JP2003143618A - Color separation optical system and image pickup device employing the same - Google Patents

Color separation optical system and image pickup device employing the same

Info

Publication number
JP2003143618A
JP2003143618A JP2001340863A JP2001340863A JP2003143618A JP 2003143618 A JP2003143618 A JP 2003143618A JP 2001340863 A JP2001340863 A JP 2001340863A JP 2001340863 A JP2001340863 A JP 2001340863A JP 2003143618 A JP2003143618 A JP 2003143618A
Authority
JP
Japan
Prior art keywords
light
focusing
image pickup
optical path
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001340863A
Other languages
Japanese (ja)
Other versions
JP2003143618A5 (en
Inventor
Takaharu Nurishi
塗師  隆治
Shigeru Oshima
茂 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001340863A priority Critical patent/JP2003143618A/en
Publication of JP2003143618A publication Critical patent/JP2003143618A/en
Publication of JP2003143618A5 publication Critical patent/JP2003143618A5/ja
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a color separation optical system with an automatic focus detection means suitable for a color video camera and a color television camera or the like and to provide an image pickup device employing the same. SOLUTION: The image pickup device; adopting the color separation optical system having a plurality of prisms, which separate an incident luminous flux into a plurality of color lights in different wavelength bands and emit them; and having an optical split face placed in an optical path of one of a plurality of the prisms and a focus detection means for automatic focusing in an optical path branched by the optical split face, is provided with a means that obtains focus information at a plurality of defocusing positions in the branch optical path without the need for movement in the optical axis direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は色分解光学系及びそ
れを用いた撮像装置に関し、例えば入射光束を赤外光、
緑色光、青色光の3つの色光に色分解して射出させる、
所謂3Pプリズム等の色分解光学系と該色分解光学系を
介した光束を用いて撮影レンズの合焦信号を得る自動焦
点検出手段とを設けたテレビカメラやビデオカメラ等に
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color separation optical system and an image pickup apparatus using the same.
The color is separated into three color lights, green light and blue light, and emitted.
It is suitable for a television camera, a video camera or the like provided with a color separation optical system such as a so-called 3P prism and an automatic focus detection means for obtaining a focus signal of a photographing lens by using a light beam passing through the color separation optical system. .

【0002】[0002]

【従来の技術】従来よりスチルカメラやビデオカメラ等
の撮影装置におけるオートフォーカスの方式として山登
り方式と呼ばれる合焦検出方式が知られている。この山
登り方式は画像(被写体像)の鮮鋭度を直接評価してフ
ォーカスレンズ(合焦レンズ)を駆動して焦点を変化さ
せながら画像の鮮鋭度が最大になる点を探し、その点を
合焦位置として撮影系の合焦状態を得ている。
2. Description of the Related Art Conventionally, a focus detection method called a hill climbing method has been known as an autofocus method in a photographing device such as a still camera or a video camera. This hill climbing method directly evaluates the sharpness of the image (subject image) and drives the focus lens (focusing lens) to change the focus to find the point where the sharpness of the image is maximum and focus on that point. The in-focus state of the shooting system is obtained as the position.

【0003】このような画像の鮮鋭度の評価方法を利用
した合焦検出装置が、例えば特開昭62−103616
号公報で提案されている。
An in-focus detection apparatus using such an image sharpness evaluation method is disclosed in, for example, Japanese Patent Laid-Open No. 62-103616.
It has been proposed in the publication.

【0004】また従来よりビデオカメラにおける合焦検
出方式の1つとして、撮像素子への合焦状態を周期的に
振動させ映像信号を監視する、いわゆるウォブリング法
と呼ばれる方法が多く用いられている。特開昭61−9
7616号公報では、撮像レンズ系のうち少なくとも1
枚のレンズを振動用コイルにて光軸方向に振動させ、撮
像管の出力信号の変化を位相比較器で比較しピークを検
出することにより、合焦レンズを最適の合焦位置に調整
するようにした自動焦点調整装置が提案されている。
In addition, a so-called wobbling method has conventionally been widely used as one of focus detection methods in video cameras, in which a focus state of an image pickup element is periodically oscillated to monitor a video signal. Japanese Patent Laid-Open No. 61-9
Japanese Patent No. 7616 discloses at least one of imaging lens systems.
The focusing lens is adjusted to the optimum focusing position by vibrating the single lens in the optical axis direction with the vibration coil and comparing the change in the output signal of the image pickup tube with the phase comparator to detect the peak. An automatic focus adjustment device based on the above has been proposed.

【0005】また特開平4−137872号公報では、
撮像素子を圧電アクチュエーターで駆動し、ウォブリン
グしながら移動して合焦する自動焦点調整装置を有した
ビデオカメラが提案されている。
Further, in Japanese Patent Laid-Open No. 4-137872,
2. Description of the Related Art A video camera has been proposed which has an automatic focus adjustment device in which an image pickup element is driven by a piezoelectric actuator, and is moved and focused while wobbling.

【0006】[0006]

【発明が解決しようとする課題】一般に撮像素子や撮影
レンズの一部を周期的に振動させて撮影レンズの焦点検
出を行う方法、所謂ウォブリングを行って撮影レンズの
焦点検出をする方法は次のような問題点があった。
Generally, the method of detecting the focus of the photographing lens by periodically vibrating a part of the image pickup device or the photographing lens, that is, the method of detecting the focus of the photographing lens by performing so-called wobbling is as follows. There was such a problem.

【0007】(イ) 撮影される映像が微少振動してい
ることにより、映像の高周波成分が平滑化されて失わ
れ、像のシャープネスが低下してくることである。これ
は家庭用ビデオカメラのようにVTRの記録帯域がある
程度狭い場合には高周波成分の低下はあまり問題になら
ないが、高画質が要求される業務用のカラーテレビジョ
ンカメラなどでは、ウォブリングによる画質の低下は大
きな問題点となってくる。
(B) The high-frequency component of the image is smoothed and lost due to the slight vibration of the image to be captured, and the sharpness of the image is reduced. This is because if the recording band of the VTR is narrow to some extent like a home video camera, the deterioration of the high frequency component does not become a problem, but in a color television camera for business use that requires high image quality, the image quality due to wobbling does not increase. The decline becomes a big problem.

【0008】(ロ) 前述の(イ)の問題点とも関係が
あるが、ウォブリングによる画質の低下を許容値以内に
納めるために、ウォブリングの振幅が制限されることで
ある。像が大きくボケている場合には、小さなウォブリ
ング振幅では映像信号の変化は小さく、合焦レンズをど
ちらの方向にどのくらい動かせばよいかという情報が得
にくい。このため、大きく合焦位置からずれている場合
には、合焦位置まで合わせるために時間がかかってしま
い敏速なカメラワークが損なわれるという問題点が生じ
てくる。
(B) Although related to the problem of (a) above, the amplitude of wobbling is limited in order to keep the deterioration of image quality due to wobbling within an allowable value. When the image is greatly blurred, the change in the video signal is small with a small wobbling amplitude, and it is difficult to obtain information about in which direction and how much the focusing lens should be moved. For this reason, if the focus position is largely deviated, it takes time to adjust the focus position, which impairs quick camera work.

【0009】これに対して特開平8−50227号公報
では、入射光束を波長帯域の異なる複数の色光に分解し
て射出させる複数のプリズムを有した色分解光学系に、
前記複数のプリズムのうちの1つのプリズムの光路中に
光分割面を設け、前記光分割面で分割した光束を射出さ
せる射出面に、前記射出面に設けた部材を光軸方向に変
動させる駆動手段を設けることにより、画像の高周波成
分の低下を効果的に防止し、かつ最適なウォブリング振
幅を選択できるようにした撮像装置が提案されている。
On the other hand, in Japanese Unexamined Patent Publication No. 8-502227, a color separation optical system having a plurality of prisms for separating an incident light beam into a plurality of color lights having different wavelength bands and emitting the separated light beams,
A drive is provided in which a light splitting surface is provided in the optical path of one of the plurality of prisms, and a member provided on the exiting surface is moved in an optical axis direction on an exit surface for emitting the light beam split by the light splitting surface. There has been proposed an image pickup apparatus in which a means is provided to effectively prevent a high frequency component of an image from being lowered and to select an optimum wobbling amplitude.

【0010】本発明は入射光束を波長帯域の異なる複数
の色光に色分解して射出する複数のプリズムを有する色
分解光学系を適切に構成することによりウォブリングを
利用せずに高精度な合焦信号が得られるビデオカメラや
テレビカメラ等に好適な色分解光学系及びそれを用いた
撮像装置の提供を目的とする。
According to the present invention, by appropriately configuring a color separation optical system having a plurality of prisms for separating an incident light beam into a plurality of color lights having different wavelength bands and emitting the separated color lights, highly accurate focusing can be performed without using wobbling. An object of the present invention is to provide a color separation optical system suitable for a video camera, a television camera or the like that can obtain a signal, and an image pickup apparatus using the same.

【0011】[0011]

【課題を解決するための手段】請求項1の発明の色分解
光学系は入射光束を波長帯域の異なる複数の色光に分解
して射出させる複数のプリズムを有した色分解光学系で
あって、該複数のプリズムのうちの1つのプリズムの光
路中に光分割面を設け、該光分割面で分割した光束を射
出させる射出面側に、光軸方向に対して、互いに異なっ
た光路長を付与し、光軸方向に対して互いに異なった位
置に相当する像を同一面上に形成する光学手段を設けて
いることを特徴としている。
According to a first aspect of the present invention, there is provided a color separation optical system having a plurality of prisms for separating an incident light beam into a plurality of color lights having different wavelength bands and emitting the separated light beams. A light splitting surface is provided in the optical path of one prism of the plurality of prisms, and different light path lengths are provided in the optical axis direction on the exit surface side from which the light beam split by the light splitting surface is emitted. However, an optical means for forming images corresponding to different positions with respect to the optical axis direction on the same surface is provided.

【0012】請求項2の発明の色分解光学系は入射面か
らの光束を波長帯域の異なる複数の色光に分解し、各色
光を射出面より射出させて各色光用の撮像素子に導光す
る複数のプリズムを有した色分解光学系であって、該複
数のプリズムのうちの1つのプリズムは可視光以外の光
束を分割しており、該1つのプリズムの射出面と撮像素
子との間に、光軸方向に対して、互いに異なった光路長
を付与し、光軸方向に対して互いに異った位置に相当す
る像を同一面上に形成する光学手段を設けていることを
特徴としている。
In the color separation optical system of the second aspect of the invention, the light flux from the incident surface is separated into a plurality of color lights having different wavelength bands, the respective color lights are emitted from the emission surface, and are guided to the image pickup element for each color light. A color separation optical system having a plurality of prisms, wherein one prism of the plurality of prisms splits a light beam other than visible light, and a prism is provided between an exit surface of the one prism and an image sensor. Characterized by providing optical means for providing different optical path lengths in the optical axis direction and forming images corresponding to different positions in the optical axis direction on the same plane. .

【0013】請求項3の発明は請求項1又は2の発明に
おいて前記光学手段は、複数のプリズムを接合し、複数
のプリズムのうちの1つの面から入射した入射光を互い
に異なった光路長を付与して、互いに異なった面より出
射させる構成より成っていることを特徴としている。
According to a third aspect of the present invention, in the first or second aspect of the invention, the optical means joins a plurality of prisms, and the incident light incident from one surface of the plurality of prisms has different optical path lengths. It is characterized in that it is configured to be given and emitted from different surfaces.

【0014】請求項4の発明は請求項1又は2の発明に
おいて前記光学手段は、互いに光路長が異なる複数の光
学部材を有し、該複数の光学部材のうちの1つを光路中
に位置させる駆動部を有していることを特徴としてい
る。
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the optical means includes a plurality of optical members having different optical path lengths, and one of the plurality of optical members is located in the optical path. It is characterized in that it has a driving unit for driving.

【0015】請求項5の発明の撮像装置はレンズ交換が
可能なカメラ本体の一部に入射光束を波長帯域の異なる
複数の色光に色分解して、各々の射出面より射出させて
撮像素子に導光する複数のプリズムを有する該色分解光
学系を設けた撮像装置において、該色分解光学系は色分
解した光束のうちの1つの光束の光路中に、一部の光束
を分割し射出させる分岐光路を形成し、該分岐光路の射
出面側に該カメラ本体に装着する撮影レンズの合焦信号
を得るための合焦用撮像素子と、該射出面と該合焦用撮
像素子との間に、光軸方向に対して、互いに異なった光
路長を付与し、光軸方向に対して互いに異った位置に相
当する像を同一面上に形成する光学手段を設けているこ
とを特徴としている。
According to a fifth aspect of the present invention, an image pickup device color-separates an incident light beam into a plurality of color lights having different wavelength bands into a part of a camera body in which a lens can be exchanged, and the color beams are emitted from respective emission surfaces to form image pickup elements. In an imaging device provided with the color separation optical system having a plurality of light guiding prisms, the color separation optical system splits and emits a part of a light beam in the optical path of one of the color-separated light beams. Between the exit imaging surface and the focusing imaging element for forming a branching optical path and obtaining a focusing signal of a photographing lens attached to the camera body on the exit surface side of the branching optical path. In addition, the optical means for imparting different optical path lengths with respect to the optical axis direction and forming an image corresponding to different positions with respect to the optical axis direction on the same surface is provided. There is.

【0016】請求項6の発明の撮像装置はレンズ交換が
可能なカメラ本体の一部に入射光束を波長帯域の異なる
複数の色光に色分解して、各々の射出面より射出させて
撮像素子に導光する複数のプリズムを有する該色分解光
学系を設けた撮像装置において、該色分解光学系は色分
解した光束のうちの1つの光束の光路中に、一部の光束
を分割し射出させる分岐光路を形成し、該分岐光路の射
出面側に該カメラ本体に装着する撮影レンズの合焦信号
を得るための合焦用撮像素子を有し、該合焦用の撮像素
子は該分岐光路以外の光路中に設けた撮像素子に対して
光軸方向に異なった位置に設定されており、該合焦用の
撮像素子と分岐光路以外の光路中に設けた撮像素子から
の信号を用いて、合焦信号を得ていることを特徴として
いる。
According to the sixth aspect of the present invention, an image pickup device color-separates an incident light beam into a plurality of color lights having different wavelength bands into a part of a camera body whose lenses can be exchanged, and emits the light beams from respective emission surfaces to form image pickup devices. In an imaging device provided with the color separation optical system having a plurality of light guiding prisms, the color separation optical system splits and emits a part of a light beam in the optical path of one of the color-separated light beams. A branching optical path is formed, and an imaging element for focusing is provided on the exit surface side of the branching optical path to obtain a focusing signal of a photographing lens attached to the camera body, and the imaging element for focusing is the branching optical path. Are set at different positions in the optical axis direction with respect to the image pickup device provided in the optical path other than, and the signals from the image pickup device provided in the image pickup device and the optical path other than the branching optical path are used. , Is characterized in that a focus signal is obtained.

【0017】請求項7の発明は請求項5又は6の発明に
おいて前記分岐光路の光束は、緑色光を含む可視波長域
の光であることを特徴としている。
The invention of claim 7 is characterized in that, in the invention of claim 5 or 6, the luminous flux in the branched optical path is light in the visible wavelength range including green light.

【0018】請求項8の発明は請求項5、6又は7の発
明において前記合焦用の撮像素子からの出力信号からカ
メラ本体に装着する撮像レンズの合焦位置を判断する合
焦位置制御回路を有し、該合焦位置制御回路からの合焦
信号に基づき該撮像レンズの合焦レンズを駆動する合焦
レンズ駆動手段を有していることを特徴としている。
According to an eighth aspect of the present invention, in the fifth, sixth or seventh aspect of the present invention, a focus position control circuit for determining the focus position of the image pickup lens mounted on the camera body from the output signal from the focus image pickup device. And a focusing lens driving means for driving the focusing lens of the imaging lens based on the focusing signal from the focusing position control circuit.

【0019】請求項9の発明の撮像装置はレンズ交換が
可能なカメラ本体の一部に色分解のための複数のチャン
ネルを有する色分解光学系と各チャンネル毎に撮像素子
を設け、これにより画像信号を得る撮像素子において、
該色分解光学系の1つのチャンネルは、可視光以外の光
束を用い、光軸方向に対して、互いに異なった光路長を
付与し、光軸方向に対して互いに異った位置に相当する
像を同一面上に形成する光学手段を介して合焦用の撮像
素子面上に像を形成しており、該合焦用の撮像素子から
の信号を利用して、該カメラ本体に装着する撮影レンズ
の合焦信号を得ていることを特徴としている。
According to the image pickup apparatus of the present invention, a color separation optical system having a plurality of channels for color separation and an image pickup device for each channel are provided in a part of the camera body in which the lens can be exchanged, and thereby an image is obtained. In the image sensor that obtains the signal,
One channel of the color separation optical system uses a light beam other than visible light, gives different optical path lengths in the optical axis direction, and images corresponding to different positions in the optical axis direction. An image is formed on the surface of the image sensor for focusing through an optical means for forming the image on the same surface, and the image is attached to the camera body by using a signal from the image sensor for focusing. The feature is that the focus signal of the lens is obtained.

【0020】請求項10の発明は請求項9の発明におい
て前記合焦信号を得るための1つのチャンネルは緑色光
を含まない光を分岐したものであって、該合焦信号は、
撮影レンズの軸上色収差に関するデーターに基づき合焦
用のチャンネルと緑色光又は輝度光のチャンネルとの間
の結像位置の差の補正を加えて得ていることを特徴とし
ている。
According to a tenth aspect of the invention, in the invention of the ninth aspect, one channel for obtaining the focusing signal is obtained by branching light that does not include green light, and the focusing signal is
It is characterized in that it is obtained by correcting the difference in image forming position between the focusing channel and the channel of green light or luminance light based on the data on the axial chromatic aberration of the taking lens.

【0021】請求項11の発明は請求項10の発明にお
いて前記合焦用の撮像素子に入射する光束は近赤外光で
あり、該合焦用の撮像素子からの出力信号からカメラ本
体に装着する撮影レンズの合焦位置を判断する合焦位置
制御回路と、該合焦位置制御回路からの該合焦信号に撮
影レンズの軸外色収差に関するデーターに基づき近赤外
光と可視光の結像位置の差の補正を加える演算回路と、
該演算回路からの信号に基づいて該撮影レンズの合焦レ
ンズを駆動する合焦レンズ駆動手段を有していることを
特徴としている。
According to an eleventh aspect of the invention, in the tenth aspect of the invention, the light flux incident on the focusing image pickup device is near-infrared light, and is attached to the camera body from an output signal from the focusing image pickup device. A focusing position control circuit for determining the focusing position of the taking lens, and imaging of near-infrared light and visible light based on the focusing signal from the focusing position control circuit based on the data regarding the off-axis chromatic aberration of the taking lens An arithmetic circuit that corrects the position difference,
It is characterized in that it has a focusing lens driving means for driving the focusing lens of the photographing lens based on a signal from the arithmetic circuit.

【0022】請求項12の発明は請求項11の発明にお
いて前記可視光は、緑色光であることを特徴としてい
る。
According to a twelfth aspect of the invention, in the eleventh aspect of the invention, the visible light is green light.

【0023】[0023]

【発明の実施の形態】(実施形態1)図1は本発明の色
分解光学系を用いた撮像装置の実施形態1の要部概略図
である。同図において1はズームレンズ等の撮影レンズ
であり、カメラ本体に交換可能に装着されており、被写
体の像を後述する撮像素子3B,3R,3G,4上に形
成している。2は色分解光学系であり、撮影レンズ1か
らの光を波長帯域の異なる複数の色光でかつ異なる光路
に分岐し、複数の撮像素子上に結像させ、カラー映像を
得ると同時に、合焦検出のための分岐光路を有してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 is a schematic view of the essential portions of Embodiment 1 of an image pickup apparatus using the color separation optical system of the present invention. In the figure, reference numeral 1 denotes a photographing lens such as a zoom lens, which is detachably attached to the camera body and forms an image of a subject on image pickup devices 3B, 3R, 3G and 4 which will be described later. Reference numeral 2 denotes a color separation optical system, which splits the light from the taking lens 1 into a plurality of color lights having different wavelength bands and into different optical paths to form an image on a plurality of image pickup devices to obtain a color image and at the same time focus. It has a branched optical path for detection.

【0024】201は青色分解プリズム(第1のプリズ
ム)である。青色分解プリズム201の一部の面212
には青色反射ダイクロイック膜Bを設けており、青色成
分の光束(青色光)を反射させて、面211で全反射さ
せて射出面(主射出面)213より射出させている。2
02は赤外色分解プリズム(第2のプリズム)であり、
その一部の面215には赤色反射ダイクロイック膜Rを
設けている。
Reference numeral 201 is a blue separation prism (first prism). Partial surface 212 of the blue separation prism 201
Is provided with a blue reflection dichroic film B, which reflects a light flux of a blue component (blue light), totally reflects it on a surface 211, and emits it from an emission surface (main emission surface) 213. Two
02 is an infrared color separation prism (second prism),
A red reflective dichroic film R is provided on part of the surface 215.

【0025】青色分解プリズム201と赤色分解プリズ
ム202とは微小間隙を隔てて配置して面215に設け
た赤色反射ダイクロイック膜Rで反射した赤色波長帯の
光束を面214で効率よく全反射させて射出面(主射出
面)216より射出している。
The blue resolving prism 201 and the red resolving prism 202 are arranged with a minute gap therebetween, and the light in the red wavelength band reflected by the red reflection dichroic film R provided on the surface 215 is efficiently totally reflected on the surface 214. The light is emitted from the emission surface (main emission surface) 216.

【0026】203はプリズムであり、赤色分解プリズ
ム202の面215と接着しており、面215を通過し
た緑色光の一部をハーフミラー面(光分割面)217で
反射させて射出面(副射出面)218より射出させてい
る。ハーフミラー面217で反射した光路は合焦検出の
ための分岐光路を形成している。
Reference numeral 203 denotes a prism, which is adhered to the surface 215 of the red separation prism 202, and a part of the green light that has passed through the surface 215 is reflected by the half mirror surface (light splitting surface) 217 so that the exit surface (sub) It is ejected from the emission surface) 218. The optical path reflected by the half mirror surface 217 forms a branched optical path for focus detection.

【0027】204は緑色分解プリズムであり、プリズ
ム203のハーフミラー面217と接着しておりハーフ
ミラー面217を通過した緑色光を射出面(主射出面)
219より射出している。射出面213,216,21
9には各々青色用、赤色用、緑色用のトリミングフィル
ター(不図示)が設けられている。3B,3R,3Gは
各々主射出面213,216,219に設けた青色、赤
色、緑色用の撮像素子(CCD)であり、これらよりカ
ラー映像信号を得ている。4は焦点信号検出用の撮像素
子である。
Reference numeral 204 denotes a green separation prism, which is adhered to the half mirror surface 217 of the prism 203 and emits green light that has passed through the half mirror surface 217 (main emission surface).
Ejected from 219. Ejection surfaces 213, 216, 21
9 are provided with trimming filters (not shown) for blue, red, and green, respectively. Reference numerals 3B, 3R, and 3G denote blue, red, and green image pickup devices (CCD) provided on the main exit surfaces 213, 216, and 219, respectively, and color image signals are obtained from these. Reference numeral 4 is an image sensor for detecting a focus signal.

【0028】本実施形態において撮影レンズ1を通過し
た光束は青色分解プリズム201の入射面211より入
射している。そして該入射光束のうち青色波長帯の光束
は青色反射ダイクロイック膜Bが施された面(青色ダイ
クロイック蒸着面)212で反射した後、青色分解プリ
ズム201の入射面211と同一平面上の反射面211
aで全反射して青色用のトリミングフィルターを通過し
て青色用の撮像素子3Bに入射し、青色光の色再現を行
っている。
In this embodiment, the light flux that has passed through the taking lens 1 is incident from the incident surface 211 of the blue separation prism 201. Then, of the incident luminous flux, the luminous flux in the blue wavelength band is reflected by the surface (blue dichroic vapor deposition surface) 212 on which the blue reflection dichroic film B is applied, and then the reflecting surface 211 on the same plane as the incident surface 211 of the blue resolution prism 201.
The light is totally reflected at a, passes through the blue trimming filter, enters the blue image pickup device 3B, and reproduces the color of blue light.

【0029】また青色ダイクロイック蒸着面212を透
過した青色成分以外の光束は青色分解プリズム201と
赤色分解プリズム202との微小間隙をレンズ光軸La
より微小角度をもって通過し、該青色ダイクロイック蒸
着面212と平行な赤色分解プリズム202の入射面2
14に入射屈折してレンズ光軸Laと平行となって赤色
分解プリズム202内を通過している。
Further, the light flux other than the blue component that has passed through the blue dichroic vapor deposition surface 212 passes through a minute gap between the blue separation prism 201 and the red separation prism 202 to the lens optical axis La.
Incident surface 2 of red separation prism 202 that passes through at a smaller angle and is parallel to the blue dichroic vapor deposition surface 212.
The light is incident on and refracted at 14 and becomes parallel to the lens optical axis La and passes through the red separation prism 202.

【0030】そして赤色分解プリズム202に入射した
光束のうち赤色波長帯の光束は赤色反射ダイクロイック
膜Rが施された面(赤色ダイクロイック蒸着面)215
で反射し、赤色分解プリズム202の入射面214と同
一平面上の反射面214aで全反射した後、赤色用のト
リミングフィルターを通過して赤色用の撮像素子3Rに
入射し、赤色成分の色再現を行っている。
Then, of the light fluxes incident on the red separation prism 202, the light flux in the red wavelength band is the surface on which the red reflective dichroic film R is applied (red dichroic vapor deposition surface) 215.
After being totally reflected by the reflecting surface 214a on the same plane as the incident surface 214 of the red separation prism 202, the light passes through the red trimming filter and enters the red image sensor 3R to reproduce the color of the red component. It is carried out.

【0031】一方、赤色ダイクロイック蒸着面215を
透過した緑色成分の光束はプリズム203に入射し、ハ
ーフミラー面(光分割面)217で反射光と透過光の2
つの光束に分岐している。このうちハーフミラー面21
7からの反射光はプリズム203の合焦検出機構(駆動
手段)5を設けた射出面218より射出して後述する光
学手段としてのプリズムXに入射した後、複数の光路に
分岐し各々△dずつ異なる光路長をもった光束が、撮像
素子4に入射し、撮像素子4面上に各々緑色光の物体像
を形成して後述する方法で、撮影レンズ1に関する焦点
信号を得ている。
On the other hand, the light flux of the green component transmitted through the red dichroic vapor deposition surface 215 is incident on the prism 203, and is reflected by the half mirror surface (light splitting surface) 217 to be reflected light and transmitted light.
It is split into two light beams. Of these, half mirror surface 21
The reflected light from 7 is emitted from an emission surface 218 of the prism 203 provided with the focus detection mechanism (driving means) 5, enters a prism X as an optical means to be described later, and is then branched into a plurality of optical paths, respectively, Δd. Light fluxes having different optical path lengths are incident on the image sensor 4 to form green light object images on the surface of the image sensor 4 to obtain a focus signal for the taking lens 1 by a method described later.

【0032】プリズム203のハーフミラー面217を
透過した緑色光は緑色分解プリズム204に入射し、射
出面219より射出して緑色用のトリミングフィルター
とを通過してレンズ光軸Laと平行に緑色用の撮像素子
3Gに入射し、緑色光の色再現を行っている。
The green light transmitted through the half mirror surface 217 of the prism 203 enters the green separation prism 204, exits from the exit surface 219, passes through the trimming filter for green, and is parallel to the lens optical axis La. The light is incident on the image pickup device 3G, and color reproduction of green light is performed.

【0033】本実施形態では3つの撮像素子3B,3
R,3Gよりカラー映像信号を得ている。
In this embodiment, three image pickup devices 3B, 3
Color video signals are obtained from R and 3G.

【0034】本実施形態では色分解光学系2は撮影レン
ズ1からの光束を青色,赤色,緑色光の3つの色光に色
分解して撮像素子3B,3R,3Gに導光して、カラー
映像信号を得るための3チャンネルの光路と、撮像素子
4に導光して焦点検出信号を得るための1チャンネルの
光路(合焦検出用の分岐光路)とを有している。
In the present embodiment, the color separation optical system 2 color-separates the light flux from the taking lens 1 into three color lights of blue, red and green lights and guides them to the image pickup devices 3B, 3R and 3G to obtain a color image. It has a three-channel optical path for obtaining a signal and a one-channel optical path for guiding light to the image sensor 4 to obtain a focus detection signal (a branched optical path for focus detection).

【0035】図6は本実施形態において撮影レンズ1の
焦点信号を得るための所謂山登り方式による焦点検出方
法の説明図である。
FIG. 6 is an explanatory diagram of a so-called hill-climbing focus detection method for obtaining the focus signal of the taking lens 1 in this embodiment.

【0036】同図において横軸が撮像素子4の光軸方向
の位置で、縦軸が撮像素子4で得られる被写体象の鮮鋭
度評価値ESである。同図に示すように撮像素子4の光
軸方向の位置を矢印4−3に示す如く∞点からN点(近
点)側へ変移させていくと鮮鋭度評価値ESは山のよう
な波形Aとなる。この波形Aの頂点、即ち合焦位置4−
1のときはどちらの方向に撮像素子4を変移させても評
価値ESは下がる。また波形Aの位置4−2ではN点側
で評価値ESが増加し、∞点側で評価値ESが減少する
ので合焦位置4−1の方向がわかる。ここで本実施形態
ではプリズムXを用いて光路長を△dずつ変えて複数の
像を撮像素子4上に順次結像させることにより波形Aの
複数の位置(光軸方向の位置)での評価値ESを得てお
り、これにより合焦位置判断回路7により、合焦状態を
検出している。そして合焦位置判断回路7からの信号を
コネクター8を介して合焦レンズ駆動モータ9に入力
し、合焦レンズ駆動モータ9によって合焦レンズを駆動
させている。
In the figure, the horizontal axis is the position in the optical axis direction of the image sensor 4, and the vertical axis is the sharpness evaluation value ES of the subject image obtained by the image sensor 4. As shown in the figure, when the position of the image pickup device 4 in the optical axis direction is shifted from the ∞ point to the N point (near point) side as shown by an arrow 4-3, the sharpness evaluation value ES has a peak-like waveform. It becomes A. The peak of this waveform A, that is, the focus position 4-
When the value is 1, the evaluation value ES decreases regardless of which direction the image sensor 4 is displaced. Further, at the position 4-2 of the waveform A, the evaluation value ES increases on the N point side and the evaluation value ES decreases on the ∞ point side, so that the direction of the in-focus position 4-1 can be known. Here, in the present embodiment, evaluation is performed at a plurality of positions (positions in the optical axis direction) of the waveform A by sequentially forming a plurality of images on the image sensor 4 by changing the optical path length by Δd using the prism X. The value ES is obtained, and the in-focus state determination circuit 7 detects the in-focus state. Then, a signal from the focusing position determination circuit 7 is input to the focusing lens drive motor 9 via the connector 8, and the focusing lens drive motor 9 drives the focusing lens.

【0037】これによって、本実施形態では撮像素子4
を光軸方向に移動することなく移動させたのと実質的に
同じにして合焦位置4−1の方向を得て合焦動作を行っ
ている。
Thus, in this embodiment, the image pickup device 4
The focus operation is performed by obtaining the direction of the focus position 4-1 in substantially the same manner as when the lens is moved without moving in the optical axis direction.

【0038】本実施形態では緑色光のうち一部をハーフ
ミラー面217で反射させて射出面218より射出させ
た像を合焦検出のための合焦検出機構5を介して撮像素
子4上に形成している。このとき撮像素子4に形成され
る像は奇数回の反射像であるため、偶数回(またはゼロ
回)反射像である撮像素子3B,3R,3Gの像に比べ
て反転像となるが、これは合焦検出のためには全くさし
つかえない。
In this embodiment, part of the green light is reflected by the half mirror surface 217 and emitted from the exit surface 218, and the image is focused on the image sensor 4 via the focus detection mechanism 5 for focus detection. Is forming. At this time, the image formed on the image sensor 4 is a reflected image of an odd number of times, and therefore an inverted image as compared with the images of the image sensors 3B, 3R, and 3G, which are reflected images of an even number (or zero times). Cannot be used at all for focus detection.

【0039】撮像素子3B,3R,3Gはたとえば公開
実用新案昭63−81481号公報に述べられているよ
うな方法で色分解光学系の射出面に固着している。ま
た、その光軸上の位置はSMPTEジャーナル1989
年9月号647ページ大西氏の論文に述べられているよ
うな基準に基づき調整している。この色分解光学系は、
従来の一般的な3色分解プリズムの第3プリズムをハー
フミラー面217でプリズム203と緑色用プリズム2
04の2つのプリズムに分割したものと考えられる。こ
のため全体のプリズム長は従来の3色分解プリズムと同
一の光学長にすることが可能で、撮影レンズ1の収差に
影響を与えることがなく、互換性が保たれる効果があ
る。また、合焦検出用に取り出す色光は輝度信号の60
%を占める緑色光であるから、撮影レンズ1の軸上色収
差の影響を受けにくく、高い合焦精度が得られるという
特長がある。
The image pickup devices 3B, 3R and 3G are fixed to the exit surface of the color separation optical system by a method described in, for example, Japanese Utility Model Laid-Open No. 63-81481. The position on the optical axis is SMPTE Journal 1989.
September issue, page 647, adjusted based on the criteria described in Mr. Onishi's paper. This color separation optical system
The third prism of the conventional general three-color separation prism is a half mirror surface 217 with a prism 203 and a green prism 2.
It is considered that the prism is divided into two prisms 04. Therefore, the entire prism length can be set to the same optical length as that of the conventional three-color separation prism, the aberration of the photographing lens 1 is not affected, and compatibility is maintained. Also, the color light extracted for focus detection is 60% of the luminance signal.
Since the green light occupies 10%, it is less affected by the axial chromatic aberration of the taking lens 1, and high focusing accuracy can be obtained.

【0040】次に本実施形態で用いている合焦検出機構
5について説明する。
Next, the focus detection mechanism 5 used in this embodiment will be described.

【0041】図2は本実施形態における合焦検出機構の
実施例1の要部概略図である。プリズム203の射出面
218より射出させた像は光学手段としての複数の微小
プリズムを接合したプリズムXを介して各光路x1a,
x1b,x1cに光路差を付与し、複数(図では3であ
るが3以上でも良い)の分岐光とし、各々△skずつ光
路長を変化(付与)させて同一面上の撮像素子4に達し
ている。撮像素子4の位置は、光路x1bに対して撮像
素子3Gの光軸上の位置と光学的にほぼ合致している。
撮像素子4からの光路x1a,x1b,x1cに対応す
る3つの映像出力は、図1の合焦位置判断回路7に入力
され、光軸方向の3か所における合焦位置信号として出
力している。合焦位置信号はコネクター8を介して撮影
レンズ1に伝達され、撮影レンズ1内の合焦レンズ駆動
モーター9を制御し合焦位置に調整している。本実施例
1は撮像素子4で得る複数の合焦信号の検出に駆動機構
を有しないため構造が単純で強固である等の特長があ
る。
FIG. 2 is a schematic view of the essential portions of Example 1 of the focus detection mechanism in this embodiment. The image emitted from the emission surface 218 of the prism 203 is transmitted through the optical paths x1a,
An optical path difference is given to x1b and x1c to make a plurality of (3 in the figure, but may be 3 or more) branched light, and the optical path length is changed (given) by Δsk and reaches the image sensor 4 on the same plane. ing. The position of the image sensor 4 is substantially in optical alignment with the position on the optical axis of the image sensor 3G with respect to the optical path x1b.
Three image outputs corresponding to the optical paths x1a, x1b, x1c from the image pickup device 4 are input to the focus position determination circuit 7 in FIG. 1 and output as focus position signals at three positions in the optical axis direction. . The focus position signal is transmitted to the taking lens 1 via the connector 8, and the focusing lens drive motor 9 in the taking lens 1 is controlled to adjust the focus position. The first embodiment has features such as a simple and strong structure because it has no driving mechanism for detecting a plurality of focusing signals obtained by the image pickup device 4.

【0042】図3は本実施形態における合焦検出装置の
実施例2の要部概略図である。実施例2において撮像素
子4は固定されており、プリズム203の射出面218
と撮像素子4の間には屈折率Nが1より大きい媒質で構
成された透明な回転軸Yaを有する光学部材としての円
盤Yが挿入されている。円盤Yは回転方向に複数の領域
Y1,Y2,Y3・・に分割されており、各々の領域で
光軸方向の厚みを△dずつ変化させてある。円盤Yを光
軸と略垂直な平面でモータ等の駆動部Mによって回転さ
せることにより撮像素子4までの光路長を変化させ撮像
素子4上に光軸方向に異なった複数位置での像を形成さ
せることができ、ウォブリングと等価な合焦検出効果が
得られる。円盤Yの光軸方向の厚みが△d変化したとき
の光路長の変化量△skは、 △sk = (N―1)△d で表される。例えば円盤Yを回転方向に3つの領域に分
割しているとし、1秒間30フレームに対応させると、
円盤Yの回転数RYは、 RY = 30/3 = 10 s-1 となる。本実施例では円盤Yの回転駆動に際し角速度を
一定とする必要はなく、例えば被写体のボケ量に応じ
て、合焦検出に適切なデフォーカス幅を得るために領域
の分割数を増やして、ボケ量が大きいときと小さいとき
とで円盤Yの使用範囲を変えてもよい。
FIG. 3 is a schematic view of the essential portions of Example 2 of the focus detection apparatus according to this embodiment. In the second embodiment, the image sensor 4 is fixed, and the exit surface 218 of the prism 203 is fixed.
A disk Y as an optical member having a transparent rotation axis Ya made of a medium having a refractive index N larger than 1 is inserted between the image pickup device 4 and the image pickup device 4. The disk Y is divided into a plurality of regions Y1, Y2, Y3 ... In the rotation direction, and the thickness in the optical axis direction is changed by Δd in each region. By rotating the disk Y by a drive unit M such as a motor on a plane substantially perpendicular to the optical axis, the optical path length up to the image sensor 4 is changed to form an image on the image sensor 4 at a plurality of different positions in the optical axis direction. The focus detection effect equivalent to wobbling can be obtained. The change amount Δsk of the optical path length when the thickness of the disk Y in the optical axis direction changes by Δd is represented by Δsk = (N-1) Δd. For example, if the disk Y is divided into three regions in the rotation direction, and if it corresponds to 30 frames per second,
The rotation speed RY of the disk Y is RY = 30/3 = 10s- 1 . In the present embodiment, it is not necessary to keep the angular velocity constant when the disk Y is rotationally driven. For example, in accordance with the amount of blur of the subject, the number of divided regions is increased in order to obtain a defocus width suitable for focus detection. The usage range of the disk Y may be changed depending on whether the amount is large or small.

【0043】図4は本実施形態に係る合焦検出機構の実
施例3の要部概略図である。実施例3では、撮像素子3
Gに対し光路長を△skだけ光軸方向にシフトした位置
に撮像素子4を配置して合焦検出を行っている。本実施
例では、撮像素子3Gからの信号と撮像素子4からの映
像信号の2つから光軸方向に異なった位置での合焦検出
の出力を得ている。
FIG. 4 is a schematic view of the essential portions of Embodiment 3 of the focus detection mechanism according to this embodiment. In the third embodiment, the image sensor 3
Focusing detection is performed by arranging the image sensor 4 at a position where the optical path length is shifted by Δsk with respect to G in the optical axis direction. In this embodiment, the focus detection output at different positions in the optical axis direction is obtained from the two signals, the signal from the image sensor 3G and the video signal from the image sensor 4.

【0044】以上のように本実施形態ではレンズ交換が
可能なカメラ本体の一部に色分解のための複数のチャン
ネルを有する色分解光学系2と複数の撮像素子3R,3
G,3Bを設け、これによりカラー信号を得ている。
又、色分解光学系は色分解の他に1チャンネルの分岐光
路を有しており、該分岐光路に設けた撮像素子4からの
出力信号から該カメラ本体に装着する撮影レンズ1の合
焦位置を判断する合焦位置判断回路と、該合焦位置判断
回路からの合焦信号に基づき該撮影レンズ1の合焦レン
ズを合焦レンズ駆動手段で駆動して自動合焦を行ってい
る。このような構成によって、分岐光路中に光軸方向へ
の移動なしに複数のデフォーカス位置にてフォーカス情
報を得ている。
As described above, in this embodiment, the color separation optical system 2 having a plurality of channels for color separation and the plurality of image pickup devices 3R, 3 are provided in a part of the camera body in which the lens can be exchanged.
G and 3B are provided to obtain color signals.
In addition to the color separation, the color separation optical system has a branch optical path of one channel, and from the output signal from the image pickup device 4 provided in the branch optical path, the focus position of the photographing lens 1 mounted on the camera body is adjusted. Based on a focus signal from the focus position determination circuit and a focus signal from the focus position determination circuit, the focus lens of the photographing lens 1 is driven by the focus lens driving means to perform automatic focus. With such a configuration, focus information is obtained at a plurality of defocus positions without moving in the optical axis direction in the branched optical path.

【0045】以上の実施例では、合焦チャンネルとし
て、緑色光を含む光を分岐し、使用していた。しかし、
緑色光の一部に限らず他の色光又は非可視光の光を用い
ても本実施形態は適用可能である。次に本実施形態の目
的を達成するための合焦信号を得るためのチャンネルに
緑色光を含まない実施例について述べる。
In the above embodiments, light including green light is branched and used as the focusing channel. But,
This embodiment is applicable not only to a part of green light but also to other colored light or invisible light. Next, an example will be described in which the channel for obtaining the focus signal for achieving the object of the present embodiment does not include green light.

【0046】図5は本発明の色分解光学系を有した撮像
装置の実施形態2の要部概略図である。
FIG. 5 is a schematic view of the essential portions of Embodiment 2 of an image pickup apparatus having a color separation optical system of the present invention.

【0047】本実施形態は図1の実施形態1に比べて色
分解光学系2にハーフミラー面217を有したプリズム
203の代わりに赤外光を抽出する赤外用プリズム50
1を用いて撮影レンズ1からの光束のうち近赤外光を選
択して撮像素子4に導光し、これより焦点信号を得てい
る点が異なっており、その他の構成は略同じである。
In this embodiment, an infrared prism 50 for extracting infrared light is used instead of the prism 203 having a half mirror surface 217 in the color separation optical system 2 as compared with the first embodiment shown in FIG.
1 is used to select near-infrared light from the light flux from the taking lens 1 and guide it to the image pickup device 4, and a focus signal is obtained from this, and other configurations are substantially the same. .

【0048】本実施形態は可視光以外の近赤外光を用い
ているためにカラー映像信号を得る際の撮像素子に何ら
影響を与えることがないという特長がある。
Since this embodiment uses near-infrared light other than visible light, it has the feature that it does not affect the image pickup device when obtaining a color video signal.

【0049】図5において撮影レンズ1からの光は、第
1のプリズム(近赤外用プリズム)501の入射面51
1に入射し、主に近赤外光を反射させる面512に達す
る。面512で反射した近赤外光は面511で全反射し
た後、射出面(主射出面513)より射出し、撮像素子
4に入射し、その面上に近赤外像を形成する。
In FIG. 5, the light from the taking lens 1 is incident on the incident surface 51 of the first prism (near infrared prism) 501.
1, and reaches the surface 512 which mainly reflects near infrared light. The near-infrared light reflected by the surface 512 is totally reflected by the surface 511, then exits from the exit surface (main exit surface 513), enters the image sensor 4, and forms a near-infrared image on the surface.

【0050】一方、面512を透過した可視光は3つの
プリズム502,503,504を利用して3つの色光
に色分解してカラー映像信号を得るための撮像素子3
B,3R,3Gに各々入射している。即ち面512を通
過し、プリズム502の入射面514より入射した可視
光のうち青色光は、プリズム502の青色光反射面51
5にて青色光成分が反射される。青色光は面514で全
反射した後、射出面516から射出し撮像素子3B上に
青色光像を形成する。
On the other hand, the visible light transmitted through the surface 512 is color-separated into three color lights using the three prisms 502, 503 and 504, and an image pickup device 3 for obtaining a color video signal is obtained.
It is incident on B, 3R, and 3G, respectively. That is, of the visible light that has passed through the surface 512 and has entered from the entrance surface 514 of the prism 502, the blue light is the blue light reflection surface 51 of the prism 502.
At 5, the blue light component is reflected. The blue light is totally reflected by the surface 514 and then exits from the exit surface 516 to form a blue light image on the image sensor 3B.

【0051】面515を透過して面517よりプリズム
503に入射した赤色光と緑色光のうち赤色光は、プリ
ズム503の赤色光反射面518にて赤色光成分が反射
される。赤色光は面517で全反射した後、面519か
ら射出し撮像素子3R上に赤色光像を形成する。面51
8を透過してプリズム504に入射した緑色光は射出面
520を透過して撮像素子3G上に緑色像を形成する。
これらの3枚の撮像素子3B,3G,3Rからの出力を
合成してカラー映像信号を得ている。撮像素子4の保持
方法と合焦検出方法は前述の諸実施例と同様の方法をと
ることができる。ただし、本実施形態では撮影レンズ1
の持つ軸上色収差による合焦誤差が問題となる。
Of the red light and the green light that have passed through the surface 515 and have entered the prism 503 through the surface 517, the red light component is reflected by the red light reflecting surface 518 of the prism 503. The red light is totally reflected by the surface 517 and then emitted from the surface 519 to form a red light image on the image pickup device 3R. Face 51
The green light that has passed through 8 and is incident on the prism 504 passes through the exit surface 520 to form a green image on the image sensor 3G.
Color video signals are obtained by synthesizing the outputs from these three image pickup devices 3B, 3G, and 3R. The holding method of the image sensor 4 and the focus detection method can be the same as those in the above-described embodiments. However, in the present embodiment, the taking lens 1
There is a problem of focusing error due to the axial chromatic aberration of.

【0052】業務用カラーテレビジョンカメラ用の撮影
レンズも、前述のSMPTE誌の大西氏の論文にも記載
されているように、ズーミングによって軸上色収差が変
動し望遠側ほど軸上色収差が大きくなる。また、フォー
カスによっても変動することがある。
As for the taking lens for a commercial color television camera, as described in the article by Mr. Onishi of SMPTE magazine, the axial chromatic aberration changes due to zooming, and the axial chromatic aberration increases toward the telephoto side. . It may also change depending on the focus.

【0053】人間がビューファインダを見ながらフォー
カス合わせをする場合には、緑色チャンネルまたは輝度
チャンネル(緑60%、赤30%、青10%の割合で合
成)にてベストフォーカスとなるように合わせるのが通
常である。したがって、図1の実施形態1のように緑色
チャンネルから合焦信号を得る場合には、人間の目で見
た場合でもフォーカスがあっているように見えるので問
題はない。しかるに、図5の実施形態2のように緑色を
含まない、たとえば近赤外光の像に合わせて合焦をさせ
た場合には、人間の視覚ではフォーカスが正しく合って
いないように見えてしまう。この合焦誤差は軸上収差の
大きい望遠側ほど顕著である。
When a human is focusing while looking at the viewfinder, the focus is set to the best focus on the green channel or the luminance channel (combined at a ratio of 60% green, 30% red, and 10% blue). Is normal. Therefore, when the focus signal is obtained from the green channel as in the first embodiment of FIG. 1, there is no problem because it looks as if the human eye is in focus. However, as in the second embodiment of FIG. 5, when the image is not focused, for example, when the image is focused on the near-infrared light, it looks as if human eyes are not in focus. . This focusing error is more remarkable on the telephoto side where the axial aberration is large.

【0054】そこで図5に示す撮像装置の実施形態2で
は、この合焦誤差を補正するための機能を加えている。
Therefore, in the second embodiment of the image pickup apparatus shown in FIG. 5, a function for correcting this focusing error is added.

【0055】図5において、合焦位置判断回路7からの
出力信号はコネクター8を介して、撮影レンズ1内の演
算回路10に入力される。ズームレンズの軸上色収差
は、合焦レンズの位置と焦点距離(ズーム位置)の関数
として決まる。演算回路10にはあらかじめ近赤外光と
可視波長域光(主として緑色チャンネルまたは輝度チャ
ンネル)との軸上色収差の差をデーターとしてメモリー
しておく。合焦レンズ位置検出器11およびズーム位置
検出器12にて検出されたズームレンズの状態を表す信
号は演算回路10に入力され、メモリーされている軸上
色収差データーから合焦誤差を演算し、コネクター8よ
り入力された合焦信号に補正を加えた後、合焦レンズ駆
動モーター9を制御するようにしている。
In FIG. 5, the output signal from the in-focus position determination circuit 7 is input to the arithmetic circuit 10 in the taking lens 1 via the connector 8. The axial chromatic aberration of the zoom lens is determined as a function of the position of the focusing lens and the focal length (zoom position). In the arithmetic circuit 10, the difference in the axial chromatic aberration between the near infrared light and the light in the visible wavelength region (mainly the green channel or the luminance channel) is stored in advance as data. A signal indicating the state of the zoom lens detected by the focus lens position detector 11 and the zoom position detector 12 is input to the arithmetic circuit 10 to calculate a focus error from the axial chromatic aberration data stored in the arithmetic circuit 10, The focus lens driving motor 9 is controlled after the focus signal input from the controller 8 is corrected.

【0056】本実施形態では以上のプロセスにより、近
赤外光チャンネル(撮像素子4)より得られた合焦信号
にもとづきながら、軸上色収差の誤差をともなわず、精
度の良い自動合焦動作を可能としている。そして、カラ
ーテレビジョンカメラとしては本来不要な近赤外光を分
岐して合焦検出に使用するため、カメラの感度を低下す
ることもなく、さらに撮像素子3B,3G,3Rへの近
赤外光の除去を兼ねることができるという効果も得られ
る。
In the present embodiment, by the above process, a highly accurate automatic focusing operation is performed based on the focusing signal obtained from the near-infrared optical channel (imaging device 4) without any error in axial chromatic aberration. It is possible. Further, since the near-infrared light, which is originally unnecessary for the color television camera, is branched and used for focus detection, the sensitivity of the camera is not lowered, and the near-infrared light to the image pickup devices 3B, 3G, 3R is further reduced. There is also an effect that light can be removed at the same time.

【0057】このように本実施形態では色分解光学系2
は撮影レンズ1からの入射光を4チャンネルに分岐する
光路を有し、そのうち3チャンネルの撮像素子3R,3
G,3Bからの出力信号からカラー映像を形成するとと
もに、残りの1チャンネルの撮像素子4から合焦信号を
得るようにしている。
As described above, in this embodiment, the color separation optical system 2
Has an optical path for branching the incident light from the photographing lens 1 into four channels, of which three-channel image pickup devices 3R, 3
A color image is formed from the output signals from G and 3B, and a focus signal is obtained from the remaining 1-channel image sensor 4.

【0058】このときの合焦信号を得るためのチャンネ
ルは近赤外光を分岐したものであって、演算回路10で
該合焦信号に撮影レンズ1の軸上色収差に関するデータ
ーに基づき近赤外光と可視光の結像位置の差の補正を加
えている。
The channel for obtaining the focusing signal at this time is a branch of near-infrared light, and the near-infrared light is calculated by the arithmetic circuit 10 based on the data regarding the axial chromatic aberration of the photographing lens 1 in the focusing signal. Correction of the difference between the image formation positions of light and visible light is added.

【0059】又、本実施形態では合焦信号を得るための
チャンネルは緑色光を含まない光を分岐したものであっ
て、演算回路10では、該合焦信号に撮影レンズの軸上
色収差に関するデーターに基づき合焦用のチャンネルと
緑色光又は輝度光のチャンネルとの間の結像位置の差の
補正を加えている。
Further, in the present embodiment, the channel for obtaining the focusing signal is a branch of light that does not contain green light, and the arithmetic circuit 10 uses the focusing signal to obtain data on the axial chromatic aberration of the taking lens. On the basis of the above, the difference in the image forming position between the focusing channel and the green light or luminance light channel is corrected.

【0060】これによって良好なる自動焦点検出を行っ
ている。
As a result, good automatic focus detection is performed.

【0061】[0061]

【発明の効果】本発明によれば、入射光束を波長帯域の
異なる複数の色光に色分解して射出する複数のプリズム
を有する色分解光学系を適切に構成することによりウォ
ブリングを利用せずに高精度な合焦信号が得られるビデ
オカメラやテレビカメラ等に好適な色分解光学系及びそ
れを用いた撮像装置を達成することができる。
According to the present invention, by appropriately configuring a color separation optical system having a plurality of prisms for separating an incident light beam into a plurality of color lights having different wavelength bands and emitting the separated color lights, wobbling is not used. It is possible to achieve a color separation optical system suitable for a video camera, a television camera, or the like that can obtain a highly accurate focus signal, and an imaging device using the color separation optical system.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の色分解光学系を用いた撮像装置の実
施形態1の要部概略図
FIG. 1 is a schematic view of a main part of Embodiment 1 of an image pickup apparatus using a color separation optical system of the present invention.

【図2】 本発明に係る合焦検出機構の実施例1の説明
FIG. 2 is an explanatory diagram of Embodiment 1 of the focus detection mechanism according to the present invention.

【図3】 本発明に係る合焦検出機構の実施例2の説明
FIG. 3 is an explanatory diagram of a second embodiment of a focus detection mechanism according to the present invention.

【図4】 本発明に係る合焦検出機構の実施例3の説明
FIG. 4 is an explanatory diagram of a third embodiment of a focus detection mechanism according to the present invention.

【図5】 本発明の色分解光学系を用いた撮像装置の実
施形態2の要部概略図
FIG. 5 is a schematic view of a main part of Embodiment 2 of an image pickup apparatus using the color separation optical system of the present invention.

【図6】 本発明で用いた山登り方式による焦点検出方
法の説明図
FIG. 6 is an explanatory view of a focus detection method by the hill climbing method used in the present invention.

【符号の説明】[Explanation of symbols]

1 撮影レンズ 2 色分解光学系 3B 青色用撮像素子 3R 赤色用撮像素子 3G 緑色用撮像素子 4 撮像素子 5 合焦検出のための機構 201 青色用プリズム 202 赤色用プリズム 203 プリズム 204 緑色用プリズム 217 光分割面 1 Shooting lens Two-color separation optical system 3B Blue color image sensor 3R Red image sensor 3G green image sensor 4 image sensor 5 Mechanism for focus detection 201 Blue prism 202 Red prism 203 prism 204 Green prism 217 Light splitting surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03B 13/36 G02B 7/11 D 5C065 17/14 K N Fターム(参考) 2H011 BA31 BB01 2H042 CA08 CA14 CA17 2H051 AA08 BA45 CB14 EA09 2H083 AA02 AA26 AA28 2H101 EE08 5C065 BB11 CC01 DD01 EE01 EE06 EE13 GG21 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G03B 13/36 G02B 7/11 D 5C065 17/14 K N F term (reference) 2H011 BA31 BB01 2H042 CA08 CA14 CA17 2H051 AA08 BA45 CB14 EA09 2H083 AA02 AA26 AA28 2H101 EE08 5C065 BB11 CC01 DD01 EE01 EE06 EE13 GG21

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 入射光束を波長帯域の異なる複数の色光
に分解して射出させる複数のプリズムを有した色分解光
学系であって、該複数のプリズムのうちの1つのプリズ
ムの光路中に光分割面を設け、該光分割面で分割した光
束を射出させる射出面側に、光軸方向に対して、互いに
異なった光路長を付与し、光軸方向に対して互いに異な
った位置に相当する像を同一面上に形成する光学手段を
設けていることを特徴とする色分解光学系。
1. A color separation optical system having a plurality of prisms for separating an incident light beam into a plurality of color lights having different wavelength bands and emitting the light, wherein the light is introduced into an optical path of one of the plurality of prisms. A splitting surface is provided, and different light path lengths are provided in the optical axis direction on the exit surface side from which the light beams split by the light splitting surface are emitted, and they correspond to different positions in the optical axis direction. A color separation optical system characterized in that an optical means for forming an image on the same plane is provided.
【請求項2】 入射面からの光束を波長帯域の異なる複
数の色光に分解し、各色光を射出面より射出させて各色
光用の撮像素子に導光する複数のプリズムを有した色分
解光学系であって、該複数のプリズムのうちの1つのプ
リズムは可視光以外の光束を分割しており、該1つのプ
リズムの射出面と撮像素子との間に、光軸方向に対し
て、互いに異なった光路長を付与し、光軸方向に対して
互いに異った位置に相当する像を同一面上に形成する光
学手段を設けていることを特徴とする色分解光学系。
2. A color separation optical system having a plurality of prisms, each of which splits a light beam from an incident surface into a plurality of color lights having different wavelength bands, emits each color light from an exit surface, and guides the light to an image pickup device for each color light. In the system, one prism of the plurality of prisms splits a light beam other than visible light, and is disposed between the exit surface of the one prism and the image sensor in the optical axis direction. A color separation optical system characterized in that it is provided with optical means for imparting different optical path lengths and forming images corresponding to different positions in the optical axis direction on the same plane.
【請求項3】 前記光学手段は、複数のプリズムを接合
し、複数のプリズムのうちの1つの面から入射した入射
光を互いに異なった光路長を付与して、互いに異なった
面より出射させる構成より成っていることを特徴とする
請求項1又は2の色分解光学系。
3. The optical means comprises a structure in which a plurality of prisms are cemented, and incident light beams incident from one surface of the plurality of prisms are provided with different optical path lengths and emitted from different surfaces. The color separation optical system according to claim 1 or 2, wherein
【請求項4】 前記光学手段は、互いに光路長が異なる
複数の光学部材を有し、該複数の光学部材のうちの1つ
を光路中に位置させる駆動部を有していることを特徴と
する請求項1又は2の色分解光学系。
4. The optical unit has a plurality of optical members having optical path lengths different from each other, and has a drive unit for positioning one of the optical members in the optical path. The color separation optical system according to claim 1 or 2.
【請求項5】 レンズ交換が可能なカメラ本体の一部に
入射光束を波長帯域の異なる複数の色光に色分解して、
各々の射出面より射出させて撮像素子に導光する複数の
プリズムを有する該色分解光学系を設けた撮像装置にお
いて、該色分解光学系は色分解した光束のうちの1つの
光束の光路中に、一部の光束を分割し射出させる分岐光
路を形成し、該分岐光路の射出面側に該カメラ本体に装
着する撮影レンズの合焦信号を得るための合焦用撮像素
子と、該射出面と該合焦用撮像素子との間に、光軸方向
に対して、互いに異なった光路長を付与し、光軸方向に
対して互いに異った位置に相当する像を同一面上に形成
する光学手段を設けていることを特徴とする撮像装置。
5. The light beam incident on a part of the camera body with interchangeable lenses is separated into a plurality of color lights having different wavelength bands,
In an image pickup apparatus provided with the color separation optical system having a plurality of prisms which are emitted from respective emission surfaces and guided to an image pickup element, the color separation optical system is provided in the optical path of one of the color separated light beams. A branch optical path for splitting and emitting a part of the light flux, and a focusing image sensor for obtaining a focus signal of a photographing lens attached to the camera body on the exit surface side of the branch optical path; Different optical path lengths are provided in the optical axis direction between the surface and the focusing image pickup device, and images corresponding to different positions in the optical axis direction are formed on the same surface. An image pickup device comprising:
【請求項6】 レンズ交換が可能なカメラ本体の一部に
入射光束を波長帯域の異なる複数の色光に色分解して、
各々の射出面より射出させて撮像素子に導光する複数の
プリズムを有する該色分解光学系を設けた撮像装置にお
いて、該色分解光学系は色分解した光束のうちの1つの
光束の光路中に、一部の光束を分割し射出させる分岐光
路を形成し、該分岐光路の射出面側に該カメラ本体に装
着する撮影レンズの合焦信号を得るための合焦用撮像素
子を有し、該合焦用の撮像素子は該分岐光路以外の光路
中に設けた撮像素子に対して光軸方向に異なった位置に
設定されており、該合焦用の撮像素子と分岐光路以外の
光路中に設けた撮像素子からの信号を用いて、合焦信号
を得ていることを特徴とする撮像装置。
6. The light beam incident on a part of the camera body with interchangeable lenses is separated into a plurality of color lights having different wavelength bands,
In an image pickup apparatus provided with the color separation optical system having a plurality of prisms which are emitted from respective emission surfaces and guided to an image pickup element, the color separation optical system is provided in the optical path of one of the color separated light beams. In, forming a branch optical path for splitting and emitting a part of the light flux, and having a focusing image sensor for obtaining a focus signal of a photographing lens attached to the camera body on the exit surface side of the branch optical path, The focusing image sensor is set at a position different in the optical axis direction with respect to an image sensor provided in an optical path other than the branch optical path, and the focusing image sensor and an optical path other than the branch optical path are set. An image pickup apparatus, wherein a focus signal is obtained by using a signal from an image pickup element provided in.
【請求項7】 前記分岐光路の光束は、緑色光を含む可
視波長域の光であることを特徴とする請求項5又は6の
撮像装置。
7. The image pickup device according to claim 5, wherein the light flux in the branched optical path is light in a visible wavelength range including green light.
【請求項8】 前記合焦用の撮像素子からの出力信号か
らカメラ本体に装着する撮像レンズの合焦位置を判断す
る合焦位置制御回路を有し、該合焦位置制御回路からの
合焦信号に基づき該撮像レンズの合焦レンズを駆動する
合焦レンズ駆動手段を有していることを特徴とする請求
項5、6又は7の撮像装置。
8. A focusing position control circuit for determining a focusing position of an imaging lens mounted on a camera body from an output signal from the focusing imaging device, and focusing from the focusing position control circuit. 8. The image pickup apparatus according to claim 5, further comprising a focus lens driving unit that drives a focus lens of the image pickup lens based on a signal.
【請求項9】 レンズ交換が可能なカメラ本体の一部に
色分解のための複数のチャンネルを有する色分解光学系
と各チャンネル毎に撮像素子を設け、これにより画像信
号を得る撮像素子において、該色分解光学系の1つのチ
ャンネルは、可視光以外の光束を用い、光軸方向に対し
て、互いに異なった光路長を付与し、光軸方向に対して
互いに異った位置に相当する像を同一面上に形成する光
学手段を介して合焦用の撮像素子面上に像を形成してお
り、該合焦用の撮像素子からの信号を利用して、該カメ
ラ本体に装着する撮影レンズの合焦信号を得ていること
を特徴とする撮像装置。
9. A color-separation optical system having a plurality of channels for color separation and an image-capturing device for each channel in a part of a camera body in which a lens is replaceable One channel of the color separation optical system uses a light beam other than visible light, gives different optical path lengths in the optical axis direction, and images corresponding to different positions in the optical axis direction. An image is formed on the surface of the image sensor for focusing through an optical means for forming the image on the same surface, and the image is attached to the camera body by using a signal from the image sensor for focusing. An image pickup apparatus, wherein a focusing signal of a lens is obtained.
【請求項10】 前記合焦信号を得るための1つのチャ
ンネルは緑色光を含まない光を分岐したものであって、
該合焦信号は、撮影レンズの軸上色収差に関するデータ
ーに基づき合焦用のチャンネルと緑色光又は輝度光のチ
ャンネルとの間の結像位置の差の補正を加えて、得てい
ることを特徴とする請求項9の撮像装置。
10. The one channel for obtaining the focus signal is a branched light not including green light,
The focusing signal is obtained by adding the correction of the difference in image forming position between the focusing channel and the green light or luminance light channel based on the data on the axial chromatic aberration of the taking lens. The image pickup apparatus according to claim 9.
【請求項11】 前記合焦用の撮像素子に入射する光束
は近赤外光であり、該合焦用の撮像素子からの出力信号
からカメラ本体に装着する撮影レンズの合焦位置を判断
する合焦位置制御回路と、該合焦位置制御回路からの該
合焦信号に撮影レンズの軸外色収差に関するデーターに
基づき近赤外光と可視光の結像位置の差の補正を加える
演算回路と、該演算回路からの信号に基づいて該撮影レ
ンズの合焦レンズを駆動する合焦レンズ駆動手段を有し
ていることを特徴とする請求項10の撮像装置。
11. A light flux incident on the focusing image sensor is near-infrared light, and a focus position of a photographing lens mounted on a camera body is determined from an output signal from the focusing image sensor. A focus position control circuit, and an arithmetic circuit for adding to the focus signal from the focus position control circuit a correction for the difference between the image formation positions of near infrared light and visible light based on data relating to off-axis chromatic aberration of the taking lens. 11. The image pickup apparatus according to claim 10, further comprising focusing lens driving means for driving a focusing lens of the photographing lens based on a signal from the arithmetic circuit.
【請求項12】 前記可視光は、緑色光であることを特
徴とする請求項11の撮像装置。
12. The image pickup apparatus according to claim 11, wherein the visible light is green light.
JP2001340863A 2001-11-06 2001-11-06 Color separation optical system and image pickup device employing the same Withdrawn JP2003143618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340863A JP2003143618A (en) 2001-11-06 2001-11-06 Color separation optical system and image pickup device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340863A JP2003143618A (en) 2001-11-06 2001-11-06 Color separation optical system and image pickup device employing the same

Publications (2)

Publication Number Publication Date
JP2003143618A true JP2003143618A (en) 2003-05-16
JP2003143618A5 JP2003143618A5 (en) 2005-07-07

Family

ID=19155004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340863A Withdrawn JP2003143618A (en) 2001-11-06 2001-11-06 Color separation optical system and image pickup device employing the same

Country Status (1)

Country Link
JP (1) JP2003143618A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347665A (en) * 2003-05-20 2004-12-09 Canon Inc Automatic focusing device
JP2006064972A (en) * 2004-08-26 2006-03-09 Fujinon Corp Automatic focusing system
JP2006162757A (en) * 2004-12-03 2006-06-22 Fujinon Corp Photographic lens
WO2008146458A1 (en) * 2007-05-30 2008-12-04 Panasonic Corporation Imaging device provided with autofocus function, imaging method, program and integrated circuit
JP2011107491A (en) * 2009-11-19 2011-06-02 Ikegami Tsushinki Co Ltd Television camera apparatus for monitoring
WO2018216386A1 (en) * 2017-05-25 2018-11-29 富士フイルム株式会社 Color separation optical system, imaging unit, and imaging device
JP2019086536A (en) * 2017-11-01 2019-06-06 株式会社コシナ Four-plate type prism device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347665A (en) * 2003-05-20 2004-12-09 Canon Inc Automatic focusing device
JP4532849B2 (en) * 2003-05-20 2010-08-25 キヤノン株式会社 Automatic focusing device
JP2006064972A (en) * 2004-08-26 2006-03-09 Fujinon Corp Automatic focusing system
JP2006162757A (en) * 2004-12-03 2006-06-22 Fujinon Corp Photographic lens
WO2008146458A1 (en) * 2007-05-30 2008-12-04 Panasonic Corporation Imaging device provided with autofocus function, imaging method, program and integrated circuit
JP2011107491A (en) * 2009-11-19 2011-06-02 Ikegami Tsushinki Co Ltd Television camera apparatus for monitoring
WO2018216386A1 (en) * 2017-05-25 2018-11-29 富士フイルム株式会社 Color separation optical system, imaging unit, and imaging device
CN110537119A (en) * 2017-05-25 2019-12-03 富士胶片株式会社 Chromatic resolution optical system, camera unit and photographic device
CN110537119B (en) * 2017-05-25 2022-06-28 富士胶片株式会社 Color separation optical system, imaging unit, and imaging device
JP2019086536A (en) * 2017-11-01 2019-06-06 株式会社コシナ Four-plate type prism device

Similar Documents

Publication Publication Date Title
US7233358B2 (en) Autofocus adaptor
KR101280248B1 (en) Camera and camera system
USRE45692E1 (en) Automatic focusing apparatus and image pickup apparatus
US7095443B2 (en) Focusing state determining apparatus
JP2009036844A (en) Zoom lens, and photographic system having the same
JP3453433B2 (en) Color separation optical system and imaging apparatus using the same
JP2001330769A (en) Image pickup device and its control method
WO2002099498A1 (en) Device for determining focused state of taking lens
US7262805B2 (en) Focus detecting system
JP3629068B2 (en) Color separation optical device
JP3203904B2 (en) Imaging device
EP1890482B1 (en) Lens device
JP2003143618A (en) Color separation optical system and image pickup device employing the same
JP2002372661A (en) Photographic lens
US20030174232A1 (en) Focus detecting system
JP2006084545A (en) Camera, photographing lens, and camera system
JP2006065080A (en) Imaging device
JPS5926708A (en) Focusing method of zoom lens
JP2008064822A (en) Camera having focusing condition detection function
JP2004109864A (en) Imaging apparatus and imaging system provided with it
US6809883B2 (en) Autofocus system
JP4692425B2 (en) Auto focus system
JP2004144939A (en) Digital camera and camera system
JP2009109792A (en) Autofocusing device and camera using it
JP5610929B2 (en) Imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070115