JP2003151563A - Lead-base alloy for lead storage battery - Google Patents

Lead-base alloy for lead storage battery

Info

Publication number
JP2003151563A
JP2003151563A JP2001352048A JP2001352048A JP2003151563A JP 2003151563 A JP2003151563 A JP 2003151563A JP 2001352048 A JP2001352048 A JP 2001352048A JP 2001352048 A JP2001352048 A JP 2001352048A JP 2003151563 A JP2003151563 A JP 2003151563A
Authority
JP
Japan
Prior art keywords
lead
weight
content
alloy
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001352048A
Other languages
Japanese (ja)
Other versions
JP4093749B2 (en
Inventor
Yasuyuki Nehei
靖之 根兵
Atsushi Furukawa
淳 古川
Tomohiro Hirashiro
智博 平城
Yutaka Mori
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Toho Zinc Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Furukawa Battery Co Ltd filed Critical Toho Zinc Co Ltd
Priority to JP2001352048A priority Critical patent/JP4093749B2/en
Publication of JP2003151563A publication Critical patent/JP2003151563A/en
Application granted granted Critical
Publication of JP4093749B2 publication Critical patent/JP4093749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain lead-base alloy for lead storage batteries, which shows corrosion resistance and improves mechanical strength, when it is used for the lattice plate of the lead storage battery, by containing Ba and Bi into this conventional alloy, obtained by improving the conventionally well-known Pb-Ca- Sn-Al alloy for the lead storage batteries. SOLUTION: The lead-base alloy for lead storage batteries consists of a calcium content of 0.03 to 0.10 weight %, a tin content of 0.60 to 2.00 weight %, an aluminum content of 0.01 to 0.03 weight %, a barium content of 0.001 to 0.01 weight %, a bismuth content of 0.05 to 0.15 weight %, and the remainder consists of lead.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は鉛蓄電池用鉛基合
金に関し、極板格子に使用したときに優れた格子耐食性
を示すとともに、重力鋳造や連続鋳造にも適する鉛蓄電
池用鉛基合金に関する。 【0002】 【従来の技術】従来、公知の鉛蓄電池用Pb基合金は、
主として機械的強度を重視しているために、Sbを4.
5〜8.0重量%の如く多量に含有したものが知られて
いる。 【0003】しかしながら、この合金を鉛蓄電池の極板
用基板に適用した場合は、上記Sbが原因となって電池
の自己放電を促進し、容量が低下するのみならず、充電
完了状態や過充電状態において激しい水分解反応が生じ
水の補給を必要とするものであった。この水の補給は、
現在の鉛蓄電池の主流をなすメンテナンスフリー電池の
極板用基板に対し、全く逆の作用をもたらすものであ
る。 【0004】従って、Sbを全く含有しない鉛基合金と
して、カルシウムが0.04〜0.10重量%、スズが
0.60〜2.00重量%、アルミニウムが0.01〜
0.03重量%で残部が鉛である鉛蓄電池用基板合金が
提案されている。 【0005】しかしながら、最近、特に自動車用ではボ
ンネット内の温度が高温化する傾向にあるなど鉛蓄電池
を取巻く環境はさらに厳しくなり、それに伴い高温条件
下での基板格子、特に正極格子の更なる耐食性および機
械的強度の向上が求められている。 【0006】 【発明が解決しようとする課題】この発明は、このよう
な期待に応えて公知の鉛蓄電池用Pb−Ca−Sn−A
l合金の改良を行ったもので、この従来の合金にBaと
Biを含有することにより鉛蓄電池の格子基板に使用し
たときに、耐食性を示すとともに機械的強度が向上する
鉛蓄電池用鉛基合金を得ようとするものである。 【0007】 【発明が解決するための手段】この発明は、カルシウム
が0.03〜0.10重量%、スズが0.60〜2.0
0重量%、アルミニウムが0.01〜0.03重量%、
バリウムが0.001〜0.01重量%、ビスマスが
0.05〜0.15重量%で、残部が鉛よりなる鉛蓄電
池用鉛基合金である。 【0008】 【発明の実施の形態】この発明は、公知な鉛蓄電池用合
金にBaとBiを含有したものである。ここで公知な鉛
合金とは、Caが0.04〜0.10重量%、Snが
0.60〜2.00重量%、アルミニウムが0.01〜
0.03重量%で残部が鉛の合金である。上記の本発明
の鉛基合金は、耐食性とともに機械的強度が優れている
うえに、高温下に長時間曝されても機械的強度の低下が
少ないといった特徴がある。 【0009】この発明でBiを含有するのは耐食性およ
び機械的強度を向上させるためであるが、その含有量を
0.05〜0.15重量%に限定した理由は、これが
0.05重量%未満では上記効果が十分でなく、また
0.05重量%を超えても上記効果の著しい向上がみら
れないためである。 【0010】この発明でBaを含有するのは、Biの添
加と同様に耐食性および機械的強度を向上させるためで
あるが、その含有量は0.05〜0.15重量%とす
る。Biの含有量が0.05重量%未満では上記効果が
十分でなく、また0.15重量%を超えてもその効果が
その割には向上しないためである。Baを含有するのは
Biを含有する目的と同様で耐食性および機械的強度を
向上させるためで、その含有量は0.001〜0.01
重量%である。Baの含有量が0.001重量%未満で
は上記効果が十分でなく、また0.01重量%を超えて
もその効果はそれ程でない。 【0011】Caを含有するのは機械的強度を向上する
ためで、その含有量を0.03〜0.10重量%とす
る。Caの含有量が0.03重量%未満の場合はCaを
含有したことによる効果は少なく、また0.10重量%
を超えても低い鋳造温度で良好な鋳造品を得ることが難
しく、逆に鋳造温度を高くすると酸化してCaの損失量
が多くなる。なお、公知の鉛蓄電池用鉛合金よりCa量
を少なくしてもBaおよびBiを添加しているために十
分な機械的強度が得られた。 【0012】Snを含有するのは合金の湯流れ性や機械
的強度を向上させるためであるが、その配合量を0.6
0〜2.00重量%に限定したのは、0.60重量%未
満の場合はその効果が少なく、また2.00重量%を超
えた場合は結晶粒が粗大化して粒界腐食が進む。Alの
含有は溶湯の酸化によるCaの損出を防止するためと機
械的強度を向上させるためで、その含有量を0.01〜
0.03重量%とする。これが0.01重量%未満の場
合は効果が少なく、またこれが0.03重量%を超えた
場合はドロスとして析出し易くなる。 【0013】 【実施例】実施例1〜10および従来例、比較例表1に
従来例、比較例、本発明実施例の各合金の組成を示し
た。これらの合金の伸び、耐力(0.2%),クリープ
および耐食性といった機械的特性を測定して鉛蓄電池用
基板合金としての適性を評価した。この試験に供したサ
ンプルは厚さ1.5mm、幅15mmの鋳造材である。この
鋳造材を所定の大きさに切断して試験片とした。 【0014】 【表1】 【0015】試験片を歪み速度1.7×10−3/秒で
室温において引張試験を行った際の結果を図1に、また
耐力(0.2%)の結果を図2に示した。図1のサンプ
ルは100℃−1hrで時効したサンプル、図2は100
℃−100hrで時効したサンプルである。 【0016】図1および図2より明らかなように、本発
明の実施例になる鉛蓄電池用鉛基合金は従来例に比較し
て大幅な伸びの低下と過時効下において0.2%耐力の
向上が確認された。そして、この効果はBiの含有量が
0.05〜0.15重量%の間でみられたが、0.05
重量%未満ではその効果はあまり認められず、また0.
15重量%を超えてもその効果は顕著にみられなかっ
た。 【0017】クリープ試験は100℃環境下で16.9
Mpa の荷重をかけた状態で行ない、サンプルが破断する
までの時間で評価した。この結果を表3に示した。図3
から明らかなように、耐クリープ性についても実施例の
ものは従来例と比べて明らかに向上している。そして、
この効果はBiの含有量が0.05〜0.15重量%の
間でみられるが、Biの含有量が0.05重量%未満で
はほとんどその効果はみられず、また0.15重量%を
こえてもその効果はそれほどでない。 【0018】耐食性は、比重1.280(20℃)、温
度60℃の希硫酸中で720時間陽極酸化させた後に試
料の単位面積当たりの腐食減量を測定することで評価し
た。その結果を図4に示した。図4から明らかなよう
に、本発明の実施例の合金は従来例に比較して大幅な腐
食の低下がみられるように、Biの含有が耐食性に大き
く関与していると考えられる。しかし、この耐食性の効
果は上記の機械的強度の場合と同様にBi含有量が0.
05〜0.15重量%の範囲でみられることが分かる。 【0019】以上説明したように、公知な鉛蓄電池用P
b−Ca−Al合金に、Baを0.001〜0.01重
量%、またBiを0.05〜0.15重量%含有する
と、伸びの低下や過時効時の0.2%耐力の向上、高温
クリープ性の向上、耐食性の大幅な向上などが図られ、
従来の鉛基合金を基板に用いた鉛蓄電池と比べて高温時
の格子強度が向上し、その強度不足による破断やグロス
を抑制できて、電池の一層の寿命向上が期待できるよう
なった。なお、各図の凡例中にAlの含有量の記載がな
いが全て0.02%含有したものである。 【0020】 【発明の効果】以上説明したように、この発明の鉛蓄電
池用鉛基合金をメインテナンスフリー用鉛蓄電池の極板
基板に適用すれば、極板基板の腐食量を著しく抑制し長
寿命の鉛蓄電池を得ることや生産性を一層向上させるこ
とができるようになる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-based alloy for a lead-acid battery, which exhibits excellent grid corrosion resistance when used for an electrode grid, and is applicable to gravity casting and continuous casting. Also relates to a suitable lead-based alloy for lead-acid batteries. 2. Description of the Related Art Conventionally, a known Pb-based alloy for a lead-acid battery is:
Because Sb is mainly used for mechanical strength, Sb is set to 4.
Those containing a large amount such as 5 to 8.0% by weight are known. However, when this alloy is applied to an electrode substrate of a lead-acid battery, the self-discharge of the battery is promoted due to the above-mentioned Sb, so that not only the capacity is reduced, but also the charging completion state and overcharging are caused. In the state, a severe water splitting reaction occurred, and water replenishment was required. This water supply is
This has a completely opposite effect on the electrode substrate of a maintenance-free battery, which is currently the mainstream of lead-acid batteries. Therefore, as a lead-based alloy containing no Sb, calcium is 0.04 to 0.10% by weight, tin is 0.60 to 2.00% by weight, and aluminum is 0.01 to 0.1% by weight.
There has been proposed a lead-acid battery substrate alloy in which the balance is 0.03% by weight of lead. However, recently, especially for automobiles, the environment surrounding lead-acid batteries has become more severe, for example, the temperature inside the bonnet tends to be higher. As a result, the corrosion resistance of the substrate grid, especially the positive grid, under high temperature conditions has increased. And improvement of mechanical strength is required. SUMMARY OF THE INVENTION [0006] In order to meet such expectations, the present invention provides a known lead-acid battery Pb-Ca-Sn-A.
The lead-based alloy for lead-acid batteries, which exhibits corrosion resistance and improved mechanical strength when used for a grid substrate of a lead-acid battery by containing Ba and Bi in this conventional alloy. It is trying to get. According to the present invention, calcium is contained in an amount of 0.03 to 0.10% by weight and tin is contained in an amount of 0.60 to 2.0%.
0% by weight, 0.01 to 0.03% by weight of aluminum,
This is a lead-based alloy for lead-acid batteries, comprising 0.001 to 0.01% by weight of barium, 0.05 to 0.15% by weight of bismuth, and the balance being lead. DETAILED DESCRIPTION OF THE INVENTION The present invention is a known lead-acid battery alloy containing Ba and Bi. Here, the known lead alloys include 0.04 to 0.10% by weight of Ca, 0.60 to 2.00% by weight of Sn, and 0.01 to 0.1% by weight of aluminum.
An alloy of 0.03% by weight with the balance being lead. The above-described lead-based alloy of the present invention is characterized in that it has excellent mechanical strength as well as corrosion resistance, and that the mechanical strength is less reduced even when exposed to high temperatures for a long time. In the present invention, Bi is contained for the purpose of improving corrosion resistance and mechanical strength. The reason for limiting the content to 0.05 to 0.15% by weight is that Bi is contained in 0.05% by weight. If the amount is less than 0.05%, the above effect is not sufficient, and if it exceeds 0.05% by weight, the effect is not significantly improved. The reason why Ba is contained in the present invention is to improve corrosion resistance and mechanical strength as in the case of adding Bi, but the content is made 0.05 to 0.15% by weight. If the content of Bi is less than 0.05% by weight, the above effect is not sufficient, and if the content exceeds 0.15% by weight, the effect is not improved. The reason for containing Ba is to improve corrosion resistance and mechanical strength in the same manner as for the purpose of containing Bi, and the content thereof is 0.001 to 0.01.
% By weight. If the content of Ba is less than 0.001% by weight, the above effect is not sufficient, and if it exceeds 0.01% by weight, the effect is not so significant. The content of Ca is for improving the mechanical strength, and its content is made 0.03 to 0.10% by weight. When the content of Ca is less than 0.03% by weight, the effect of containing Ca is small, and 0.10% by weight.
It is difficult to obtain a good cast product at a low casting temperature even when the temperature exceeds the above, and conversely, when the casting temperature is increased, it is oxidized and the loss of Ca increases. In addition, even if the amount of Ca was smaller than that of a known lead alloy for lead storage batteries, sufficient mechanical strength was obtained because Ba and Bi were added. [0012] The content of Sn is to improve the flowability and mechanical strength of the alloy.
The reason why the content is limited to 0 to 2.00% by weight is that when the content is less than 0.60% by weight, the effect is small. The content of Al is to prevent loss of Ca due to oxidation of the molten metal and to improve mechanical strength.
0.03% by weight. If the content is less than 0.01% by weight, the effect is small, and if it exceeds 0.03% by weight, it tends to precipitate as dross. Examples 1 to 10 and conventional examples and comparative examples Table 1 shows the compositions of the alloys of the conventional examples, comparative examples and examples of the present invention. Mechanical properties such as elongation, proof stress (0.2%), creep and corrosion resistance of these alloys were measured to evaluate their suitability as lead-acid battery substrate alloys. The sample subjected to this test is a cast material having a thickness of 1.5 mm and a width of 15 mm. This cast material was cut into a predetermined size to obtain a test piece. [Table 1] FIG. 1 shows the result of a tensile test performed on the test piece at room temperature at a strain rate of 1.7 × 10 −3 / sec, and FIG. 2 shows the result of the proof stress (0.2%). 1 is a sample aged at 100 ° C. for 1 hour, and FIG.
This is a sample aged at 100C for 100 hours. As is clear from FIGS. 1 and 2, the lead-based alloy for a lead-acid battery according to the embodiment of the present invention has a large decrease in elongation and a 0.2% proof stress under overaging as compared with the conventional example. Improvement was confirmed. This effect was observed when the Bi content was in the range of 0.05 to 0.15% by weight.
When the amount is less than 10% by weight, the effect is not so much recognized,
Even if it exceeds 15% by weight, the effect is not remarkably observed. The creep test was performed at 16.9 in a 100 ° C. environment.
The test was performed with a load of Mpa applied, and the evaluation was made based on the time until the sample was broken. Table 3 shows the results. FIG.
As is clear from the above, the creep resistance of the example is clearly improved as compared with the conventional example. And
This effect is observed when the Bi content is between 0.05 and 0.15% by weight. However, when the Bi content is less than 0.05% by weight, the effect is hardly observed, and when the Bi content is less than 0.15% by weight. Beyond that, the effect is not so great. The corrosion resistance was evaluated by anodizing in dilute sulfuric acid at a specific gravity of 1.280 (20 ° C.) and a temperature of 60 ° C. for 720 hours, and then measuring the corrosion loss per unit area of the sample. The result is shown in FIG. As is clear from FIG. 4, it is considered that the content of Bi greatly affects the corrosion resistance of the alloys according to the examples of the present invention, as shown by a significant decrease in corrosion as compared with the conventional examples. However, the effect of this corrosion resistance is similar to the case of the mechanical strength described above, in which the Bi content is 0.1%.
It can be seen that it is found in the range of 0.5 to 0.15% by weight. As described above, the known lead-acid battery P
When the b-Ca-Al alloy contains 0.001 to 0.01% by weight of Ba and 0.05 to 0.15% by weight of Bi, the elongation decreases and the 0.2% proof stress in overaging is improved. , Improved high-temperature creep properties, significantly improved corrosion resistance, etc.
Compared with a conventional lead-acid battery using a lead-based alloy as a substrate, the grid strength at high temperatures is improved, and breakage and gross due to insufficient strength can be suppressed, so that a further improvement in battery life can be expected. In addition, although the content of Al is not described in the legend of each figure, the content is all 0.02%. As described above, when the lead-based alloy for a lead-acid battery of the present invention is applied to an electrode substrate of a maintenance-free lead-acid battery, the amount of corrosion of the electrode substrate is remarkably suppressed, and a long life is obtained. , And productivity can be further improved.

【図面の簡単な説明】 【図1】鉛蓄電池用鉛基合金にけるBi含有量/wt.%と
伸び/%(100℃−1hr)の関係を示す線図。 【図2】鉛蓄電池用鉛基合金にけるBi含有量/wt.%と
0.2%耐力/Mpa(100℃−100hrs)の関係を示
す線図。 【図3】鉛蓄電池用鉛基合金にけるBi含有量/wt.%と
破断時間/hoursの関係を示す線図。 【図4】鉛蓄電池用鉛基合金にけるBi含有量/wt.%と
腐食減量/mg/cmの関係を示す線図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between Bi content / wt.% And elongation /% (100 ° C.-1 hr) in a lead-based alloy for a lead storage battery. FIG. 2 is a diagram showing a relationship between Bi content / wt.% And 0.2% proof stress / Mpa (100 ° C.-100 hrs) in a lead-based alloy for a lead storage battery. FIG. 3 is a diagram showing a relationship between Bi content / wt.% And rupture time / hours in a lead-based alloy for a lead storage battery. FIG. 4 is a diagram showing the relationship between Bi content / wt.% And corrosion weight loss / mg / cm 2 in a lead-based alloy for a lead storage battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 淳 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社いわき事業所内 (72)発明者 平城 智博 東京都中央区日本橋本町一丁目6番1号 東邦亜鉛株式会社内 (72)発明者 森 豊 東京都中央区日本橋本町一丁目6番1号 東邦亜鉛株式会社内 Fターム(参考) 5H017 AA01 EE03 HH01    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Jun Furukawa             23-6 Tsukuwashi-cho, Tsukiwa, Iwaki-shi, Fukushima               Furukawa Battery Co., Ltd. Iwaki Office (72) Inventor Tomohiro Heijo             1-6-1 Nihonbashi Honcho, Chuo-ku, Tokyo             Toho Zinc Co., Ltd. (72) Inventor Yutaka Mori             1-6-1 Nihonbashi Honcho, Chuo-ku, Tokyo             Toho Zinc Co., Ltd. F-term (reference) 5H017 AA01 EE03 HH01

Claims (1)

【特許請求の範囲】 【請求項1】 カルシウムが0.03〜0.10重量
%、スズが0.60〜2.00重量%、アルミニウムが
0.01〜0.03重量%、バリウムが0.001〜
0.01重量%、ビスマスが0.05〜0.15重量%
で、残部が鉛よりなる鉛蓄電池用鉛基合金。
Claims: 1. A calcium content of 0.03 to 0.10% by weight, a tin content of 0.60 to 2.00% by weight, an aluminum content of 0.01 to 0.03% by weight, and a barium content of 0%. .001-
0.01% by weight, bismuth 0.05-0.15% by weight
A lead-based alloy for lead-acid batteries, with the balance being lead.
JP2001352048A 2001-11-16 2001-11-16 Lead-based alloys for lead-acid batteries Expired - Fee Related JP4093749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352048A JP4093749B2 (en) 2001-11-16 2001-11-16 Lead-based alloys for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352048A JP4093749B2 (en) 2001-11-16 2001-11-16 Lead-based alloys for lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2003151563A true JP2003151563A (en) 2003-05-23
JP4093749B2 JP4093749B2 (en) 2008-06-04

Family

ID=19164279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352048A Expired - Fee Related JP4093749B2 (en) 2001-11-16 2001-11-16 Lead-based alloys for lead-acid batteries

Country Status (1)

Country Link
JP (1) JP4093749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104244A1 (en) 2003-05-26 2004-12-02 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery grid
US7862931B2 (en) 2002-04-18 2011-01-04 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery
JP2013235660A (en) * 2012-05-07 2013-11-21 Gs Yuasa Corp Lead acid battery
CN105206844A (en) * 2015-08-28 2015-12-30 天能电池集团有限公司 Preparation method of lead storage battery grid containing lead-graphene composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862931B2 (en) 2002-04-18 2011-01-04 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery
WO2004104244A1 (en) 2003-05-26 2004-12-02 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery grid
AU2003292555B2 (en) * 2003-05-26 2006-10-12 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery grid
JP2013235660A (en) * 2012-05-07 2013-11-21 Gs Yuasa Corp Lead acid battery
CN105206844A (en) * 2015-08-28 2015-12-30 天能电池集团有限公司 Preparation method of lead storage battery grid containing lead-graphene composite

Also Published As

Publication number Publication date
JP4093749B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
WO2003088385A1 (en) Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
CN101675175A (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
JP4148175B2 (en) Lead alloy and lead storage battery using the same
CN110777282A (en) Lead alloy, electrode and storage battery
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
US2860969A (en) Lead-acid accumulator alloy
JP4274873B2 (en) Lead-acid battery substrate and lead-acid battery using the same
JP5207708B2 (en) Method for producing lead-based alloy substrate for lead battery
JP2003151563A (en) Lead-base alloy for lead storage battery
JP2000077076A (en) Lead base alloy for storage battery
JP2002175798A (en) Sealed lead-acid battery
JP4502346B2 (en) Lead-based alloys for lead-acid batteries
US3839023A (en) Creep resistant lead alloys
JP3113895B2 (en) Lead alloy for storage battery
JP4430227B2 (en) Lead-based alloys for lead-acid batteries
JP2008130231A (en) Positive electrode grid for lead acid storage battery and lead acid storage battery
JP2720029B2 (en) Lead alloy for storage battery
US4310353A (en) Low-antimony lead alloy
JP2003151562A (en) Lead-base alloy for lead storage battery
JP2003221633A (en) Lead-based alloy for lead storage battery
JP2002329498A (en) Lead-based alloy for lead storage battery
JP2006079951A (en) Lead-acid storage battery grid body and lead alloy for it
JP2002329499A (en) Lead-based alloy for lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4093749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees