・・(1)
ただし、潜在糖度B2(t)は、時期tにおいて果肉に含まれるデンプンが糖に変化することで得られる潜在的な糖度である。すなわち、潜在糖度B2(t)は、収穫時期において糖度B0と同程度であり、完熟時期において0[%]である。また、糖度B1(t)は、時期tにおいて果汁に溶解している糖に起因する糖度であり、収穫時期においてほぼ0[%]であり、完熟時期において糖度B0と同値である。なお、糖度B1(t)および潜在糖度B2(t)は、時期tにおける追熟型果実に含まれる糖およびデンプンの各量にそれぞれ依存するので、糖度B0は、時期tにおける追熟型果実に含まれる糖およびデンプンの総量に依存する。
【0017】
ここで、追熟型果実に含まれるデンプンは、ブドウ糖を最小単位として構成されている物質であり、CH基やOH基などの官能基を有しているので、上述した糖の場合と同様に、近赤外線域における所定波長帯域(たとえば840〜960nm)の光を吸収する。したがって、この追熟型果実による840〜960nmの波長帯域の光吸収量を計測すれば、時期tにおいて追熟型果実に含まれる糖およびデンプンの総量に対応する吸光度を検出することができ、さらに、この検出された吸光度と、840〜960nmの範囲の波長を組み合わせて構成される検量線とを用いれば、糖度B0を計測することができる。すなわち、上述した原理によれば、果実の収穫時期から完熟時期までの任意の時期tにおいて、完熟前の追熟型果実に対して上述した各計測処理を行って、この追熟型果実の完熟後の糖度を予測することができる。
【0018】
なお、上述した基本原理を用いて追熟型果実の完熟後の糖度を予測する場合、果肉におけるデンプンの占める割合が比較的大きい収穫時期近くの追熟型果実に対して、糖度計測処理を行うことが望ましい。
【0019】
一方、従来の糖度計測装置は、果実に含まれるショ糖などの水溶性の糖のみを検出して果実の糖度を計測しているので、水に難溶性のデンプンによる光吸収量を計測して果実の糖度を計測するが困難であり、また、果実の糖度を計測する場合、果汁に含まれる水分子のOH基による影響を考慮した所定の補正項と、750〜1100nmの範囲の波長における吸光2次微分スペクトルとによって構成された検量線とを用いるので、上述した追熟型果実の糖度計測結果では実用に耐えないバラツキが生じる。
【0020】
つぎに、この発明の実施の形態である糖度計測装置の構成について説明する。図1は、この発明の実施の形態である糖度計測装置の構成を示すブロック図である。図1において、糖度計測装置1は、計測対象物である追熟型果実10に対して近赤外線域の光を照射する投光部3と、追熟型果実10を透過した光を受ける受光部4とを有し、投光部3および受光部4は、追熟型果実10を介して対面するように配置される。制御部5は、入力部2、投光部3、受光部4、および出力部6が接続され、これらを制御する。なお、図1における太線矢印は、光を示している。
【0021】
入力部2は、キーボード、タッチパネル、バーコードリーダ、カードリーダなどの組み合わせによって実現され、常時入力依頼状態に設定され、投光部3が追熟型果実10に光を照射する前に、追熟型果実10の種類情報(たとえばキウイ、マンゴウなど)が入力される。この種類情報の入力において、キーボードやタッチパネルを用いる場合には、種類情報の入力指示のもとに入力し、あるいは選択することによって情報入力が行われる。一方、予め果実の種類を特定するバーコードが付されたカードあるいは果実の種類を特定する電子情報が格納されたカードを用いて入力することができ、バーコードが付されたカードの場合には、バーコードリーダを用いて情報が読み取られ、電子情報が格納されたカードの場合には、カードリーダによって情報が読み取られる。入力部2に入力された種類情報は、種類情報S1として制御部5に入力される。
【0022】
その後、入力部2は、投光部3による光の照射処理を指示する情報の入力受付を行う。この照射処理に対する指示情報は、キーボードやタッチパネルを用いて入力することができ、この情報の入力指示のもとに入力し、あるいは選択することによって情報入力が行われる。なお、この照射処理に対する指示情報の入力は、上述した種類情報S1の入力と同時に行われるようにしてもよいし、追熟型果実10の種類が同一である場合には、種類情報S1の入力を省略して、この照射処理に対する指示情報の入力受付を行うようにしてもよい。
【0023】
投光部3は、ハロゲンランプなどの光源および照射光量を調整する絞り機構などを備えることで実現され、計測対象の追熟型果実10に適した量の光を照射する。この追熟型果実10に対する光の照射処理および照射光量の調整処理は、制御部5の制御のもとに行われ、たとえば、比較的吸光度の低い追熟型果実に対して光の照射処理を行う場合には、照射光量を低くするように絞り機構が制御され、比較的吸光度の高い追熟型果実に対して光の照射処理を行う場合には、照射光量を高くするように絞り機構が制御され、これによって、計測対象の追熟型果実に適した光を照射することができる。投光部3は、制御部5による制御のもと、追熟型果実10に適した照射光量の光L1を照射する。
【0024】
受光部4は、分光部4a、光電変換部4b、および演算処理部4cを有し、追熟型果実10から受光した光L2によって得られる光情報をもとに、追熟型果実10に含まれる糖およびデンプンによる吸光度を検出し、この検出結果をもとに追熟型果実10の完熟後の糖度予測値を計測する。その後、受光部4は、計測した糖度予測値として、糖度情報S4を制御部5による制御のもとに出力する。ただし、光L2は、上述した光L1が照射されることで追熟型果実10に生じる内部散乱光の透過光である。
【0025】
分光部4aは、少なくとも近赤外線域の光を分光するプリズムや回折格子などの分光器によって実現され、追熟型果実10から透過した光L2を受光するとともに、光L2をスペクトルに分解する。分光部4aは、このスペクトルを示す光情報として、光L3を光電変換部4bに出力する。
【0026】
光電変換部4bは、少なくとも近赤外線域の光を光電変換するアレイ型受光素子によって実現され、分光部4aから出力された光L3に対して光電変換処理を行い、光L3のスペクトルのうちの複数波長の光を受光し、それぞれを電気信号に変換して出力する。これらの電気信号は、追熟型果実10に含まれる糖およびデンプンによる複数波長の各光吸収量に対応しており、光電変換部4bは、これらの光吸収量に対応する情報を含む電気信号として、光吸収情報S3を演算処理部4cに出力する。
【0027】
演算処理部4cは、光電変換部4bから入力されたアナログ信号を増幅するアンプ、増幅されたアナログ信号をデジタル信号に変換するコンパレータ回路、得られたデジタル信号をもとに追熟型果実10による吸光度を検出する吸光度演算処理と、検出された吸光度をもとに完熟後の追熟型果実10の糖度予測値を演算する糖度演算処理とを行うCPU(Central Processing Unit)、これら演算処理のプログラムなどの各種データを記憶するROM(Read Only Memory)、および演算パラメータなどを記憶するRAM(Random Access Memory)を有することで実現される。演算処理部4cは、光電変換部4bから入力された光吸収情報S3をもとに、追熟型果実10に含まれる糖およびデンプンの各官能基による吸光度を検出し、さらに、検出された吸光度と制御部5から入力された検量線情報S2とをもとに、完熟後の追熟型果実10の糖度予測値を演算する。ただし、上述したCPUによる各演算処理機能は、このCPUが演算処理部4cのROMに格納されたプログラムを実行することによって実現する。その後、演算処理部4cは、得られた糖度予測値を出力する制御信号が制御部5から入力された場合、この糖度予測値に対応する糖度情報S4を制御部5に送出する。
【0028】
なお、演算処理部4cは、糖度計測対象の追熟型果実10に対応する検量線データを有し、入力部2から入力される種類情報S1をもとに検量線を読み取るようにし、さらに、この検量線と光吸収情報S3とをもとに完熟後の追熟型果実10の糖度予測値を計測する各演算処理を行うようにしてもよいし、入力部2から入力される出力指示信号をもとに、得られた糖度予測値に対応する糖度情報S4を出力部6に送出するようにしてもよい。
【0029】
制御部5は、糖度計測対象の各種青果物に対応する検量線データを格納した記憶部5aを有する。ただし、この検量線データによって示される検量線は、上述したように840〜960nmの範囲の波長を組み合わせて構成される。制御部5は、入力部2から種類情報S1を入力された場合、上述した照射処理および照射光量の調整処理を制御する信号を投光部3に送出し、種類情報S1に対応する検量線データとして検量線情報S2を演算処理部4cに送出する。すなわち、制御部5は、糖度計測対象の追熟型果実10に適した照射光量の光L1を確実に照射する制御を行い、さらに、追熟型果実10と上述した検量線データとの対応付けを確実に行う。また、制御部5は、演算処理部4cによって演算された糖度予測値を出力する指示信号を入力部2から入力された場合、演算処理部4cから上述した糖度情報S4を受信し、出力部6に対して、受信した糖度情報S4に対応する糖度予測値を出力する制御を行う。出力部6は、プリンタやディスプレイなどによって実現され、入力部2によって指示された情報を出力する。
【0030】
なお、制御部5は、糖度計測対象の追熟型果実の個数を特定する個数情報と種類情報S1とを入力部2から入力受付できるようにし、この個数情報および種類情報S1を順次搬送される各追熟型果実を特定する特定情報として管理し、順次搬送される追熟型果実と検量線データとの対応付けを確実に行うようにしてもよい。
【0031】
つぎに、演算処理部4cが、完熟後の追熟型果実10の糖度予測値を演算するまでの処理手順について詳細に説明する。図2は、演算処理部4cが、糖度計測対象の追熟型果実10に対応する検量線情報S2を入力受付してから追熟型果実10についての糖度演算処理を行うまでの処理手順を示すフローチャートである。
【0032】
図2において、糖度計測対象の追熟型果実10の種類情報S1が入力部2から入力された場合、演算処理部4cは、種類情報S1に対応する検量線情報S2を制御部5から受信する(ステップS101)。この場合、演算処理部4cは、追熟型果実10の検量線データとして、受信した検量線情報S2を保存する。
【0033】
ここで、演算処理部4cに保存される検量線情報S2に対応する検量線は、追熟型果実10に含まれる糖およびデンプンの各官能基(CH基、OH基)による吸光度をもとに、上述した追熟型果実10の完熟後の糖度B0[%]を演算する式であり、次式(2)によって示される。

Figure 2004294108
ただし、上式(2)において、関数F1(λ,…,λ),F2(λ,…,λ)は、840〜960nmの範囲に含まれる複数波長の吸光度からなる関数であり、関数F1(λ,…,λ)は、糖およびデンプンのCH基、OH基による光吸収に関し、関数F2(λ,…,λ)は、糖度計測対象物の光路長の違いに対する補正に関する。係数a1,a2は、全ての糖度計測装置および計測対象物に対して同値であり、係数a3は、糖度計測装置間で異なるオフセット値である。
【0034】
その後、演算処理部4cは、追熟型果実10に含まれる糖およびデンプンのCH基、OH基による光吸収量に対応する光吸収情報S3を光電変換部4bから取得し(ステップS102)、この光吸収情報S3をもとに、追熟型果実10に含まれる糖およびデンプンのCH基、OH基による吸光度を検出する演算処理を行う(ステップS103)。この演算処理によって検出される吸光度は、追熟型果実10に含まれる糖およびデンプンの総量に対応しており、このデンプンが全て糖に変化した完熟状態の追熟型果実10に含まれる糖による吸光度に対応している。なお、演算処理部4cは、まず光吸収情報S3を入力し、検量線情報S2を入力するようにしてもよい。
【0035】
図3は、収穫時期から完熟時期までの間において、追熟型果実10に含まれる糖およびデンプンの成分変化を示す図であり、吸光度A0[%]は、完熟時期における追熟型果実10の吸光度であり、吸光度A1[%]は、収穫時期から完熟時期までの任意の時期tにおけるデンプンの吸光度であり、吸光度A2[%]は、時期tにおける糖の吸光度である。図3において、収穫時期に近いとき、追熟型果実10におけるデンプンの占める割合が多く、吸光度A1が、吸光度A2に比して大きい。また、収穫時期から完熟時期に近づくにしたがって、このデンプンが糖に変化するとともに、糖の占める割合が増加し、吸光度A1が減少するとともに吸光度A2が増加する。とくに、完熟時期近くでは、このデンプンのほとんどが糖に変化し、吸光度A2が、吸光度A1に比して大きい。しかし、吸光度A0は、図3に示すように、上述した糖およびデンプンの含有量の変化に対して常に一定であり、吸光度A1,A2の和で表すことができる。これは、収穫時期から完熟時期までの間において、追熟型果実10に含まれる糖およびデンプンのCH基およびOH基による吸光度が常に一定であることを意味し、任意の時期tにおける追熟型果実10に含まれる糖およびデンプンによる光吸収量を計測すれば、完熟後の追熟型果実10に対応する吸光度を検出することができる。
【0036】
その後、演算処理部4cは、上述した吸光度検出結果と検量線情報S2に対応する検量線とをもとに、完熟後の追熟型果実10の糖度予測値を計測する演算処理を行い(ステップS104)、これによって、未熟な追熟型果実10から完熟後の追熟型果実10の糖度予測値を得ることができる。
【0037】
その後、演算処理部4cは、得られた糖度予測値の出力を要求する制御信号が制御部5から入力された場合(ステップS105,Yes)、この糖度予測値に対応する糖度情報S4を制御部5に送出し(ステップS106)、制御信号が制御部5から入力されない場合(ステップS105,No)、ステップS107に移行する。その後、演算処理部4cは、追熟型果実10の種類が変更されたか否かを判断し(ステップS107)、種類が変更された場合(ステップS107,Yes)、上述した検量線情報S2の入力工程からの各処理を行い、追熟型果実10の種類が変更されない場合(ステップS107,No)、上述した光吸収情報S3の入力工程から各処理を行う。
【0038】
ここで、糖度計測対象の追熟型果実10の一例としてキウイを用いた場合の糖度予測結果について説明する。図4は、糖度計測装置1が未熟なキウイから計測した完熟後の糖度予測値と、このキウイを実際に完熟させた後に計測した糖度実測値との関係を示す図である。図4において、直線D0は、上述した糖度予測値および糖度実測値が同値となる理想状態を示す線であり、直線D1,D2は、この理想状態に対する糖度予測値のバラツキ許容範囲を示す線である。図4に示すように、糖度計測装置1が未熟なキウイから計測した糖度予測値は、ほぼ直線D上に密集しており、全糖度予測値が、直線D1,D2によるバラツキ許容範囲内に存在している。また、この場合の理想状態に対する糖度予測値のバラツキを示す標準偏差σ1は、0.275程度であり、青果物の糖度計測において要望される糖度予測値のバラツキ(標準偏差σ1≦0.50)を十分満足している。したがって、糖度計測装置1は、未熟な追熟型果実から完熟後の糖度を高精度に予測することができる。すなわち、糖度計測装置1は、収穫後の青果物を等階級別に選別する選別処理などの各種処理に対して、実用に耐えうるものである。
【0039】
一方、従来の糖度計測装置を用いた場合、計測された糖度予測値には、実用に耐えないバラツキが生じる。図5は、従来の糖度計測装置が未熟なキウイから計測した完熟後の糖度予測値と、このキウイを実際に完熟させた後に計測した糖度実測値との関係を示す図であり、上述した直線D0〜D2が図示されている。図5に示すように、従来の糖度測定装置による糖度予測値は、直線D1,D2によるバラツキ許容範囲内にほとんど収まらず、この糖度予測値のバラツキを示す標準偏差σ2は、200以上の値となり、青果物の糖度計測において要望される糖度予測値のバラツキを全く満足していない。また、従来の糖度計測装置による糖度予測値は、糖度実測値に対して低い値をとる場合が多く、このことは、従来の糖度計測装置が未熟のキウイに含まれるデンプンによる潜在的な糖度を計測することができないためと推測される。したがって、従来の糖度計測装置では、未熟の追熟型果実から完熟後の糖度を高精度に予測することができない。
【0040】
この実施の形態では、追熟型果実に含まれる糖およびデンプンを構成する各官能基(CH基、OH基)による光吸収量を計測して吸光度を検出し、この吸光度と、840〜960nmの波長帯域の複数波長を組み合わせて構成された検量線とをもとに完熟後の追熟型果実の糖度を計測するようにしたので、収穫後の早い時期の未熟な追熟型果実を用いて、この追熟型果実の完熟後の糖度を高精度かつ容易に予測することができ、さらに、計測対象の追熟型果実が完熟するまで待つ必要がなく、完熟後の追熟型果実の糖度を早期に予測可能であり、収穫後の青果物を等階級別に選別する選別処理装置に対して最適な糖度計測装置を実現することができる。
【0041】
なお、この発明の実施の形態では、糖度計測対象の青果物の例として未熟な果肉にデンプンを含む追熟型果実を用いた場合を示したが、この発明は、これに限定されるものではなく、みかん、桃、メロン、またはトマトなどの各種青果物を用いた場合に適用することもできる。
【0042】
また、この発明の実施の形態では、糖度測定対象の追熟型果実から透過した光を受ける受光部が投光部の対面に配置された全透過型の糖度計測装置の場合を示したが、この発明は、これに限定されるものではなく、糖度計測対象の追熟型果実の周辺から複数光源を用いて投光し、この追熟型果実の底部から透過する光を受けるようにした半透過型の糖度計測装置の場合に適用することもできる。
【0043】
【発明の効果】
以上説明したように、この請求項1の発明によれば、糖度予測演算手段が、前記青果物から受光する前記内部散乱光の透過光をもとに、前記青果物に含まれる糖分子およびデンプン分子内の炭化水素基および水酸基に吸収される所定波長帯域内の複数波長の各吸収量を少なくとも計測し、予め求められた前記各吸収量と前記青果物の完熟後の糖度との関係を示す検量線を用いて前記計測された各吸収量に対する前記青果物の完熟後の糖度を予測しているので、果肉に含まれるデンプンを時間の経過とともに糖に変化させる追熟型果実の完熟後の糖度を収穫時期近くの未熟な追熟型果実を用いて予測することができ、計測対象の追熟型果実が完熟するまで待つ必要がなく、早期に完熟後の糖度を予測可能な糖度計測装置を実現できるという効果を奏する。
【0044】
また、請求項2の発明によれば、前記所定波長帯域が、840nmから960nmの範囲の複数波長からなるようにしているので、前記検量線が、完熟後の前記追熟型果実の糖度予測値を計測するうえで最適化され、これによって、完熟後の追熟型果実の糖度を一層高精度に予測できるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の実施の形態である糖度計測装置の構成を示すブロック図である。
【図2】演算処理部が追熟型果実の糖度予測値を計測するまでの処理手順を示すフローチャートである。
【図3】追熟型果実の糖およびデンプンの成分変化と吸光度変化とを示す図である。
【図4】この発明の実施の形態である糖度計測装置による追熟型果実の糖度予測結果の一例を示す図である。
【図5】従来の糖度計測装置による追熟型果実の糖度予測結果の一例を示す図である。
【符号の説明】
1 糖度計測装置
2 入力部
3 投光部
4 受光部
4a 分光部
4b 光電変換部
4c 演算処理部
5 制御部
5a 記憶部
6 出力部
10 追熟型果実
A0〜A2 吸光度
L1〜L3 光
S1 種類情報
S2 検量線情報
S3 光吸収情報
S4 糖度情報[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sugar content measuring device for measuring the sugar content of fruits and vegetables such as fruits and vegetables, and more particularly to a sugar content measuring device suitable for measuring the sugar content of ripening fruits such as kiwi and mango.
[0002]
[Prior art]
Conventionally, as a sugar content measuring device that non-destructively measures the ratio (sugar content) of sugars such as sucrose, glucose, or fructose contained in fruits and vegetables such as fruits and vegetables, scattered transmission obtained by projecting light on the fruits and vegetables to be measured The amount of light absorption in a predetermined wavelength band in the near infrared region (for example, 750 to 1100 nm) is measured using light, the absorbance obtained from the measurement result, and a calibration curve created by using the second derivative absorption spectrum method. There is one that nondestructively measures the sugar content of the fruits and vegetables based on the above (see Non-Patent Document 1).
[0003]
Note that sugars such as sucrose, glucose, and fructose are water-soluble substances composed of functional groups such as hydrocarbon groups (CH groups) and hydroxyl groups (OH groups), and light in a wavelength band of 750 to 1100 nm is used. When irradiated, it has the property of causing molecular vibration such as stretching movement and consuming the energy of the irradiated light. That is, the CH group and the OH group constituting the saccharide absorb light in a wavelength band of 750 to 1100 nm.
[0004]
[Non-patent document 1]
"Internal Quality Measurement System for Fruits and Vegetables by Light", Mikio Kimura, Laser Association Magazine, Vol. 25, No. 4, p. 23-28
[0005]
[Problems to be solved by the invention]
However, in the sugar content measuring device described in Non-Patent Document 1, the absorbance obtained from the measurement result of the light absorption by the CH group and the OH group constituting the water-soluble saccharide such as sucrose, glucose, or fructose is measured. Since it is used to measure the sugar content of fruits and vegetables, it is difficult to measure the amount of light absorption by CH groups and OH groups constituting starch which is hardly soluble in water.
[0006]
On the other hand, ripening fruits containing starch in immature flesh such as kiwi and mango are immature immediately after harvesting, and the proportion of starch in the flesh is much higher than that of sugar. Then, the starch contained in the pulp of the immature ripened fruit gradually changes to a water-soluble sugar with the passage of time, and when the ripened fruit is fully ripe, all the starch contained in the pulp is soluble in water. Changes to sex sugar.
[0007]
That is, in the sugar content measuring device described in Non-Patent Document 1 described above, when measuring the sugar content of a ripening fruit containing starch in immature pulp, it is necessary to wait until the ripening fruit is fully ripe. In addition, there is a problem that it takes a lot of time to complete the sugar content measurement after harvesting, and there is a problem that the sugar content measurement of a ripe ripening type fruit is impractical considering market distribution. .
[0008]
In addition, the sugar content of the ripening fruit changes over time as described above, and the sugar content measurement results have individual differences between the fruits. In many cases, it is difficult to determine, and even if the sugar content at the time of ripeness is predicted using the sugar content measurement value of the ripening type fruit before ripeness, the result of the sugar content prediction result may be unpractical variation. was there.
[0009]
On the other hand, in the fruit and vegetable sorting process in which fruits and vegetables are sorted by grade indicating internal quality such as sugar content and by rank indicating size, in order to be ripe after shipment, immature fruits are often sorted. There has been a demand for a sugar content measuring device capable of predicting the sugar content at the time of ripeness from the sugar content measurement results of unripe ripening fruits.
[0010]
The present invention has been made in view of the above circumstances, and performs a sugar content measurement process on an unripe ripened fruit to accurately predict the sugar content of a ripe ripened fruit after the ripening process. It is an object of the present invention to provide a sugar content measuring device that can perform the measurement.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the sugar content measuring device according to claim 1 irradiates a fruit or vegetable to be measured with light including a near-infrared wavelength band, receives transmitted light of internally scattered light generated, and juices the fruit or vegetable. In the sugar content measuring device that measures the amount of absorption of the internal scattered light by the above, and measures the sugar content of the fruit or vegetable based on the measurement result of the absorption amount, the sugar group contained in the fruit and vegetable and the hydrocarbon group in the starch molecule and At least each absorption amount of a plurality of wavelengths within a predetermined wavelength band absorbed by the hydroxyl group is measured, and the measurement is performed using a calibration curve showing a relationship between the previously determined absorption amounts and the sugar content of the fruits and vegetables after ripeness. And a sugar content prediction calculating means for predicting the sugar content of the fruits and vegetables after the ripeness for each absorption amount.
[0012]
According to the first aspect of the present invention, the sugar content prediction calculating means uses the transmitted light of the internal scattered light received from the fruits and vegetables to form a hydrocarbon group and a hydroxyl group in sugar molecules and starch molecules contained in the fruits and vegetables. At least measure the amount of each absorption of a plurality of wavelengths within a predetermined wavelength band to be absorbed into the predetermined wavelength band, the measurement was performed using a calibration curve indicating the relationship between the previously determined amount of each absorption and the sugar content of the fruits and vegetables after ripeness. To predict the sugar content of the fruits and vegetables after ripening for each absorption amount, the ripening type of changing the starch contained in the pulp into sugar with the passage of time The sugar content after ripening of the ripening type immature ripening type near the harvest time A predictable sugar content measuring device is realized using fruits.
[0013]
The sugar content measuring device according to claim 2 is characterized in that, in the above invention, the predetermined wavelength band is in a range from 840 nm to 960 nm.
[0014]
According to the second aspect of the present invention, the predetermined wavelength band includes a plurality of wavelengths in the range of 840 nm to 960 nm, and the calibration curve measures the predicted sugar content of the ripened fruit after ripeness. In this manner, the sugar content of the ripened fruit after ripeness can be predicted with higher accuracy.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a sugar content measuring device according to the present invention will be described in detail with reference to the accompanying drawings. In the following, as an example of fruits and vegetables measured by the sugar content measuring device according to the present invention, a ripening fruit in which the starch contained in the pulp changes to sugar over time will be described.
[0016]
First, the basic principle of the sugar content measuring process by the sugar content measuring device according to the present invention will be described. The above-ripened fruits such as kiwi and mango are converted into starch such as sucrose by the ripening treatment such as pre-cooling storage after harvesting, so that the ripening fruits Produces sugar as a sweet component. Therefore, the sugar content B0 [%] of the ripening type fruit after ripeness is determined as the sugar content B1 (t) [%] at an arbitrary time t from the harvest time to the ripeness time of the fruit and the latent sugar content B2 (t) at the time t. It is expressed by the following equation (1) using [%].
B0 = B1 (t) + B2 (t) (harvest time ≦ t ≦ ripe time) (1)
However, the potential sugar content B2 (t) is a potential sugar content obtained by changing the starch contained in the pulp into sugar at the time t. That is, the potential sugar content B2 (t) is almost the same as the sugar content B0 at the time of harvest, and is 0 [%] at the time of ripeness. The sugar content B1 (t) is the sugar content due to the sugar dissolved in the fruit juice at the time t, is almost 0 [%] at the harvest time, and has the same value as the sugar content B0 at the ripeness time. The sugar content B1 (t) and the latent sugar content B2 (t) depend on the amounts of sugar and starch contained in the ripened fruit at the time t, respectively. Depends on the total sugar and starch content.
[0017]
Here, the starch contained in the ripening type fruit is a substance composed of glucose as a minimum unit, and has a functional group such as a CH group or an OH group. And absorbs light in a predetermined wavelength band (for example, 840 to 960 nm) in the near infrared region. Therefore, if the amount of light absorption in the wavelength band of 840 to 960 nm by the ripening fruit is measured, it is possible to detect the absorbance corresponding to the total amount of sugar and starch contained in the ripening fruit at time t. By using the detected absorbance and a calibration curve formed by combining wavelengths in the range of 840 to 960 nm, the sugar content B0 can be measured. That is, according to the principle described above, at any time t from the harvest time to the ripeness time of the fruit, the above-described measurement processing is performed on the ripened fruit before ripeness, and the ripeness of this ripened fruit is Later sugar content can be predicted.
[0018]
When predicting the sugar content of the ripened fruit after ripeness using the basic principle described above, the sugar content measurement process is performed on the ripened fruit near the harvest time when the ratio of starch in the pulp is relatively large. It is desirable.
[0019]
On the other hand, conventional sugar content measuring devices detect only water-soluble sugars such as sucrose contained in fruits and measure the sugar content of fruits, so the amount of light absorbed by starch, which is hardly soluble in water, is measured. It is difficult to measure the sugar content of the fruit, and when measuring the sugar content of the fruit, a predetermined correction term taking into account the influence of the OH group of the water molecule contained in the juice, and the absorption at a wavelength in the range of 750 to 1100 nm Since the calibration curve composed of the second derivative spectrum and the second derivative spectrum is used, the result of the above-mentioned measurement of the sugar content of the ripening type fruit causes variation that is not practical.
[0020]
Next, a configuration of a sugar content measuring device according to an embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a sugar content measuring device according to an embodiment of the present invention. In FIG. 1, a sugar content measuring device 1 includes a light projecting unit 3 that irradiates near-infrared light to a ripening fruit 10 as a measurement target, and a light receiving unit that receives light transmitted through the ripening fruit 10. 4, and the light projecting unit 3 and the light receiving unit 4 are arranged so as to face each other via the ripening type fruit 10. The control unit 5 is connected to the input unit 2, the light projecting unit 3, the light receiving unit 4, and the output unit 6, and controls these. Note that the bold arrows in FIG. 1 indicate light.
[0021]
The input unit 2 is realized by a combination of a keyboard, a touch panel, a barcode reader, a card reader, and the like, is always set to an input request state, and is ripened before the light emitting unit 3 irradiates light to the ripening fruit 10. Type information of the type fruit 10 (for example, kiwi, mango, etc.) is input. When a keyboard or a touch panel is used for inputting the type information, the information input is performed by inputting or selecting under the input instruction of the type information. On the other hand, it is possible to input using a card with a barcode specifying the kind of fruit or a card storing electronic information for specifying the kind of fruit in advance, and in the case of a card with a barcode, The information is read using a barcode reader, and in the case of a card storing electronic information, the information is read by a card reader. The type information input to the input unit 2 is input to the control unit 5 as type information S1.
[0022]
After that, the input unit 2 accepts input of information instructing a light irradiation process by the light projecting unit 3. Instruction information for the irradiation process can be input using a keyboard or a touch panel, and information input is performed by inputting or selecting under the input instruction of this information. Note that the input of the instruction information for the irradiation process may be performed simultaneously with the input of the type information S1 described above, or when the types of the ripening fruits 10 are the same, the input of the type information S1 is performed. May be omitted, and input of instruction information for the irradiation process may be accepted.
[0023]
The light projecting unit 3 is realized by including a light source such as a halogen lamp and a diaphragm mechanism for adjusting the irradiation light amount, and irradiates an amount of light suitable for the ripening fruit 10 to be measured. The light irradiation process and the irradiation light amount adjustment process for the ripening fruit 10 are performed under the control of the control unit 5, and for example, the light irradiating process is performed on the ripening fruit having relatively low absorbance. When performing, the aperture mechanism is controlled so as to reduce the irradiation light amount, and when performing light irradiation processing on the ripe fruit having relatively high absorbance, the aperture mechanism is controlled so as to increase the irradiation light amount. It is controlled, and thereby, it is possible to irradiate light suitable for the ripening type fruit to be measured. The light projecting unit 3 irradiates the light L1 having an irradiation amount suitable for the ripening fruit 10 under the control of the control unit 5.
[0024]
The light receiving unit 4 includes a spectroscopic unit 4a, a photoelectric conversion unit 4b, and an arithmetic processing unit 4c, and is included in the ripening fruit 10 based on light information obtained by the light L2 received from the ripening fruit 10. The sugar content and the absorbance due to starch are detected, and the sugar content prediction value of the ripe fruit 10 after the ripeness is measured based on the detection results. After that, the light receiving unit 4 outputs the sugar content information S4 as a measured sugar content predicted value under the control of the control unit 5. However, the light L2 is the transmitted light of the internal scattered light generated in the ripening fruit 10 when the light L1 is irradiated.
[0025]
The light splitting unit 4a is realized by a spectroscope such as a prism or a diffraction grating that splits at least light in the near infrared region, receives the light L2 transmitted from the ripening fruit 10, and decomposes the light L2 into a spectrum. The light splitting unit 4a outputs the light L3 to the photoelectric conversion unit 4b as light information indicating the spectrum.
[0026]
The photoelectric conversion unit 4b is realized by an array-type light receiving element that photoelectrically converts at least light in the near-infrared region, performs a photoelectric conversion process on the light L3 output from the spectroscopy unit 4a, and converts a plurality of spectra of the light L3. The light of the wavelength is received, and each is converted into an electric signal and output. These electric signals correspond to the light absorption amounts of a plurality of wavelengths by the sugar and starch contained in the ripening fruit 10, and the photoelectric conversion unit 4b outputs the electric signals including information corresponding to these light absorption amounts. And outputs the light absorption information S3 to the arithmetic processing unit 4c.
[0027]
The arithmetic processing unit 4c includes an amplifier that amplifies the analog signal input from the photoelectric conversion unit 4b, a comparator circuit that converts the amplified analog signal into a digital signal, and a ripening fruit 10 based on the obtained digital signal. A CPU (Central Processing Unit) for performing an absorbance calculation process for detecting the absorbance and a sugar content calculation process for calculating a sugar content prediction value of the ripe ripened fruit 10 based on the detected absorbance, and a program for these calculation processes This is realized by having a ROM (Read Only Memory) for storing various data such as data, and a RAM (Random Access Memory) for storing operation parameters and the like. The arithmetic processing unit 4c detects the absorbance of each of the functional groups of sugar and starch contained in the ripening fruit 10 based on the light absorption information S3 input from the photoelectric conversion unit 4b, and further detects the detected absorbance. Based on the calibration curve information S2 input from the control unit 5, a predicted sugar content of the ripe fruit 10 after ripeness is calculated. However, the respective arithmetic processing functions of the CPU described above are realized by the CPU executing a program stored in the ROM of the arithmetic processing unit 4c. Thereafter, when a control signal for outputting the obtained predicted sugar content is input from the control unit 5, the arithmetic processing unit 4c sends the control unit 5 sugar content information S4 corresponding to the predicted sugar content.
[0028]
In addition, the arithmetic processing unit 4c has calibration curve data corresponding to the ripening type fruit 10 to be measured for the sugar content, and reads the calibration curve based on the type information S1 input from the input unit 2; Based on the calibration curve and the light absorption information S3, each arithmetic processing for measuring the predicted sugar content of the ripe fruit 10 after ripeness may be performed, or an output instruction signal input from the input unit 2 , The sugar content information S4 corresponding to the obtained sugar content predicted value may be sent to the output unit 6.
[0029]
The control unit 5 has a storage unit 5a that stores calibration curve data corresponding to various fruits and vegetables to be measured for sugar content. However, the calibration curve represented by the calibration curve data is configured by combining wavelengths in the range of 840 to 960 nm as described above. When the type information S1 is input from the input unit 2, the control unit 5 sends a signal for controlling the above-described irradiation processing and irradiation light amount adjustment processing to the light projecting unit 3, and outputs the calibration curve data corresponding to the type information S1. And sends the calibration curve information S2 to the arithmetic processing unit 4c. That is, the control unit 5 performs control to reliably irradiate the light L1 of the irradiation light amount suitable for the ripening fruit 10 to be measured for the sugar content, and further associates the ripening fruit 10 with the above-described calibration curve data. Is performed surely. Further, when the control unit 5 receives from the input unit 2 an instruction signal for outputting the predicted sugar content calculated by the arithmetic processing unit 4c, the control unit 5 receives the above-described sugar content information S4 from the arithmetic processing unit 4c, and outputs the sugar content information S4. Is controlled to output a sugar content prediction value corresponding to the received sugar content information S4. The output unit 6 is realized by a printer, a display, or the like, and outputs information specified by the input unit 2.
[0030]
The control unit 5 enables the input unit 2 to receive the number information and the type information S1 for specifying the number of ripening fruits to be measured for the sugar content, and the number information and the type information S1 are sequentially conveyed. The ripening fruits may be managed as specific information for specifying the ripening fruits, and the ripening fruits conveyed sequentially and the calibration curve data may be surely associated with each other.
[0031]
Next, a processing procedure until the arithmetic processing unit 4c calculates the sugar content prediction value of the ripe fruit 10 after ripeness will be described in detail. FIG. 2 shows a processing procedure from when the arithmetic processing unit 4c receives the input of the calibration curve information S2 corresponding to the ripening fruit 10 whose sugar content is to be measured until the sugar content calculating process for the ripening fruit 10 is performed. It is a flowchart.
[0032]
In FIG. 2, when the type information S1 of the ripening fruit 10 to be measured for the sugar content is input from the input unit 2, the arithmetic processing unit 4c receives the calibration curve information S2 corresponding to the type information S1 from the control unit 5. (Step S101). In this case, the arithmetic processing unit 4c stores the received calibration curve information S2 as calibration curve data of the ripening type fruit 10.
[0033]
Here, the calibration curve corresponding to the calibration curve information S2 stored in the arithmetic processing unit 4c is based on the absorbance of each of the functional groups (CH group, OH group) of sugar and starch contained in the ripening type fruit 10. This is a formula for calculating the sugar content B0 [%] of the above-ripened fruit 10 after ripening, and is represented by the following formula (2).
Figure 2004294108
However, in the above equation (2), the function F1 (λ 1 ,…, Λ n ), F2 (λ 1 ,…, Λ n ) Is a function composed of absorbances at a plurality of wavelengths included in the range of 840 to 960 nm, and the function F1 (λ 1 ,…, Λ n ) Is related to light absorption by CH and OH groups of sugar and starch, and the function F2 (λ 1 ,…, Λ n ) Relates to the correction for the difference in the optical path length of the sugar content measurement object. The coefficients a1 and a2 have the same value for all the sugar content measuring devices and the measurement target, and the coefficient a3 is an offset value that differs between the sugar content measuring devices.
[0034]
Thereafter, the arithmetic processing unit 4c acquires from the photoelectric conversion unit 4b light absorption information S3 corresponding to the amount of light absorbed by the CH groups and OH groups of the sugar and starch contained in the ripening fruit 10 (step S102). Based on the light absorption information S3, a calculation process for detecting the absorbance of the sugar and starch contained in the ripening fruit 10 due to the CH group and the OH group is performed (step S103). The absorbance detected by this arithmetic processing corresponds to the total amount of sugar and starch contained in the ripened fruit 10 and is determined by the sugar contained in the fully ripened fruit 10 in which the starch has completely changed to sugar. Corresponds to absorbance. The arithmetic processing unit 4c may first input the light absorption information S3 and then input the calibration curve information S2.
[0035]
FIG. 3 is a diagram showing changes in the components of sugar and starch contained in the ripening fruit 10 from the harvest time to the ripeness time. The absorbance A0 [%] indicates the change in the ripening type fruit 10 at the ripeness time. The absorbance A1 [%] is the absorbance of starch at an arbitrary time t from the harvest time to the ripeness time, and the absorbance A2 [%] is the absorbance of sugar at the time t. In FIG. 3, when the harvest time is approaching, the ratio of starch in the ripening fruit 10 is large, and the absorbance A1 is larger than the absorbance A2. In addition, as the harvest time approaches the ripeness time, the starch changes to sugar, the proportion of the sugar increases, the absorbance A1 decreases, and the absorbance A2 increases. In particular, near the ripeness stage, most of this starch is changed to sugar, and the absorbance A2 is higher than the absorbance A1. However, as shown in FIG. 3, the absorbance A0 is always constant with respect to the above-mentioned changes in the sugar and starch contents, and can be represented by the sum of the absorbances A1 and A2. This means that the absorbance of the sugar and starch contained in the ripening type fruit 10 by the CH group and the OH group is always constant from the harvest time to the ripeness time, and the ripening type at any time t If the amount of light absorbed by the sugar and starch contained in the fruit 10 is measured, the absorbance corresponding to the ripened fruit 10 after ripeness can be detected.
[0036]
Thereafter, the arithmetic processing unit 4c performs an arithmetic process of measuring the sugar content prediction value of the ripe ripened fruit 10 based on the above-described absorbance detection result and the calibration curve corresponding to the calibration curve information S2 (step S104), thereby, it is possible to obtain a predicted sugar content of the ripe ripened fruit 10 from the unripe ripened fruit 10.
[0037]
After that, when a control signal requesting the output of the obtained predicted sugar content is input from the control unit 5 (Step S105, Yes), the arithmetic processing unit 4c transmits the sugar content information S4 corresponding to the predicted sugar content to the control unit. 5 (step S106), and if no control signal is input from the control unit 5 (step S105, No), the process proceeds to step S107. Thereafter, the arithmetic processing unit 4c determines whether or not the type of the ripening type fruit 10 has been changed (step S107). If the type has been changed (step S107, Yes), the above-mentioned calibration curve information S2 is input. When the processes from the process are performed and the type of the ripening fruit 10 is not changed (No at Step S107), the processes are performed from the input process of the light absorption information S3 described above.
[0038]
Here, the sugar content prediction result when kiwi is used as an example of the ripening type fruit 10 to be measured for the sugar content will be described. FIG. 4 is a diagram showing the relationship between the predicted ripeness of sugar content measured from the immature kiwi by the sugar content measuring device 1 and the actually measured value of the sugar content measured after the kiwi is actually matured. In FIG. 4, a straight line D0 is a line indicating an ideal state in which the above-described predicted sugar content and an actually measured sugar level are the same value, and straight lines D1 and D2 are lines indicating an allowable range of variation in the predicted sugar content with respect to the ideal state. is there. As shown in FIG. 4, the sugar content predicted values measured from the immature kiwi by the sugar content measurement device 1 are substantially concentrated on a straight line D, and the total sugar content predicted values are within an allowable range of variation by the straight lines D1 and D2. are doing. In this case, the standard deviation σ1 indicating the variation of the sugar content prediction value with respect to the ideal state is about 0.275, and the variation of the sugar content prediction value (standard deviation σ1 ≦ 0.50) required in the measurement of the sugar content of fruits and vegetables is considered. We are satisfied enough. Therefore, the sugar content measuring device 1 can accurately predict the sugar content after ripeness from an unripe ripening type fruit. In other words, the sugar content measuring device 1 can practically withstand various processes such as a sorting process of sorting harvested fruits and vegetables by equal rank.
[0039]
On the other hand, when the conventional sugar content measuring device is used, the measured sugar content predicted value has a variation that is not practical. FIG. 5 is a diagram showing a relationship between a predicted sugar content after ripeness measured from an immature kiwi by a conventional sugar content measurement device and an actually measured sugar content value after the ripe kiwi was actually matured. D0 to D2 are shown. As shown in FIG. 5, the sugar content predicted value obtained by the conventional sugar content measurement device hardly falls within the allowable range of variation by the straight lines D1 and D2, and the standard deviation σ2 indicating the variation of the sugar content predicted value is 200 or more. However, it does not satisfy the dispersion of the predicted sugar content in the measurement of the sugar content of fruits and vegetables at all. In addition, the sugar content predicted value by the conventional sugar content measuring device often takes a value lower than the measured sugar content value, which indicates that the conventional sugar content measuring device reduces the potential sugar content of starch contained in immature kiwi. It is presumed that measurement cannot be performed. Therefore, the conventional sugar content measuring device cannot accurately predict the sugar content after ripening from unripe ripening fruits.
[0040]
In this embodiment, the absorbance is measured by measuring the amount of light absorbed by the functional groups (CH group, OH group) constituting the sugar and starch contained in the ripening fruit, and the absorbance is measured. Since the sugar content of the ripened fruit after ripeness was measured based on the calibration curve composed by combining multiple wavelengths in the wavelength band, using the immature ripened fruit early in the harvest period It is possible to accurately and easily predict the sugar content of the ripened fruit after ripening, and furthermore, it is not necessary to wait until the ripened fruit to be measured is fully ripened. Can be predicted at an early stage, and an optimum sugar content measuring device can be realized for a sorting device that sorts harvested fruits and vegetables by equal rank.
[0041]
Note that, in the embodiment of the present invention, a case where a ripening type fruit containing starch in immature pulp is used as an example of the fruits and vegetables for which the sugar content is measured, but the present invention is not limited to this. It can also be applied when various fruits and vegetables such as oranges, tangerines, peaches, melons and tomatoes are used.
[0042]
Also, in the embodiment of the present invention, the case where the light receiving unit that receives the light transmitted from the ripening type fruit of the sugar content measurement target is a total transmission type sugar content measuring device arranged opposite the light emitting unit, The present invention is not limited to this, and a plurality of light sources are projected from the periphery of the ripening type fruit whose sugar content is to be measured, and light is transmitted from the bottom of the ripening type fruit. The present invention can also be applied to a transmission type sugar content measuring device.
[0043]
【The invention's effect】
As described above, according to the first aspect of the present invention, the sugar content predicting calculation means uses the transmitted light of the internal scattered light received from the fruits and vegetables to extract the sugar molecules and the starch molecules contained in the fruits and vegetables. A calibration curve showing at least the absorption amount of each of a plurality of wavelengths within a predetermined wavelength band that is absorbed by the hydrocarbon group and the hydroxyl group, and showing the relationship between the previously determined absorption amounts and the sugar content of the fruits and vegetables after ripeness. Since the sugar content of the fruits and vegetables after the ripeness is predicted for each of the measured absorption amounts, the sugar content after the ripeness of the ripening type fruit that changes the starch contained in the pulp into sugar over time is harvested. It is possible to predict using a nearby immature ripening fruit, and it is not necessary to wait until the ripening fruit to be measured is ripe, and it is possible to realize a sugar content measuring device that can predict the sugar content after ripeness early. effect Unlikely to.
[0044]
According to the second aspect of the present invention, the predetermined wavelength band includes a plurality of wavelengths in the range of 840 nm to 960 nm. Therefore, the calibration curve indicates the predicted sugar content of the ripened fruit after ripeness. Is optimized in measuring the sugar content of the ripened fruit after ripeness.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a sugar content measuring device according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a processing procedure until an arithmetic processing unit measures a sugar content prediction value of a ripening type fruit.
FIG. 3 is a diagram showing changes in components of sugar and starch and changes in absorbance of ripening fruits.
FIG. 4 is a diagram showing an example of a sugar content prediction result of a ripening fruit by the sugar content measuring device according to the embodiment of the present invention.
FIG. 5 is a diagram showing an example of a result of predicting a sugar content of a ripening fruit by a conventional sugar content measuring device.
[Explanation of symbols]
1 sugar content measuring device
2 Input section
3 Emitter
4 Receiver
4a Dispersion unit
4b photoelectric conversion unit
4c arithmetic processing unit
5 control part
5a Storage unit
6 Output section
10 Ripe fruits
A0-A2 Absorbance
L1-L3 light
S1 Type information
S2 Calibration curve information
S3 Light absorption information
S4 sugar content information

Claims (2)

計測対象の青果物に近赤外線の波長帯域を含む光を照射し、発生する内部散乱光の透過光を受光して前記青果物の果汁による前記内部散乱光の吸収量を計測し、前記吸収量の計測結果をもとに前記青果物の糖度を計測する糖度計測装置において、
前記青果物に含まれる糖分子およびデンプン分子内の炭化水素基および水酸基に吸収される所定波長帯域内の複数波長の各吸収量を少なくとも計測し、予め求められた前記各吸収量と前記青果物の完熟後の糖度との関係を示す検量線を用いて前記計測された各吸収量に対する前記青果物の完熟後の糖度を予測する糖度予測演算手段を備えたことを特徴とする糖度計測装置。
The fruit or vegetable to be measured is irradiated with light including a near-infrared wavelength band, the transmitted light of the generated internal scattered light is received, and the absorption amount of the internal scattered light by the fruit juice of the fruit and vegetable is measured, and the absorption amount is measured. In the sugar content measuring device that measures the sugar content of the fruits and vegetables based on the result,
At least each absorption amount of a plurality of wavelengths within a predetermined wavelength band absorbed by the hydrocarbon groups and hydroxyl groups in the sugar molecules and starch molecules contained in the fruits and vegetables is measured, and the previously determined absorption amounts and ripeness of the fruits and vegetables are measured. A sugar content measuring device, comprising: a sugar content prediction calculating means for predicting the sugar content of the fruit or vegetable after the ripeness with respect to each of the measured absorption amounts using a calibration curve indicating a relationship with the subsequent sugar content.
前記所定波長帯域は、840nmから960nmまでの範囲であることを特徴とする請求項1に記載の糖度計測装置。The sugar content measuring device according to claim 1, wherein the predetermined wavelength band is in a range from 840 nm to 960 nm.
JP2003083464A 2003-03-25 2003-03-25 Apparatus for measuring sugar concentration Pending JP2004294108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083464A JP2004294108A (en) 2003-03-25 2003-03-25 Apparatus for measuring sugar concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083464A JP2004294108A (en) 2003-03-25 2003-03-25 Apparatus for measuring sugar concentration

Publications (1)

Publication Number Publication Date
JP2004294108A true JP2004294108A (en) 2004-10-21

Family

ID=33398929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083464A Pending JP2004294108A (en) 2003-03-25 2003-03-25 Apparatus for measuring sugar concentration

Country Status (1)

Country Link
JP (1) JP2004294108A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226775A (en) * 2005-02-16 2006-08-31 Toyohashi Univ Of Technology Method and apparatus for evaluating eating taste component of fruit
CN100335887C (en) * 2006-05-09 2007-09-05 江西农业大学 Transmission type fast detector for nutrient in fruit
WO2012172834A1 (en) * 2011-06-17 2012-12-20 日本電気株式会社 Harvest-time ripeness estimation device, harvest-time ripeness estimation method and program
JP2017527781A (en) * 2014-06-26 2017-09-21 チェジュ ナショナル ユニバーシティー インダストリー−アカデミック コーポレーション ファウンデーション Method for predicting sugar content and acidity of fruit using multivariate statistical analysis of FT-IR spectrum data
CN107340717A (en) * 2017-08-23 2017-11-10 成都烈风网络科技有限公司 A kind of system that sugar degree prediction is carried out using sensor network
CN110263969A (en) * 2019-05-07 2019-09-20 西北农林科技大学 A kind of shelf life apple quality Dynamic Forecasting System and prediction technique
JP2020165779A (en) * 2019-03-29 2020-10-08 三井金属計測機工株式会社 Device and method for inspecting fruits and vegetables, fruit and vegetable inspection device with freshness preservation feature, and fruit and vegetable inspection method for preserving freshness
JP2020176976A (en) * 2019-04-22 2020-10-29 マクタアメニティ株式会社 Afterripening degree determination device
JP2021089179A (en) * 2019-12-03 2021-06-10 マクタアメニティ株式会社 Afterripening degree determination device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226775A (en) * 2005-02-16 2006-08-31 Toyohashi Univ Of Technology Method and apparatus for evaluating eating taste component of fruit
CN100335887C (en) * 2006-05-09 2007-09-05 江西农业大学 Transmission type fast detector for nutrient in fruit
WO2012172834A1 (en) * 2011-06-17 2012-12-20 日本電気株式会社 Harvest-time ripeness estimation device, harvest-time ripeness estimation method and program
JPWO2012172834A1 (en) * 2011-06-17 2015-02-23 日本電気株式会社 Harvest maturity estimation device, harvest maturity estimation method and program
JP2017527781A (en) * 2014-06-26 2017-09-21 チェジュ ナショナル ユニバーシティー インダストリー−アカデミック コーポレーション ファウンデーション Method for predicting sugar content and acidity of fruit using multivariate statistical analysis of FT-IR spectrum data
CN107340717A (en) * 2017-08-23 2017-11-10 成都烈风网络科技有限公司 A kind of system that sugar degree prediction is carried out using sensor network
JP2020165779A (en) * 2019-03-29 2020-10-08 三井金属計測機工株式会社 Device and method for inspecting fruits and vegetables, fruit and vegetable inspection device with freshness preservation feature, and fruit and vegetable inspection method for preserving freshness
JP2020176976A (en) * 2019-04-22 2020-10-29 マクタアメニティ株式会社 Afterripening degree determination device
CN110263969A (en) * 2019-05-07 2019-09-20 西北农林科技大学 A kind of shelf life apple quality Dynamic Forecasting System and prediction technique
CN110263969B (en) * 2019-05-07 2023-06-02 西北农林科技大学 Dynamic prediction system and prediction method for quality of apples with shelf life
JP2021089179A (en) * 2019-12-03 2021-06-10 マクタアメニティ株式会社 Afterripening degree determination device

Similar Documents

Publication Publication Date Title
Marques et al. Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer
Sun et al. NIRS prediction of dry matter content of single olive fruit with consideration of variable sorting for normalisation pre-treatment
Peirs et al. Effect of biological variability on the robustness of NIR models for soluble solids content of apples
McGlone et al. Vis/NIR estimation at harvest of pre-and post-storage quality indices for ‘Royal Gala’apple
Maniwara et al. The use of visible and near infrared spectroscopy for evaluating passion fruit postharvest quality
Flores et al. Feasibility in NIRS instruments for predicting internal quality in intact tomato
Pérez-Marín et al. Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage
Peirs et al. PH—Postharvest technology: Comparison of fourier transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements
Magwaza et al. Evaluation of Fourier transform-NIR spectroscopy for integrated external and internal quality assessment of Valencia oranges
Slaughter et al. Nondestructive determination of total and soluble solids in fresh prune using near infrared spectroscopy
Jha et al. Non‐destructive determination of acid–brix ratio of tomato juice using near infrared spectroscopy
Barbin et al. Classification and compositional characterization of different varieties of cocoa beans by near infrared spectroscopy and multivariate statistical analyses
Arendse et al. Development of calibration models for the evaluation of pomegranate aril quality by Fourier-transform near infrared spectroscopy combined with chemometrics
Yu et al. Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system
Qing et al. Wavelength selection for predicting physicochemical properties of apple fruit based on near‐infrared spectroscopy
Xu et al. Factors influencing near infrared spectroscopy analysis of agro-products: a review
Ali et al. Prediction of total soluble solids and pH in banana using near infrared spectroscopy
Guo et al. Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality
Jannok et al. Development of a common calibration model for determining the Brix value of intact apple, pear and persimmon fruits by near infrared spectroscopy
Torres et al. Monitoring quality and safety assessment of summer squashes along the food supply chain using near infrared sensors
Peshlov et al. Comparison of three near infrared spectrophotometers for infestation detection in wild blueberries using multivariate calibration models
JP2004294108A (en) Apparatus for measuring sugar concentration
Saechua et al. Integrating Vis-SWNIR spectrometer in a conveyor system for in-line measurement of dry matter content and soluble solids content of durian pulp
Yahaya et al. Visible spectroscopy calibration transfer model in determining pH of Sala mangoes
Lee et al. Feasibility of nondestructive sugar content analysis of Korean pears by using near‐infrared diffuse‐reflectance spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529