WO2018216386A1 - Color separation optical system, imaging unit, and imaging device - Google Patents

Color separation optical system, imaging unit, and imaging device Download PDF

Info

Publication number
WO2018216386A1
WO2018216386A1 PCT/JP2018/015239 JP2018015239W WO2018216386A1 WO 2018216386 A1 WO2018216386 A1 WO 2018216386A1 JP 2018015239 W JP2018015239 W JP 2018015239W WO 2018216386 A1 WO2018216386 A1 WO 2018216386A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
incident
visible
visible light
Prior art date
Application number
PCT/JP2018/015239
Other languages
French (fr)
Japanese (ja)
Inventor
有宏 斎田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202210200473.0A priority Critical patent/CN114584693A/en
Priority to CN201880025741.1A priority patent/CN110537119B/en
Priority to JP2019519512A priority patent/JP6913162B2/en
Publication of WO2018216386A1 publication Critical patent/WO2018216386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors

Definitions

  • the present invention relates to a color separation optical system, an image pickup unit, and an image pickup apparatus, and in particular, a color separation optical system that separates an incident light beam into light of three color components in the visible region and light of one color component in the invisible region.
  • the present invention relates to an imaging unit including the color separation optical system and an imaging apparatus including the imaging unit.
  • the light that has passed through the lens is R (R: Red), G (G: Green), B (B: Blue), and IR (IR: InfraRed / Infrared) by a color separation optical system. 4), an image pickup apparatus that picks up an RGB image and an IR image by individually receiving the decomposed lights with four image sensors (see, for example, Patent Document 1). -3 etc.).
  • the RGB image is an image in which one pixel is composed of three color component values of R, G, and B.
  • the RGB image constitutes a so-called color image.
  • An IR image is an image in which one pixel is composed of one color component value of IR.
  • Color shading is a phenomenon in which the top and bottom edges of a screen are colored even when white balance is achieved at the center of the screen. Color shading occurs due to the size of the incident angle on the color separation surface, and the amount of generation increases as the size increases. The color shading is visually recognized as color unevenness and greatly reduces the image quality.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a color separation optical system, an imaging unit, and an imaging apparatus that can suppress the occurrence of color shading.
  • a color separation optical system that separates an incident light beam into light of three color components in the visible region and light of one color component in the invisible region, and reflects the light of the first color component in the visible region.
  • a first visible light separation surface that separates and separates light of a second color component in the visible region, and a non-visible light separation surface that reflects and separates light in the non-visible region.
  • the surface having the maximum incident angle of light passing through the optical axis is the invisible light separating surface.
  • the color separation optical system includes three separation surfaces, and separates the incident light beam into light of three color components in the visible region and light of one color component in the invisible region.
  • the three separation surfaces include a first visible light separation surface, a second visible light separation surface, and a non-visible light separation surface.
  • the first visible light separation surface separates the light of the first color component in the visible region.
  • the second visible light separation surface separates the light of the second color component in the visible region.
  • the non-visible light separation surface separates light in the non-visible region.
  • the light transmitted through all the separation surfaces is separated as the light of the third color component in the visible region.
  • Each separation surface selectively reflects light of a color component to be separated and separates it from light of other color components.
  • each separation surface is arranged so that light of a color component to be separated is reflected in a predetermined direction. Therefore, each separation surface is disposed to be inclined with respect to the optical axis.
  • the inclination of each separation surface is set so that the surface where the incident angle of light passing through the optical axis is the maximum among the three separation surfaces is the invisible light separation surface.
  • the incident angle at the separating surface for separating the light of the color component in the visible region can be reduced. Thereby, generation
  • the non-visible light separation surface is disposed so as to be inclined to an angle at which all light is incident at an incident angle larger than the Brewster angle when a light flux having an F number of 2.0 is incident from the lens.
  • the non-visible light separation surface is inclined and arranged as follows. That is, when a light flux having an F number of 2.0 is incident from the lens, all the light beams are arranged to be inclined at an incident angle larger than the Brewster angle.
  • the concept of “all light” includes a range that can be regarded as almost all. Thereby, it can suppress that a light quantity difference arises in a screen, when imaging the image by invisible light.
  • the Brewster angle (polarization angle) is an incident angle at which the reflectance of p-polarized light becomes 0 at the interface between substances having different refractive indexes.
  • the Brewster When a light beam having an F number of 2.0 is incident from the lens, the Brewster is arranged by setting the angle at which all light is incident at an incident angle larger than the Brewster angle, and arranging the invisible light separation surface. Generation of light incident at an angle can be effectively suppressed. Thereby, even if it is a case where a light quantity difference arises, it can suppress to the level which does not have a problem practically.
  • the invisible light separation surface is arranged to be inclined at an angle at which all light is incident at an incident angle larger than the Brewster angle when the light beam having the maximum aperture is incident from the lens.
  • Color separation optical system
  • the non-visible light separation surface is inclined and arranged as follows. That is, when the light beam having the maximum aperture is incident from the lens, all the light beams are disposed so as to be inclined at an incident angle larger than the Brewster angle.
  • the concept of “all light” includes a range that can be regarded as almost all. Thereby, it can suppress that a light quantity difference arises in a screen, when imaging the image by invisible light.
  • a first visible light reflecting surface that is reflected in a direction in which light of the first color component in the visible region separated by the first visible light separating surface is emitted, and a second visible region that is separated by the second visible light separating surface.
  • the color separation optical system according to any one of (1) to (3), further including a second visible light reflecting surface that reflects the light of the color component in a direction in which the light is emitted.
  • the first visible light reflecting surface that is reflected in the direction in which the light of the first color component in the visible region separated by the first visible light separating surface is emitted and the visible region that is separated by the second visible light separating surface.
  • a second visible light reflecting surface that reflects the second color component in the direction in which the light of the second color component is emitted.
  • the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface are arranged in order of the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface from the incident side.
  • the color separation optical system according to any one of (1) to (4) above.
  • the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface are the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface from the incident side. Arranged in order. By making the final separation surface a non-visible light separation surface, shading of color images can be reduced to a minimum.
  • a first exit surface that emits light of the first color component in the visible region separated by the first incident surface on which the light flux from the lens is incident, the first visible light separation surface, and the first visible light separation surface.
  • a first prism having a second incident surface that is joined to the first visible light separating surface and is transmitted through the first visible light separating surface, a second visible light separating surface, and a second visible light.
  • the fourth emission surface and the fourth any one of the color separation optical system and the prism, the above (1) with a (3) having to be.
  • the color separation optical system is configured by a so-called composite prism, and is configured by combining the first prism, the second prism, the third prism, and the fourth prism.
  • the first prism emits the first color component light in the visible region separated by the first incident surface on which the light flux from the lens is incident, the first visible light separating surface, and the first visible light separating surface. And an exit surface.
  • the second prism includes a second incident surface on which a light beam transmitted through the first visible light separation surface is incident, a second visible light separation surface, and a second color component in the visible region separated by the second visible light separation surface. A second emission surface that emits light.
  • the third prism emits light in a non-visible region separated by the third incident surface on which the light beam transmitted through the second visible light separation surface is incident, the non-visible light separation surface, and the non-visible light separation surface. And an exit surface.
  • the fourth prism includes a fourth incident surface on which a light beam that has passed through the non-visible light separation surface is incident, and a fourth emission surface that emits light of the third color component in the visible region.
  • the first prism and the second prism are joined to each other between the first visible light separation surface of the first prism and the second incident surface of the second prism.
  • the second prism and the third prism are joined to each other between the second visible light separation surface of the second prism and the third incident surface of the third prism.
  • the third prism and the fourth prism are joined to each other between the invisible light separation surface of the third prism and the fourth incident surface of the fourth prism.
  • the light beam from the lens first enters the first incident surface of the first prism.
  • the light beam incident on the first incident surface is separated by selectively reflecting the light of the first color component in the visible region on the first visible light separation surface of the first prism.
  • the separated light of the first color component in the visible region is emitted from the first emission surface of the first prism.
  • the light beam that has passed through the first visible light separation surface of the first prism then enters the second incident surface of the second prism.
  • the light beam incident on the second incident surface is separated by selectively reflecting the light of the second color component in the visible region on the second visible light separation surface of the second prism.
  • the separated light of the second color component in the visible region is emitted from the second emission surface of the second prism.
  • the light beam that has passed through the second visible light separation surface of the second prism then enters the third incident surface of the third prism.
  • the light beam incident on the third incident surface is separated by selectively reflecting the light in the invisible region on the invisible light separation surface of the third prism.
  • the separated light in the invisible region is emitted from the third emission surface of the third prism.
  • the light beam that has passed through the invisible light separation surface of the third prism then enters the fourth incident surface of the fourth prism.
  • the light beam incident on the fourth entrance surface is emitted from the fourth exit surface as light of the third color component in the visible region.
  • the first prism causes the first color component light in the visible region separated by the first visible light separation surface to be totally reflected by the first incident surface and emitted from the first emission surface
  • the second prism is The second incident surface is joined to the first visible light separating surface through the air gap, and the second color component light in the visible region separated by the second visible light separating surface is totally reflected by the second incident surface
  • the first incident surface of the first prism and the second incident surface of the second prism are constituted by so-called total reflection surfaces.
  • the light of the first color component in the visible region separated by the first visible light separation surface of the first prism is totally reflected by the first incidence surface and emitted from the first emission surface.
  • the light of the second color component in the visible region separated by the second visible light separation surface of the second prism is totally reflected by the second incident surface and emitted from the second emission surface.
  • the second prism is joined to the first prism via an air gap so that the second incident surface is configured as a total reflection surface.
  • the invisible light separation surface separates infrared light (IR light).
  • the light in the visible region can be separated into R light, G light, and B light, for example.
  • the B light is separated by the first visible light separation surface
  • the R light is separated by the second visible light separation.
  • the light transmitted through all the separation surfaces is separated as G light.
  • the color separation optical system according to any one of (1) to (8) above, a first visible light image sensor that receives light of the first color component in the visible region resolved by the color separation optical system, A second visible light image sensor that receives light of the second color component in the visible region resolved by the color separation optical system, and a third that receives light of the third color component in the visible region resolved by the color separation optical system.
  • An imaging unit comprising: a visible light image sensor; and a non-visible light image sensor that receives light in a non-visible region separated by a color separation optical system.
  • the color separation optical system is configured as the imaging unit including the image sensor.
  • the color separation optical system includes a first visible light image sensor that receives light of the first color component in the separated visible region, a second visible light image sensor that receives light of the second color component in the visible region, and a visible light.
  • a third visible light image sensor that receives light of the third color component in the region and a non-visible light image sensor that receives light in the invisible region are provided.
  • An imaging apparatus comprising a housing, the imaging unit according to (9) housed in the housing, and a mount that is provided in the housing and on which a lens is detachably mounted.
  • the imaging unit is incorporated in the imaging device capable of exchanging lenses.
  • the lens is attached / detached via a mount provided in the housing.
  • the flange back of the imaging device is configured with an air equivalent length of 12.5 mm or more and 19 mm or less.
  • the flange back is a distance from the mount surface to the light receiving surface of the image sensor.
  • an imaging apparatus that employs a C mount or a CS mount corresponds to this.
  • the C mount is a standard mount having an inner diameter of 24.4 mm (1 inch), a pitch of 0.794 mm (32 peaks / 1 inch), and a flange back of 17.526 mm (air conversion length).
  • the CS mount has a C-mount flange back of 12.5 mm (air equivalent length).
  • the occurrence of color shading can be suppressed.
  • the figure which shows an example of a structure of an imaging unit The figure which expanded the part of A, B, and C of FIG.
  • the figure which shows the structural example of the color separation optical system in the case of reflecting IR light twice and taking out The figure which expanded the part of A, B, and C of FIG.
  • the figure which shows an example of a structure of a camera Block diagram showing the electrical configuration of the camera Block diagram of the main functions realized by the camera microcomputer The figure which shows an example of an electronic endoscope
  • the block diagram which shows schematic structure of the display processing apparatus in the case of displaying an RGB image and IR image superimposed The figure which shows an example of a display of RGB image, IR image, and a synthesized image
  • FIG. 1 is a diagram illustrating an example of the configuration of the imaging unit.
  • the imaging unit 1 includes a color separation optical system 10 that decomposes an incident light beam into four color component lights, and four image sensors that individually receive the four color component lights separated by the color separation optical system 10. 30R, 30G, 30B, and 30IR.
  • the color separation optical system 10 of this embodiment decomposes an incident light beam into R light (red light), G light (green light), B light (blue light), and IR light (infrared light).
  • R light, G light, and B light are examples of light of three color components in the visible region.
  • IR light is an example of light of a color component in a non-visible region.
  • the color separation optical system 10 is configured by combining four prisms of a first prism 12, a second prism 14, a third prism 16, and a fourth prism 18.
  • the four prisms are arranged in the order of the first prism 12, the second prism 14, the third prism 16, and the fourth prism 18 from the light incident side along the optical axis Lz.
  • the first prism 12 extracts the B light Lb
  • the second prism 14 extracts the R light Lr
  • the third prism 16 extracts the IR light Lir
  • the fourth prism 18 extracts the G light Lg.
  • the first prism 12 is a prism that extracts the B light Lb.
  • the first prism 12 has a first prism first surface 12a, a first prism second surface 12b, and a first prism third surface 12c.
  • the first prism first surface 12a functions as a first incident surface and a first visible light reflecting surface.
  • the first prism first surface 12a is disposed on the optical axis Lz and is disposed orthogonal to the optical axis Lz. The light that has passed through the lens 2 first enters the first prism first surface 12a.
  • the first prism second surface 12b functions as a first visible light separation surface.
  • the first prism second surface 12b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • FIG. 2 (A) is an enlarged view of a circle A indicated by a broken line in FIG.
  • the first prism second surface 12b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle ⁇ 1.
  • B light reflecting dichroic film (not shown) is provided on the first prism second surface 12b.
  • the B light reflecting dichroic film selectively reflects only the B light Lb, which is the light of the first color component in the visible region, and transmits the light of the other color components. By selectively reflecting only the B light Lb by the B light reflecting dichroic film, the B light Lb is separated from the incident light.
  • the B light Lb separated by the first prism second surface 12b is reflected toward the first prism first surface 12a.
  • the first prism first surface 12a also functions as a first visible light reflecting surface.
  • the B light Lb separated by the first prism second surface 12b is incident on the first prism first surface 12a at a predetermined incident angle. This incident angle is an angle at which the first prism first surface 12a is totally reflected.
  • the first prism first surface 12a totally reflects the B light Lb separated by the first prism second surface 12b toward the first prism third surface 12c.
  • the first prism third surface 12c functions as a first emission surface.
  • the B light Lb totally reflected by the first prism first surface 12a is emitted from the first prism third surface 12c.
  • B light trimming filter 20B is provided on the first prism third surface 12c.
  • the B light trimming filter 20B cuts off extra color component light from the B light and improves the color reproducibility of the B light.
  • the second prism 14 is a prism that extracts the R light Lr.
  • the second prism 14 has a second prism first surface 14a, a second prism second surface 14b, and a second prism third surface 14c.
  • the second prism first surface 14a functions as a second incident surface and a second visible light reflecting surface.
  • the second prism first surface 14a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • the inclination angle is set to the same angle as the inclination angle of the first prism second surface 12b with respect to the optical axis Lz. That is, the second prism first surface 14a is disposed in parallel with the first prism second surface 12b.
  • the second prism first surface 14 a also functions as a joint surface with the first prism 12.
  • the second prism first surface 14a is joined to the first prism second surface 12b via a frame-shaped spacer 22, for example.
  • the first prism second surface 12 b and the second prism first surface 14 a are joined via the air gap 24.
  • the light transmitted through the first prism second surface 12 b enters the second prism first surface 14 a through the air gap 24.
  • the second prism second surface 14b functions as a second visible light separation surface.
  • the second prism second surface 14b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • FIG. 2B is an enlarged view of a circle B indicated by a broken line in FIG.
  • the second prism second surface 14b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle ⁇ 2.
  • the second prism second surface 14b is provided with an R light reflecting dichroic film (not shown).
  • the R light reflecting dichroic film selectively reflects only the R light Lr, which is the light of the second color component in the visible region, and transmits the light of the other color components. By selectively reflecting only the R light Lr by the R light reflecting dichroic film, the R light Lr is separated from the incident light.
  • the R light Lr separated by the second prism second surface 14b is reflected toward the second prism first surface 14a.
  • the second prism first surface 14a also functions as a second visible light reflecting surface.
  • the R light Lr separated by the second prism second surface 14b is incident on the second prism first surface 14a at a predetermined incident angle. This incident angle is an angle at which the second prism first surface 14a is totally reflected.
  • the second prism first surface 14a totally reflects the R light Lr separated by the second prism second surface 14b toward the second prism third surface 14c.
  • the second prism third surface 14c functions as a second emission surface.
  • the R light Lr totally reflected by the second prism first surface 14a is emitted from the second prism third surface 14c.
  • the R prism trimming filter 20R is provided on the second prism third surface 14c.
  • the R light trimming filter 20R cuts off extra color component light from the R light and improves the color reproducibility of the R light.
  • the third prism 16 is a prism that extracts IR light Lir.
  • the third prism 16 has a third prism first surface 16a, a third prism second surface 16b, and a third prism third surface 16c.
  • the third prism first surface 16a functions as a third incident surface.
  • the third prism first surface 16a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • the inclination angle is set to the same angle as the inclination angle of the second prism second surface 14b with respect to the optical axis Lz. That is, the third prism first surface 16a is disposed in parallel with the second prism second surface 14b.
  • the third prism first surface 16 a also functions as a joint surface with the second prism 14.
  • the third prism first surface 16a is bonded to the second prism second surface 14b via an adhesive layer (not shown). Thereby, the 2nd prism 14 and the 3rd prism 16 are integrated.
  • the light transmitted through the second prism second surface 14b is incident on the third prism first surface 16a.
  • the third prism second surface 16b functions as an invisible light separation surface.
  • the third prism second surface 16b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • FIG. 2C is an enlarged view of a circle C indicated by a broken line in FIG.
  • the third prism second surface 16b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle ⁇ 3.
  • the incident angle ⁇ 3 is larger than the incident angle ⁇ 1 on the first prism second surface 12b and the incident angle ⁇ 2 on the second prism second surface 14b ( ⁇ 1 ⁇ 3 and ⁇ 2 ⁇ 3). That is, in the color separation optical system 10 according to the present embodiment, the third prism second of the three separation surfaces (the first prism second surface 12b, the second prism second surface 14b, and the third prism second surface 16b).
  • the incident angle ⁇ 3 with respect to the two surfaces 16b is configured to be the largest. Thereby, it can suppress that color shading generate
  • the third prism second surface 16b is provided with an IR light reflecting dichroic film (not shown).
  • the IR light reflecting dichroic film selectively reflects only the IR light Lir, which is light in a non-visible region, and transmits light of other color components. By selectively reflecting only the IR light Lir by the IR light reflecting dichroic film, the IR light Lir is separated from the incident light. The IR light Lir separated by the third prism second surface 16b is reflected toward the third prism third surface 16c.
  • the third prism third surface 16c functions as a third emission surface.
  • the IR light Lir separated by the third prism second surface 16b is directly emitted from the third prism third surface 16c.
  • the third prism third surface 16c is provided with an IR light trimming filter 20IR.
  • the IR light trimming filter 20IR can cut off light of an extra color component from the IR light and obtain IR light with a high S / N ratio.
  • the fourth prism 18 is a prism that extracts the G light Lg.
  • the fourth prism 18 has a fourth prism first surface 18a and a fourth prism second surface 18b.
  • the fourth prism first surface 18a functions as a fourth incident surface.
  • the fourth prism first surface 18a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
  • the inclination angle is set to the same angle as the inclination angle of the third prism second surface 16b with respect to the optical axis Lz. That is, the fourth prism first surface 18a is arranged in parallel with the third prism second surface 16b.
  • the fourth prism first surface 18 a also functions as a joint surface with the third prism 16.
  • the fourth prism first surface 18a is joined to the third prism second surface 16b via an adhesive layer (not shown). Thereby, the third prism 16 and the fourth prism 18 are integrated.
  • the light transmitted through the third prism second surface 16b is incident on the fourth prism first surface 18a.
  • the fourth prism second surface 18b functions as a fourth emission surface.
  • the fourth prism second surface 18b is disposed on the optical axis Lz and is orthogonal to the optical axis Lz.
  • the light incident on the fourth prism first surface 18a is emitted from the fourth prism third surface 18c as it is.
  • the light incident on the fourth prism first surface 18a is light obtained by separating the B light, the R light, and the IR light.
  • the light obtained by separating the B light, R light, and IR light is emitted from the fourth prism second surface 18b as G light that is the third color component light in the visible region.
  • the G prism trimming filter 20G is provided on the fourth prism second surface 18b.
  • the G light trimming filter 20G cuts extra color component light from the G light and improves the color reproducibility of the G light.
  • the four image sensors include a B light image sensor 30B that receives the B light Lb, an R light image sensor 30R that receives the R light Lr, a G light image sensor 30G that receives the G light Lg, and an IR light that receives the IR light Lir.
  • the image sensor 30IR is configured.
  • Each image sensor is composed of an area image sensor such as a CCD (Charged Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the B light image sensor 30B is an example of a first visible light image sensor.
  • the B light image sensor 30B receives the B light Lb, which is the light of the first color component in the visible region, separated by the color separation optical system 10, converts it to an electrical signal, and outputs it.
  • the B light image sensor 30B is attached to the first prism third surface 12c of the first prism 12 or the B light trimming filter 20B via a holder (not shown).
  • the light receiving surface of the B light image sensor 30B is disposed on the optical axis of the B light Lb emitted from the first prism third surface 12c, and is disposed orthogonal to the optical axis.
  • the R light image sensor 30R is an example of a second visible light image sensor.
  • the R light image sensor 30R receives the R light Lr that is the light of the second color component in the visible region separated by the color separation optical system 10, converts it to an electrical signal, and outputs it.
  • the R light image sensor 30R is attached to the second prism third surface 14c of the second prism 14 or the R light trimming filter 20R via a holder (not shown).
  • the light receiving surface of the R light image sensor 30R is disposed on the optical axis of the R light Lr emitted from the second prism third surface 14c, and is disposed orthogonal to the optical axis.
  • the G light image sensor 30G is an example of a third visible light image sensor.
  • the G light image sensor 30G receives the G light Lg, which is the light of the third color component in the visible region, separated by the color separation optical system 10, converts it to an electrical signal, and outputs it.
  • the G light image sensor 30G is attached to the fourth prism second surface 18b of the fourth prism 18 or the G light trimming filter 20G via a holder (not shown).
  • the light receiving surface of the G light image sensor 30G is disposed on the optical axis of the G light Lg emitted from the fourth prism second surface 18b, and is disposed orthogonal to the optical axis.
  • the IR light image sensor 30IR is an example of a non-visible light image sensor.
  • the IR light image sensor 30IR receives IR light Lir which is light in a non-visible region separated by the color separation optical system 10, converts it to an electrical signal, and outputs it.
  • the IR light image sensor 30IR is attached to the third prism third surface 16c of the third prism 16 or the IR light trimming filter 20IR via a holder (not shown).
  • the light receiving surface of the IR light image sensor 30IR is disposed on the optical axis of the IR light Lir emitted from the third prism third surface 16c, and is disposed orthogonal to the optical axis.
  • the imaging unit 1 of the present embodiment the light passing through the lens 2 is decomposed into light of four color components (R light, G light, B light, and IR light) by the color separation optical system 10, and each light is converted into 4 Light is individually received by two image sensors (R light image sensor 30R, G light image sensor 30G, B light image sensor 30B, and IR light image sensor 30IR).
  • the light that has passed through the lens 2 first enters the first prism first surface 12a.
  • the B light Lb is selectively reflected on the first prism second surface 12b.
  • the B light Lb is separated from the light incident on the first prism 12.
  • the separated B light Lb is reflected toward the first prism first surface 12a and is incident on the first prism first surface 12a.
  • the B light Lb incident on the first prism first surface 12a is totally reflected by the first prism first surface 12a and emitted from the first prism third surface 12c.
  • the B light Lb emitted from the first prism third surface 12c is incident on the light receiving surface of the B light image sensor 30B via the B light trimming filter 20B.
  • the separated R light Lr is reflected toward the second prism first surface 14a and is incident on the second prism first surface 14a.
  • the R light Lr incident on the second prism first surface 14a is totally reflected by the second prism first surface 14a and emitted from the second prism third surface 14c.
  • the R light Lr emitted from the second prism third surface 14c enters the light receiving surface of the R light image sensor 30R via the R light trimming filter 20R.
  • the separated IR light Lir is reflected toward the third prism third surface 16c and emitted from the third prism third surface 16c.
  • the IR light Lir emitted from the third prism third surface 16c enters the light receiving surface of the IR light image sensor 30IR via the IR light trimming filter 20IR.
  • Light of color components other than the IR light Lir is transmitted through the third prism second surface 16b and is incident on the fourth prism first surface 18a.
  • the light incident on the fourth prism first surface 18a is emitted from the fourth prism second surface 18b as it is as G light Lg.
  • the G light Lg emitted from the fourth prism second surface 18b enters the light receiving surface of the G light image sensor 30G via the G light trimming filter 20G.
  • the light passing through the lens 2 is converted into light of four color components (R light, G light, B light, and IR light) by the color separation optical system 10.
  • Each light can be individually received by four image sensors (R light image sensor 30R, G light image sensor 30G, B light image sensor 30B, and IR light image sensor 30IR).
  • RGB signals that are color images can be generated by processing signals output from the R light image sensor 30R, the G light image sensor 30G, and the B light image sensor 30B. Further, an IR image can be generated by processing a signal output from the IR light image sensor 30IR.
  • the color separation optical system 10 can be made compact by adopting a configuration in which the IR light Lir is reflected and extracted only once.
  • the first of the three separation surfaces (the first prism second surface 12b, the second prism second surface 14b, and the third prism second surface 16b).
  • the third prism second surface 16b is configured such that the incident angle of light passing through the optical axis Lz is maximized ( ⁇ 1 ⁇ 3 and ⁇ 2 ⁇ 3).
  • the third prism second surface 16b is a surface that separates the IR light Lir. In this way, by configuring such that the incident angle of light passing through the optical axis Lz is maximized on the surface that separates the IR light Lir, occurrence of color shading in the RGB image can be effectively suppressed.
  • Color shading occurs due to the size of the incident angle on the color separation surface, and the larger the size, the larger the generation amount.
  • the third prism second surface 16b which is a separation surface of the IR light Lir, is preferably set so as to avoid the incident angle from becoming a Brewster angle.
  • the Brewster angle (polarization angle) is an incident angle at which the reflectance of p-polarized light becomes 0 at the interface between substances having different refractive indexes.
  • n1 is the refractive index on the incident side
  • n2 is the refractive index on the transmission side.
  • the refractive index of the third prism 16 (incidence-side refractive index n1) is 1.8
  • the refractive index of the adhesive that joins the third prism 16 and the fourth prism 18 transmission-side refractive index n2). Is 1.52
  • the Brewster angle in the third prism second surface 16b is approximately 40.18 degrees.
  • the incident angle is the Brewster angle
  • the angle formed between the transmitted light (refracted light) and the reflected light is 90 degrees.
  • the amount of light of the separated IR light Lir decreases by the amount of the p-polarized component. Therefore, it is preferable to avoid the incident angle of the light incident on the third prism second surface 16b from becoming the Brewster angle. Thereby, it is possible to prevent a difference in the amount of light in the screen and to capture a high-quality IR image.
  • the third prism second surface 16b may be set so as to be incident at a large incident angle.
  • FIG. 3 is a diagram showing the relationship of the incident angle of light incident on the second surface of the third prism from the lens. This figure shows an example when a light beam having a maximum aperture is incident.
  • the third prism second surface 16b when the third prism second surface 16b is inclined downward, the light incident at the largest incident angle passes through the lower end of the lens 2 and enters the third prism second surface 16b. It is.
  • the third prism second surface 16b is set so that the incident angle ⁇ x of the light is larger than the Brewster angle. Thereby, all the light emitted from the lens 2 can be made incident on the third prism second surface 16b at an incident angle larger than the Brewster angle.
  • the conditions can also be specified as follows.
  • the maximum angle (expected angle) of the light beam with respect to the optical axis Lz is ⁇
  • the Brewster angle at the second prism second surface 16 b is ⁇
  • the third prism passes through the optical axis Lz.
  • the incident angle of the light incident on the second surface 16b is ⁇ 3
  • the inclination of the third prism second surface 16b is set so as to satisfy the condition of ⁇ 3> ⁇ + ⁇ .
  • all the light from the lens 2 can be incident on the third prism second surface 16b at an incident angle larger than the Brewster angle.
  • this makes it possible to prevent a light amount difference from occurring in the screen when capturing an IR image, and to capture a high-quality IR image.
  • the imaging unit 1 when the imaging unit 1 is increased in size by setting in this way, it is possible to set the inclination of the third prism second surface 16b while allowing a light amount difference to occur under certain conditions. preferable. That is, it is preferable to allow the occurrence of a light amount difference at a level that does not significantly impair the image quality, and to set the inclination of the third prism second surface 16b.
  • the third prism 2nd so that almost all light is incident at an incident angle larger than the Brewster angle.
  • the inclination of the surface 16b is set.
  • the F number is defined as a value obtained by dividing the focal length of the lens by the effective aperture of the lens.
  • Fn 1 / (2NA) between the F number and the image side NA (Numerical Aperture).
  • the refractive index n1 (incident side refractive index) of the third prism 16 is 1.8
  • the refractive index is 1.52.
  • the third prism second surface 16b has the optical axis Lz as the optical axis Lz.
  • the incident angle is an angle formed by the incident ray with the normal line of the medium boundary surface at the incident point
  • the normal line of the third prism second surface 16b is larger than 48.16 degrees with respect to the optical axis Lz.
  • the inclination may be set so that
  • FIG. 4 is a diagram showing a configuration example of a color separation optical system when IR light is reflected twice and taken out.
  • the color separation optical system 10A of this example is different from the color separation optical system 10 of the above embodiment in that the third prism 16 and the second prism 14 are joined via the air gap 28. Hereinafter, this difference will be described.
  • the third prism 16 that is a prism for extracting the IR light Lir
  • the third prism first surface 16 a functions as a joint surface with the second prism 14.
  • the third prism first surface 16a is joined to the second prism second surface 14b via a frame-shaped spacer 26, for example.
  • the third prism 16 and the second prism 14 are joined via the air gap 28.
  • the third prism first surface 16a functions as a total reflection surface.
  • the third prism first surface 16a is set so that the IR light Lir reflected by the third prism second surface 16b is totally reflected in the direction of the third prism third surface 16c.
  • the light that has passed through the lens 2 first enters the first prism first surface 12a.
  • the B light Lb is selectively reflected on the first prism second surface 12b.
  • the B light Lb is separated from the light incident on the first prism 12.
  • the separated B light Lb is reflected toward the first prism first surface 12a and is incident on the first prism first surface 12a.
  • the B light Lb incident on the first prism first surface 12a is totally reflected by the first prism first surface 12a and emitted from the first prism third surface 12c.
  • the B light Lb emitted from the first prism third surface 12c is incident on the light receiving surface of the B light image sensor 30B via the B light trimming filter 20B.
  • the separated R light Lr is reflected toward the second prism first surface 14a and is incident on the second prism first surface 14a.
  • the R light Lr incident on the second prism first surface 14a is totally reflected by the second prism first surface 14a and emitted from the second prism third surface 14c.
  • the R light Lr emitted from the second prism third surface 14c enters the light receiving surface of the R light image sensor 30R via the R light trimming filter 20R.
  • the separated IR light Lir is reflected toward the third prism first surface 16a and is incident on the third prism first surface 16a.
  • the IR light Lir incident on the third prism first surface 16a is totally reflected by the third prism first surface 16a and emitted from the third prism third surface 16c.
  • the IR light Lir emitted from the third prism third surface 16c enters the light receiving surface of the IR light image sensor 30IR via the IR light trimming filter 20IR.
  • Light of color components other than the IR light Lir is transmitted through the third prism second surface 16b and is incident on the fourth prism first surface 18a.
  • the light incident on the fourth prism first surface 18a is emitted from the fourth prism second surface 18b as it is as G light Lg.
  • the G light Lg emitted from the fourth prism second surface 18b enters the light receiving surface of the G light image sensor 30G via the G light trimming filter 20G.
  • the IR light Lir can be extracted without being reflected as a mirror image by reflecting the IR light Lir twice as in the case of the B light and the R light. Thereby, subsequent image processing can be simplified.
  • FIG. 5 is an enlarged view of circles A, B and C indicated by broken lines in FIG. 2A is an enlarged view of the circle A portion
  • FIG. 2B is an enlarged view of the circle B portion
  • FIG. 2C is an enlarged view of the circle C portion.
  • the incident angle of light passing through the optical axis Lz among the three separation surfaces is maximized.
  • the surface is configured to be the third prism second surface 16b.
  • R light, G light, and B light are separated from the incident light beam as light of three color components in the visible region.
  • light separated as light of three color components in the visible region is
  • the present invention is not limited to this. It can be set as appropriate according to the application.
  • the IR light is separated as the color component light in the invisible region.
  • the light separated as the color component light in the invisible region is not limited to this. . It can be set as appropriate according to the application. For example, it can also be set as the structure which isolate
  • the color separation optical system can also be constituted by a so-called gapless prism.
  • the gapless prism is a prism having a configuration not including an air gap.
  • light is extracted from all prisms other than the first prism without being reflected only once.
  • the surface that has the maximum incident angle of light passing through the optical axis is non-visible. It is configured to be a visible light separation surface. Thereby, it can suppress that color shading generate
  • the trimming filter is provided on the exit surface of each prism, but a configuration without the trimming filter is also possible. It is also possible to provide a trimming filter only for a specific exit surface.
  • FIG. 6 is a diagram illustrating an example of the configuration of the camera.
  • the camera 100 is an example of an imaging device.
  • the camera 100 according to the present embodiment is configured as a camera capable of exchanging lenses.
  • the camera 100 of the present embodiment is configured as a camera that can capture RGB images and IR images by using the imaging unit 1.
  • the camera 100 includes a box-shaped housing 110, and the imaging unit 1 is accommodated in the housing 110.
  • the imaging unit 1 is disposed at a predetermined position inside the housing 110 via a holder (not shown).
  • the housing 110 includes a camera-side mount 112 on the front part thereof.
  • the camera side mount 112 is configured by a C mount.
  • the C mount is a standard mount having an inner diameter of 24.4 mm (1 inch), a pitch of 0.794 mm (32 peaks / 1 inch), and a flange back of 17.526 mm (air conversion length).
  • the flange back FB is the distance from the mount surface of the mount to the light receiving surface of the image sensor.
  • the imaging unit 1 is installed to meet the C-mount standard. Therefore, it is configured in a size that can satisfy the flange back condition in the C mount.
  • an image sensor having an image size of 1 type (diagonal 16 mm) or less is used for each of the image sensors 30R, 30B, 30G, and 30IR.
  • an image sensor having an image size of 1/3 type (diagonal 6 mm) is used for each of the image sensors 30R, 30B, 30G, and 30IR. Therefore, an image sensor having an image size of 1 type (diagonal 16 mm) or less is used.
  • an image sensor having an image size of 1/3 type (diagonal 6 mm) is used. Therefore, the color separation optical system 10 is configured to have a size that can satisfy the flange back condition in the C mount when a 1/3 type image sensor is used.
  • the imaging lens 200 is composed of a C-mount standard lens.
  • the imaging lens 200 includes a C-mount standard lens-side mount 212 at the base end of the lens barrel 210.
  • FIG. 7 is a block diagram showing the electrical configuration of the camera.
  • the camera 100 includes an R light image sensor driver 120R, a G light image sensor driver 120G, a B light image sensor driver 120B, an IR light image sensor driver 120IR, an R light analog signal processing unit 122R, and a G light analog.
  • a signal processing unit 122G, a B optical analog signal processing unit 122B, an IR optical analog signal processing unit 122IR, a camera microcomputer 124, and the like are provided.
  • the R light image sensor driver 120R drives the R light image sensor 30R in response to a command from the camera microcomputer 124.
  • the G light image sensor driver 120G drives the G light image sensor 30G in response to a command from the camera microcomputer 124.
  • the B light image sensor driver 120B drives the B light image sensor 30B in response to a command from the camera microcomputer 124.
  • the IR light image sensor driver 120IR drives the IR light image sensor 30IR in response to a command from the camera microcomputer 124.
  • the R light analog signal processing unit 122R takes in an analog image signal of R light for each pixel output from the R light image sensor 30R, and performs predetermined signal processing (for example, correlated double sampling processing, gain adjustment, etc.). The processed signal is converted into a digital signal and output. The digital image signal of the R light Lr output from the R light analog signal processing unit 122R is taken into the camera microcomputer 124.
  • the G light analog signal processing unit 122G takes in an analog image signal of G light for each pixel output from the G light image sensor 30G, performs predetermined signal processing, and converts the processed signal into a digital signal. Output.
  • the digital image signal of the G light Lg output from the G light analog signal processing unit 122G is taken into the camera microcomputer 124.
  • the B light analog signal processing unit 122B takes in the B light analog image signal output from the B light image sensor 30B for each pixel, performs predetermined signal processing, and converts the processed signal into a digital signal. Output.
  • the digital image signal of the B light Lb output from the B light analog signal processing unit 122B is captured by the camera microcomputer 124.
  • the IR light analog signal processing unit 122IR takes in an analog image signal of IR light for each pixel output from the IR light image sensor 30IR, performs predetermined signal processing, and converts the processed signal into a digital signal. Output.
  • the digital image signal of the IR light Lir output from the IR light analog signal processing unit 122IR is taken into the camera microcomputer 124.
  • the camera microcomputer 124 includes a microcomputer having a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the camera microcomputer 124 implements various functions by executing predetermined programs.
  • the program is stored in the ROM.
  • FIG. 8 is a block diagram of main functions realized by the camera microcomputer.
  • the camera microcomputer 124 executes a predetermined program, whereby an image sensor drive control unit 124a, an RGB image signal processing unit 124b, an IR image signal processing unit 124c, an RGB image signal output unit 124d, an IR It functions as the image signal output unit 124e and the like.
  • the image sensor drive control unit 124a includes the R light image sensor 30R and the G light image sensor 30G via the R light image sensor driver 120R, the G light image sensor driver 120G, the B light image sensor driver 120B, and the IR light image sensor driver 120IR.
  • the B light image sensor 30B and the IR light image sensor 30IR are controlled to be driven.
  • the RGB image signal processing unit 124b is configured to output the R light image signal, the B light image signal, and the G light output from the R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B.
  • An image signal is taken in and subjected to predetermined signal processing to generate an RGB image which is a color image.
  • the IR image signal processing unit 124c takes in the IR light image signal output from the IR light analog signal processing unit 122IR, performs predetermined signal processing, and generates an IR image.
  • the IR image is output as it is, it becomes a mirror image with respect to the RGB image, and is output after being subjected to a required inversion process.
  • the RGB image signal output unit 124 d causes the RGB image generated by the RGB image signal processing unit 124 b to be output from the RGB image signal output terminal 126.
  • the IR image signal output unit 124e causes the IR image generated by the IR image signal processing unit 124c to be output from the IR image signal output terminal 128.
  • the light that has passed through the imaging lens 200 is decomposed into R light, G light, B light, and IR light by the color separation optical system 10.
  • the decomposed R light, G light, B light, and IR light are individually received by the R light image sensor 30R, the G light image sensor 30G, the B light image sensor 30B, and the IR light image sensor 30IR, respectively.
  • the R light image sensor 30R, the G light image sensor 30G, the B light image sensor 30B, and the IR light image sensor 30IR convert the received R light, G light, B light, and IR light into electrical signals and output them.
  • the camera microcomputer 124 applies predetermined R light image signals, B light image signals, and G light image signals captured from the R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B.
  • an RGB image that is a color image is generated and output from the RGB image signal output terminal 126.
  • an RGB image monitor is connected to the RGB image signal output terminal 126.
  • the captured RGB image is displayed on the monitor for this RGB image.
  • ⁇ Output IR image> The electrical signal output from the IR light image sensor 30IR is taken into the IR light analog signal processing unit 122IR.
  • the IR light analog signal processing unit 122IR performs predetermined signal processing on the captured IR light and outputs it to the camera microcomputer 124.
  • the camera microcomputer 124 performs predetermined signal processing on the IR light image signal captured from the IR light analog signal processing unit 122IR, generates an IR image, and outputs the IR image from the IR image signal output terminal 128.
  • an IR image monitor is connected to the IR image signal output terminal 128.
  • the captured IR image is displayed on the monitor for this IR image.
  • the present invention can also be applied to an imaging apparatus configured to perform camera control, signal processing, and the like in separate units.
  • the present invention can also be applied to an imaging apparatus having a configuration in which a color separation optical system, an image sensor, and the like are incorporated in a camera head, and control and signal processing are performed by a camera control unit.
  • the C mount is adopted as the mount for mounting the imaging lens, but the configuration of the mount is not limited to this.
  • a CS mount or the like can be employed.
  • the CS mount has a C-mount flange back of 12.5 mm (air equivalent length).
  • the imaging unit can be made compact by adopting a configuration in which the IR light is reflected and extracted only once as in the imaging unit 1 of the above embodiment. Therefore, the imaging unit 1 according to the above embodiment works particularly effectively in an imaging apparatus that requires a compact imaging unit.
  • An imaging device that is required to be compact is an imaging device having a flange back of 12.5 mm or more and 19 mm or less in terms of air, as in an imaging device that employs a C mount or CS mount.
  • the imaging device can also be configured as an electronic endoscope, for example.
  • FIG. 9 is a diagram illustrating an example of an electronic endoscope.
  • the electronic endoscope 300 shown in the figure is a so-called rigid endoscope, and is configured as an electronic endoscope capable of capturing RGB images and IR images.
  • the electronic endoscope 300 mainly includes a scope 310, a mount adapter 320, and a camera body 330.
  • Scope 310 is an insertion part into a body cavity.
  • the scope 310 includes an observation window at the tip.
  • the scope 310 includes a plurality of lens groups inside.
  • the scope 310 forms an optical image of a subject observed from the observation window by a plurality of lens groups provided inside.
  • the mount adapter 320 is a member for attaching the scope 310 to the camera body 330.
  • the mount adapter 320 includes a scope mounting unit at one end and a camera mounting unit at the other end.
  • the scope mounting portion is a mounting portion of the scope 310, and the scope 310 is detachably mounted.
  • the camera mounting part is a mounting part to the camera body 330.
  • the camera mounting unit is configured by a mount corresponding to the mount provided in the camera body 330.
  • the camera body 330 has a housing 330a that can be grasped by a user's hand, and the imaging unit 1 is provided inside the housing 330a.
  • the electrical configuration of the camera body 330 is substantially the same as the camera 100 of the above embodiment.
  • the housing 330 a is provided with a mount 332, and a mount adapter 320 is detachably attached to the mount 332.
  • the mount 332 is constituted by a C mount, for example.
  • ICG Indocyanine Green / Indocyanine Green
  • near-infrared light is applied to a site such as an excessively accumulated tumor to illuminate the affected area.
  • the part to be included may be imaged.
  • ICG is a substance that emits fluorescence with near-infrared light having a longer wavelength (for example, peak wavelength 835 nm) when excited with near-infrared light (for example, peak wavelength 805 nm, 750 to 810 nm).
  • ICG is administered into the body, a near-infrared light is applied to a site (affected part) such as a tumor that has accumulated excessively, and the affected part is imaged, whereby a color image of the affected part is obtained. Simultaneously with the (RGB image), it is possible to capture an image (fluorescent image) in which the affected area is fluorescently emitted.
  • the case where ICG is administered as an optical contrast agent has been described as an example, but an optical contrast agent other than ICG may be administered.
  • the spectral characteristic of the invisible light separation surface is set according to the wavelength of the excitation light for exciting the optical contrast agent.
  • a chemical that emits fluorescence in the wavelength region of infrared light is used.
  • a chemical that emits fluorescence in the wavelength region of ultraviolet light may be used.
  • the spectral characteristics are set so that the ultraviolet light is separated on the non-visible light separation surface.
  • RGB images and IR images can be simultaneously captured on the same axis.
  • the two images have no parallax and match with high accuracy. Therefore, both can be displayed in a superimposed manner.
  • FIG. 10 is a block diagram showing a schematic configuration of a display processing apparatus when displaying an RGB image and an IR image in a superimposed manner.
  • the display processing device 130 includes an image composition processing unit 130a and an image display control unit 130b.
  • the display processing device 130 is configured by a computer. That is, the computer functions as the display processing device 130 by executing a predetermined program.
  • the image composition processing unit 130a acquires the RGB image signal and the IR image signal from the imaging device, and generates a composite image in which both are superimposed.
  • the synthesis process is performed as follows, for example. First, the signal value of each pixel of the acquired RGB image signal and IR image signal is multiplied by a predetermined coefficient. Here, the signal value of each pixel of the RGB image signal is multiplied by the coefficient K1, and the signal value of each pixel of the IR image signal is multiplied by the coefficient K2. Next, the signal value of each pixel of the IR image signal after coefficient multiplication is added to the signal value of each pixel of the RGB image signal after coefficient multiplication. Addition is performed between corresponding pixels. Thereby, a composite image in which the RGB image and the IR image are superimposed is generated.
  • the image display control unit 130 b controls display of an image on the display device 134 based on the operation of the operation unit 132.
  • FIG. 11 is a diagram illustrating an example of display of an RGB image, an IR image, and a composite image.
  • This figure shows an example of display of an electronic endoscope as an imaging apparatus.
  • a display example of an image captured when ICG is administered into the body and near-infrared light is applied to the affected area to image the affected area is shown.
  • a color image (RGB image) of the affected area and a fluorescent image (IR image) of the affected area are captured.
  • FIG. 11A shows an example of a color image (RGB image) of an affected area.
  • FIG. 11B shows an example of a fluorescent image (IR image) of the affected area.
  • FIG. 11C shows an example of a composite image.
  • the color image (RGB image) of the affected area shown in FIG. 11A and the fluorescence image (IR image) of the affected area shown in FIG. 11B are images without parallax. Therefore, the composite image illustrated in FIG. 11C is an image obtained by capturing the same part on the same axis. By displaying the composite image, it is possible to grasp at a glance where in the color image (RGB image) the light emitting portion in the fluorescence image (IR image) is present.
  • Display of RGB image, IR image, and composite image is switched by operation of the operation unit 132.
  • the image display control unit 130 b switches display of an image on the display device 134 based on the operation of the operation unit 132.
  • the RGB image, the IR image, and the composite image are each displayed independently, but can be displayed in combination.
  • three images can be simultaneously displayed on one screen.
  • two images arbitrarily combined on one screen can be displayed in parallel.
  • an RGB image and an IR image can be displayed in parallel.
  • the display processing device 130 is provided separately from the imaging device, but the function of the display processing device 130 may be incorporated into the imaging device.
  • the display processing device 130 may have a function of performing signal processing on the RGB image and the IR image as necessary. For example, a function of performing processing for enhancing an outline of an RGB image, processing for coloring an IR image green or the like, processing for extracting a specific region, and the like may be provided.
  • the relationship between the refractive index n1 (refractive index on the incident side) of the third prism 16 and the Brewster angle ⁇ was determined.
  • n1 refractive index on the incident side
  • ⁇ 3 refractive index
  • the third prism second surface 16b is set to satisfy ⁇ 3> ⁇ F2 + ⁇ . If the maximum angle (expected angle) of the light beam with respect to the optical axis Lz when the F4.0 light beam is incident from the lens is ⁇ F4, the third prism second surface 16b is set to satisfy ⁇ 3> ⁇ F4 + ⁇ . .
  • FIG. 12 is a table showing the relationship between the refractive index n1 of the third prism, the Brewster angle ⁇ determined from the refractive index n1, and the condition of the incident angle that should be satisfied by the second surface of the third prism.
  • the Brewster angle ⁇ increases as the refractive index n1 of the third prism increases.
  • the incident angle ⁇ 3 of the third prism second surface 16b which is a non-visible light separation surface, is incident on the first prism second surface 12b and the second prism second surface 14b, which are visible light separation surfaces.
  • the condition is that the angles are larger than ⁇ 1 and ⁇ 2 ( ⁇ 3> ⁇ 1 and ⁇ 3> ⁇ 2). Therefore, considering this point and considering compactness, it is preferable to set the incident angle ⁇ 3 of the third prism second surface 16b to 47 degrees or more.
  • Imaging unit 2 lens 10 color separation optical system 10A color separation optical system 12 first prism 12a first prism first surface 12b first prism second surface 12c first prism third surface 14 second prism 14a second prism first Surface 14b Second prism second surface 14c Second prism third surface 16 Third prism 16a Third prism first surface 16b Third prism second surface 16c Third prism third surface 18 Fourth prism 18a Fourth prism first Surface 18b Fourth prism second surface 18c Fourth prism third surface 20B B light trimming filter 20G G light trimming filter 20IR IR light trimming filter 20R R light trimming filter 22 Spacer 24 Air gap 26 Spacer 28 Air gap 30R R light image sensor 30G G light image sensor 30B B light image Sensor 30IR IR light image sensor 100 Camera 110 Housing 112 Camera side mount 120B B light image sensor driver 120G G light image sensor driver 120IR IR light image sensor driver 120R R light image sensor driver 122B B light analog signal processing unit 122G G light analog Signal processor 122IR IR optical analog signal processor 122R R optical analog signal processor 124 Camera microcomputer

Abstract

The present invention provides a color separation optical system, an imaging unit, and an imaging device capable of suppressing color shading. A color separation optical system (10) is constituted by combining a first prism (12) for extracting B light, a second prism (14) for extracting R light, a third prism (16) for extracting IR light, and a fourth prism (18) for extracting G light. The first prism 12 reflects B light at the second surface (12b) thereof to separate B light. The second prism (14) reflects R light at the second surface (14b) thereof to separate R light. The third prism (16) reflects IR light at the second surface (16b) thereof to separate IR light. The color separation optical system (10) is constituted such that the second surface (16b) of the third prism maximizes the incidence angle of light passing through an optical axis Lz.

Description

色分解光学系、撮像ユニット及び撮像装置Color separation optical system, imaging unit, and imaging apparatus
 本発明は、色分解光学系、撮像ユニット及び撮像装置に係り、特に、入射光束を可視領域の3つの色成分の光と非可視領域の1つの色成分の光とに分解する色分解光学系、その色分解光学系を備えた撮像ユニット、及び、その撮像ユニットを備えた撮像装置に関する。 The present invention relates to a color separation optical system, an image pickup unit, and an image pickup apparatus, and in particular, a color separation optical system that separates an incident light beam into light of three color components in the visible region and light of one color component in the invisible region. The present invention relates to an imaging unit including the color separation optical system and an imaging apparatus including the imaging unit.
 レンズを通った光を色分解光学系によってR光(R:Red/赤色)、G光(G:Green/緑色)、B光(B:Blue/青色)及びIR光(IR:InfraRed/赤外)の4つの色成分の光に分解し、分解された各光を4つのイメージセンサで個別に受光して、RGB画像及びIR画像を撮像する撮像装置が知られている(たとえば、特許文献1-3等)。ここで、RGB画像とは、1つの画素がR、G、Bの3つの色成分の値からなる画像のことである。RGB画像は、いわゆるカラー画像を構成する。また、IR画像とは、1つの画素がIRの1つの色成分の値からなる画像のことである。 The light that has passed through the lens is R (R: Red), G (G: Green), B (B: Blue), and IR (IR: InfraRed / Infrared) by a color separation optical system. 4), an image pickup apparatus that picks up an RGB image and an IR image by individually receiving the decomposed lights with four image sensors (see, for example, Patent Document 1). -3 etc.). Here, the RGB image is an image in which one pixel is composed of three color component values of R, G, and B. The RGB image constitutes a so-called color image. An IR image is an image in which one pixel is composed of one color component value of IR.
特開2016-178995号公報JP 2016-178995 JP 特開2015-180864号公報JP-A-2015-180864 特開2017-29763号公報JP 2017-29763 A
 しかしながら、色分解光学系を使用すると、撮像されるカラー画像にカラーシェーディングが発生するという欠点がある。カラーシェーディングとは、画面の中心部分でホワイトバランスがとれていても、画面の上端及び下端に色が付く現象のことである。カラーシェーディングは、色分離面への入射角の大きさに起因して発生し、その大きさが大きくなるほど、発生量も大きくなる。カラーシェーディングは、色ムラとして視認され、画像品質を大きく低下させる。 However, when the color separation optical system is used, there is a drawback that color shading occurs in the color image to be captured. Color shading is a phenomenon in which the top and bottom edges of a screen are colored even when white balance is achieved at the center of the screen. Color shading occurs due to the size of the incident angle on the color separation surface, and the amount of generation increases as the size increases. The color shading is visually recognized as color unevenness and greatly reduces the image quality.
 本発明は、このような事情に鑑みてなされたもので、カラーシェーディングの発生を抑制できる色分解光学系、撮像ユニット及び撮像装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a color separation optical system, an imaging unit, and an imaging apparatus that can suppress the occurrence of color shading.
 上記課題を解決するための手段は、次のとおりである。 Measures for solving the above problems are as follows.
 (1)入射光束を可視領域の3つの色成分の光と非可視領域の1つの色成分の光とに分解する色分解光学系であって、可視領域の第1色成分の光を反射して分離する第1可視光分離面と、可視領域の第2色成分の光を反射して分離する第2可視光分離面と、非可視領域の光を反射して分離する非可視光分離面と、を光軸上に備え、第1可視光分離面、第2可視光分離面及び非可視光分離面のうち光軸を通る光の入射角が最大となる面が非可視光分離面である、色分解光学系。 (1) A color separation optical system that separates an incident light beam into light of three color components in the visible region and light of one color component in the invisible region, and reflects the light of the first color component in the visible region. A first visible light separation surface that separates and separates light of a second color component in the visible region, and a non-visible light separation surface that reflects and separates light in the non-visible region. On the optical axis, and the first visible light separating surface, the second visible light separating surface, and the invisible light separating surface, the surface having the maximum incident angle of light passing through the optical axis is the invisible light separating surface. There is a color separation optical system.
 本発明によれば、色分解光学系が3つの分離面を備え、入射光束を可視領域の3つの色成分の光と非可視領域の1つの色成分の光とに分解する。3つの分離面は、第1可視光分離面、第2可視光分離面及び非可視光分離面で構成される。第1可視光分離面は、可視領域の第1色成分の光を分離する。第2可視光分離面は、可視領域の第2色成分の光を分離する。非可視光分離面は、非可視領域の光を分離する。すべての分離面を透過した光が、可視領域の第3色成分の光として分離される。各分離面は、分離する対象の色成分の光を選択的に反射して、他の色成分の光から分離する。この際、分離する対象の色成分の光が、所定の方向に反射するように、各分離面が配置される。したがって、各分離面は、光軸に対して傾けられて配置される。本態様の色分解光学系では、3つある分離面のうち光軸を通る光の入射角が最大となる面が非可視光分離面となるように、各分離面の傾きが設定される。これにより、可視光によるカラー画像を撮像する際のカラーシェーディングの発生を抑制できる。カラーシェーディングは、色分離面への入射角の大きさに起因して発生し、その大きさが大きくなるほど、発生量も大きくなる。光軸を通る光の入射角が最大となる面を非可視光分離面とすることで、可視領域の色成分の光を分離する分離面での入射角を小さくできる。これにより、可視光によるカラー画像を撮像する際のカラーシェーディングの発生を抑制できる。 According to the present invention, the color separation optical system includes three separation surfaces, and separates the incident light beam into light of three color components in the visible region and light of one color component in the invisible region. The three separation surfaces include a first visible light separation surface, a second visible light separation surface, and a non-visible light separation surface. The first visible light separation surface separates the light of the first color component in the visible region. The second visible light separation surface separates the light of the second color component in the visible region. The non-visible light separation surface separates light in the non-visible region. The light transmitted through all the separation surfaces is separated as the light of the third color component in the visible region. Each separation surface selectively reflects light of a color component to be separated and separates it from light of other color components. At this time, each separation surface is arranged so that light of a color component to be separated is reflected in a predetermined direction. Therefore, each separation surface is disposed to be inclined with respect to the optical axis. In the color separation optical system of this aspect, the inclination of each separation surface is set so that the surface where the incident angle of light passing through the optical axis is the maximum among the three separation surfaces is the invisible light separation surface. Thereby, generation | occurrence | production of the color shading at the time of imaging the color image by visible light can be suppressed. Color shading occurs due to the size of the incident angle on the color separation surface, and the amount of generation increases as the size increases. By setting the surface where the incident angle of light passing through the optical axis is maximum as the non-visible light separating surface, the incident angle at the separating surface for separating the light of the color component in the visible region can be reduced. Thereby, generation | occurrence | production of the color shading at the time of imaging the color image by visible light can be suppressed.
 (2)非可視光分離面は、レンズからFナンバが2.0の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される、上記(1)の色分解光学系。 (2) The non-visible light separation surface is disposed so as to be inclined to an angle at which all light is incident at an incident angle larger than the Brewster angle when a light flux having an F number of 2.0 is incident from the lens. The color separation optical system according to (1) above.
 本態様によれば、非可視光分離面が、次のように傾けられて配置される。すなわち、レンズからFナンバが2.0の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される。ここで、「すべての光」の概念には、ほぼすべてとみなし得る範囲が含まれる。これにより、非可視光による画像を撮像する際に画面内で光量差が生じるのを抑制できる。ブリュースター角(偏光角)とは、屈折率の異なる物質の界面において、p偏光の反射率が0となる入射角のことである。レンズからFナンバが2.0の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に設定して、非可視光分離面を配置することにより、ブリュースター角で入射する光の発生を効果的に抑制できる。これにより、光量差が生じる場合であっても、実用上問題のないレベルに抑えることができる。 According to this aspect, the non-visible light separation surface is inclined and arranged as follows. That is, when a light flux having an F number of 2.0 is incident from the lens, all the light beams are arranged to be inclined at an incident angle larger than the Brewster angle. Here, the concept of “all light” includes a range that can be regarded as almost all. Thereby, it can suppress that a light quantity difference arises in a screen, when imaging the image by invisible light. The Brewster angle (polarization angle) is an incident angle at which the reflectance of p-polarized light becomes 0 at the interface between substances having different refractive indexes. When a light beam having an F number of 2.0 is incident from the lens, the Brewster is arranged by setting the angle at which all light is incident at an incident angle larger than the Brewster angle, and arranging the invisible light separation surface. Generation of light incident at an angle can be effectively suppressed. Thereby, even if it is a case where a light quantity difference arises, it can suppress to the level which does not have a problem practically.
 (3)非可視光分離面は、レンズから最大開口の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される、上記(1)の色分解光学系。 (3) The invisible light separation surface is arranged to be inclined at an angle at which all light is incident at an incident angle larger than the Brewster angle when the light beam having the maximum aperture is incident from the lens. Color separation optical system.
 本態様によれば、非可視光分離面が、次のように傾けられて配置される。すなわち、レンズから最大開口の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される。ここで、「すべての光」の概念には、ほぼすべてとみなし得る範囲が含まれる。これにより、非可視光による画像を撮像する際に画面内で光量差が生じるのを抑制できる。 According to this aspect, the non-visible light separation surface is inclined and arranged as follows. That is, when the light beam having the maximum aperture is incident from the lens, all the light beams are disposed so as to be inclined at an incident angle larger than the Brewster angle. Here, the concept of “all light” includes a range that can be regarded as almost all. Thereby, it can suppress that a light quantity difference arises in a screen, when imaging the image by invisible light.
 (4)第1可視光分離面で分離した可視領域の第1色成分の光を出射させる方向に反射させる第1可視光反射面と、第2可視光分離面で分離した可視領域の第2色成分の光を出射させる方向に反射させる第2可視光反射面と、を更に備えた上記(1)から(3)のいずれか一の色分解光学系。 (4) A first visible light reflecting surface that is reflected in a direction in which light of the first color component in the visible region separated by the first visible light separating surface is emitted, and a second visible region that is separated by the second visible light separating surface. The color separation optical system according to any one of (1) to (3), further including a second visible light reflecting surface that reflects the light of the color component in a direction in which the light is emitted.
 本態様によれば、第1可視光分離面で分離した可視領域の第1色成分の光を出射させる方向に反射させる第1可視光反射面と、第2可視光分離面で分離した可視領域の第2色成分の光を出射させる方向に反射させる第2可視光反射面と、が更に備えられる。これにより、可視領域の第1色成分の像及び第2色成分の像が、第3色成分の像のミラー(反転)像となって取り出されるのを防止できる。各像を揃えて取り出せることにより、その後の処理を簡素化できる。なお、非可視光分離面で分離した非可視領域の光については、反射させずにそのまま出射させてもよいし、更に反射させて出射させてもよい。反射させずにそのまま出射させた場合は、色分解光学系の構成を簡素化できる。一方、更に反射させて出射させた場合は、非可視光の像が可視光の像のミラー像となって取り出されるのを防止できる。 According to this aspect, the first visible light reflecting surface that is reflected in the direction in which the light of the first color component in the visible region separated by the first visible light separating surface is emitted and the visible region that is separated by the second visible light separating surface. And a second visible light reflecting surface that reflects the second color component in the direction in which the light of the second color component is emitted. Thereby, it is possible to prevent the first color component image and the second color component image in the visible region from being taken out as mirror (inverted) images of the third color component image. Since each image can be taken out in a uniform manner, subsequent processing can be simplified. The light in the invisible region separated by the invisible light separation surface may be emitted as it is without being reflected, or may be further reflected and emitted. When the light is emitted without being reflected, the configuration of the color separation optical system can be simplified. On the other hand, when the light is further reflected and emitted, the invisible light image can be prevented from being taken out as a mirror image of the visible light image.
 (5)第1可視光分離面、第2可視光分離面及び非可視光分離面は、入射側から第1可視光分離面、第2可視光分離面、非可視光分離面の順で配置される、上記(1)から(4)のいずれか一の色分解光学系。 (5) The first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface are arranged in order of the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface from the incident side. The color separation optical system according to any one of (1) to (4) above.
 本態様によれば、第1可視光分離面、第2可視光分離面及び非可視光分離面が、入射側から第1可視光分離面、第2可視光分離面、非可視光分離面の順で配置される。最終の分離面を非可視光分離面とすることでカラー画像のシェーディングを極小に低減できる。 According to this aspect, the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface are the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface from the incident side. Arranged in order. By making the final separation surface a non-visible light separation surface, shading of color images can be reduced to a minimum.
 (6)レンズからの光束が入射される第1入射面と、第1可視光分離面と、第1可視光分離面で分離した可視領域の第1色成分の光を出射する第1出射面と、を有する第1プリズムと、第1可視光分離面に接合され、第1可視光分離面を透過した光束が入射される第2入射面と、第2可視光分離面と、第2可視光分離面で分離した可視領域の第2色成分の光を出射する第2出射面と、を有する第2プリズムと、第2可視光分離面に接合され、第2可視光分離面を透過した光束が入射される第3入射面と、非可視光分離面と、非可視光分離面で分離した非可視領域の光を出射する第3出射面と、を有する第3プリズムと、非可視光分離面に接合され、非可視光分離面を透過した光束が入射される第4入射面と、可視領域の第3色成分の光を出射する第4出射面と、を有する第4プリズムと、を備えた上記(1)から(3)のいずれか一の色分解光学系。 (6) A first exit surface that emits light of the first color component in the visible region separated by the first incident surface on which the light flux from the lens is incident, the first visible light separation surface, and the first visible light separation surface. A first prism having a second incident surface that is joined to the first visible light separating surface and is transmitted through the first visible light separating surface, a second visible light separating surface, and a second visible light. A second prism having a second emission surface that emits light of the second color component in the visible region separated by the light separation surface, joined to the second visible light separation surface, and transmitted through the second visible light separation surface A third prism having a third incident surface on which a light beam is incident, a non-visible light separating surface, and a third emitting surface that emits light in a non-visible region separated by the non-visible light separating surface; A fourth incident surface that is joined to the separation surface and receives the light beam that has passed through the non-visible light separation surface, and emits light of the third color component in the visible region. The fourth emission surface and the fourth any one of the color separation optical system and the prism, the above (1) with a (3) having to be.
 本態様によれば、色分解光学系が、いわゆる複合プリズムで構成され、第1プリズム、第2プリズム、第3プリズム及び第4プリズムを組み合わせ構成される。第1プリズムは、レンズからの光束が入射される第1入射面と、第1可視光分離面と、第1可視光分離面で分離した可視領域の第1色成分の光を出射する第1出射面と、を備える。第2プリズムは、第1可視光分離面を透過した光束が入射される第2入射面と、第2可視光分離面と、第2可視光分離面で分離した可視領域の第2色成分の光を出射する第2出射面と、を備える。第3プリズムは、第2可視光分離面を透過した光束が入射される第3入射面と、非可視光分離面と、非可視光分離面で分離した非可視領域の光を出射する第3出射面と、を備える。第4プリズムは、非可視光分離面を透過した光束が入射される第4入射面と、可視領域の第3色成分の光を出射する第4出射面と、を備える。第1プリズム及び第2プリズムは、第1プリズムの第1可視光分離面と第2プリズムの第2入射面との間で互いに接合される。第2プリズム及び第3プリズムは、第2プリズムの第2可視光分離面と第3プリズムの第3入射面との間で互いに接合される。第3プリズム及び第4プリズムは、第3プリズムの非可視光分離面と第4プリズムの第4入射面との間で互いに接合される。レンズからの光束は、まず、第1プリズムの第1入射面に入射する。第1入射面に入射した光束は、第1プリズムの第1可視光分離面で可視領域の第1色成分の光が選択的に反射されて分離される。分離された可視領域の第1色成分の光は、第1プリズムの第1出射面から出射される。第1プリズムの第1可視光分離面を透過した光束は、続いて、第2プリズムの第2入射面に入射する。第2入射面に入射した光束は、第2プリズムの第2可視光分離面で可視領域の第2色成分の光が選択的に反射されて分離される。分離された可視領域の第2色成分の光は、第2プリズムの第2出射面から出射される。第2プリズムの第2可視光分離面を透過した光束は、続いて、第3プリズムの第3入射面に入射する。第3入射面に入射した光束は、第3プリズムの非可視光分離面で非可視領域の光が選択的に反射されて分離される。分離された非可視領域の光は、第3プリズムの第3出射面から出射される。第3プリズムの非可視光分離面を透過した光束は、続いて、第4プリズムの第4入射面に入射する。第4入射面に入射した光束は、可視領域の第3色成分の光として第4出射面から出射される。 According to this aspect, the color separation optical system is configured by a so-called composite prism, and is configured by combining the first prism, the second prism, the third prism, and the fourth prism. The first prism emits the first color component light in the visible region separated by the first incident surface on which the light flux from the lens is incident, the first visible light separating surface, and the first visible light separating surface. And an exit surface. The second prism includes a second incident surface on which a light beam transmitted through the first visible light separation surface is incident, a second visible light separation surface, and a second color component in the visible region separated by the second visible light separation surface. A second emission surface that emits light. The third prism emits light in a non-visible region separated by the third incident surface on which the light beam transmitted through the second visible light separation surface is incident, the non-visible light separation surface, and the non-visible light separation surface. And an exit surface. The fourth prism includes a fourth incident surface on which a light beam that has passed through the non-visible light separation surface is incident, and a fourth emission surface that emits light of the third color component in the visible region. The first prism and the second prism are joined to each other between the first visible light separation surface of the first prism and the second incident surface of the second prism. The second prism and the third prism are joined to each other between the second visible light separation surface of the second prism and the third incident surface of the third prism. The third prism and the fourth prism are joined to each other between the invisible light separation surface of the third prism and the fourth incident surface of the fourth prism. The light beam from the lens first enters the first incident surface of the first prism. The light beam incident on the first incident surface is separated by selectively reflecting the light of the first color component in the visible region on the first visible light separation surface of the first prism. The separated light of the first color component in the visible region is emitted from the first emission surface of the first prism. The light beam that has passed through the first visible light separation surface of the first prism then enters the second incident surface of the second prism. The light beam incident on the second incident surface is separated by selectively reflecting the light of the second color component in the visible region on the second visible light separation surface of the second prism. The separated light of the second color component in the visible region is emitted from the second emission surface of the second prism. The light beam that has passed through the second visible light separation surface of the second prism then enters the third incident surface of the third prism. The light beam incident on the third incident surface is separated by selectively reflecting the light in the invisible region on the invisible light separation surface of the third prism. The separated light in the invisible region is emitted from the third emission surface of the third prism. The light beam that has passed through the invisible light separation surface of the third prism then enters the fourth incident surface of the fourth prism. The light beam incident on the fourth entrance surface is emitted from the fourth exit surface as light of the third color component in the visible region.
 (7)第1プリズムは、第1可視光分離面で分離した可視領域の第1色成分の光を第1入射面で全反射させて、第1出射面から出射させ、第2プリズムは、第2入射面がエアギャップを介して第1可視光分離面に接合され、第2可視光分離面で分離した可視領域の第2色成分の光を第2入射面で全反射させて、第2出射面から出射させる、上記(6)の色分解光学系。 (7) The first prism causes the first color component light in the visible region separated by the first visible light separation surface to be totally reflected by the first incident surface and emitted from the first emission surface, and the second prism is The second incident surface is joined to the first visible light separating surface through the air gap, and the second color component light in the visible region separated by the second visible light separating surface is totally reflected by the second incident surface, (2) The color separation optical system according to (6), which is emitted from two emission surfaces.
 本態様によれば、第1プリズムの第1入射面及び第2プリズムの第2入射面が、いわゆる全反射面で構成される。第1プリズムの第1可視光分離面で分離した可視領域の第1色成分の光は、第1入射面で全反射して、第1出射面から出射される。また、第2プリズムの第2可視光分離面で分離した可視領域の第2色成分の光は、第2入射面で全反射して、第2出射面から出射される。第2プリズムは、第1プリズムとの間でエアギャップを介して接合されることにより、第2入射面が全反射面として構成される。 According to this aspect, the first incident surface of the first prism and the second incident surface of the second prism are constituted by so-called total reflection surfaces. The light of the first color component in the visible region separated by the first visible light separation surface of the first prism is totally reflected by the first incidence surface and emitted from the first emission surface. The light of the second color component in the visible region separated by the second visible light separation surface of the second prism is totally reflected by the second incident surface and emitted from the second emission surface. The second prism is joined to the first prism via an air gap so that the second incident surface is configured as a total reflection surface.
 (8)非可視光分離面は、赤外光を分離する、上記(1)から(7)のいずれか一の色分解光学系。 (8) The color separation optical system according to any one of (1) to (7), wherein the invisible light separation surface separates infrared light.
 本態様によれば、非可視光分離面が赤外光(IR光)を分離する。可視領域の光については、たとえば、R光、G光、B光に分離する構成とすることができる。この場合、たとえば、第1可視光分離面でB光を分離し、第2可視光分離でR光を分離する。また、すべての分離面を透過した光をG光として分離する。 According to this aspect, the invisible light separation surface separates infrared light (IR light). The light in the visible region can be separated into R light, G light, and B light, for example. In this case, for example, the B light is separated by the first visible light separation surface, and the R light is separated by the second visible light separation. Further, the light transmitted through all the separation surfaces is separated as G light.
 (9)上記(1)から(8)のいずれか一の色分解光学系と、色分解光学系で分解された可視領域の第1色成分の光を受光する第1可視光イメージセンサと、色分解光学系で分解された可視領域の第2色成分の光を受光する第2可視光イメージセンサと、色分解光学系で分解された可視領域の第3色成分の光を受光する第3可視光イメージセンサと、色分解光学系で分解された非可視領域の光を受光する非可視光イメージセンサと、を備えた撮像ユニット。 (9) The color separation optical system according to any one of (1) to (8) above, a first visible light image sensor that receives light of the first color component in the visible region resolved by the color separation optical system, A second visible light image sensor that receives light of the second color component in the visible region resolved by the color separation optical system, and a third that receives light of the third color component in the visible region resolved by the color separation optical system. An imaging unit comprising: a visible light image sensor; and a non-visible light image sensor that receives light in a non-visible region separated by a color separation optical system.
 本態様によれば、イメージセンサを備えた撮像ユニットとして、色分解光学系が構成される。色分解光学系には、分離した可視領域の第1色成分の光を受光する第1可視光イメージセンサと、可視領域の第2色成分の光を受光する第2可視光イメージセンサと、可視領域の第3色成分の光を受光する第3可視光イメージセンサと、非可視領域の光を受光する非可視光イメージセンサと、が備えられる。 According to this aspect, the color separation optical system is configured as the imaging unit including the image sensor. The color separation optical system includes a first visible light image sensor that receives light of the first color component in the separated visible region, a second visible light image sensor that receives light of the second color component in the visible region, and a visible light. A third visible light image sensor that receives light of the third color component in the region and a non-visible light image sensor that receives light in the invisible region are provided.
 (10)筐体と、筐体に収容された上記(9)の撮像ユニットと、筐体に備えられ、レンズが着脱自在に装着されるマウントと、を備えた撮像装置。 (10) An imaging apparatus comprising a housing, the imaging unit according to (9) housed in the housing, and a mount that is provided in the housing and on which a lens is detachably mounted.
 本態様によれば、レンズ交換が可能な撮像装置に撮像ユニットが組み込まれる。レンズは、筐体に備えられたマウントを介して着脱される。 According to this aspect, the imaging unit is incorporated in the imaging device capable of exchanging lenses. The lens is attached / detached via a mount provided in the housing.
 (11)フランジバックが、空気換算長で12.5mm以上、19mm以下である、上記(10)の撮像装置。 (11) The imaging device according to (10), wherein the flange back has an air equivalent length of 12.5 mm or more and 19 mm or less.
 本態様によれば、撮像装置のフランジバックが空気換算長で12.5mm以上、19mm以下で構成される。フランジバックとは、マウント面からイメージセンサの受光面までの距離のことである。たとえば、Cマウント、CSマウントを採用する撮像装置が、これに該当する。Cマウントは、内径24.4mm(1インチ)、ピッチ0.794mm(32山/1インチ)、フランジバック17.526mm(空気換算長)の規格のマウントである。CSマウントは、Cマウントにおけるフランジバックを12.5mm(空気換算長)としたものである。 According to this aspect, the flange back of the imaging device is configured with an air equivalent length of 12.5 mm or more and 19 mm or less. The flange back is a distance from the mount surface to the light receiving surface of the image sensor. For example, an imaging apparatus that employs a C mount or a CS mount corresponds to this. The C mount is a standard mount having an inner diameter of 24.4 mm (1 inch), a pitch of 0.794 mm (32 peaks / 1 inch), and a flange back of 17.526 mm (air conversion length). The CS mount has a C-mount flange back of 12.5 mm (air equivalent length).
 本発明によれば、カラーシェーディングの発生を抑制できる。 According to the present invention, the occurrence of color shading can be suppressed.
撮像ユニットの構成の一例を示す図The figure which shows an example of a structure of an imaging unit 図1のA、B及びCの部分を拡大した図The figure which expanded the part of A, B, and C of FIG. レンズから第3プリズム第2面に入射する光の入射角の関係を示す図The figure which shows the relationship of the incident angle of the light which injects into the 3rd prism 2nd surface from a lens. IR光を2回反射させて取り出す場合の色分解光学系の構成例を示す図The figure which shows the structural example of the color separation optical system in the case of reflecting IR light twice and taking out 図4のA、B及びCの部分を拡大した図The figure which expanded the part of A, B, and C of FIG. カメラの構成の一例を示す図The figure which shows an example of a structure of a camera カメラの電気的構成を示すブロック図Block diagram showing the electrical configuration of the camera カメラマイコンが実現する主な機能のブロック図Block diagram of the main functions realized by the camera microcomputer 電子内視鏡の一例を示す図The figure which shows an example of an electronic endoscope RGB画像及びIR画像を重ねて表示する場合の表示処理装置の概略構成を示すブロック図The block diagram which shows schematic structure of the display processing apparatus in the case of displaying an RGB image and IR image superimposed RGB画像、IR画像及び合成画像の表示の一例を示す図The figure which shows an example of a display of RGB image, IR image, and a synthesized image 第3プリズムの屈折率n1と、その屈折率n1から求められるブリュースター角γと、第3プリズム第2面が満たすべき入射角の条件との関係を示す表A table showing the relationship between the refractive index n1 of the third prism, the Brewster angle γ determined from the refractive index n1, and the condition of the incident angle that should be satisfied by the second surface of the third prism.
 以下、添付図面に従って本発明を実施するための好ましい形態について詳説する。 Hereinafter, preferred embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
 ◆◆色分解光学系及び撮像ユニット◆◆
 [色分解光学系及び撮像ユニットの構成]
 図1は、撮像ユニットの構成の一例を示す図である。
◆◆ Color separation optical system and imaging unit ◆◆
[Configuration of color separation optical system and imaging unit]
FIG. 1 is a diagram illustrating an example of the configuration of the imaging unit.
 撮像ユニット1は、入射光束を4つの色成分の光に分解する色分解光学系10と、その色分解光学系10で分解された4つの色成分の光を各々個別に受光する4つのイメージセンサ30R、30G、30B、30IRと、を備えて構成される。 The imaging unit 1 includes a color separation optical system 10 that decomposes an incident light beam into four color component lights, and four image sensors that individually receive the four color component lights separated by the color separation optical system 10. 30R, 30G, 30B, and 30IR.
 《色分解光学系》
 本実施の形態の色分解光学系10は、入射光束をR光(赤色光)、G光(緑色光)、B光(青色光)及びIR光(赤外光)に分解する。R光、G光及びB光は、可視領域の3つの色成分の光の一例である。また、IR光は、非可視領域の色成分の光の一例である。
<Color separation optics>
The color separation optical system 10 of this embodiment decomposes an incident light beam into R light (red light), G light (green light), B light (blue light), and IR light (infrared light). R light, G light, and B light are examples of light of three color components in the visible region. IR light is an example of light of a color component in a non-visible region.
 図1に示すように、色分解光学系10は、第1プリズム12、第2プリズム14、第3プリズム16及び第4プリズム18の4つのプリズムを組み合わせて構成される。4つのプリズムは、光軸Lzに沿って光の入射側から第1プリズム12、第2プリズム14、第3プリズム16、第4プリズム18の順で配置される。本実施の形態の色分解光学系10では、第1プリズム12でB光Lb、第2プリズム14でR光Lr、第3プリズム16でIR光Lir、第4プリズム18でG光Lgを取り出す。 As shown in FIG. 1, the color separation optical system 10 is configured by combining four prisms of a first prism 12, a second prism 14, a third prism 16, and a fourth prism 18. The four prisms are arranged in the order of the first prism 12, the second prism 14, the third prism 16, and the fourth prism 18 from the light incident side along the optical axis Lz. In the color separation optical system 10 of the present embodiment, the first prism 12 extracts the B light Lb, the second prism 14 extracts the R light Lr, the third prism 16 extracts the IR light Lir, and the fourth prism 18 extracts the G light Lg.
 〈第1プリズム〉
 第1プリズム12は、B光Lbを取り出すプリズムである。第1プリズム12は、第1プリズム第1面12a、第1プリズム第2面12b及び第1プリズム第3面12cを有する。
<First prism>
The first prism 12 is a prism that extracts the B light Lb. The first prism 12 has a first prism first surface 12a, a first prism second surface 12b, and a first prism third surface 12c.
 第1プリズム第1面12aは、第1入射面及び第1可視光反射面として機能する。第1プリズム第1面12aは、光軸Lz上に配置され、かつ、光軸Lzに対して直交して配置される。レンズ2を通った光は、最初に、この第1プリズム第1面12aに入射する。 The first prism first surface 12a functions as a first incident surface and a first visible light reflecting surface. The first prism first surface 12a is disposed on the optical axis Lz and is disposed orthogonal to the optical axis Lz. The light that has passed through the lens 2 first enters the first prism first surface 12a.
 第1プリズム第2面12bは、第1可視光分離面として機能する。第1プリズム第2面12bは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。 The first prism second surface 12b functions as a first visible light separation surface. The first prism second surface 12b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
 図2(A)は、図1において、破線で示す円Aの部分を拡大した図である。同図に示すように、第1プリズム第2面12bは、光軸Lzを通る光が、入射角α1で入射するように、光軸Lzに対して傾けて配置される。 FIG. 2 (A) is an enlarged view of a circle A indicated by a broken line in FIG. As shown in the drawing, the first prism second surface 12b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle α1.
 第1プリズム第2面12bには、図示しないB光反射ダイクロイック膜が備えられる。B光反射ダイクロイック膜は、可視領域の第1色成分の光であるB光Lbのみを選択的に反射し、その他の色成分の光を透過させる。B光反射ダイクロイック膜によってB光Lbのみを選択的に反射させることにより、入射光からB光Lbが分離される。 B light reflecting dichroic film (not shown) is provided on the first prism second surface 12b. The B light reflecting dichroic film selectively reflects only the B light Lb, which is the light of the first color component in the visible region, and transmits the light of the other color components. By selectively reflecting only the B light Lb by the B light reflecting dichroic film, the B light Lb is separated from the incident light.
 第1プリズム第2面12bで分離されたB光Lbは、第1プリズム第1面12aに向けて反射される。上記のように、第1プリズム第1面12aは、第1可視光反射面としても機能する。第1プリズム第2面12bで分離されたB光Lbは、第1プリズム第1面12aに所定の入射角で入射する。この入射角は、第1プリズム第1面12aで全反射する角度である。第1プリズム第1面12aは、第1プリズム第2面12bで分離されたB光Lbを第1プリズム第3面12cの方向に向けて全反射する。 The B light Lb separated by the first prism second surface 12b is reflected toward the first prism first surface 12a. As described above, the first prism first surface 12a also functions as a first visible light reflecting surface. The B light Lb separated by the first prism second surface 12b is incident on the first prism first surface 12a at a predetermined incident angle. This incident angle is an angle at which the first prism first surface 12a is totally reflected. The first prism first surface 12a totally reflects the B light Lb separated by the first prism second surface 12b toward the first prism third surface 12c.
 第1プリズム第3面12cは、第1出射面として機能する。第1プリズム第1面12aで全反射されたB光Lbは、この第1プリズム第3面12cから出射される。 The first prism third surface 12c functions as a first emission surface. The B light Lb totally reflected by the first prism first surface 12a is emitted from the first prism third surface 12c.
 第1プリズム第3面12cには、B光トリミングフィルタ20Bが備えられる。B光トリミングフィルタ20Bは、B光から余分な色成分の光をカットし、B光の色再現性を向上させる。 B light trimming filter 20B is provided on the first prism third surface 12c. The B light trimming filter 20B cuts off extra color component light from the B light and improves the color reproducibility of the B light.
 〈第2プリズム〉
 第2プリズム14は、R光Lrを取り出すプリズムである。第2プリズム14は、第2プリズム第1面14a、第2プリズム第2面14b及び第2プリズム第3面14cを有する。
<Second prism>
The second prism 14 is a prism that extracts the R light Lr. The second prism 14 has a second prism first surface 14a, a second prism second surface 14b, and a second prism third surface 14c.
 第2プリズム第1面14aは、第2入射面及び第2可視光反射面として機能する。第2プリズム第1面14aは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。その傾斜角度は、光軸Lzに対する第1プリズム第2面12bの傾斜角度と同じ角度に設定される。すなわち、第2プリズム第1面14aは、第1プリズム第2面12bと平行に配置される。 The second prism first surface 14a functions as a second incident surface and a second visible light reflecting surface. The second prism first surface 14a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz. The inclination angle is set to the same angle as the inclination angle of the first prism second surface 12b with respect to the optical axis Lz. That is, the second prism first surface 14a is disposed in parallel with the first prism second surface 12b.
 第2プリズム第1面14aは、第1プリズム12との接合面としても機能する。第2プリズム第1面14aは、たとえば、枠状のスペーサ22を介して、第1プリズム第2面12bに接合される。これにより、第1プリズム第2面12b及び第2プリズム第1面14aがエアギャップ24を介して接合される。第1プリズム第2面12bを透過した光は、エアギャップ24を介して、第2プリズム第1面14aに入射する。 The second prism first surface 14 a also functions as a joint surface with the first prism 12. The second prism first surface 14a is joined to the first prism second surface 12b via a frame-shaped spacer 22, for example. As a result, the first prism second surface 12 b and the second prism first surface 14 a are joined via the air gap 24. The light transmitted through the first prism second surface 12 b enters the second prism first surface 14 a through the air gap 24.
 第2プリズム第2面14bは、第2可視光分離面として機能する。第2プリズム第2面14bは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。 The second prism second surface 14b functions as a second visible light separation surface. The second prism second surface 14b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
 図2(B)は、図1において、破線で示す円Bの部分を拡大した図である。同図に示すように、第2プリズム第2面14bは、光軸Lzを通る光が、入射角α2で入射するように、光軸Lzに対して傾けて配置される。 FIG. 2B is an enlarged view of a circle B indicated by a broken line in FIG. As shown in the figure, the second prism second surface 14b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle α2.
 第2プリズム第2面14bには、図示しないR光反射ダイクロイック膜が備えられる。R光反射ダイクロイック膜は、可視領域の第2色成分の光であるR光Lrのみを選択的に反射し、その他の色成分の光を透過させる。R光反射ダイクロイック膜によってR光Lrのみを選択的に反射させることにより、入射光からR光Lrが分離される。 The second prism second surface 14b is provided with an R light reflecting dichroic film (not shown). The R light reflecting dichroic film selectively reflects only the R light Lr, which is the light of the second color component in the visible region, and transmits the light of the other color components. By selectively reflecting only the R light Lr by the R light reflecting dichroic film, the R light Lr is separated from the incident light.
 第2プリズム第2面14bで分離されたR光Lrは、第2プリズム第1面14aに向けて反射される。上記のように、第2プリズム第1面14aは、第2可視光反射面としても機能する。第2プリズム第2面14bで分離されたR光Lrは、第2プリズム第1面14aに所定の入射角で入射する。この入射角は、第2プリズム第1面14aで全反射する角度である。第2プリズム第1面14aは、第2プリズム第2面14bで分離されたR光Lrを第2プリズム第3面14cの方向に向けて全反射する。 The R light Lr separated by the second prism second surface 14b is reflected toward the second prism first surface 14a. As described above, the second prism first surface 14a also functions as a second visible light reflecting surface. The R light Lr separated by the second prism second surface 14b is incident on the second prism first surface 14a at a predetermined incident angle. This incident angle is an angle at which the second prism first surface 14a is totally reflected. The second prism first surface 14a totally reflects the R light Lr separated by the second prism second surface 14b toward the second prism third surface 14c.
 第2プリズム第3面14cは、第2出射面として機能する。第2プリズム第1面14aで全反射されたR光Lrは、この第2プリズム第3面14cから出射される。 The second prism third surface 14c functions as a second emission surface. The R light Lr totally reflected by the second prism first surface 14a is emitted from the second prism third surface 14c.
 第2プリズム第3面14cには、R光トリミングフィルタ20Rが備えられる。R光トリミングフィルタ20Rは、R光から余分な色成分の光をカットし、R光の色再現性を向上させる。 The R prism trimming filter 20R is provided on the second prism third surface 14c. The R light trimming filter 20R cuts off extra color component light from the R light and improves the color reproducibility of the R light.
 〈第3プリズム〉
 第3プリズム16は、IR光Lirを取り出すプリズムである。第3プリズム16は、第3プリズム第1面16a、第3プリズム第2面16b及び第3プリズム第3面16cを有する。
<Third prism>
The third prism 16 is a prism that extracts IR light Lir. The third prism 16 has a third prism first surface 16a, a third prism second surface 16b, and a third prism third surface 16c.
 第3プリズム第1面16aは、第3入射面として機能する。第3プリズム第1面16aは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。その傾斜角度は、光軸Lzに対する第2プリズム第2面14bの傾斜角度と同じ角度に設定される。すなわち、第3プリズム第1面16aは、第2プリズム第2面14bと平行に配置される。 The third prism first surface 16a functions as a third incident surface. The third prism first surface 16a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz. The inclination angle is set to the same angle as the inclination angle of the second prism second surface 14b with respect to the optical axis Lz. That is, the third prism first surface 16a is disposed in parallel with the second prism second surface 14b.
 第3プリズム第1面16aは、第2プリズム14との接合面としても機能する。第3プリズム第1面16aは、図示しない接着剤層を介して、第2プリズム第2面14bに接合される。これにより、第2プリズム14及び第3プリズム16が一体化される。第2プリズム第2面14bを透過した光は、第3プリズム第1面16aに入射する。 The third prism first surface 16 a also functions as a joint surface with the second prism 14. The third prism first surface 16a is bonded to the second prism second surface 14b via an adhesive layer (not shown). Thereby, the 2nd prism 14 and the 3rd prism 16 are integrated. The light transmitted through the second prism second surface 14b is incident on the third prism first surface 16a.
 第3プリズム第2面16bは、非可視光分離面として機能する。第3プリズム第2面16bは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。 The third prism second surface 16b functions as an invisible light separation surface. The third prism second surface 16b is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz.
 図2(C)は、図1において、破線で示す円Cの部分を拡大した図である。同図に示すように、第3プリズム第2面16bは、光軸Lzを通る光が、入射角α3で入射するように、光軸Lzに対して傾けて配置される。この入射角α3は、第1プリズム第2面12bへの入射角α1及び第2プリズム第2面14bへの入射角α2よりも大きな値である(α1<α3かつα2<α3)。すなわち、本実施の形態の色分解光学系10では、3つある分離面(第1プリズム第2面12b、第2プリズム第2面14b及び第3プリズム第2面16b)のうち第3プリズム第2面16bへの入射角α3が最も大きくなるように構成されている。これにより、カラー画像でカラーシェーディングが発生するのを抑制できる。この点については、後に詳述する。 FIG. 2C is an enlarged view of a circle C indicated by a broken line in FIG. As shown in the figure, the third prism second surface 16b is disposed to be inclined with respect to the optical axis Lz so that light passing through the optical axis Lz is incident at an incident angle α3. The incident angle α3 is larger than the incident angle α1 on the first prism second surface 12b and the incident angle α2 on the second prism second surface 14b (α1 <α3 and α2 <α3). That is, in the color separation optical system 10 according to the present embodiment, the third prism second of the three separation surfaces (the first prism second surface 12b, the second prism second surface 14b, and the third prism second surface 16b). The incident angle α3 with respect to the two surfaces 16b is configured to be the largest. Thereby, it can suppress that color shading generate | occur | produces in a color image. This will be described in detail later.
 第3プリズム第2面16bには、図示しないIR光反射ダイクロイック膜が備えられる。IR光反射ダイクロイック膜は、非可視領域の光であるIR光Lirのみを選択的に反射し、その他の色成分の光を透過させる。IR光反射ダイクロイック膜によってIR光Lirのみを選択的に反射させることにより、入射光からIR光Lirが分離される。第3プリズム第2面16bで分離されたIR光Lirは、第3プリズム第3面16cの方向に向けて反射される。 The third prism second surface 16b is provided with an IR light reflecting dichroic film (not shown). The IR light reflecting dichroic film selectively reflects only the IR light Lir, which is light in a non-visible region, and transmits light of other color components. By selectively reflecting only the IR light Lir by the IR light reflecting dichroic film, the IR light Lir is separated from the incident light. The IR light Lir separated by the third prism second surface 16b is reflected toward the third prism third surface 16c.
 第3プリズム第3面16cは、第3出射面として機能する。第3プリズム第2面16bで分離されたIR光Lirは、そのまま第3プリズム第3面16cから出射される。 The third prism third surface 16c functions as a third emission surface. The IR light Lir separated by the third prism second surface 16b is directly emitted from the third prism third surface 16c.
 第3プリズム第3面16cには、IR光トリミングフィルタ20IRが備えられる。IR光トリミングフィルタ20IRは、IR光から余分な色成分の光をカットし、S/N比の高いIR光が取得できる。 The third prism third surface 16c is provided with an IR light trimming filter 20IR. The IR light trimming filter 20IR can cut off light of an extra color component from the IR light and obtain IR light with a high S / N ratio.
 〈第4プリズム〉
 第4プリズム18は、G光Lgを取り出すプリズムである。第4プリズム18は、第4プリズム第1面18a及び第4プリズム第2面18bを有する。
<4th prism>
The fourth prism 18 is a prism that extracts the G light Lg. The fourth prism 18 has a fourth prism first surface 18a and a fourth prism second surface 18b.
 第4プリズム第1面18aは、第4入射面として機能する。第4プリズム第1面18aは、光軸Lz上に配置され、かつ、光軸Lzに対して傾けて配置される。その傾斜角度は、光軸Lzに対する第3プリズム第2面16bの傾斜角度と同じ角度に設定される。すなわち、第4プリズム第1面18aは、第3プリズム第2面16bと平行に配置される。 The fourth prism first surface 18a functions as a fourth incident surface. The fourth prism first surface 18a is disposed on the optical axis Lz and is inclined with respect to the optical axis Lz. The inclination angle is set to the same angle as the inclination angle of the third prism second surface 16b with respect to the optical axis Lz. That is, the fourth prism first surface 18a is arranged in parallel with the third prism second surface 16b.
 第4プリズム第1面18aは、第3プリズム16との接合面としても機能する。第4プリズム第1面18aは、図示しない接着剤層を介して、第3プリズム第2面16bに接合される。これにより、第3プリズム16及び第4プリズム18が一体化される。第3プリズム第2面16bを透過した光は、第4プリズム第1面18aに入射する。 The fourth prism first surface 18 a also functions as a joint surface with the third prism 16. The fourth prism first surface 18a is joined to the third prism second surface 16b via an adhesive layer (not shown). Thereby, the third prism 16 and the fourth prism 18 are integrated. The light transmitted through the third prism second surface 16b is incident on the fourth prism first surface 18a.
 第4プリズム第2面18bは、第4出射面として機能する。第4プリズム第2面18bは、光軸Lz上に配置され、かつ、光軸Lzに対して直交して配置される。第4プリズム第1面18aに入射した光は、そのまま第4プリズム第3面18cから出射される。ここで、第4プリズム第1面18aに入射する光は、B光、R光及びIR光が分離された光である。このB光、R光及びIR光が分離された光が、可視領域の第3色成分の光であるG光として、第4プリズム第2面18bから出射される。 The fourth prism second surface 18b functions as a fourth emission surface. The fourth prism second surface 18b is disposed on the optical axis Lz and is orthogonal to the optical axis Lz. The light incident on the fourth prism first surface 18a is emitted from the fourth prism third surface 18c as it is. Here, the light incident on the fourth prism first surface 18a is light obtained by separating the B light, the R light, and the IR light. The light obtained by separating the B light, R light, and IR light is emitted from the fourth prism second surface 18b as G light that is the third color component light in the visible region.
 第4プリズム第2面18bには、G光トリミングフィルタ20Gが備えられる。G光トリミングフィルタ20Gは、G光から余分な色成分の光をカットし、G光の色再現性を向上させる。 The G prism trimming filter 20G is provided on the fourth prism second surface 18b. The G light trimming filter 20G cuts extra color component light from the G light and improves the color reproducibility of the G light.
 《イメージセンサ》
 4つのイメージセンサは、B光Lbを受光するB光イメージセンサ30B、R光Lrを受光するR光イメージセンサ30R、G光Lgを受光するG光イメージセンサ30G及びIR光Lirを受光するIR光イメージセンサ30IRで構成される。各イメージセンサは、たとえば、CCD(Charged Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等のエリアイメージセンサで構成される。
<Image sensor>
The four image sensors include a B light image sensor 30B that receives the B light Lb, an R light image sensor 30R that receives the R light Lr, a G light image sensor 30G that receives the G light Lg, and an IR light that receives the IR light Lir. The image sensor 30IR is configured. Each image sensor is composed of an area image sensor such as a CCD (Charged Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 〈B光イメージセンサ〉
 B光イメージセンサ30Bは、第1可視光イメージセンサの一例である。B光イメージセンサ30Bは、色分解光学系10で分解された可視領域の第1色成分の光であるB光Lbを受光し、電気信号に変換して出力する。B光イメージセンサ30Bは、図示しないホルダを介して、第1プリズム12の第1プリズム第3面12c又はB光トリミングフィルタ20Bに取り付けられる。B光イメージセンサ30Bは、その受光面が、第1プリズム第3面12cから出射されるB光Lbの光軸上に配置され、かつ、その光軸に対して直交して配置される。
<B light image sensor>
The B light image sensor 30B is an example of a first visible light image sensor. The B light image sensor 30B receives the B light Lb, which is the light of the first color component in the visible region, separated by the color separation optical system 10, converts it to an electrical signal, and outputs it. The B light image sensor 30B is attached to the first prism third surface 12c of the first prism 12 or the B light trimming filter 20B via a holder (not shown). The light receiving surface of the B light image sensor 30B is disposed on the optical axis of the B light Lb emitted from the first prism third surface 12c, and is disposed orthogonal to the optical axis.
 〈R光イメージセンサ〉
 R光イメージセンサ30Rは、第2可視光イメージセンサの一例である。R光イメージセンサ30Rは、色分解光学系10で分解された可視領域の第2色成分の光であるR光Lrを受光し、電気信号に変換して出力する。R光イメージセンサ30Rは、図示しないホルダを介して、第2プリズム14の第2プリズム第3面14c又はR光トリミングフィルタ20Rに取り付けられる。R光イメージセンサ30Rは、その受光面が、第2プリズム第3面14cから出射されるR光Lrの光軸上に配置され、かつ、その光軸に対して直交して配置される。
<R light image sensor>
The R light image sensor 30R is an example of a second visible light image sensor. The R light image sensor 30R receives the R light Lr that is the light of the second color component in the visible region separated by the color separation optical system 10, converts it to an electrical signal, and outputs it. The R light image sensor 30R is attached to the second prism third surface 14c of the second prism 14 or the R light trimming filter 20R via a holder (not shown). The light receiving surface of the R light image sensor 30R is disposed on the optical axis of the R light Lr emitted from the second prism third surface 14c, and is disposed orthogonal to the optical axis.
 〈G光イメージセンサ〉
 G光イメージセンサ30Gは、第3可視光イメージセンサの一例である。G光イメージセンサ30Gは、色分解光学系10で分解された可視領域の第3色成分の光であるG光Lgを受光し、電気信号に変換して出力する。G光イメージセンサ30Gは、図示しないホルダを介して、第4プリズム18の第4プリズム第2面18b又はG光トリミングフィルタ20Gに取り付けられる。G光イメージセンサ30Gは、その受光面が、第4プリズム第2面18bから出射されるG光Lgの光軸上に配置され、かつ、その光軸に対して直交して配置される。
<G light image sensor>
The G light image sensor 30G is an example of a third visible light image sensor. The G light image sensor 30G receives the G light Lg, which is the light of the third color component in the visible region, separated by the color separation optical system 10, converts it to an electrical signal, and outputs it. The G light image sensor 30G is attached to the fourth prism second surface 18b of the fourth prism 18 or the G light trimming filter 20G via a holder (not shown). The light receiving surface of the G light image sensor 30G is disposed on the optical axis of the G light Lg emitted from the fourth prism second surface 18b, and is disposed orthogonal to the optical axis.
 〈IR光イメージセンサ〉
 IR光イメージセンサ30IRは、非可視光イメージセンサの一例である。IR光イメージセンサ30IRは、色分解光学系10で分解された非可視領域の光であるIR光Lirを受光し、電気信号に変換して出力する。IR光イメージセンサ30IRは、図示しないホルダを介して、第3プリズム16の第3プリズム第3面16c又はIR光トリミングフィルタ20IRに取り付けられる。IR光イメージセンサ30IRは、その受光面が、第3プリズム第3面16cから出射されるIR光Lirの光軸上に配置され、かつ、その光軸に対して直交して配置される。
<IR optical image sensor>
The IR light image sensor 30IR is an example of a non-visible light image sensor. The IR light image sensor 30IR receives IR light Lir which is light in a non-visible region separated by the color separation optical system 10, converts it to an electrical signal, and outputs it. The IR light image sensor 30IR is attached to the third prism third surface 16c of the third prism 16 or the IR light trimming filter 20IR via a holder (not shown). The light receiving surface of the IR light image sensor 30IR is disposed on the optical axis of the IR light Lir emitted from the third prism third surface 16c, and is disposed orthogonal to the optical axis.
 [色分解光学系及び撮像ユニットの作用]
 《色分解》
 本実施の形態の撮像ユニット1は、レンズ2を通った光を色分解光学系10で4つの色成分の光(R光、G光、B光及びIR光)に分解し、各光を4つのイメージセンサ(R光イメージセンサ30R、G光イメージセンサ30G、B光イメージセンサ30B及びIR光イメージセンサ30IR)で個別に受光する。
[Operation of color separation optical system and imaging unit]
《Color separation》
In the imaging unit 1 of the present embodiment, the light passing through the lens 2 is decomposed into light of four color components (R light, G light, B light, and IR light) by the color separation optical system 10, and each light is converted into 4 Light is individually received by two image sensors (R light image sensor 30R, G light image sensor 30G, B light image sensor 30B, and IR light image sensor 30IR).
 レンズ2を通った光は、まず、第1プリズム第1面12aに入射する。第1プリズム第1面12aに入射した光は、第1プリズム第2面12bにおいて、B光Lbのみが選択的に反射される。これにより、第1プリズム12に入射した光からB光Lbが分離される。 The light that has passed through the lens 2 first enters the first prism first surface 12a. As for the light incident on the first prism first surface 12a, only the B light Lb is selectively reflected on the first prism second surface 12b. As a result, the B light Lb is separated from the light incident on the first prism 12.
 分離されたB光Lbは、第1プリズム第1面12aに向けて反射され、第1プリズム第1面12aに入射する。第1プリズム第1面12aに入射したB光Lbは、第1プリズム第1面12aで全反射され、第1プリズム第3面12cから出射される。第1プリズム第3面12cから出射されたB光Lbは、B光トリミングフィルタ20Bを介して、B光イメージセンサ30Bの受光面に入射する。 The separated B light Lb is reflected toward the first prism first surface 12a and is incident on the first prism first surface 12a. The B light Lb incident on the first prism first surface 12a is totally reflected by the first prism first surface 12a and emitted from the first prism third surface 12c. The B light Lb emitted from the first prism third surface 12c is incident on the light receiving surface of the B light image sensor 30B via the B light trimming filter 20B.
 B光Lb以外の色成分の光は、第1プリズム第2面12bを透過し、エアギャップ24を介して第2プリズム第1面14aに入射する。第2プリズム第1面14aに入射した光は、第2プリズム第2面14bにおいて、R光Lrのみが選択的に反射される。これにより、第2プリズム14に入射した光からR光Lrが分離される。 Light of color components other than the B light Lb passes through the first prism second surface 12 b and enters the second prism first surface 14 a through the air gap 24. Of the light incident on the second prism first surface 14a, only the R light Lr is selectively reflected by the second prism second surface 14b. Thereby, the R light Lr is separated from the light incident on the second prism 14.
 分離されたR光Lrは、第2プリズム第1面14aに向けて反射され、第2プリズム第1面14aに入射する。第2プリズム第1面14aに入射したR光Lrは、第2プリズム第1面14aで全反射され、第2プリズム第3面14cから出射される。第2プリズム第3面14cから出射されたR光Lrは、R光トリミングフィルタ20Rを介して、R光イメージセンサ30Rの受光面に入射する。 The separated R light Lr is reflected toward the second prism first surface 14a and is incident on the second prism first surface 14a. The R light Lr incident on the second prism first surface 14a is totally reflected by the second prism first surface 14a and emitted from the second prism third surface 14c. The R light Lr emitted from the second prism third surface 14c enters the light receiving surface of the R light image sensor 30R via the R light trimming filter 20R.
 R光Lr以外の色成分の光は、第2プリズム第2面14bを透過し、第3プリズム第1面16aに入射する。第3プリズム第1面16aに入射した光は、第3プリズム第2面16bにおいて、IR光Lirのみが選択的に反射される。これにより、第3プリズム16に入射した光からIR光Lirが分離される。 Light of color components other than the R light Lr is transmitted through the second prism second surface 14b and is incident on the third prism first surface 16a. As for the light incident on the third prism first surface 16a, only the IR light Lir is selectively reflected on the third prism second surface 16b. Thereby, the IR light Lir is separated from the light incident on the third prism 16.
 分離されたIR光Lirは、第3プリズム第3面16cに向けて反射され、第3プリズム第3面16cから出射される。第3プリズム第3面16cから出射されたIR光Lirは、IR光トリミングフィルタ20IRを介して、IR光イメージセンサ30IRの受光面に入射する。 The separated IR light Lir is reflected toward the third prism third surface 16c and emitted from the third prism third surface 16c. The IR light Lir emitted from the third prism third surface 16c enters the light receiving surface of the IR light image sensor 30IR via the IR light trimming filter 20IR.
 IR光Lir以外の色成分の光は、第3プリズム第2面16bを透過し、第4プリズム第1面18aに入射する。第4プリズム第1面18aに入射した光は、G光Lgとして、そのまま第4プリズム第2面18bから出射される。第4プリズム第2面18bから出射されたG光Lgは、G光トリミングフィルタ20Gを介して、G光イメージセンサ30Gの受光面に入射する。 Light of color components other than the IR light Lir is transmitted through the third prism second surface 16b and is incident on the fourth prism first surface 18a. The light incident on the fourth prism first surface 18a is emitted from the fourth prism second surface 18b as it is as G light Lg. The G light Lg emitted from the fourth prism second surface 18b enters the light receiving surface of the G light image sensor 30G via the G light trimming filter 20G.
 《画像の生成》
 上記のように、本実施の形態の撮像ユニット1によれば、レンズ2を通った光を色分解光学系10で4つの色成分の光(R光、G光、B光及びIR光)に分解し、各光を4つのイメージセンサ(R光イメージセンサ30R、G光イメージセンサ30G、B光イメージセンサ30B及びIR光イメージセンサ30IR)で個別に受光できる。
《Image generation》
As described above, according to the imaging unit 1 of the present embodiment, the light passing through the lens 2 is converted into light of four color components (R light, G light, B light, and IR light) by the color separation optical system 10. Each light can be individually received by four image sensors (R light image sensor 30R, G light image sensor 30G, B light image sensor 30B, and IR light image sensor 30IR).
 R光イメージセンサ30R、G光イメージセンサ30G及びB光イメージセンサ30Bから出力される信号を処理することにより、カラー画像であるRGB画像を生成できる。また、IR光イメージセンサ30IRから出力される信号を処理することにより、IR画像を生成できる。 RGB signals that are color images can be generated by processing signals output from the R light image sensor 30R, the G light image sensor 30G, and the B light image sensor 30B. Further, an IR image can be generated by processing a signal output from the IR light image sensor 30IR.
 なお、IR光Lirは、一度だけ反射して射出されるため、IR光イメージセンサ30IRの受光面に結像される像は、RGB画像に対してミラー像(反転像)となる。したがって、IR画像については、所要の反転処理を施す必要がある。一方、IR光Lirを一度だけ反射させて取り出す構成とすることにより、色分解光学系10をコンパクト化できる。 Since the IR light Lir is reflected and emitted only once, the image formed on the light receiving surface of the IR light image sensor 30IR is a mirror image (reverse image) with respect to the RGB image. Therefore, it is necessary to perform a required inversion process for the IR image. On the other hand, the color separation optical system 10 can be made compact by adopting a configuration in which the IR light Lir is reflected and extracted only once.
 ところで、上記のように、本実施の形態の撮像ユニット1では、3つある分離面(第1プリズム第2面12b、第2プリズム第2面14b及び第3プリズム第2面16b)のうち第3プリズム第2面16bにおいて、光軸Lzを通る光の入射角が最大となるように構成されている(α1<α3かつα2<α3)。第3プリズム第2面16bは、IR光Lirを分離する面である。このようにIR光Lirを分離する面において、光軸Lzを通る光の入射角が最大となるように構成することにより、RGB画像にカラーシェーディングが発生するのを効果的に抑制できる。 Incidentally, as described above, in the imaging unit 1 of the present embodiment, the first of the three separation surfaces (the first prism second surface 12b, the second prism second surface 14b, and the third prism second surface 16b). The third prism second surface 16b is configured such that the incident angle of light passing through the optical axis Lz is maximized (α1 <α3 and α2 <α3). The third prism second surface 16b is a surface that separates the IR light Lir. In this way, by configuring such that the incident angle of light passing through the optical axis Lz is maximized on the surface that separates the IR light Lir, occurrence of color shading in the RGB image can be effectively suppressed.
 カラーシェーディングは、色分離面への入射角の大きさに起因して発生し、その大きさが大きくなるほど、発生量も大きくなる。光軸Lzを通る光の入射角が最大となる面をIR光Lirの分離面(第3プリズム第2面16b)とすることで、可視領域の色成分の光を分離する面(第1プリズム第2面12b及び第2プリズム第2面14b)の面への入射角が大きくなるのを抑制できる。これにより、カラー画像であるRGB画像にカラーシェーディングが発生するのを抑制でき、高品質なカラー画像を生成できる。 Color shading occurs due to the size of the incident angle on the color separation surface, and the larger the size, the larger the generation amount. The surface (first prism) that separates the light of the color component in the visible region by setting the surface having the maximum incident angle of the light passing through the optical axis Lz as the separation surface (third prism second surface 16b) of the IR light Lir. It can suppress that the incident angle to the surface of the 2nd surface 12b and the 2nd prism 2nd surface 14b) becomes large. As a result, the occurrence of color shading in the RGB image that is a color image can be suppressed, and a high quality color image can be generated.
 [IR光の分離面(第3プリズム第2面)の好ましい設定]
 IR光Lirの分離面である第3プリズム第2面16bについては、入射角がブリュースター角となるのを避けて設定することが好ましい。
[Preferred setting of IR light separation surface (third prism second surface)]
The third prism second surface 16b, which is a separation surface of the IR light Lir, is preferably set so as to avoid the incident angle from becoming a Brewster angle.
 ここで、ブリュースター角(偏光角)とは、屈折率の異なる物質の界面において、p偏光の反射率が0となる入射角のことである。ブリュースター角γは、2つの物質の屈折率から求められ、式 γ=Arctan(n2/n1) により求められる。なお、n1は入射側の屈折率、n2は透過側の屈折率である。たとえば、第3プリズム16の屈折率(入射側の屈折率n1)が1.8であり、第3プリズム16と第4プリズム18とを接合する接着剤の屈折率(透過側の屈折率n2)が1.52の場合、第3プリズム第2面16bにおけるブリュースター角は、約40.18度である。入射角がブリュースター角の場合、透過光(屈折光)と反射光とのなす角は90度となる。 Here, the Brewster angle (polarization angle) is an incident angle at which the reflectance of p-polarized light becomes 0 at the interface between substances having different refractive indexes. The Brewster angle γ is obtained from the refractive indexes of the two substances, and is obtained by the formula γ = Arctan (n2 / n1). Here, n1 is the refractive index on the incident side, and n2 is the refractive index on the transmission side. For example, the refractive index of the third prism 16 (incidence-side refractive index n1) is 1.8, and the refractive index of the adhesive that joins the third prism 16 and the fourth prism 18 (transmission-side refractive index n2). Is 1.52, the Brewster angle in the third prism second surface 16b is approximately 40.18 degrees. When the incident angle is the Brewster angle, the angle formed between the transmitted light (refracted light) and the reflected light is 90 degrees.
 第3プリズム第2面16bにブリュースター角で光が入射すると、分離されるIR光Lirは、p偏光成分の分だけ光量が低下する。したがって、第3プリズム第2面16bに入射する光の入射角が、ブリュースター角となるのを避けることが好ましい。これにより、画面内で光量差が生じるのを防止でき、高品質なIR画像を撮像できる。 When light is incident on the third prism second surface 16b at the Brewster angle, the amount of light of the separated IR light Lir decreases by the amount of the p-polarized component. Therefore, it is preferable to avoid the incident angle of the light incident on the third prism second surface 16b from becoming the Brewster angle. Thereby, it is possible to prevent a difference in the amount of light in the screen and to capture a high-quality IR image.
 第3プリズム第2面16bに入射する光の入射角がブリュースター角となるのを避けるためには、たとえば、レンズから最大開口の光束を入射した場合に、ほぼすべての光がブリュースター角よりも大きな入射角で入射するように、第3プリズム第2面16bを設定すればよい。 In order to avoid that the incident angle of the light incident on the second prism second surface 16b becomes the Brewster angle, for example, when the light beam having the maximum aperture is incident from the lens, almost all the light is less than the Brewster angle. The third prism second surface 16b may be set so as to be incident at a large incident angle.
 図3は、レンズから第3プリズム第2面に入射する光の入射角の関係を示す図である。同図は、最大開口の光束が入射した場合の例を示している。 FIG. 3 is a diagram showing the relationship of the incident angle of light incident on the second surface of the third prism from the lens. This figure shows an example when a light beam having a maximum aperture is incident.
 同図に示すように、第3プリズム第2面16bが下向きに傾いている場合、最も大きな入射角で入射する光は、レンズ2の下端を通って第3プリズム第2面16bに入射する光である。この光の入射角αxがブリュースター角よりも大きな角度となるように、第3プリズム第2面16bを設定する。これにより、レンズ2から出射される光をすべてブリュースター角よりも大きな入射角で第3プリズム第2面16bに入射させることができる。 As shown in the figure, when the third prism second surface 16b is inclined downward, the light incident at the largest incident angle passes through the lower end of the lens 2 and enters the third prism second surface 16b. It is. The third prism second surface 16b is set so that the incident angle αx of the light is larger than the Brewster angle. Thereby, all the light emitted from the lens 2 can be made incident on the third prism second surface 16b at an incident angle larger than the Brewster angle.
 当該条件は、次のようにも規定できる。レンズ2から最大開口の光束を入射した場合の光線の光軸Lzに対する最大角度(見込み角)をβ、第3プリズム第2面16bにおけるブリュースター角をγ、光軸Lzを通って第3プリズム第2面16bに入射する光の入射角をα3とした場合に、α3>β+γの条件を満たすように、第3プリズム第2面16bの傾きを設定する。これにより、レンズ2からの光をすべてブリュースター角よりも大きな入射角で第3プリズム第2面16bに入射させることができる。また、これにより、IR画像を撮像する際に画面内で光量差が生じるのを防止でき、高品質なIR画像を撮像できる。 The conditions can also be specified as follows. When the light beam having the maximum aperture is incident from the lens 2, the maximum angle (expected angle) of the light beam with respect to the optical axis Lz is β, the Brewster angle at the second prism second surface 16 b is γ, and the third prism passes through the optical axis Lz. When the incident angle of the light incident on the second surface 16b is α3, the inclination of the third prism second surface 16b is set so as to satisfy the condition of α3> β + γ. Thereby, all the light from the lens 2 can be incident on the third prism second surface 16b at an incident angle larger than the Brewster angle. In addition, this makes it possible to prevent a light amount difference from occurring in the screen when capturing an IR image, and to capture a high-quality IR image.
 ところで、高品質なIR画像を撮像するためには、上記条件を満足するように、第3プリズム第2面16bの傾きを設定することが好ましい。 Incidentally, in order to capture a high-quality IR image, it is preferable to set the inclination of the third prism second surface 16b so as to satisfy the above-described conditions.
 しかし、このように設定することで、撮像ユニット1が大型化するような場合は、一定の条件で光量差が生じるのを許容して、第3プリズム第2面16bの傾きを設定することが好ましい。すなわち、画像品質を大きく損なわないレベルで光量差の発生を許容し、第3プリズム第2面16bの傾きを設定することが好ましい。 However, when the imaging unit 1 is increased in size by setting in this way, it is possible to set the inclination of the third prism second surface 16b while allowing a light amount difference to occur under certain conditions. preferable. That is, it is preferable to allow the occurrence of a light amount difference at a level that does not significantly impair the image quality, and to set the inclination of the third prism second surface 16b.
 このような条件としては、たとえば、レンズ2からFナンバが2.0の光束を入射した場合に、ほぼすべての光がブリュースター角よりも大きな入射角で入射するように、第3プリズム第2面16bの傾きを設定する。これにより、たとえば、Fナンバが2.0未満の光束が入射した場合であっても、ブリュースター角で入射する光を僅かな量に抑えることができ、発生する光量差を実用上問題のないレベルに抑えることができる。 As such a condition, for example, when a light flux having an F number of 2.0 is incident from the lens 2, the third prism 2nd so that almost all light is incident at an incident angle larger than the Brewster angle. The inclination of the surface 16b is set. Thus, for example, even when a light flux having an F number of less than 2.0 is incident, the amount of light incident at the Brewster angle can be suppressed to a slight amount, and the generated light amount difference has no practical problem. Can be suppressed to the level.
 ここで、Fナンバは、レンズの焦点距離をレンズの有効口径を割った値として定義される。有効口径とは、レンズの光軸上無限遠の位置にある点光源を想定した場合に、その点光源からレンズへ入射する平行光線の光束の直径のことである。FナンバをFn、焦点距離をf、有効口径をΦとすると、Fn=f/Φとなる。 Here, the F number is defined as a value obtained by dividing the focal length of the lens by the effective aperture of the lens. The effective aperture is the diameter of the luminous flux of parallel rays incident on the lens from the point light source assuming a point light source located at infinity on the optical axis of the lens. If the F number is Fn, the focal length is f, and the effective aperture is Φ, then Fn = f / Φ.
 Fナンバと像側NA(Numerical Aperture/開口数)との間には、Fn=1/(2NA)の関係がある。像側NAは、光軸上の像点から射出瞳をのぞき込んだ半角θを使ってNA=Nsinθと定義される。 ここで、Nは、像点周囲の媒質の屈折率であり、空気の場合は1である。よって、FナンバFnは、Fn=1/(2Nsinθ)の関係がある。 There is a relationship of Fn = 1 / (2NA) between the F number and the image side NA (Numerical Aperture). The image side NA is defined as NA = Nsin θ using a half angle θ obtained by looking into the exit pupil from an image point on the optical axis. Where N is the refractive index of the medium around the image point, and is 1 for air. Therefore, the F number Fn has a relationship of Fn = 1 / (2Nsinθ).
 一例として、第3プリズム第2面16bにおけるブリュースター角γが約40.18度の場合を考える。当該条件は、第3プリズム16の屈折率n1(入射側の屈折率)が1.8であり、第3プリズム16と第4プリズム18とを接合する接着剤層の屈折率n2(透過側の屈折率)が1.52の場合である。 As an example, consider a case where the Brewster angle γ on the second surface 16b of the third prism is about 40.18 degrees. The condition is that the refractive index n1 (incident side refractive index) of the third prism 16 is 1.8, and the refractive index n2 of the adhesive layer that joins the third prism 16 and the fourth prism 18 (on the transmission side). In this case, the refractive index is 1.52.
 レンズ2からFナンバが2.0の光束を入射した場合の光線の光軸Lzに対する最大角度(見込み角)βを7.98度とすると、第3プリズム第2面16bは、光軸Lzを通って第3プリズム第2面16bに入射する光の入射角α3が、48.16度(β+γ=7.98+40.18)より大きくなるように、その傾きを設定すればよい。 Assuming that the maximum angle (expected angle) β with respect to the optical axis Lz of the light beam when a light flux having an F number of 2.0 is incident from the lens 2, the third prism second surface 16b has the optical axis Lz as the optical axis Lz. The inclination may be set so that the incident angle α3 of the light passing through and incident on the second prism second surface 16b is larger than 48.16 degrees (β + γ = 7.98 + 40.18).
 なお、入射角は、射光線が入射点で媒質境界面の法線となす角であるので、第3プリズム第2面16bは、その法線が光軸Lzに対して48.16度より大きくなるように、その傾きを設定すればよい。 Since the incident angle is an angle formed by the incident ray with the normal line of the medium boundary surface at the incident point, the normal line of the third prism second surface 16b is larger than 48.16 degrees with respect to the optical axis Lz. The inclination may be set so that
 [色分解光学系の変形例]
 《IR光を2回反射させて取り出す形態》
 〈構成〉
 上記実施の形態では、IR光を1回反射させて取り出す構成としているが、B光及びR光と同様に、2回反射させて取り出す構成とすることもできる。これにより、IR画像をミラー像とせずに取り出せる。
[Modification of color separation optical system]
<A form in which IR light is reflected twice and extracted>
<Constitution>
In the above-described embodiment, the IR light is reflected once and extracted. However, like the B light and the R light, the IR light may be reflected and extracted twice. Thereby, the IR image can be taken out without making it a mirror image.
 図4は、IR光を2回反射させて取り出す場合の色分解光学系の構成例を示す図である。 FIG. 4 is a diagram showing a configuration example of a color separation optical system when IR light is reflected twice and taken out.
 本例の色分解光学系10Aは、第3プリズム16と第2プリズム14とがエアギャップ28を介して接合される点で上記実施の形態の色分解光学系10と相違する。以下、この相違点について説明する。 The color separation optical system 10A of this example is different from the color separation optical system 10 of the above embodiment in that the third prism 16 and the second prism 14 are joined via the air gap 28. Hereinafter, this difference will be described.
 図4に示すように、IR光Lirを取り出すプリズムである第3プリズム16は、その第3プリズム第1面16aが第2プリズム14との接合面として機能する。第3プリズム第1面16aは、たとえば枠状のスペーサ26を介して、第2プリズム第2面14bに接合される。これにより、第3プリズム16と第2プリズム14とがエアギャップ28を介して接合される。 As shown in FIG. 4, in the third prism 16 that is a prism for extracting the IR light Lir, the third prism first surface 16 a functions as a joint surface with the second prism 14. The third prism first surface 16a is joined to the second prism second surface 14b via a frame-shaped spacer 26, for example. As a result, the third prism 16 and the second prism 14 are joined via the air gap 28.
 第3プリズム16と第2プリズム14とがエアギャップ28を介して接合されることにより、第3プリズム第1面16aが全反射面として機能する。第3プリズム第1面16aは、第3プリズム第2面16bで反射されたIR光Lirが、第3プリズム第3面16cの方向に向けて全反射するように設定される。 When the third prism 16 and the second prism 14 are joined via the air gap 28, the third prism first surface 16a functions as a total reflection surface. The third prism first surface 16a is set so that the IR light Lir reflected by the third prism second surface 16b is totally reflected in the direction of the third prism third surface 16c.
 〈作用〉
 レンズ2を通った光は、まず、第1プリズム第1面12aに入射する。第1プリズム第1面12aに入射した光は、第1プリズム第2面12bにおいて、B光Lbのみが選択的に反射される。これにより、第1プリズム12に入射した光からB光Lbが分離される。
<Action>
The light that has passed through the lens 2 first enters the first prism first surface 12a. As for the light incident on the first prism first surface 12a, only the B light Lb is selectively reflected on the first prism second surface 12b. As a result, the B light Lb is separated from the light incident on the first prism 12.
 分離されたB光Lbは、第1プリズム第1面12aに向けて反射され、第1プリズム第1面12aに入射する。第1プリズム第1面12aに入射したB光Lbは、第1プリズム第1面12aで全反射され、第1プリズム第3面12cから出射される。第1プリズム第3面12cから出射されたB光Lbは、B光トリミングフィルタ20Bを介して、B光イメージセンサ30Bの受光面に入射する。 The separated B light Lb is reflected toward the first prism first surface 12a and is incident on the first prism first surface 12a. The B light Lb incident on the first prism first surface 12a is totally reflected by the first prism first surface 12a and emitted from the first prism third surface 12c. The B light Lb emitted from the first prism third surface 12c is incident on the light receiving surface of the B light image sensor 30B via the B light trimming filter 20B.
 B光Lb以外の色成分の光は、第1プリズム第2面12bを透過し、エアギャップ24を介して第2プリズム第1面14aに入射する。第2プリズム第1面14aに入射した光は、第2プリズム第2面14bにおいて、R光Lrのみが選択的に反射される。これにより、第2プリズム14に入射した光からR光Lrが分離される。 Light of color components other than the B light Lb passes through the first prism second surface 12 b and enters the second prism first surface 14 a through the air gap 24. Of the light incident on the second prism first surface 14a, only the R light Lr is selectively reflected by the second prism second surface 14b. Thereby, the R light Lr is separated from the light incident on the second prism 14.
 分離されたR光Lrは、第2プリズム第1面14aに向けて反射され、第2プリズム第1面14aに入射する。第2プリズム第1面14aに入射したR光Lrは、第2プリズム第1面14aで全反射され、第2プリズム第3面14cから出射される。第2プリズム第3面14cから出射されたR光Lrは、R光トリミングフィルタ20Rを介して、R光イメージセンサ30Rの受光面に入射する。 The separated R light Lr is reflected toward the second prism first surface 14a and is incident on the second prism first surface 14a. The R light Lr incident on the second prism first surface 14a is totally reflected by the second prism first surface 14a and emitted from the second prism third surface 14c. The R light Lr emitted from the second prism third surface 14c enters the light receiving surface of the R light image sensor 30R via the R light trimming filter 20R.
 R光Lr以外の色成分の光は、第2プリズム第2面14bを透過し、エアギャップ28を介して第3プリズム第1面16aに入射する。第3プリズム第1面16aに入射した光は、第3プリズム第2面16bにおいて、IR光Lirのみが選択的に反射される。これにより、第3プリズム16に入射した光からIR光Lirが分離される。 Light of color components other than the R light Lr is transmitted through the second prism second surface 14b and is incident on the third prism first surface 16a through the air gap 28. As for the light incident on the third prism first surface 16a, only the IR light Lir is selectively reflected on the third prism second surface 16b. Thereby, the IR light Lir is separated from the light incident on the third prism 16.
 分離されたIR光Lirは、第3プリズム第1面16aに向けて反射され、第3プリズム第1面16aに入射する。第3プリズム第1面16aに入射したIR光Lirは、第3プリズム第1面16aで全反射され、第3プリズム第3面16cから出射される。第3プリズム第3面16cから出射されたIR光Lirは、IR光トリミングフィルタ20IRを介して、IR光イメージセンサ30IRの受光面に入射する。 The separated IR light Lir is reflected toward the third prism first surface 16a and is incident on the third prism first surface 16a. The IR light Lir incident on the third prism first surface 16a is totally reflected by the third prism first surface 16a and emitted from the third prism third surface 16c. The IR light Lir emitted from the third prism third surface 16c enters the light receiving surface of the IR light image sensor 30IR via the IR light trimming filter 20IR.
 IR光Lir以外の色成分の光は、第3プリズム第2面16bを透過し、第4プリズム第1面18aに入射する。第4プリズム第1面18aに入射した光は、G光Lgとして、そのまま第4プリズム第2面18bから出射される。第4プリズム第2面18bから出射されたG光Lgは、G光トリミングフィルタ20Gを介して、G光イメージセンサ30Gの受光面に入射する。 Light of color components other than the IR light Lir is transmitted through the third prism second surface 16b and is incident on the fourth prism first surface 18a. The light incident on the fourth prism first surface 18a is emitted from the fourth prism second surface 18b as it is as G light Lg. The G light Lg emitted from the fourth prism second surface 18b enters the light receiving surface of the G light image sensor 30G via the G light trimming filter 20G.
 このように、IR光Lirについても、B光及びR光と同様に2回反射させて取り出すことにより、IR画像をミラー像とせずに取り出せる。これにより、後の画像処理を簡素化できる。 As described above, the IR light Lir can be extracted without being reflected as a mirror image by reflecting the IR light Lir twice as in the case of the B light and the R light. Thereby, subsequent image processing can be simplified.
 図5は、図4において、破線で示す円A、B及びCの部分を拡大した図である。なお、同図(A)は、円Aの部分、同図(B)は円Bの部分、同図(C)は円Cの部分を拡大した図である。 FIG. 5 is an enlarged view of circles A, B and C indicated by broken lines in FIG. 2A is an enlarged view of the circle A portion, FIG. 2B is an enlarged view of the circle B portion, and FIG. 2C is an enlarged view of the circle C portion.
 本例の場合も3つある分離面(第1プリズム第2面12b、第2プリズム第2面14b及び第3プリズム第2面16b)のうち光軸Lzを通る光の入射角が最大となる面が、第3プリズム第2面16bとなるように構成される。これにより、カラー画像でカラーシェーディングが発生するのを抑制できる。 Also in this example, the incident angle of light passing through the optical axis Lz among the three separation surfaces (the first prism second surface 12b, the second prism second surface 14b, and the third prism second surface 16b) is maximized. The surface is configured to be the third prism second surface 16b. Thereby, it can suppress that color shading generate | occur | produces in a color image.
 《その他の色分解光学系の変形例》
 〈分離する順番〉
 上記実施の形態では、入射光束からR光、G光、B光及びIR光の4つの色成分の光を分離する際、B光、R光、IR光、G光の順で分離しているが、各色成分の光を分離する順番は、これに限定されるものではない。たとえば、IR光、B光、R光、G光の順で分離する構成とすることもできる。
<< Other color separation optical system modifications >>
<Separation order>
In the above embodiment, when the four color component lights of R light, G light, B light and IR light are separated from the incident light beam, they are separated in the order of B light, R light, IR light and G light. However, the order of separating the light of each color component is not limited to this. For example, it may be configured to separate in the order of IR light, B light, R light, and G light.
 〈分離する光(チャネル)〉
 上記実施の形態では、可視領域の3つの色成分の光として、R光、G光及びB光を入射光束から分離する構成としているが、可視領域の3つの色成分の光として分離する光は、これに限定されるものではない。用途等に応じて適宜設定できる。
<Light to be separated (channel)>
In the above embodiment, R light, G light, and B light are separated from the incident light beam as light of three color components in the visible region. However, light separated as light of three color components in the visible region is However, the present invention is not limited to this. It can be set as appropriate according to the application.
 また、上記実施の形態では、非可視領域の色成分の光として、IR光を分離する構成としているが、非可視領域の色成分の光として分離する光は、これに限定されるものではない。用途等に応じて適宜設定できる。たとえば、紫外光を分離する構成とすることもできる。 In the above embodiment, the IR light is separated as the color component light in the invisible region. However, the light separated as the color component light in the invisible region is not limited to this. . It can be set as appropriate according to the application. For example, it can also be set as the structure which isolate | separates an ultraviolet light.
 〈ギャップレスでの構成〉
 色分解光学系については、いわゆるギャップレスプリズムで構成することもできる。ギャップレスプリズムとは、エアギャップを備えていない構成のプリズムのことである。ギャップレスプリズムで構成される色分解光学系では、第1プリズム以外すべてのプリズムにおいて、光が一度しか反射せずに取り出される。
<Gapless configuration>
The color separation optical system can also be constituted by a so-called gapless prism. The gapless prism is a prism having a configuration not including an air gap. In a color separation optical system composed of gapless prisms, light is extracted from all prisms other than the first prism without being reflected only once.
 ギャップレスプリズムで構成する場合も3つある分離面(第1可視光分離面、第2可視光分離面及び非可視光分離面)のうち光軸を通る光の入射角が最大となる面が非可視光分離面となるように構成する。これにより、カラー画像でカラーシェーディングが発生するのを抑制できる。 Of the three separation surfaces (the first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface) that are configured with a gapless prism, the surface that has the maximum incident angle of light passing through the optical axis is non-visible. It is configured to be a visible light separation surface. Thereby, it can suppress that color shading generate | occur | produces in a color image.
 〈トリミングフィルタ〉
 上記実施の形態では、各プリズムの出射面にトリミングフィルタを備えているが、トリミングフィルタを備えない構成とすることも可能である。また、特定の出射面についてのみトリミングフィルタを備えることも可能である。
<Trimming filter>
In the above embodiment, the trimming filter is provided on the exit surface of each prism, but a configuration without the trimming filter is also possible. It is also possible to provide a trimming filter only for a specific exit surface.
 ◆◆カメラ◆◆
 [カメラの構成]
 図6は、カメラの構成の一例を示す図である。
◆◆ Camera ◆◆
[Camera configuration]
FIG. 6 is a diagram illustrating an example of the configuration of the camera.
 カメラ100は、撮像装置の一例である。本実施の形態のカメラ100は、レンズ交換が可能なカメラとして構成される。また、本実施の形態のカメラ100は、上記撮像ユニット1を使用することにより、RGB画像及びIR画像の撮像が可能なカメラとして構成される。 The camera 100 is an example of an imaging device. The camera 100 according to the present embodiment is configured as a camera capable of exchanging lenses. In addition, the camera 100 of the present embodiment is configured as a camera that can capture RGB images and IR images by using the imaging unit 1.
 カメラ100は、箱状の筐体110を備え、その筐体110の内部に撮像ユニット1が収容される。撮像ユニット1は、図示しないホルダを介して、筐体110の内部の所定位置に配置される。 The camera 100 includes a box-shaped housing 110, and the imaging unit 1 is accommodated in the housing 110. The imaging unit 1 is disposed at a predetermined position inside the housing 110 via a holder (not shown).
 筐体110は、その正面部分にカメラ側マウント112を備える。カメラ側マウント112は、Cマウントで構成される。Cマウントは、内径24.4mm(1インチ)、ピッチ0.794mm(32山/1インチ)、フランジバック17.526mm(空気換算長)の規格のマウントである。フランジバックFBとは、マウントのマウント面からイメージセンサの受光面までの距離のことである。 The housing 110 includes a camera-side mount 112 on the front part thereof. The camera side mount 112 is configured by a C mount. The C mount is a standard mount having an inner diameter of 24.4 mm (1 inch), a pitch of 0.794 mm (32 peaks / 1 inch), and a flange back of 17.526 mm (air conversion length). The flange back FB is the distance from the mount surface of the mount to the light receiving surface of the image sensor.
 撮像ユニット1は、Cマウントの規格を満たして設置される。したがって、Cマウントにおけるフランジバックの条件を満たし得るサイズで構成される。各イメージセンサ30R、30B、30G、30IRには、イメージサイズが1型(対角16mm)以下のイメージセンサが使用される。本実施の形態では、イメージサイズが1/3型(対角6mm)のイメージセンサが使用される。したがって、色分解光学系10は、1/3型のイメージセンサを使用した場合にCマウントにおけるフランジバックの条件を満たし得るサイズで構成される。 The imaging unit 1 is installed to meet the C-mount standard. Therefore, it is configured in a size that can satisfy the flange back condition in the C mount. For each of the image sensors 30R, 30B, 30G, and 30IR, an image sensor having an image size of 1 type (diagonal 16 mm) or less is used. In the present embodiment, an image sensor having an image size of 1/3 type (diagonal 6 mm) is used. Therefore, the color separation optical system 10 is configured to have a size that can satisfy the flange back condition in the C mount when a 1/3 type image sensor is used.
 撮像レンズ200は、Cマウント規格のレンズで構成される。撮像レンズ200は、その鏡胴210の基端部にCマウント規格のレンズ側マウント212を備える。 The imaging lens 200 is composed of a C-mount standard lens. The imaging lens 200 includes a C-mount standard lens-side mount 212 at the base end of the lens barrel 210.
 [カメラの電気的構成]
 図7は、カメラの電気的構成を示すブロック図である。
[Electrical configuration of camera]
FIG. 7 is a block diagram showing the electrical configuration of the camera.
 同図に示すように、カメラ100は、R光イメージセンサドライバ120R、G光イメージセンサドライバ120G、B光イメージセンサドライバ120B、IR光イメージセンサドライバ120IR、R光アナログ信号処理部122R、G光アナログ信号処理部122G、B光アナログ信号処理部122B、IR光アナログ信号処理部122IR、カメラマイコン124等を備える。 As shown in the figure, the camera 100 includes an R light image sensor driver 120R, a G light image sensor driver 120G, a B light image sensor driver 120B, an IR light image sensor driver 120IR, an R light analog signal processing unit 122R, and a G light analog. A signal processing unit 122G, a B optical analog signal processing unit 122B, an IR optical analog signal processing unit 122IR, a camera microcomputer 124, and the like are provided.
 《イメージセンサドライバ》
 R光イメージセンサドライバ120Rは、カメラマイコン124からの指令に応じて、R光イメージセンサ30Rを駆動する。
<Image sensor driver>
The R light image sensor driver 120R drives the R light image sensor 30R in response to a command from the camera microcomputer 124.
 G光イメージセンサドライバ120Gは、カメラマイコン124からの指令に応じて、G光イメージセンサ30Gを駆動する。 The G light image sensor driver 120G drives the G light image sensor 30G in response to a command from the camera microcomputer 124.
 B光イメージセンサドライバ120Bは、カメラマイコン124からの指令に応じて、B光イメージセンサ30Bを駆動する。 The B light image sensor driver 120B drives the B light image sensor 30B in response to a command from the camera microcomputer 124.
 IR光イメージセンサドライバ120IRは、カメラマイコン124からの指令に応じて、IR光イメージセンサ30IRを駆動する。 The IR light image sensor driver 120IR drives the IR light image sensor 30IR in response to a command from the camera microcomputer 124.
 《アナログ信号処理部》
 R光アナログ信号処理部122Rは、R光イメージセンサ30Rを出力される画素ごとのR光のアナログの画像信号を取り込み、所定の信号処理(たとえば、相関二重サンプリング処理、ゲイン調整等)を施し、処理後の信号を、デジタル信号に変換して出力する。R光アナログ信号処理部122Rから出力されたR光Lrのデジタルの画像信号は、カメラマイコン124に取り込まれる。
<< Analog signal processing section >>
The R light analog signal processing unit 122R takes in an analog image signal of R light for each pixel output from the R light image sensor 30R, and performs predetermined signal processing (for example, correlated double sampling processing, gain adjustment, etc.). The processed signal is converted into a digital signal and output. The digital image signal of the R light Lr output from the R light analog signal processing unit 122R is taken into the camera microcomputer 124.
 G光アナログ信号処理部122Gは、G光イメージセンサ30Gを出力される画素ごとのG光のアナログの画像信号を取り込み、所定の信号処理を施し、処理後の信号を、デジタル信号に変換して出力する。G光アナログ信号処理部122Gから出力されたG光Lgのデジタルの画像信号は、カメラマイコン124に取り込まれる。 The G light analog signal processing unit 122G takes in an analog image signal of G light for each pixel output from the G light image sensor 30G, performs predetermined signal processing, and converts the processed signal into a digital signal. Output. The digital image signal of the G light Lg output from the G light analog signal processing unit 122G is taken into the camera microcomputer 124.
 B光アナログ信号処理部122Bは、B光イメージセンサ30Bを出力される画素ごとのB光のアナログの画像信号を取り込み、所定の信号処理を施し、処理後の信号を、デジタル信号に変換して出力する。B光アナログ信号処理部122Bから出力されたB光Lbのデジタルの画像信号は、カメラマイコン124に取り込まれる。 The B light analog signal processing unit 122B takes in the B light analog image signal output from the B light image sensor 30B for each pixel, performs predetermined signal processing, and converts the processed signal into a digital signal. Output. The digital image signal of the B light Lb output from the B light analog signal processing unit 122B is captured by the camera microcomputer 124.
 IR光アナログ信号処理部122IRは、IR光イメージセンサ30IRを出力される画素ごとのIR光のアナログの画像信号を取り込み、所定の信号処理を施し、処理後の信号を、デジタル信号に変換して出力する。IR光アナログ信号処理部122IRから出力されたIR光Lirのデジタルの画像信号は、カメラマイコン124に取り込まれる。 The IR light analog signal processing unit 122IR takes in an analog image signal of IR light for each pixel output from the IR light image sensor 30IR, performs predetermined signal processing, and converts the processed signal into a digital signal. Output. The digital image signal of the IR light Lir output from the IR light analog signal processing unit 122IR is taken into the camera microcomputer 124.
 《カメラマイコン》
 カメラマイコン124は、CPU(Central Processing Unit/中央処理装置)、RAM(Random Access Memory)及びROM(Read Only Memory)を備えたマイクロコンピュータで構成される。カメラマイコン124は、所定のプログラムを実行することにより、各種機能を実現する。プログラムは、ROMに格納される。
<Camera microcomputer>
The camera microcomputer 124 includes a microcomputer having a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). The camera microcomputer 124 implements various functions by executing predetermined programs. The program is stored in the ROM.
 図8は、カメラマイコンが実現する主な機能のブロック図である。 FIG. 8 is a block diagram of main functions realized by the camera microcomputer.
 同図に示すように、カメラマイコン124は、所定のプログラムを実行することにより、イメージセンサ駆動制御部124a、RGB画像信号処理部124b、IR画像信号処理部124c、RGB画像信号出力部124d、IR画像信号出力部124e等として機能する。 As shown in the figure, the camera microcomputer 124 executes a predetermined program, whereby an image sensor drive control unit 124a, an RGB image signal processing unit 124b, an IR image signal processing unit 124c, an RGB image signal output unit 124d, an IR It functions as the image signal output unit 124e and the like.
 〈イメージセンサ駆動制御部〉
 イメージセンサ駆動制御部124aは、R光イメージセンサドライバ120R、G光イメージセンサドライバ120G、B光イメージセンサドライバ120B、IR光イメージセンサドライバ120IRを介して、R光イメージセンサ30R、G光イメージセンサ30G、B光イメージセンサ30B、IR光イメージセンサ30IRの駆動を制御する。
<Image sensor drive controller>
The image sensor drive control unit 124a includes the R light image sensor 30R and the G light image sensor 30G via the R light image sensor driver 120R, the G light image sensor driver 120G, the B light image sensor driver 120B, and the IR light image sensor driver 120IR. The B light image sensor 30B and the IR light image sensor 30IR are controlled to be driven.
 〈RGB画像信号処理部〉
 RGB画像信号処理部124bは、R光アナログ信号処理部122R、G光アナログ信号処理部122G及びB光アナログ信号処理部122Bから出力されるR光の画像信号、B光の画像信号及びG光の画像信号を取り込み、所定の信号処理を施して、カラー画像であるRGB画像を生成する。
<RGB image signal processor>
The RGB image signal processing unit 124b is configured to output the R light image signal, the B light image signal, and the G light output from the R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B. An image signal is taken in and subjected to predetermined signal processing to generate an RGB image which is a color image.
 〈IR画像信号処理部〉
 IR画像信号処理部124cは、IR光アナログ信号処理部122IRから出力されるIR光の画像信号を取り込み、所定の信号処理を施して、IR画像を生成する。
<IR image signal processor>
The IR image signal processing unit 124c takes in the IR light image signal output from the IR light analog signal processing unit 122IR, performs predetermined signal processing, and generates an IR image.
 なお、IR画像は、そのまま出力するとRGB画像に対してミラー像となるので、所要の反転処理が施されて出力される。 Note that if the IR image is output as it is, it becomes a mirror image with respect to the RGB image, and is output after being subjected to a required inversion process.
 〈RGB画像信号出力部〉
 RGB画像信号出力部124dは、RGB画像信号処理部124bで生成されたRGB画像をRGB画像信号出力端子126から出力させる。
<RGB image signal output unit>
The RGB image signal output unit 124 d causes the RGB image generated by the RGB image signal processing unit 124 b to be output from the RGB image signal output terminal 126.
 〈IR画像信号出力部〉
 IR画像信号出力部124eは、IR画像信号処理部124cで生成されたIR画像をIR画像信号出力端子128から出力させる。
<IR image signal output unit>
The IR image signal output unit 124e causes the IR image generated by the IR image signal processing unit 124c to be output from the IR image signal output terminal 128.
 [カメラの作用]
 撮像レンズ200を通った光は、色分解光学系10でR光、G光、B光及びIR光に分解される。分解されたR光、G光、B光及びIR光は、それぞれR光イメージセンサ30R、G光イメージセンサ30G、B光イメージセンサ30B及びIR光イメージセンサ30IRで個別に受光される。
[Camera action]
The light that has passed through the imaging lens 200 is decomposed into R light, G light, B light, and IR light by the color separation optical system 10. The decomposed R light, G light, B light, and IR light are individually received by the R light image sensor 30R, the G light image sensor 30G, the B light image sensor 30B, and the IR light image sensor 30IR, respectively.
 R光イメージセンサ30R、G光イメージセンサ30G、B光イメージセンサ30B及びIR光イメージセンサ30IRは、それぞれ受光したR光、G光、B光及びIR光を電気信号に変換して出力する。 The R light image sensor 30R, the G light image sensor 30G, the B light image sensor 30B, and the IR light image sensor 30IR convert the received R light, G light, B light, and IR light into electrical signals and output them.
 《RGB画像の出力》
 R光イメージセンサ30R、G光イメージセンサ30G及びB光イメージセンサ30Bから出力された電気信号は、それぞれR光アナログ信号処理部122R、G光アナログ信号処理部122G及びB光アナログ信号処理部122Bに取り込まれる。R光アナログ信号処理部122R、G光アナログ信号処理部122G及びB光アナログ信号処理部122Bは、取り込んだR光、G光及びB光に所定の信号処理を施して、カメラマイコン124に出力する。
<< Output of RGB image >>
The electrical signals output from the R light image sensor 30R, the G light image sensor 30G, and the B light image sensor 30B are sent to the R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B, respectively. It is captured. The R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B perform predetermined signal processing on the captured R light, G light, and B light, and output them to the camera microcomputer 124. .
 カメラマイコン124は、R光アナログ信号処理部122R、G光アナログ信号処理部122G及びB光アナログ信号処理部122Bから取り込んだR光の画像信号、B光の画像信号及びG光の画像信号に所定の信号処理を施して、カラー画像であるRGB画像を生成し、RGB画像信号出力端子126から出力する。 The camera microcomputer 124 applies predetermined R light image signals, B light image signals, and G light image signals captured from the R light analog signal processing unit 122R, the G light analog signal processing unit 122G, and the B light analog signal processing unit 122B. Thus, an RGB image that is a color image is generated and output from the RGB image signal output terminal 126.
 RGB画像信号出力端子126には、たとえば、RGB画像用のモニタが接続される。撮像されたRGB画像は、このRGB画像用のモニタに表示される。 For example, an RGB image monitor is connected to the RGB image signal output terminal 126. The captured RGB image is displayed on the monitor for this RGB image.
 《IR画像の出力》
 IR光イメージセンサ30IRから出力された電気信号は、IR光アナログ信号処理部122IRに取り込まれる。IR光アナログ信号処理部122IRは、取り込んだIR光に所定の信号処理を施して、カメラマイコン124に出力する。
<Output IR image>
The electrical signal output from the IR light image sensor 30IR is taken into the IR light analog signal processing unit 122IR. The IR light analog signal processing unit 122IR performs predetermined signal processing on the captured IR light and outputs it to the camera microcomputer 124.
 カメラマイコン124は、IR光アナログ信号処理部122IRから取り込んだIR光の画像信号に所定の信号処理を施して、IR画像を生成し、IR画像信号出力端子128から出力する。 The camera microcomputer 124 performs predetermined signal processing on the IR light image signal captured from the IR light analog signal processing unit 122IR, generates an IR image, and outputs the IR image from the IR image signal output terminal 128.
 IR画像信号出力端子128には、たとえば、IR画像用のモニタが接続される。撮像されたIR画像は、このIR画像用のモニタに表示される。 For example, an IR image monitor is connected to the IR image signal output terminal 128. The captured IR image is displayed on the monitor for this IR image.
 なお、IR画像及びRGB画像を共通のモニタに出力し、ユーザからの指示に応じて、表示する画像を切り替える態様とすることも可能である。また、両者を同一画面に並列して表示することも可能である。更に、両者を重ね合わせて表示することも可能である。この点については、後述する。 Note that it is also possible to output the IR image and the RGB image to a common monitor and switch the image to be displayed in accordance with an instruction from the user. It is also possible to display both in parallel on the same screen. Furthermore, it is possible to display both of them superimposed. This point will be described later.
 [撮像装置の変形例]
 《レンズ一体式のカメラへの適用》
 上記実施の形態では、本発明をレンズ交換式のカメラに適用した場合を例に説明したが、本発明の適用は、これに限定されるものではない。撮像レンズが、筐体に一体的に組み付けられたカメラにも同様に本発明を適用できる。
[Modification of imaging device]
<Applying to a lens-integrated camera>
Although the case where the present invention is applied to an interchangeable lens camera has been described as an example in the above embodiment, the application of the present invention is not limited to this. The present invention can be similarly applied to a camera in which an imaging lens is integrally assembled with a housing.
 また、カメラの制御、信号処理等を別のユニットで実施する構成の撮像装置にも本発明は適用できる。たとえば、色分解光学系、イメージセンサ等をカメラヘッドに組み込み、その制御、信号処理等は、カメラコントロールユニットで実施する構成の撮像装置にも本発明は適用できる。 The present invention can also be applied to an imaging apparatus configured to perform camera control, signal processing, and the like in separate units. For example, the present invention can also be applied to an imaging apparatus having a configuration in which a color separation optical system, an image sensor, and the like are incorporated in a camera head, and control and signal processing are performed by a camera control unit.
 《マウントの構成》
 上記実施の形態では、撮像レンズを装着するためのマウントとして、Cマウントを採用しているが、マウントの構成は、これに限定されるものではない。この他、たとえば、CSマウント等を採用することもできる。CSマウントは、Cマウントにおけるフランジバックを12.5mm(空気換算長)としたものである。
《Mount configuration》
In the above embodiment, the C mount is adopted as the mount for mounting the imaging lens, but the configuration of the mount is not limited to this. In addition, for example, a CS mount or the like can be employed. The CS mount has a C-mount flange back of 12.5 mm (air equivalent length).
 なお、上記実施の形態の撮像ユニット1のように、IR光を一度だけ反射させて取り出す構成とすることにより、撮像ユニットのコンパクト化が可能になる。したがって、上記実施の形態の撮像ユニット1は、撮像ユニットのコンパクト化が要求される撮像装置において、特に有効に作用する。コンパクト化が要求される撮像装置とは、Cマウント、CSマウントを採用する撮像装置のように、フランジバックが、空気換算長で12.5mm以上、19mm以下の撮像装置である。 It should be noted that the imaging unit can be made compact by adopting a configuration in which the IR light is reflected and extracted only once as in the imaging unit 1 of the above embodiment. Therefore, the imaging unit 1 according to the above embodiment works particularly effectively in an imaging apparatus that requires a compact imaging unit. An imaging device that is required to be compact is an imaging device having a flange back of 12.5 mm or more and 19 mm or less in terms of air, as in an imaging device that employs a C mount or CS mount.
 《撮像装置のその他の実施の形態》
 撮像装置は、たとえば、電子内視鏡として構成することもできる。
<< Other Embodiments of Imaging Device >>
The imaging device can also be configured as an electronic endoscope, for example.
 図9は、電子内視鏡の一例を示す図である。 FIG. 9 is a diagram illustrating an example of an electronic endoscope.
 同図に示す電子内視鏡300は、いわゆる硬性内視鏡であり、RGB画像及びIR画像を撮像可能な電子内視鏡として構成される。電子内視鏡300は、主として、スコープ310、マウントアダプタ320及びカメラ本体330を備えて構成される。 The electronic endoscope 300 shown in the figure is a so-called rigid endoscope, and is configured as an electronic endoscope capable of capturing RGB images and IR images. The electronic endoscope 300 mainly includes a scope 310, a mount adapter 320, and a camera body 330.
 スコープ310は、体腔内への挿入部である。スコープ310は、先端に観察窓を備える。また、スコープ310は、内部に複数のレンズ群を備える。スコープ310は、内部に備えられた複数のレンズ群によって、観察窓から観察される被写体の光学像を結像させる。 Scope 310 is an insertion part into a body cavity. The scope 310 includes an observation window at the tip. The scope 310 includes a plurality of lens groups inside. The scope 310 forms an optical image of a subject observed from the observation window by a plurality of lens groups provided inside.
 マウントアダプタ320は、スコープ310をカメラ本体330に装着するための部材である。マウントアダプタ320は、一端にスコープ装着部を備え、他端にカメラ装着部を備える。スコープ装着部は、スコープ310の装着部であり、スコープ310が着脱自在に装着される。カメラ装着部は、カメラ本体330への装着部である。カメラ装着部は、カメラ本体330に備えられたマウントに対応したマウントで構成される。 The mount adapter 320 is a member for attaching the scope 310 to the camera body 330. The mount adapter 320 includes a scope mounting unit at one end and a camera mounting unit at the other end. The scope mounting portion is a mounting portion of the scope 310, and the scope 310 is detachably mounted. The camera mounting part is a mounting part to the camera body 330. The camera mounting unit is configured by a mount corresponding to the mount provided in the camera body 330.
 カメラ本体330は、使用者が手で把持可能な筐体330aを有し、その筐体330aの内部に撮像ユニット1が備えられる。なお、カメラ本体330の電気的な構成は、上記実施の形態のカメラ100と実質的に同じである。 The camera body 330 has a housing 330a that can be grasped by a user's hand, and the imaging unit 1 is provided inside the housing 330a. The electrical configuration of the camera body 330 is substantially the same as the camera 100 of the above embodiment.
 筐体330aには、マウント332が備えられ、このマウント332にマウントアダプタ320が着脱自在に装着される。マウント332は、たとえば、Cマウントで構成される。 The housing 330 a is provided with a mount 332, and a mount adapter 320 is detachably attached to the mount 332. The mount 332 is constituted by a C mount, for example.
 内視鏡を用いた手術では、蛍光物質であるICG(Indocyanine Green/インドシアニングリーン)を体内に投与し、過剰に集積した腫瘍等の部位に近赤外光を当てて患部を光らせ、患部を含む部位を撮像することがある。ICGは、近赤外光(たとえば、ピーク波長805nm、750~810nm)で励起すると、より長波長の近赤外光(たとえば、ピーク波長835nm)で蛍光発光する物質である。 In surgery using an endoscope, a fluorescent substance, ICG (Indocyanine Green / Indocyanine Green), is administered into the body, and near-infrared light is applied to a site such as an excessively accumulated tumor to illuminate the affected area. The part to be included may be imaged. ICG is a substance that emits fluorescence with near-infrared light having a longer wavelength (for example, peak wavelength 835 nm) when excited with near-infrared light (for example, peak wavelength 805 nm, 750 to 810 nm).
 本例の電子内視鏡300によれば、ICGを体内に投与し、過剰に集積した腫瘍等の部位(患部)に近赤外光を当てて、患部を撮像することにより、患部のカラー画像(RGB画像)と同時に患部を蛍光発光させた画像(蛍光画像)を撮像できる。 According to the electronic endoscope 300 of this example, ICG is administered into the body, a near-infrared light is applied to a site (affected part) such as a tumor that has accumulated excessively, and the affected part is imaged, whereby a color image of the affected part is obtained. Simultaneously with the (RGB image), it is possible to capture an image (fluorescent image) in which the affected area is fluorescently emitted.
 なお、本例では、光造影剤としてICGを投与する場合を例に説明したが、ICG以外の光造影剤を投与してもよい。この場合、光造影剤を励起するための励起光の波長に応じて、非可視光分離面の分光特性が設定される。 In this example, the case where ICG is administered as an optical contrast agent has been described as an example, but an optical contrast agent other than ICG may be administered. In this case, the spectral characteristic of the invisible light separation surface is set according to the wavelength of the excitation light for exciting the optical contrast agent.
 また、本例では、赤外光の波長領域において蛍光発光する薬品を用いたが、紫外光の波長領域において蛍光発光する薬品を用いてもよい。この場合、非可視光分離面で紫外光が分離されるように、その分光特性が設定される。 In this example, a chemical that emits fluorescence in the wavelength region of infrared light is used. However, a chemical that emits fluorescence in the wavelength region of ultraviolet light may be used. In this case, the spectral characteristics are set so that the ultraviolet light is separated on the non-visible light separation surface.
 《画像の出力形態の他の例》
 上記実施の形態のカメラ(撮像装置)によれば、RGB画像及びIR画像を同軸上で同時に撮像できる。2つの画像は、視差がなく、高精度に一致する。したがって、両者を重ね合わせて表示することができる。
<< Other examples of image output forms >>
According to the camera (imaging device) of the above embodiment, RGB images and IR images can be simultaneously captured on the same axis. The two images have no parallax and match with high accuracy. Therefore, both can be displayed in a superimposed manner.
 図10は、RGB画像及びIR画像を重ねて表示する場合の表示処理装置の概略構成を示すブロック図である。 FIG. 10 is a block diagram showing a schematic configuration of a display processing apparatus when displaying an RGB image and an IR image in a superimposed manner.
 表示処理装置130は、画像合成処理部130a及び画像表示制御部130bを備える。表示処理装置130は、コンピュータで構成される。すなわち、コンピュータが、所定のプログラムを実行することにより、表示処理装置130として機能する。 The display processing device 130 includes an image composition processing unit 130a and an image display control unit 130b. The display processing device 130 is configured by a computer. That is, the computer functions as the display processing device 130 by executing a predetermined program.
 画像合成処理部130aは、撮像装置からRGB画像信号及びIR画像信号を取得し、両者を重ね合わせた合成画像を生成する。合成処理は、たとえば、次のように行われる。まず、取得したRGB画像信号及びIR画像信号の各画素の信号値に所定の係数を乗算する。ここでは、RGB画像信号の各画素の信号値に係数K1を乗算し、IR画像信号の各画素の信号値に係数K2を乗算するものとする。次に、係数乗算後のRGB画像信号の各画素の信号値に係数乗算後のIR画像信号の各画素の信号値を加算する。加算は、対応する画素間で行われる。これにより、RGB画像及びIR画像を重ね合わせた合成画像が生成される。 The image composition processing unit 130a acquires the RGB image signal and the IR image signal from the imaging device, and generates a composite image in which both are superimposed. The synthesis process is performed as follows, for example. First, the signal value of each pixel of the acquired RGB image signal and IR image signal is multiplied by a predetermined coefficient. Here, the signal value of each pixel of the RGB image signal is multiplied by the coefficient K1, and the signal value of each pixel of the IR image signal is multiplied by the coefficient K2. Next, the signal value of each pixel of the IR image signal after coefficient multiplication is added to the signal value of each pixel of the RGB image signal after coefficient multiplication. Addition is performed between corresponding pixels. Thereby, a composite image in which the RGB image and the IR image are superimposed is generated.
 なお、RGB画像信号及びIR画像信号に係数を乗算するのは、加算後の各画素の信号値が飽和しないようにするためである。したがって、係数K1及び係数K2は、K1+K2=1の関係を満たす値に設定される。たとえば、K1=0.5、K2=0.5として設定される。 The reason why the RGB image signal and the IR image signal are multiplied by a coefficient is to prevent the signal value of each pixel after the addition from being saturated. Therefore, the coefficient K1 and the coefficient K2 are set to values that satisfy the relationship of K1 + K2 = 1. For example, K1 = 0.5 and K2 = 0.5 are set.
 画像表示制御部130bは、操作部132の操作に基づいて、表示装置134への画像の表示を制御する。 The image display control unit 130 b controls display of an image on the display device 134 based on the operation of the operation unit 132.
 図11は、RGB画像、IR画像及び合成画像の表示の一例を示す図である。同図は、撮像装置としての電子内視鏡の表示の一例を示している。特に、体内にICGを投与し、患部に近赤外光を当てて、患部を撮像した場合に撮像される画像の表示例を示している。この場合、患部のカラー画像(RGB画像)及び患部の蛍光画像(IR画像)が撮像される。 FIG. 11 is a diagram illustrating an example of display of an RGB image, an IR image, and a composite image. This figure shows an example of display of an electronic endoscope as an imaging apparatus. In particular, a display example of an image captured when ICG is administered into the body and near-infrared light is applied to the affected area to image the affected area is shown. In this case, a color image (RGB image) of the affected area and a fluorescent image (IR image) of the affected area are captured.
 図11(A)は、患部のカラー画像(RGB画像)の一例を示している。図11(B)は、患部の蛍光画像(IR画像)の一例を示している。図11(C)は、合成画像の一例を示している。 FIG. 11A shows an example of a color image (RGB image) of an affected area. FIG. 11B shows an example of a fluorescent image (IR image) of the affected area. FIG. 11C shows an example of a composite image.
 図11(A)に示す患部のカラー画像(RGB画像)と、図11(B)に示す患部の蛍光画像(IR画像)は、視差のない画像である。したがって、図11(C)に示す合成画像は、同じ部位を同軸上で撮像した画像となる。合成画像を表示することにより、蛍光画像(IR画像)における発光部分が、カラー画像(RGB画像)のどの辺りに存在するのかを一目で把握できる。 The color image (RGB image) of the affected area shown in FIG. 11A and the fluorescence image (IR image) of the affected area shown in FIG. 11B are images without parallax. Therefore, the composite image illustrated in FIG. 11C is an image obtained by capturing the same part on the same axis. By displaying the composite image, it is possible to grasp at a glance where in the color image (RGB image) the light emitting portion in the fluorescence image (IR image) is present.
 RGB画像、IR画像及び合成画像の表示は、操作部132の操作によって切り替えられる。画像表示制御部130bは、操作部132の操作に基づいて、表示装置134への画像の表示を切り替える。 Display of RGB image, IR image, and composite image is switched by operation of the operation unit 132. The image display control unit 130 b switches display of an image on the display device 134 based on the operation of the operation unit 132.
 なお、図11に示す例では、RGB画像、IR画像及び合成画像をそれぞれ単独で表示させているが、組み合わせて表示させることもできる。たとえば、1画面に3つの画像を同時に表示させることもできる。また、1画面に任意に組み合わせた2つの画像を並列して表示させることもできる。たとえば、RGB画像及びIR画像を並列して表示させることもできる。 In the example shown in FIG. 11, the RGB image, the IR image, and the composite image are each displayed independently, but can be displayed in combination. For example, three images can be simultaneously displayed on one screen. Also, two images arbitrarily combined on one screen can be displayed in parallel. For example, an RGB image and an IR image can be displayed in parallel.
 なお、本例では、撮像装置とは別に表示処理装置130を設けているが、表示処理装置130の機能を撮像装置に組み込むことも可能である。 In this example, the display processing device 130 is provided separately from the imaging device, but the function of the display processing device 130 may be incorporated into the imaging device.
 また、表示処理装置130には、必要に応じて、RGB画像及びIR画像に信号処理を施す機能を備えてもよい。たとえば、RGB画像について輪郭を強調する処理、IR画像について緑色等に着色する処理、特定の領域を抽出する処理等を施す機能を備えてもよい。 Further, the display processing device 130 may have a function of performing signal processing on the RGB image and the IR image as necessary. For example, a function of performing processing for enhancing an outline of an RGB image, processing for coloring an IR image green or the like, processing for extracting a specific region, and the like may be provided.
 上記のように、ブリュースター角γは、入射側の物質の屈折率n1と透過側の物質の屈折率n2とから、式 γ=Arctan(n2/n1) により求められる。 As described above, the Brewster angle γ is obtained from the refractive index n1 of the incident-side substance and the refractive index n2 of the transmissive-side substance by the formula γ = Arctan (n2 / n1).
 図1に示す構成の色分解光学系10において、第3プリズム16の屈折率n1(入射側の屈折率)とブリュースター角γとの関係を求めた。また、各屈折率の条件において、F2.0の光束及びF4.0の光束を入射した場合に、入射光束がブリュースター角となるのを避けて入射するための条件を求めた。入射光束がブリュースター角となるのを避けて入射するための条件は、第3プリズム第2面16bへの光軸Lzを通る光の入射角α3の条件として規定され、上記のように、α3>β+γにより求められる。レンズからF2.0の光束を入射した場合の光線の光軸Lzに対する最大角度(見込み角)をβF2とすると、第3プリズム第2面16bは、α3>βF2+γを満たすように設定される。また、レンズからF4.0の光束を入射した場合の光線の光軸Lzに対する最大角度(見込み角)をβF4とすると、第3プリズム第2面16bは、α3>βF4+γを満たすように設定される。 In the color separation optical system 10 having the configuration shown in FIG. 1, the relationship between the refractive index n1 (refractive index on the incident side) of the third prism 16 and the Brewster angle γ was determined. In addition, in each refractive index condition, when an F2.0 light beam and an F4.0 light beam were incident, a condition for entering the light beam while avoiding the Brewster angle was obtained. The condition for entering the incident light beam while avoiding the Brewster angle is defined as the condition of the incident angle α3 of the light passing through the optical axis Lz to the third prism second surface 16b, and as described above, α3 > Β + γ. When the maximum angle (expected angle) with respect to the optical axis Lz of the light beam when an F2.0 light beam is incident from the lens is βF2, the third prism second surface 16b is set to satisfy α3> βF2 + γ. If the maximum angle (expected angle) of the light beam with respect to the optical axis Lz when the F4.0 light beam is incident from the lens is βF4, the third prism second surface 16b is set to satisfy α3> βF4 + γ. .
 図12は、第3プリズムの屈折率n1と、その屈折率n1から求められるブリュースター角γと、第3プリズム第2面が満たすべき入射角の条件との関係を示す表である。 FIG. 12 is a table showing the relationship between the refractive index n1 of the third prism, the Brewster angle γ determined from the refractive index n1, and the condition of the incident angle that should be satisfied by the second surface of the third prism.
 第3プリズム16の屈折率n1については、n1=1.65、1.7、1.8、1.9、2としている。これは、プリズムの素材である光学ガラスが、例として取り得る屈折率の値であり、最大を2.0としている。なお、接着剤層の屈折率n2(透過側の物質の屈折率)については、一律に1.52としている。 The refractive index n1 of the third prism 16 is set to n1 = 1.65, 1.7, 1.8, 1.9, and 2. This is a refractive index value that can be taken as an example of the optical glass that is the material of the prism, and the maximum is 2.0. Note that the refractive index n2 of the adhesive layer (the refractive index of the material on the transmission side) is uniformly 1.52.
 図12の表に示すように、第3プリズムの屈折率n1が大きくなるほど、ブリュースター角γは大きくなる。 As shown in the table of FIG. 12, the Brewster angle γ increases as the refractive index n1 of the third prism increases.
 また、同表に示すように、常にβF2+γ>βF4+γとなるので、F2.0の光束について、ブリュースター角γを避けて第3プリズム第2面16bの入射角α3を設定すれば、F4.0の光束についても、ブリュースター角γを避けて入射させることができる。 Further, as shown in the table, βF2 + γ> βF4 + γ is always satisfied. Therefore, if the incident angle α3 of the second prism second surface 16b is set to avoid the Brewster angle γ for the light flux of F2.0, F4.0. This light beam can also be incident while avoiding the Brewster angle γ.
 なお、非可視光の分離面である第3プリズム第2面16bについては、その入射角α3が、可視光の分離面である第1プリズム第2面12b及び第2プリズム第2面14bの入射角α1、α2よりも大きいことが条件とされる(α3>α1かつα3>α2)。したがって、この点を考慮し、かつ、コンパクト化を考慮すると、第3プリズム第2面16bの入射角α3については、47度以上に設定することが好ましい。 Note that the incident angle α3 of the third prism second surface 16b, which is a non-visible light separation surface, is incident on the first prism second surface 12b and the second prism second surface 14b, which are visible light separation surfaces. The condition is that the angles are larger than α1 and α2 (α3> α1 and α3> α2). Therefore, considering this point and considering compactness, it is preferable to set the incident angle α3 of the third prism second surface 16b to 47 degrees or more.
1 撮像ユニット
2 レンズ
10 色分解光学系
10A 色分解光学系
12 第1プリズム
12a 第1プリズム第1面
12b 第1プリズム第2面
12c 第1プリズム第3面
14 第2プリズム
14a 第2プリズム第1面
14b 第2プリズム第2面
14c 第2プリズム第3面
16 第3プリズム
16a 第3プリズム第1面
16b 第3プリズム第2面
16c 第3プリズム第3面
18 第4プリズム
18a 第4プリズム第1面
18b 第4プリズム第2面
18c 第4プリズム第3面
20B B光トリミングフィルタ
20G G光トリミングフィルタ
20IR IR光トリミングフィルタ
20R R光トリミングフィルタ
22 スペーサ
24 エアギャップ
26 スペーサ
28 エアギャップ
30R R光イメージセンサ
30G G光イメージセンサ
30B B光イメージセンサ
30IR IR光イメージセンサ
100 カメラ
110 筐体
112 カメラ側マウント
120B B光イメージセンサドライバ
120G G光イメージセンサドライバ
120IR IR光イメージセンサドライバ
120R R光イメージセンサドライバ
122B B光アナログ信号処理部
122G G光アナログ信号処理部
122IR IR光アナログ信号処理部
122R R光アナログ信号処理部
124 カメラマイコン
124a イメージセンサ駆動制御部
124b RGB画像信号処理部
124c IR画像信号処理部
124d RGB画像信号出力部
124e IR画像信号出力部
126 RGB画像信号出力端子
128 IR画像信号出力端子
130 表示処理装置
130a 画像合成処理部
130b 画像表示制御部
132 操作部
134 表示装置
200 撮像レンズ
210 鏡胴
212 レンズ側マウント
300 電子内視鏡
310 スコープ
320 マウントアダプタ
330 カメラ本体
330a 筐体
332 マウント
FB フランジバック
Lr R光
Lg G光
Lb B光
Lir IR光
Lz 光軸
α1 第1プリズム第2面への入射角
α2 第2プリズム第2面への入射角
α3 第3プリズム第2面への入射角
αx 第3プリズム第2面への入射角
1 imaging unit 2 lens 10 color separation optical system 10A color separation optical system 12 first prism 12a first prism first surface 12b first prism second surface 12c first prism third surface 14 second prism 14a second prism first Surface 14b Second prism second surface 14c Second prism third surface 16 Third prism 16a Third prism first surface 16b Third prism second surface 16c Third prism third surface 18 Fourth prism 18a Fourth prism first Surface 18b Fourth prism second surface 18c Fourth prism third surface 20B B light trimming filter 20G G light trimming filter 20IR IR light trimming filter 20R R light trimming filter 22 Spacer 24 Air gap 26 Spacer 28 Air gap 30R R light image sensor 30G G light image sensor 30B B light image Sensor 30IR IR light image sensor 100 Camera 110 Housing 112 Camera side mount 120B B light image sensor driver 120G G light image sensor driver 120IR IR light image sensor driver 120R R light image sensor driver 122B B light analog signal processing unit 122G G light analog Signal processor 122IR IR optical analog signal processor 122R R optical analog signal processor 124 Camera microcomputer 124a Image sensor drive controller 124b RGB image signal processor 124c IR image signal processor 124d RGB image signal output unit 124e IR image signal output unit 126 RGB image signal output terminal 128 IR image signal output terminal 130 Display processing device 130a Image composition processing unit 130b Image display control unit 132 Operation unit 134 Display device 200 Imaging lens 210 Lens barrel 212 Lens side mount 300 Electronic endoscope 310 Scope 320 Mount adapter 330 Camera body 330a Case 332 Mount FB Flange back Lr R light Lg G light Lb B light Lir IR light Lz Optical axis α1 First prism first Incident angle to the second surface α2 Incident angle to the second prism second surface α3 Incident angle to the third prism second surface αx Incident angle to the third prism second surface

Claims (11)

  1.  入射光束を可視領域の3つの色成分の光と非可視領域の1つの色成分の光とに分解する色分解光学系であって、
     可視領域の第1色成分の光を反射して分離する第1可視光分離面と、
     可視領域の第2色成分の光を反射して分離する第2可視光分離面と、
     非可視領域の光を反射して分離する非可視光分離面と、
     を光軸上に備え、
     前記第1可視光分離面、前記第2可視光分離面及び前記非可視光分離面のうち光軸を通る光の入射角が最大となる面が前記非可視光分離面である、
     色分解光学系。
    A color separation optical system that separates an incident light beam into light of three color components in the visible region and light of one color component in the invisible region,
    A first visible light separation surface that reflects and separates light of the first color component in the visible region;
    A second visible light separation surface that reflects and separates light of the second color component in the visible region;
    A non-visible light separating surface that reflects and separates light in the non-visible region;
    On the optical axis,
    Of the first visible light separating surface, the second visible light separating surface, and the invisible light separating surface, the surface having the maximum incident angle of light passing through the optical axis is the invisible light separating surface.
    Color separation optical system.
  2.  前記非可視光分離面は、レンズからFナンバが2.0の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される、
     請求項1に記載の色分解光学系。
    The non-visible light separating surface is disposed so as to be inclined at an angle at which all light is incident at an incident angle larger than the Brewster angle when a light flux having an F number of 2.0 is incident from the lens.
    The color separation optical system according to claim 1.
  3.  前記非可視光分離面は、レンズから最大開口の光束を入射した場合に、すべての光がブリュースター角よりも大きな入射角で入射する角度に傾けられて配置される、
     請求項1に記載の色分解光学系。
    The non-visible light separating surface is disposed so as to be inclined at an angle at which all light is incident at an incident angle larger than the Brewster angle when a light beam having a maximum aperture is incident from a lens.
    The color separation optical system according to claim 1.
  4.  前記第1可視光分離面で分離した可視領域の第1色成分の光を出射させる方向に反射させる第1可視光反射面と、
     前記第2可視光分離面で分離した可視領域の第2色成分の光を出射させる方向に反射させる第2可視光反射面と、
     を更に備えた請求項1から3のいずれか1項に記載の色分解光学系。
    A first visible light reflecting surface that reflects in the direction of emitting light of the first color component in the visible region separated by the first visible light separating surface;
    A second visible light reflecting surface that reflects in the direction of emitting light of the second color component in the visible region separated by the second visible light separating surface;
    The color separation optical system according to any one of claims 1 to 3, further comprising:
  5.  前記第1可視光分離面、前記第2可視光分離面及び前記非可視光分離面は、入射側から前記第1可視光分離面、前記第2可視光分離面、前記非可視光分離面の順で配置される、
     請求項1から4のいずれか1項に記載の色分解光学系。
    The first visible light separation surface, the second visible light separation surface, and the non-visible light separation surface are the first visible light separation surface, the second visible light separation surface, and the invisible light separation surface from the incident side. Arranged in order,
    The color separation optical system according to any one of claims 1 to 4.
  6.  レンズからの光束が入射される第1入射面と、前記第1可視光分離面と、前記第1可視光分離面で分離した可視領域の第1色成分の光を出射する第1出射面と、を有する第1プリズムと、
     前記第1可視光分離面に接合され、前記第1可視光分離面を透過した光束が入射される第2入射面と、前記第2可視光分離面と、前記第2可視光分離面で分離した可視領域の第2色成分の光を出射する第2出射面と、を有する第2プリズムと、
     前記第2可視光分離面に接合され、前記第2可視光分離面を透過した光束が入射される第3入射面と、前記非可視光分離面と、前記非可視光分離面で分離した非可視領域の光を出射する第3出射面と、を有する第3プリズムと、
     前記非可視光分離面に接合され、前記非可視光分離面を透過した光束が入射される第4入射面と、可視領域の第3色成分の光を出射する第4出射面と、を有する第4プリズムと、
     を備えた請求項1から3のいずれか1項に記載の色分解光学系。
    A first incident surface on which a light beam from a lens is incident, the first visible light separating surface, and a first emitting surface that emits light of a first color component in a visible region separated by the first visible light separating surface; A first prism having
    The second visible light separation surface is joined to the first visible light separation surface and is separated by the second visible light separation surface, the second visible light separation surface, and the second visible light separation surface. A second prism having a second emission surface that emits the light of the second color component in the visible region,
    A third incident surface that is joined to the second visible light separation surface and receives a light beam that has passed through the second visible light separation surface, the non-visible light separation surface, and a non-visible light separated surface. A third prism having a third exit surface that emits light in the visible region;
    A fourth incident surface that is joined to the non-visible light separation surface and receives a light beam that has passed through the non-visible light separation surface; and a fourth emission surface that emits light of a third color component in the visible region. A fourth prism;
    The color separation optical system according to any one of claims 1 to 3, further comprising:
  7.  前記第1プリズムは、前記第1可視光分離面で分離した可視領域の第1色成分の光を前記第1入射面で全反射させて、前記第1出射面から出射させ、
     前記第2プリズムは、前記第2入射面がエアギャップを介して前記第1可視光分離面に接合され、前記第2可視光分離面で分離した可視領域の第2色成分の光を前記第2入射面で全反射させて、前記第2出射面から出射させる、
     請求項6に記載の色分解光学系。
    The first prism causes the first color component light in the visible region separated by the first visible light separation surface to be totally reflected by the first incident surface and emitted from the first emission surface,
    In the second prism, the second incident surface is joined to the first visible light separation surface via an air gap, and the second color component light in the visible region separated by the second visible light separation surface is transmitted to the second prism. 2 total reflection on the entrance surface, exit from the second exit surface,
    The color separation optical system according to claim 6.
  8.  前記非可視光分離面は、赤外光を分離する、
     請求項1から7のいずれか1項に記載の色分解光学系。
    The invisible light separation surface separates infrared light;
    The color separation optical system according to any one of claims 1 to 7.
  9.  請求項1から8のいずれか1項に記載の色分解光学系と、
     前記色分解光学系で分解された可視領域の第1色成分の光を受光する第1可視光イメージセンサと、
     前記色分解光学系で分解された可視領域の第2色成分の光を受光する第2可視光イメージセンサと、
     前記色分解光学系で分解された可視領域の第3色成分の光を受光する第3可視光イメージセンサと、
     前記色分解光学系で分解された非可視領域の光を受光する非可視光イメージセンサと、
     を備えた撮像ユニット。
    The color separation optical system according to any one of claims 1 to 8,
    A first visible light image sensor that receives light of a first color component in the visible region separated by the color separation optical system;
    A second visible light image sensor that receives light of a second color component in the visible region resolved by the color separation optical system;
    A third visible light image sensor that receives light of a third color component in the visible region resolved by the color separation optical system;
    A non-visible light image sensor that receives light in a non-visible region separated by the color separation optical system;
    An imaging unit comprising
  10.  筐体と、
     前記筐体に収容された請求項9に記載の撮像ユニットと、
     前記筐体に備えられ、レンズが着脱自在に装着されるマウントと、
     を備えた撮像装置。
    A housing,
    The imaging unit according to claim 9 housed in the housing;
    A mount provided in the housing, on which a lens is detachably mounted;
    An imaging apparatus comprising:
  11.  フランジバックが、空気換算長で12.5mm以上、19mm以下である、
     請求項10に記載の撮像装置。
    The flange back is 12.5 mm or more and 19 mm or less in terms of air.
    The imaging device according to claim 10.
PCT/JP2018/015239 2017-05-25 2018-04-11 Color separation optical system, imaging unit, and imaging device WO2018216386A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210200473.0A CN114584693A (en) 2017-05-25 2018-04-11 Color separation optical system, imaging unit, and imaging device
CN201880025741.1A CN110537119B (en) 2017-05-25 2018-04-11 Color separation optical system, imaging unit, and imaging device
JP2019519512A JP6913162B2 (en) 2017-05-25 2018-04-11 Color separation optical system, imaging unit and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103669 2017-05-25
JP2017-103669 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216386A1 true WO2018216386A1 (en) 2018-11-29

Family

ID=64395454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015239 WO2018216386A1 (en) 2017-05-25 2018-04-11 Color separation optical system, imaging unit, and imaging device

Country Status (3)

Country Link
JP (1) JP6913162B2 (en)
CN (2) CN110537119B (en)
WO (1) WO2018216386A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086536A (en) * 2017-11-01 2019-06-06 株式会社コシナ Four-plate type prism device
WO2020217595A1 (en) * 2019-04-22 2020-10-29 株式会社ジェイエイアイコーポレーション Imaging device
US11698526B2 (en) * 2019-02-08 2023-07-11 The Charles Stark Draper Laboratory, Inc. Multi-channel optical system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057716A (en) * 2019-09-30 2021-04-08 セイコーエプソン株式会社 Image light generation device and image display device
CN113068012A (en) * 2021-04-08 2021-07-02 中山联合光电研究院有限公司 Imaging system and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727909A (en) * 1993-07-12 1995-01-31 Sony Corp Spectroscopic prism
JP2003143618A (en) * 2001-11-06 2003-05-16 Canon Inc Color separation optical system and image pickup device employing the same
JP2018023077A (en) * 2016-08-05 2018-02-08 株式会社三井光機製作所 Video camera imaging device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289550A (en) * 1998-01-19 1999-10-19 Fuji Photo Optical Co Ltd Optical system for television camera with still image photographing function
US6980358B2 (en) * 2003-09-29 2005-12-27 Coherent, Inc. Turning prism for ultraviolet radiation
JP2005227365A (en) * 2004-02-10 2005-08-25 Sony Corp Method for manufacturing optical component
US7364302B2 (en) * 2004-08-09 2008-04-29 3M Innovative Properties Company Projection display system using multiple light sources and polarizing element for using with same
CN2881677Y (en) * 2005-12-31 2007-03-21 西安工业学院 Silicon-base liquid crystal optical engine
JP5936098B2 (en) * 2011-07-29 2016-06-15 株式会社リコー Imaging apparatus, object detection apparatus including the same, and optical filter
CN102629369B (en) * 2012-02-27 2014-02-05 天津大学 Single color image shadow removal method based on illumination surface modeling
JP5942041B2 (en) * 2013-08-29 2016-06-29 富士フイルム株式会社 Color separation optical system and imaging apparatus
SG11201706777QA (en) * 2015-02-19 2017-09-28 Premium Genetics (Uk) Ltd Scanning infrared measurement system
JP6025130B2 (en) * 2015-03-23 2016-11-16 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
CN109061783A (en) * 2015-12-01 2018-12-21 苏州谱道光电科技有限公司 Optical resonator reflecting prism and its optical resonator and optical spectrum instrumentation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727909A (en) * 1993-07-12 1995-01-31 Sony Corp Spectroscopic prism
JP2003143618A (en) * 2001-11-06 2003-05-16 Canon Inc Color separation optical system and image pickup device employing the same
JP2018023077A (en) * 2016-08-05 2018-02-08 株式会社三井光機製作所 Video camera imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086536A (en) * 2017-11-01 2019-06-06 株式会社コシナ Four-plate type prism device
US11698526B2 (en) * 2019-02-08 2023-07-11 The Charles Stark Draper Laboratory, Inc. Multi-channel optical system
WO2020217595A1 (en) * 2019-04-22 2020-10-29 株式会社ジェイエイアイコーポレーション Imaging device

Also Published As

Publication number Publication date
CN114584693A (en) 2022-06-03
CN110537119A (en) 2019-12-03
JP6913162B2 (en) 2021-08-04
JPWO2018216386A1 (en) 2020-02-27
CN110537119B (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP6913162B2 (en) Color separation optical system, imaging unit and imaging device
JP6939000B2 (en) Imaging device and imaging method
JP3338837B2 (en) Composite display
JP5796191B2 (en) Imaging system
JP2011118415A (en) Device for imaging color image
US10560671B2 (en) Medical camera
WO2016056157A1 (en) Color separation prism and imaging device
JP2016049370A (en) Electronic endoscope system
KR101606828B1 (en) Fluorescence image system
JP2012231835A (en) Light source device
JP2020512068A (en) Method and apparatus using a medical imaging head for fluorescence imaging
JP4855755B2 (en) Biodiagnosis device
JP6388240B2 (en) Optical device
CN109310311B (en) Light source device for endoscope, and endoscope system
US20230301499A1 (en) Method of visible light and fluorescence imaging with reduced chromatic aberration
JP7028574B2 (en) Endoscope and camera head
JP6132251B1 (en) Endoscope and endoscope system
JP6865719B2 (en) Medical light microscope
US20110213204A1 (en) Endoscope system and imaging device thereof
JP7041226B2 (en) Medical optical microscope
US20240004182A1 (en) Beam Splitting Device for a Distal End Section of an Endoscope, Objective System and Endoscope
JP2005152130A (en) Endoscope imaging system
JP6168436B1 (en) Endoscope and endoscope system
JP6388241B2 (en) Optical device and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805969

Country of ref document: EP

Kind code of ref document: A1