JP2003142093A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003142093A
JP2003142093A JP2001337584A JP2001337584A JP2003142093A JP 2003142093 A JP2003142093 A JP 2003142093A JP 2001337584 A JP2001337584 A JP 2001337584A JP 2001337584 A JP2001337584 A JP 2001337584A JP 2003142093 A JP2003142093 A JP 2003142093A
Authority
JP
Japan
Prior art keywords
lithium
battery
peak
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001337584A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001337584A priority Critical patent/JP2003142093A/en
Publication of JP2003142093A publication Critical patent/JP2003142093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of preventing swelling and an increase in internal resistance of the battery occurring due to gas generation. SOLUTION: The battery has a positive electrode active material made from a lithium containing metallic oxide having a single maximum diffraction peak in the region 10 deg.<2θ<20 deg. measured by the X-ray diffraction method using the CuKα line, and the intensity of a peak in the region 30 deg.<2θ<35 deg. being less than 1/1000 of the maximum diffraction peak. Accordingly, generation of carbon dioxide gas attributable to impurity lithium carbonate an is suppressed. Thereby, the non-aqueous electrolyte secondary battery capable of preventing swelling and an increase in internal resistance can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来、正極と負極との間で一方が放出し
たリチウムイオンを他方に吸蔵させるという可逆反応に
よって充放電を行う非水電解質二次電池は、高電圧・高
エネルギー密度を有するため、広く民生用電子機器の電
源として用いられている。このような電池においては、
リチウムイオンを吸蔵・放出する正極活物質として、コ
バルト酸リチウム、マンガン酸リチウム、ニッケル酸リ
チウム等のリチウム含有遷移金属酸化物が使用されてい
る。
2. Description of the Related Art Conventionally, a non-aqueous electrolyte secondary battery which is charged and discharged by a reversible reaction in which one of the positive and negative electrodes occludes lithium ions emitted by the other is charged with high voltage and high energy density. Widely used as a power source for consumer electronic devices. In such a battery,
A lithium-containing transition metal oxide such as lithium cobalt oxide, lithium manganate, or lithium nickel oxide is used as a positive electrode active material that absorbs and releases lithium ions.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
非水電解質二次電池においては、充放電に伴い電池内で
ガスが発生することにより、電池の膨れが生じ、電池の
内部抵抗が増大するという問題があった。このガスの発
生の原因は、従来、例えば電解液が分解するためである
と考えられており、種々の対応策が提案されてきたが、
未だ充分なものではなく、さらなる改良が求められてい
る。
However, in such a non-aqueous electrolyte secondary battery, gas is generated in the battery during charging and discharging, so that the battery swells and the internal resistance of the battery increases. There was a problem. The cause of the generation of this gas is conventionally considered to be, for example, the decomposition of the electrolytic solution, and various countermeasures have been proposed.
It is not sufficient yet, and further improvement is required.

【0004】本発明は上記のような事情に鑑みてなされ
たものであり、その目的は、ガスの発生による電池の膨
れや内部抵抗の増大を防止できる非水電解質二次電池を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery capable of preventing the battery from swelling and the internal resistance from increasing due to the generation of gas. is there.

【0005】[0005]

【課題を解決するための手段】本発明者は、ガスの発生
による電池の膨れや内部抵抗の増大を防止できる非水電
解質二次電池を提供すべく鋭意研究を行ったところ、以
下の知見を見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted earnest research to provide a non-aqueous electrolyte secondary battery capable of preventing the battery from swelling and increasing the internal resistance due to the generation of gas. Heading out, the present invention has been completed.

【0006】リチウム含有遷移金属酸化物中には、不純
物として炭酸リチウムが含まれる場合がある。この原因
としては、原料由来の炭酸リチウムが不純物として残留
することが考えられる。また、原料として水酸化リチウ
ムを用いる場合に、合成中に大気中で放置されることに
よって、吸湿した水酸化リチウムが空気中の二酸化炭素
と反応して炭酸リチウムを生じることが考えられる。さ
らに、酸化物中のリチウムが表面に拡散し、空気中の二
酸化炭素と反応して炭酸リチウムを生じることが考えら
れる。この炭酸リチウムは、酸化を受けて二酸化炭素の
ガスを発生しやすい。したがって、多量の炭酸リチウム
を含むリチウム含有遷移金属酸化物を正極活物質として
使用すれば、この炭酸リチウムが正極で酸化を受けて二
酸化炭素のガスを発生し、電池の膨れや内部抵抗の増大
を招くと考えられる。特に、リチウムニッケル複合酸化
物の場合には、リチウムが表面へ拡散し、二酸化炭素と
反応することによる炭酸リチウムの生成が起こりやす
く、この問題が顕著となる。
Lithium carbonate may be contained as an impurity in the lithium-containing transition metal oxide. As a cause of this, it is considered that lithium carbonate derived from the raw material remains as an impurity. Further, when lithium hydroxide is used as a raw material, if left in the atmosphere during the synthesis, the absorbed lithium hydroxide may react with carbon dioxide in the air to generate lithium carbonate. Further, it is considered that lithium in the oxide diffuses to the surface and reacts with carbon dioxide in the air to generate lithium carbonate. This lithium carbonate is easily oxidized to generate carbon dioxide gas. Therefore, if a lithium-containing transition metal oxide containing a large amount of lithium carbonate is used as the positive electrode active material, the lithium carbonate is oxidized at the positive electrode to generate carbon dioxide gas, which may cause swelling of the battery and increase in internal resistance. It is thought to invite. In particular, in the case of a lithium-nickel composite oxide, lithium is likely to be diffused to the surface and react with carbon dioxide to easily generate lithium carbonate, and this problem becomes remarkable.

【0007】したがって、二酸化炭素ガスの発生を抑制
するためには、リチウム含有遷移金属酸化物の純度を高
め、炭酸リチウムの含有量を低減することが必要と考え
られる。ここで、リチウム含有遷移金属酸化物に対する
炭酸リチウムの割合の指標としては、X線回折法により
得られたピークの強度比を利用することができる。本発
明者は、特性X線としてCuKα線を用いたX線回折法
により、リチウム含有遷移金属酸化物の最大回折ピーク
に対する炭酸リチウムの最大回折ピークの強度比が1/
1000未満であれば、ガスの発生を効果的に抑制でき
ることを見出した。
Therefore, in order to suppress the generation of carbon dioxide gas, it is considered necessary to increase the purity of the lithium-containing transition metal oxide and reduce the content of lithium carbonate. Here, as an index of the ratio of lithium carbonate to the lithium-containing transition metal oxide, the intensity ratio of the peak obtained by the X-ray diffraction method can be used. The inventor has found that the intensity ratio of the maximum diffraction peak of lithium carbonate to the maximum diffraction peak of the lithium-containing transition metal oxide is 1 / x by the X-ray diffraction method using CuKα ray as the characteristic X-ray.
It has been found that if it is less than 1000, the generation of gas can be effectively suppressed.

【0008】ここで、特性X線としてCuKα線を用い
たX線回折法によれば、リチウム含有遷移金属酸化物の
最大回折ピークは、10°<2θ<20°に単一ピーク
として現れる。一方、炭酸リチウムの最大回折ピークは
30°<2θ<35°に現れる。したがって、10°<
2θ<20°に現れる最大回折ピークに対しての、30
°<2θ<35°に現れるピークの強度の比が一定値未
満であれば、リチウム含有遷移金属酸化物中の炭酸リチ
ウムの含有量が所定値未満であると判定することができ
る。
According to the X-ray diffraction method using CuKα rays as the characteristic X-ray, the maximum diffraction peak of the lithium-containing transition metal oxide appears as a single peak at 10 ° <2θ <20 °. On the other hand, the maximum diffraction peak of lithium carbonate appears at 30 ° <2θ <35 °. Therefore, 10 ° <
30 for the maximum diffraction peak appearing at 2θ <20 °
If the ratio of the intensities of the peaks appearing at ° <2θ <35 ° is less than a certain value, it can be determined that the content of lithium carbonate in the lithium-containing transition metal oxide is less than the predetermined value.

【0009】すなわち、本発明は、リチウム含有遷移金
属酸化物を正極活物質として用いる非水電解質二次電池
であって、前記リチウム含有遷移金属酸化物は、特性X
線としてCuKα線を用いたX線回折法による最大回折
ピークを10°<2θ<20°に単一ピークとして有
し、かつ、30°<2θ<35°に存在するピークの強
度が前記最大回折ピークの強度に対して1/1000未
満であることを特徴とする。
That is, the present invention is a non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide as a positive electrode active material, wherein the lithium-containing transition metal oxide has a characteristic X
Has a maximum diffraction peak as a single peak at 10 ° <2θ <20 ° by an X-ray diffraction method using CuKα ray as a line, and the intensity of the peak present at 30 ° <2θ <35 ° is the maximum diffraction peak. The peak intensity is less than 1/1000.

【0010】ここで、リチウム含有遷移金属酸化物とし
ては、非水電解質二次電池の正極活物質として通常に用
いられるものであれば特に制限はなく、例えばリチウム
マンガン複合酸化物、リチウムニッケル複合酸化物、リ
チウムコバルト複合酸化物等が使用できる。これらの酸
化物は、いずれも特性X線としてCuKα線を用いたX
線回折法による最大回折ピークを10°<2θ<20°
に単一ピークとして有するものである。
Here, the lithium-containing transition metal oxide is not particularly limited as long as it is one usually used as a positive electrode active material of a non-aqueous electrolyte secondary battery, and examples thereof include lithium manganese composite oxide and lithium nickel composite oxide. Materials, lithium cobalt composite oxides, and the like can be used. All of these oxides are X-rays using CuKα rays as characteristic X-rays.
Maximum diffraction peak by line diffraction method is 10 ° <2θ <20 °
It has a single peak at.

【0011】これらのリチウム含有遷移金属酸化物は、
リチウム源と遷移金属源とを混合して焼成することによ
り合成される。リチウム源としては、例えば炭酸リチウ
ム、水酸化リチウム等が使用できる。また、遷移金属源
としては、例えば酸化コバルト、水酸化ニッケル、二酸
化マンガン等が使用できる。X線回折による最大回折ピ
ークに対する炭酸リチウムの最大回折ピークの強度比が
1/1000未満である生成物を得るための条件は、原
料であるリチウム源および遷移金属源の種類等により異
なり、一概に限定されないが、例えば仕込み原料中のリ
チウムと遷移金属とのモル比(リチウム/遷移金属)
を、層状のLiCoO2やLiNiO2を合成する場合に
は0.97〜1.00、スピネル型のLiMn24を合
成する場合には1.97〜2.00とし、焼成温度70
0℃〜800℃で6時間以上焼成することが好ましい。
These lithium-containing transition metal oxides are
It is synthesized by mixing a lithium source and a transition metal source and firing. As the lithium source, for example, lithium carbonate, lithium hydroxide or the like can be used. Further, as the transition metal source, for example, cobalt oxide, nickel hydroxide, manganese dioxide or the like can be used. The conditions for obtaining a product in which the intensity ratio of the maximum diffraction peak of lithium carbonate to the maximum diffraction peak by X-ray diffraction is less than 1/1000 depends on the types of the lithium source and the transition metal source that are the raw materials, and is generally Although not limited, for example, the molar ratio of lithium and transition metal in the charged raw material (lithium / transition metal)
Is 0.97 to 1.00 when synthesizing layered LiCoO 2 or LiNiO 2, and 1.97 to 2.00 when synthesizing spinel type LiMn 2 O 4 , and the firing temperature is 70.
It is preferable to bake at 0 ° C. to 800 ° C. for 6 hours or more.

【0012】[0012]

【発明の作用、及び発明の効果】本発明によれば、Cu
Kα線を用いたX線回折法による最大回折ピークが10
°<2θ<20°に単一ピークとして存在し、かつ30
°<2θ<35°に存在するピークの強度が前記最大回
折ピークの1/1000未満であるリチウム含有金属酸
化物を正極活物質とすることにより、炭酸リチウムに由
来する二酸化炭素ガスの発生を抑制し、電池の膨れや内
部抵抗の増大を防止できる非水電解質二次電池を提供で
きる。
According to the present invention, Cu
The maximum diffraction peak by the X-ray diffraction method using Kα rays is 10
Exists as a single peak at ° <2θ <20 °, and 30
Generation of carbon dioxide gas derived from lithium carbonate is suppressed by using, as a positive electrode active material, a lithium-containing metal oxide having an intensity of a peak existing at ° <2θ <35 ° of less than 1/1000 of the maximum diffraction peak. However, it is possible to provide a non-aqueous electrolyte secondary battery capable of preventing the battery from swelling and increasing the internal resistance.

【0013】[0013]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0014】<実施例1> 1.リチウム含有遷移金属酸化物の合成 1)コバルト酸リチウムの合成 Li2CO3(>99.9%)とCo34(>99.9
%)をLi/Co=1.00となるように秤量し、混合
後、750℃で大気中、12時間の焼成を行って、コバ
ルト酸リチウムを合成した。合成した試料は、自然冷却
後に大気中で冷暗所に保存した。
<Example 1> 1. Synthesis of transition metal oxide containing lithium 1) Synthesis of lithium cobalt oxide Li 2 CO 3 (> 99.9%) and Co 3 O 4 (> 99.9)
%) Was weighed so that Li / Co = 1.00, mixed, and then baked at 750 ° C. in the atmosphere for 12 hours to synthesize lithium cobalt oxide. The synthesized sample was naturally cooled and then stored in a cool and dark place in the atmosphere.

【0015】2)X線回折分析 上記1)で合成されたコバルト酸リチウムについてX線
回折分析を行った。測定に際しては、特性X線としてC
uKα線を用い、X線強度を12kW(電流300m
A,電圧40kV)とし、設定スリット幅は発散スリッ
ト(DR)、受光スリット(RS)、散乱スリット(S
S)をそれぞれ0.5°、0.5mm、0.15°に設
定した。また、試料表面とX線検出器(NaIシンチレ
ーションカウンター)間の距離は185mmとした。走
査範囲はθ−2θ法の2θで5°<2θ<80°とし、
測定ステップ数は0.02°/ステップに設定した。
2) X-ray diffraction analysis The lithium cobalt oxide synthesized in 1) above was subjected to X-ray diffraction analysis. At the time of measurement, C as characteristic X-ray
uKα ray, X-ray intensity 12kW (current 300m
A, voltage 40 kV), set slit width is divergence slit (DR), light receiving slit (RS), scattering slit (S
S) were set to 0.5 °, 0.5 mm, and 0.15 °, respectively. The distance between the sample surface and the X-ray detector (NaI scintillation counter) was 185 mm. The scanning range is 5 ° <2θ <80 ° in 2θ of the θ-2θ method,
The number of measurement steps was set to 0.02 ° / step.

【0016】2.リチウムイオン二次電池の作製 1)正極の作製 上記1.で得られたコバルト酸リチウムを正極活物質と
し、この正極活物質に対して結着剤としてポリフッ化ビ
ニリデンを、導電剤としてアセチレンブラックを重量比
87:8:5の割合で混合し、正極合剤ペーストを調製
した。このペーストを、厚さ20μmのアルミニウム箔
からなる集電体の両面に均一に塗布し、乾燥、プレスし
た後に裁断して、帯状の正極シートを作製した。
2. Preparation of Lithium Ion Secondary Battery 1) Preparation of Positive Electrode The lithium cobalt oxide obtained in step 1 was used as a positive electrode active material, and polyvinylidene fluoride as a binder and acetylene black as a conductive agent were mixed with the positive electrode active material at a weight ratio of 87: 8: 5 to prepare a positive electrode mixture. An agent paste was prepared. This paste was uniformly applied on both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried, pressed, and then cut to prepare a strip-shaped positive electrode sheet.

【0017】2)負極の作製 負極活物質としてグラファイトを、このグラファイトに
対して結着剤としてポリフッ化ビニリデンを重量比8
6:14の割合で混合し、負極合剤ペーストを調製し
た。このペーストを、厚さ10μmの銅箔からなる集電
体の両面に均一に塗布し、上記正極シートと同様の方法
により、帯状の負極シートを作製した。
2) Preparation of Negative Electrode Graphite is used as the negative electrode active material, and polyvinylidene fluoride is used as a binder with respect to this graphite in a weight ratio of 8
The mixture was mixed at a ratio of 6:14 to prepare a negative electrode mixture paste. This paste was uniformly applied to both sides of a current collector made of a copper foil having a thickness of 10 μm, and a strip-shaped negative electrode sheet was produced by the same method as that for the positive electrode sheet.

【0018】3)電解液の調製 エチレンカーボネート、およびジエチルカーボネート
を、体積比3:7の割合で混合して、非水溶媒を調製し
た。この非水溶媒に、電解質としてリチウム塩としてL
iPF6を1.2mol/lの濃度で加え、非水電解液
を調製した。
3) Preparation of Electrolyte Solution Ethylene carbonate and diethyl carbonate were mixed in a volume ratio of 3: 7 to prepare a non-aqueous solvent. In this non-aqueous solvent, L as a lithium salt as an electrolyte
iPF 6 was added at a concentration of 1.2 mol / l to prepare a non-aqueous electrolytic solution.

【0019】4)電池の作製 正極シート、ポリエチレン製のセパレータ、負極シー
ト、ポリエチレン製セパレータの順に積層したものを巻
回して発電素子を作製し、角型の電池缶に収納した。こ
の電池缶内に上記(3)で調製した電解液を充填し、絶
縁体を介した電池蓋により密閉して、周知の方法で角型
電池を組み立てた。なお、電池缶は厚さ0.2mmのア
ルミニウム板により製造され、組み立て後の電池は厚み
4.2mm、幅29mm、高さ48mmとされた。
4) Preparation of Battery A positive electrode sheet, a polyethylene separator, a negative electrode sheet, and a polyethylene separator were laminated in this order to form a power generating element, which was housed in a rectangular battery can. The battery can was filled with the electrolytic solution prepared in (3) above, and the battery can was sealed with a battery lid with an insulator interposed therebetween to assemble a rectangular battery by a known method. The battery can was made of an aluminum plate having a thickness of 0.2 mm, and the assembled battery had a thickness of 4.2 mm, a width of 29 mm, and a height of 48 mm.

【0020】3.放置試験 上記の方法で作成した電池について、600mAの定電
流で4.3Vまで充電後、4.3Vの定電圧で充電開始
から3時間まで充電を行った後、600mAの定電流で
2.75Vまで放電を行い、初期放電容量を測定した。
また、電池の内部抵抗を測定した。
3. Left test For the battery prepared by the above method, after charging to 4.3 V with a constant current of 600 mA, charging with a constant voltage of 4.3 V for 3 hours from the start of charging, 2.75 V with a constant current of 600 mA Was discharged until the initial discharge capacity was measured.
Also, the internal resistance of the battery was measured.

【0021】次いで、この電池について、600mAの
定電流で4.3Vまで充電後、4.3Vの定電圧で充電
開始から3時間まで充電を行った。充電後、この電池を
60℃の温度雰囲気下で30日間放置した。放置後の電
池について、600mAの定電流で2.75Vまで放電
を行い、残存放電容量、内部抵抗、および電池の厚みを
測定した。
Next, this battery was charged at a constant current of 600 mA to 4.3 V and then charged at a constant voltage of 4.3 V for 3 hours from the start of charging. After charging, this battery was left for 30 days under a temperature atmosphere of 60 ° C. The battery after standing was discharged to 2.75 V at a constant current of 600 mA, and the remaining discharge capacity, internal resistance, and battery thickness were measured.

【0022】<実施例2>LiOH(>99.9%)と
Ni(OH)2(>99.9%)をLi/Ni=1.0
0となるように秤量し、混合後、750℃で酸素気流
中、12時間の焼成を行って、ニッケル酸リチウムを合
成した。このニッケル酸リチウムについて、実施例1と
同様にして電池を作製し、充放電試験を行って放電容
量、内部抵抗、および電池の厚みを測定した。
Example 2 LiOH (> 99.9%) and Ni (OH) 2 (> 99.9%) were added to Li / Ni = 1.0.
It was weighed so as to be 0, mixed, and then baked at 750 ° C. in an oxygen stream for 12 hours to synthesize lithium nickelate. A battery was prepared from this lithium nickelate in the same manner as in Example 1, and a charge / discharge test was performed to measure the discharge capacity, internal resistance, and thickness of the battery.

【0023】<比較例1−1>Li2CO3とCo34
Li/Co=1.05となるように秤量した他は、実施
例1と同様の方法でコバルト酸リチウムを合成した。こ
のコバルト酸リチウムを使用して、実施例1と同様の方
法で電池を作製し、充放電試験を行って放電容量、内部
抵抗、および電池の厚みを測定した。
<Comparative Example 1-1> Lithium cobalt oxide was synthesized in the same manner as in Example 1 except that Li 2 CO 3 and Co 3 O 4 were weighed so that Li / Co = 1.05. . Using this lithium cobalt oxide, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed to measure the discharge capacity, internal resistance, and battery thickness.

【0024】<比較例1−2>焼成温度を600℃とし
た他は、実施例1と同様の方法でコバルト酸リチウムを
合成した。このコバルト酸リチウムを使用して、実施例
1と同様の方法で電池を作製し、充放電試験を行って放
電容量、内部抵抗、および電池の厚みを測定した。
<Comparative Example 1-2> Lithium cobalt oxide was synthesized in the same manner as in Example 1 except that the firing temperature was set to 600 ° C. Using this lithium cobalt oxide, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed to measure the discharge capacity, internal resistance, and battery thickness.

【0025】<比較例2−1>LiOHとNi(OH)
2をLi/Ni=1.05となるように秤量した他は、
実施例2と同様の方法でニッケル酸リチウムを合成し
た。このニッケル酸リチウムを使用して、実施例1と同
様の方法で電池を作製し、充放電試験を行って放電容
量、内部抵抗、および電池の厚みを測定した。
<Comparative Example 2-1> LiOH and Ni (OH)
2 was weighed so that Li / Ni = 1.05,
Lithium nickelate was synthesized in the same manner as in Example 2. Using this lithium nickel oxide, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed to measure the discharge capacity, internal resistance, and battery thickness.

【0026】<比較例2−2>焼成温度を600℃とし
た他は、実施例2と同様の方法でニッケル酸リチウムを
合成した。このニッケル酸リチウムを使用して、実施例
1と同様の方法で電池を作製し、充放電試験を行って放
電容量、内部抵抗、および電池の厚みを測定した。
<Comparative Example 2-2> Lithium nickelate was synthesized in the same manner as in Example 2 except that the firing temperature was set to 600 ° C. Using this lithium nickel oxide, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed to measure the discharge capacity, internal resistance, and battery thickness.

【0027】<結果と考察> 1.コバルト酸リチウム 実施例1および比較例1−1、比較例1−2において、
コバルト酸リチウムの最大回折ピークはいずれも2θ=
19°付近に現れた。また、2θ=32°付近には炭酸
リチウムに由来すると考えられる不純物のピークが現れ
た。表1には、コバルト酸リチウムの最大回折ピーク強
度Iに対する炭酸リチウムのピーク強度Iの比I
/Iを示す。
<Results and Discussion> 1. In lithium cobalt oxide Example 1 and Comparative Examples 1-1 and 1-2,
The maximum diffraction peaks of lithium cobalt oxide are 2θ =
Appeared near 19 °. Further, a peak of an impurity that is considered to be derived from lithium carbonate appeared near 2θ = 32 °. Table 1 shows the ratio I 1 of the peak intensity I 1 of lithium carbonate to the maximum diffraction peak intensity I 0 of lithium cobalt oxide.
/ I 0 is shown.

【0028】[0028]

【表1】 [Table 1]

【0029】表2には、実施例および比較例における、
放置前および放置後の電池の厚みの変化を示す。
Table 2 shows the results of Examples and Comparative Examples.
The change in battery thickness before and after leaving is shown.

【0030】[0030]

【表2】 [Table 2]

【0031】表1および表2より、ピーク強度比I
が1/1200の場合には、放置後の電池の厚みは
放置前と比べて0.9mm増大していた。この膨れは、
主として電解液の酸化および還元分解によるものと考え
られる。一方、ピーク強度比I/Iが1/500お
よび1/100の場合には、電池の厚みはそれぞれ2.
1mm、3.1mm増大していた。この膨れは、電解液
の酸化および還元分解に加え、高温で放置することによ
り正極活物質中に含まれる炭酸リチウムが酸化してガス
が発生したことによるものと考えられた。
From Tables 1 and 2, the peak intensity ratio I 1 /
When I 0 was 1/1200, the thickness of the battery after being left was increased by 0.9 mm as compared with that before being left. This bulge is
It is considered that this is mainly due to oxidation and reductive decomposition of the electrolytic solution. On the other hand, when the peak intensity ratio I 1 / I 0 is 1/500 and 1/100, the battery thickness is 2.
It was increased by 1 mm and 3.1 mm. It was considered that this swelling was due to the oxidation and reductive decomposition of the electrolytic solution and the generation of gas due to the oxidation of lithium carbonate contained in the positive electrode active material when left at high temperature.

【0032】表3には、実施例および比較例における、
放置前および放置後の電池の内部抵抗の変化を示す。
Table 3 shows the results of Examples and Comparative Examples.
The change in internal resistance of the battery before and after leaving is shown.

【0033】[0033]

【表3】 [Table 3]

【0034】表1および表3より、ピーク強度比I
が1/1200の場合には、放置後の電池の内部抵
抗は放置前と比べてその差は僅かであった。一方、ピー
ク強度比I/Iが1/500および1/100の場
合には、電池の内部抵抗はそれぞれ110mΩ、210
mΩ増大していた。
From Tables 1 and 3, the peak intensity ratio I 1 /
When I 0 was 1/1200, the difference in internal resistance of the battery after standing was small as compared with that before standing. On the other hand, when the peak intensity ratio I 1 / I 0 is 1/500 and 1/100, the internal resistance of the battery is 110 mΩ and 210, respectively.
It was increased by mΩ.

【0035】表4には、実施例および比較例における、
放置前および放置後の電池の放電容量の変化を示す。
Table 4 shows the results of Examples and Comparative Examples.
The change in discharge capacity of the battery before and after leaving is shown.

【0036】[0036]

【表4】 [Table 4]

【0037】表1および表4より、ピーク強度比I
が1/1200の場合には、放置後の電池の放電容
量は放置前と比べて50mAh低下していた。一方、ピ
ーク強度比I/Iが1/500および1/100の
場合には、電池の放電容量はそれぞれ200mAh、3
00mAh低下していた。
From Tables 1 and 4, the peak intensity ratio I 1 /
When I 0 was 1/1200, the discharge capacity of the battery after being left was 50 mAh lower than that before being left. On the other hand, when the peak intensity ratio I 1 / I 0 is 1/500 and 1/100, the discharge capacity of the battery is 200 mAh and 3 respectively.
It was decreased by 00 mAh.

【0038】2.ニッケル酸リチウム 実施例2および比較例2−1、比較例2−2において、
ニッケル酸リチウムの最大回折ピークはいずれも2θ=
19°付近に現れた。また、2θ=32°付近には炭酸
リチウムに由来すると考えられる不純物のピークが現れ
た。表5には、ニッケル酸リチウムの最大回折ピーク強
度Iに対する炭酸リチウムのピーク強度Iの比I
/Iを示す。
2. Lithium nickelate Example 2 and Comparative Examples 2-1 and 2-2,
The maximum diffraction peak of lithium nickelate is 2θ =
Appeared near 19 °. Further, a peak of an impurity that is considered to be derived from lithium carbonate appeared near 2θ = 32 °. Table 5 shows the ratio I 1 of the peak intensity I 1 of lithium carbonate to the maximum diffraction peak intensity I 0 of lithium nickelate.
/ I 0 is shown.

【0039】[0039]

【表5】 [Table 5]

【0040】表6には、実施例2および比較例2−1、
比較例2−2における、放置前および放置後の電池の厚
みの変化を示す。
In Table 6, Example 2 and Comparative Example 2-1,
The change in the thickness of the battery before and after leaving in Comparative Example 2-2 is shown.

【0041】[0041]

【表6】 [Table 6]

【0042】表5および表6より、ピーク強度比I
が1/1100の場合には、放置後の電池の厚みは
放置前と比べて僅かであった。一方、ピーク強度比I
/I が1/600および1/100の場合には、電池
の厚みは大きく増大しており、コバルト酸リチウムの場
合と同様に、正極活物質中に含まれる炭酸リチウムが酸
化してガスが発生したと考えられた。
From Table 5 and Table 6, the peak intensity ratio I1/
I0When is 1/1100, the thickness of the battery after standing is
It was a little compared with before leaving. On the other hand, the peak intensity ratio I1
/ I 0Is 1/600 and 1/100, the battery
The thickness of the
In the same manner as in the case of lithium carbonate, the lithium carbonate contained in the positive electrode active material
It was thought that the gas had evolved into gas.

【0043】表7には、実施例2および比較例2−1、
比較例2−2における、放置前および放置後の電池の内
部抵抗の変化を示す。
In Table 7, Example 2 and Comparative Example 2-1,
The change in the internal resistance of the battery before and after leaving in Comparative Example 2-2 is shown.

【0044】[0044]

【表7】 [Table 7]

【0045】表5および表7より、電池の内部抵抗につ
いても、コバルト酸リチウムの場合と同様、ピーク強度
比I/Iが1/1100の場合にはその差は僅かで
あったが、ピーク強度比I/Iが1/600および
1/100の場合には大きく増大していた。
From Tables 5 and 7, the difference in the internal resistance of the battery was small when the peak intensity ratio I 1 / I 0 was 1/1100, as in the case of lithium cobalt oxide. When the peak intensity ratio I 1 / I 0 was 1/600 and 1/100, it was greatly increased.

【0046】表8には、実施例2および比較例2−1、
比較例2−2における、放置前および放置後の電池の放
電容量の変化を示す。
In Table 8, Example 2 and Comparative Example 2-1,
The change in the discharge capacity of the battery before and after leaving in Comparative Example 2-2 is shown.

【0047】[0047]

【表8】 [Table 8]

【0048】表5および表8より、放電容量について
も、コバルト酸リチウムの場合と同様、ピーク強度比I
/Iが1/1100の場合には、その低下は僅かで
あったが、ピーク強度比I/Iが1/600および
1/100の場合には大きく低下していた。
From Tables 5 and 8, as for the discharge capacity, the peak intensity ratio I is the same as in the case of lithium cobalt oxide.
When 1 / I 0 was 1/1100, the decrease was slight, but when the peak intensity ratio I 1 / I 0 was 1/600 and 1/100, the decrease was large.

【0049】以上の結果から明らかなように、X線回折
による最大回折ピークに対する炭酸リチウムの最大回折
ピークの強度比I/Iが1/1000未満であるコ
バルト酸リチウム、またはニッケル酸リチウムを正極活
物質として使用することにより、ガスの発生による電池
の膨れや内部抵抗の増大を抑制し、良好な放電特性を備
えた電池を提供することができる。
As is clear from the above results, lithium cobalt oxide or lithium nickel oxide in which the intensity ratio I 1 / I 0 of the maximum diffraction peak of lithium carbonate to the maximum diffraction peak by X-ray diffraction is less than 1/1000 is used. By using it as a positive electrode active material, it is possible to provide a battery having good discharge characteristics by suppressing swelling of the battery and increase in internal resistance due to generation of gas.

【0050】なお、本発明の技術的範囲は、上記した実
施形態によって限定されるものではなく、均等の範囲に
まで及ぶものである。
The technical scope of the present invention is not limited to the above-described embodiment, but extends to an equivalent range.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AJ06 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 DJ16 DJ17 HJ13 5H050 AA07 AA12 BA17 CA07 CA08 CB08 FA05 FA17 FA19 HA13   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ05 AJ06 AK03 AL07 AM03                       AM05 AM07 BJ02 BJ14 DJ16                       DJ17 HJ13                 5H050 AA07 AA12 BA17 CA07 CA08                       CB08 FA05 FA17 FA19 HA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有遷移金属酸化物を正極活物
質として用いる非水電解質二次電池であって、 前記リチウム含有遷移金属酸化物は、特性X線としてC
uKα線を用いたX線回折法による最大回折ピークを1
0°<2θ<20°に単一ピークとして有し、かつ、3
0°<2θ<35°に存在するピークの強度が前記最大
回折ピークの強度に対して1/1000未満であること
を特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide as a positive electrode active material, wherein the lithium-containing transition metal oxide is C as characteristic X-rays.
The maximum diffraction peak by the X-ray diffraction method using uKα ray is 1
It has a single peak at 0 ° <2θ <20 °, and 3
A non-aqueous electrolyte secondary battery, wherein the intensity of the peak existing at 0 ° <2θ <35 ° is less than 1/1000 of the intensity of the maximum diffraction peak.
【請求項2】 前記リチウム含有遷移金属酸化物がリチ
ウムニッケル複合酸化物であることを特徴とする請求項
1に記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium-containing transition metal oxide is a lithium nickel composite oxide.
JP2001337584A 2001-11-02 2001-11-02 Nonaqueous electrolyte secondary battery Pending JP2003142093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337584A JP2003142093A (en) 2001-11-02 2001-11-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337584A JP2003142093A (en) 2001-11-02 2001-11-02 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003142093A true JP2003142093A (en) 2003-05-16

Family

ID=19152193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337584A Pending JP2003142093A (en) 2001-11-02 2001-11-02 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003142093A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117383A (en) * 2009-01-29 2009-05-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
US7674553B2 (en) * 2004-02-17 2010-03-09 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
JP2010076963A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel-containing composite oxide
WO2011054441A1 (en) 2009-11-05 2011-05-12 Umicore Core-shell lithium transition metal oxides
WO2011054440A1 (en) 2009-11-05 2011-05-12 Umicore Double-shell core lithium nickel manganese cobalt oxides

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674553B2 (en) * 2004-02-17 2010-03-09 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
US7695869B2 (en) 2004-02-17 2010-04-13 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
US7790318B2 (en) 2004-02-17 2010-09-07 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and method of preparing same
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2010076963A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel-containing composite oxide
JP2009117383A (en) * 2009-01-29 2009-05-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2011054441A1 (en) 2009-11-05 2011-05-12 Umicore Core-shell lithium transition metal oxides
WO2011054440A1 (en) 2009-11-05 2011-05-12 Umicore Double-shell core lithium nickel manganese cobalt oxides
US8852452B2 (en) 2009-11-05 2014-10-07 Umicore Core-shell lithium transition metal oxides
US9614226B2 (en) 2009-11-05 2017-04-04 Umicore Double-shell core lithium nickel manganese cobalt oxides

Similar Documents

Publication Publication Date Title
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
RU2546654C1 (en) Accumulator battery
JP7215423B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3067531B2 (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using the same
JP3873717B2 (en) Positive electrode material and battery using the same
JP7060776B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002151076A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3529750B2 (en) Non-aqueous electrolyte secondary battery
JP2006252940A (en) Lithium secondary battery and manufacturing method of lithium manganate
JPWO2003088382A1 (en) Non-aqueous electrolyte secondary battery
US20160344064A1 (en) Wound electrode group and nonaqueous electrolyte battery
JP2001176546A (en) Film-sheathed non-aqueous electrolyte secondary batatery
JP2000100434A (en) Lithium secondary battery
WO2015045254A1 (en) Lithium-titanium compound oxide
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP2003142093A (en) Nonaqueous electrolyte secondary battery
JP2004362934A (en) Positive electrode material and battery
JP3497420B2 (en) Lithium secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN107437618B (en) Electrochemical device
JP3776230B2 (en) Lithium secondary battery
JP2006156234A (en) Nonaqueous electrolyte secondary battery and its charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626