JP2003132529A - Holder for magnetic disc base plate - Google Patents

Holder for magnetic disc base plate

Info

Publication number
JP2003132529A
JP2003132529A JP2001325385A JP2001325385A JP2003132529A JP 2003132529 A JP2003132529 A JP 2003132529A JP 2001325385 A JP2001325385 A JP 2001325385A JP 2001325385 A JP2001325385 A JP 2001325385A JP 2003132529 A JP2003132529 A JP 2003132529A
Authority
JP
Japan
Prior art keywords
magnetic disk
substrate
clamper
glass substrate
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325385A
Other languages
Japanese (ja)
Inventor
Norihiko Nakajima
典彦 中島
Kenta Ito
健太 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Fuji Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001325385A priority Critical patent/JP2003132529A/en
Publication of JP2003132529A publication Critical patent/JP2003132529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machining method of a magnetic disc base plate to manufacture a magnetic recording disc medium base plate which can make high density recording at a low cost without damaging the data recording surface when grinding the edges while simplifying the next following processes. SOLUTION: For a holder having a table and a clamper to hold a magnetic disc base plate to rotate when machining the edges of the plate, this invention is characterized in that the above table and the clamper are plated 0.5 μm thick or thicker and 20 μm thick or thinner on the surfaces where they touch the base plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスク記憶装
置に使用される磁気ディスク用ガラス基板の製造工程に
用いる基板把持具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate gripping tool used in a manufacturing process of a glass substrate for a magnetic disk used in a magnetic disk storage device.

【0002】[0002]

【従来の技術】従来、磁気ディスク用基板としては、ア
ルミニウム製基板やガラス製基板が知られている。アル
ミニウム製基板においては、データ面となる表面に無電
解Niめっきが施され、研磨仕上げが行われる。また、
ガラス製基板においては、ガラス基板の最終厚さの約2
倍の厚さのガラス原盤の両面を所定の表面粗さと平行度
とを有する様に、ポリッシング加工やラッピング加工を
施して最終厚さのガラス製基板を得るようにしている。
さらに、このようなラッピング加工やポリッシング加工
を省略するか、若しくは軽ポリッシングで済むようにし
て、工程を大幅に短縮し、高精度基板を安価に製造する
ためのプレス成形法が知られている。例えば、特開平1
0−231129号公報、特開平11−92159号公
報に開示されているような、軟化ガラスを精密成形型を
用いて、一回で成形して研磨工程を無くすか、若しくは
軽微に出来るような磁気ディスク用ガラス基板のモール
ドプレス成形法がある。これらの方法は、いずれもモー
ルドプレスによって磁気ディスク用基板の超平坦面を一
回で成形することによって、ラッピング加工やポリッシ
ング加工を省略しようとするものである。
2. Description of the Related Art Conventionally, aluminum substrates and glass substrates have been known as magnetic disk substrates. On the aluminum substrate, the surface serving as the data surface is electroless Ni plated and polished. Also,
For glass substrates, the final thickness of the glass substrate is about 2
A glass substrate having a final thickness is obtained by performing a polishing process or a lapping process on both surfaces of a glass master having a double thickness so as to have predetermined surface roughness and parallelism.
Further, there is known a press molding method for omitting the lapping process or the polishing process or only by performing the light polishing, thereby significantly shortening the process and manufacturing the high precision substrate at a low cost. For example, JP-A-1
No. 0-231129 and Japanese Patent Application Laid-Open No. 11-92159, the softened glass is molded in a single time using a precision molding die so that the polishing step can be eliminated or the magnetism can be reduced. There is a mold press molding method for a glass substrate for disks. In all of these methods, the lapping process and the polishing process are omitted by molding the ultra-flat surface of the magnetic disk substrate at once with a mold press.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年におい
て、磁気ディスク装置は、急激な高記憶密度化が進んで
いる。磁気ディスク装置は高速回転する記憶媒体(ディ
スク)上を、ヘッドを僅かに浮上させて走査させること
によってランダムアクセスを実現しているが、高記憶密
度と高速アクセスとを両立させるためには、磁気ディス
ク回転数を上げるとともに、磁気ディスクとヘッドの間
隔(ヘッド浮上量)を小さくすることが要求される。
By the way, in recent years, magnetic disk devices have been rapidly increasing in storage density. A magnetic disk device realizes random access by moving a head slightly above a storage medium (disk) that rotates at high speed to perform scanning, but in order to achieve both high storage density and high speed access, It is required to increase the disk rotation speed and reduce the distance between the magnetic disk and the head (head flying height).

【0004】そのため、磁気ディスク用ガラス基板に
は、高速回転を可能にする真円度および内外径の同心度
等の高い形状精度とヘッド浮上を妨げない超平坦で欠陥
の無いデータ記憶面が求められる。このような真円度、
同心度を高精度に出すためには、ダイヤモンド回転砥石
による端面研削加工を行なうのが一般的である。しか
し、この時に磁気ディスク用基板にブレや変形があると
所望の形状精度が得られず、またチッピングが発生する
ので、端面研削加工は、図2に示すように、磁気ディス
ク用基板の上下全面をテーブルとクランパーで狭持して
固定したり、図3に示す様に片面をテーブルに吸引固定
して行なわれるのが一般的である。
Therefore, the glass substrate for a magnetic disk is required to have a high shape accuracy such as a roundness and a concentricity of inner and outer diameters which enables high-speed rotation and an ultra-flat and defect-free data storage surface which does not hinder the head flying. To be Roundness like this,
In order to obtain the concentricity with high accuracy, it is general to perform end face grinding with a diamond rotary grindstone. However, if the magnetic disk substrate is shaken or deformed at this time, the desired shape accuracy cannot be obtained, and chipping occurs. Therefore, as shown in FIG. 2, the end surface grinding process is performed on the entire upper and lower surfaces of the magnetic disk substrate. It is generally carried out by sandwiching and fixing with a table and a clamper, or by suction-fixing one side to the table as shown in FIG.

【0005】しかしながら、かかる端面研削加工方法に
おいては、テーブルやクランパーと基板との間にパーテ
ィクルや切粉が侵入するおそれがあり、端面研削加工時
にデータ面にキズが発生してしまう。
However, in such an end surface grinding method, particles and chips may enter between the table and the clamper and the substrate, resulting in scratches on the data surface during the end surface grinding processing.

【0006】このようにデータ面にキズが発生すると、
その後の工程においてキズの除去が必要となり、工数を
増大させるという問題が生じる。特に、研磨工程の省略
を図ったモールドプレス成形法においては、この端面研
削加工時のデータ面のキズの発生は、その後の研磨工程
が必要となり、工程短縮の効果が半減することになる。
When the data surface is damaged as described above,
It is necessary to remove the scratches in the subsequent steps, which causes a problem of increasing the number of steps. In particular, in the mold press molding method in which the polishing step is omitted, the occurrence of scratches on the data surface during the end surface grinding process requires a subsequent polishing step, and the effect of shortening the step is halved.

【0007】本発明の目的は、かかる従来の問題を解決
し、端面研削加工時におけるデータ面へのキズの発生を
防止し、後工程を簡略化できると共に高記憶密度の磁気
ディスク記憶媒体を廉価に製造できる磁気ディスク用基
板の加工方法を提供することにある。
An object of the present invention is to solve the above conventional problems, prevent the occurrence of scratches on the data surface during end face grinding, simplify the post-process, and reduce the cost of a magnetic disk storage medium having a high storage density. Another object of the present invention is to provide a method for processing a magnetic disk substrate that can be manufactured.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の基板把持具は、磁気ディスク用基板の端面加工を行
う際、該基板を保持する基板把持具において、該磁気デ
ィスク用基板を回転可能に挟持するテーブル及びクラン
パーを備え、前記磁気ディスク用基板と前記テーブル及
び前記クランパーとの接触面に厚さ0.5μm以上20
μm以下の無電解Niめっきを施したことを特徴とす
る。
A substrate gripping tool of the present invention that achieves the above-mentioned object rotates a magnetic disk substrate in a substrate gripping tool that holds the substrate when processing the end surface of the magnetic disk substrate. A table and a clamper that are sandwiched between the magnetic disk substrate and the table and the clamper are provided.
It is characterized in that electroless Ni plating of μm or less is applied.

【0009】また、本発明の基板把持具は、前記接触面
の中心線平均表面粗さが、0.02μm以上0.2μm
以下であることを特徴とする。
Further, in the substrate gripping tool of the present invention, the center line average surface roughness of the contact surface is 0.02 μm or more and 0.2 μm or more.
It is characterized by the following.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面を用いて説明する。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0011】図1において、1は磁気ディスク用基板で
あり、本実施の形態では、モールドプレス成形法を用い
て成形されたガラス基板であり、データ面として上面1
t及び下面1bを有している。磁気ディスク用基板1
は、さらに中心孔を形成する内周端面1iと外周を形成
する外周端面1oとを有している。
In FIG. 1, reference numeral 1 denotes a magnetic disk substrate, and in the present embodiment, a glass substrate molded by a mold press molding method, and an upper surface 1 as a data surface.
t and the lower surface 1b. Magnetic disk substrate 1
Further has an inner peripheral end face 1i forming a center hole and an outer peripheral end face 1o forming an outer periphery.

【0012】図2は端面加工機10の概略を示したもの
であり、基板の中心軸回りに回転可能なように駆動源
(不図示)に取り付けられたテーブル12の上面に磁気
ディスク用基板1の下面1bを載置し、該磁気ディスク
用基板1の上面1tには、クランパー14が載置され、
テーブル12の上面及びクランパー14の下面により、
磁気ディスク用基板1は、基板中心にて回転可能に保持
される。
FIG. 2 shows an outline of the end surface processing machine 10. The magnetic disk substrate 1 is mounted on the upper surface of a table 12 mounted on a drive source (not shown) so as to be rotatable about the central axis of the substrate. The lower surface 1b of the magnetic disk substrate 1 is mounted, and the clamper 14 is mounted on the upper surface 1t of the magnetic disk substrate 1.
By the upper surface of the table 12 and the lower surface of the clamper 14,
The magnetic disk substrate 1 is rotatably held around the substrate center.

【0013】磁気ディスク用基板1の内周端面1iに
は、内周端面研削砥石15が対向して配置され、同様に
外周端面1oには、外周端面研削砥石16が対向して配
置されている。なお、テーブル12とクランパー14と
は保持を確実にし、高精度な研削加工を実現すべく工具
鋼やステンレス材等の金属で構成されている。さらに、
テーブル12とクランパー14の磁気ディスク用基板1
との接触面には、0.5μm以上で20μm以下の無電
解Niめっきが施されている。好ましくは、2μm以上
で5μm以下の厚さの無電解Niめっきである。この無
電解Niめっきは、次亜燐酸ナトリウムを還元剤とする
通称カニゼンめっきである。
The inner peripheral end surface 1i of the magnetic disk substrate 1 is arranged with the inner peripheral end surface grinding wheel 15 facing it, and similarly, the outer peripheral end surface 1o is arranged with the outer peripheral end surface grinding wheel 16 facing it. . The table 12 and the clamper 14 are made of metal such as tool steel or stainless material in order to ensure the holding and realize highly accurate grinding. further,
Magnetic disk substrate 1 of table 12 and clamper 14
The contact surface with is plated with electroless Ni having a thickness of 0.5 μm or more and 20 μm or less. Preferably, the electroless Ni plating has a thickness of 2 μm or more and 5 μm or less. This electroless Ni plating is so-called Kanigen plating using sodium hypophosphite as a reducing agent.

【0014】このように構成された磁気ディスク用基板
の端面加工機10においては、磁気ディスク用基板1が
テーブル12の上面とクランパー14の下面との間に挟
持され、基板の中心軸回りに回転し、その内周端面1i
および外周端面1oが、それぞれ、内周端面研削砥石1
5及び外周端面研削砥石16で研削加工される。ここ
で、無電解Niめっき面には鋭角な突起が存在せず、挟
持するガラス面にキズを発生させることがない。また、
無電解Niめっきは硬度が高くテーブルやクランパーに
キズがつき難い。キズを発生させない効果を得るために
は、無電解Niめっきの厚さを0.5μm以上とする必
要があり、また、表面精度等を考慮すると20μm以下
が望ましい。さらに、好ましくは、表1に示されるよう
に、2μm以上5μm以下のめっき厚さが望ましい。
In the magnetic disk substrate end surface processing machine 10 thus constructed, the magnetic disk substrate 1 is sandwiched between the upper surface of the table 12 and the lower surface of the clamper 14 and rotated about the central axis of the substrate. And its inner peripheral end face 1i
And the outer peripheral end face 1o are respectively the inner peripheral end face grinding wheel 1
5 and the outer peripheral end face grinding wheel 16 are ground. Here, there are no sharp projections on the electroless Ni-plated surface, and scratches do not occur on the sandwiched glass surface. Also,
The electroless Ni plating has high hardness and is less likely to be scratched on the table or clamper. The thickness of the electroless Ni plating needs to be 0.5 μm or more in order to obtain the effect of not generating scratches, and is preferably 20 μm or less in consideration of the surface accuracy and the like. Further, as shown in Table 1, it is preferable that the plating thickness is 2 μm or more and 5 μm or less.

【0015】無電解Niめっき後の中心線平均表面粗さ
(Ra)を0.02μm〜0.2μmとすると、ガラス
の実接触面積が十分に小さくかつ微細な凸部に荷重が十
分に分散するので、切粉等の噛み込みによるキズ発生頻
度を小さくできる。中心線平均表面粗さ(Ra)が、
0.02μmより小さいと切粉を噛み込んだ場合、切粉
がガラス面に食い込んでシェルクラック状のキズを発生
させる。また、中心線平均表面粗さ(Ra)が、0.2
μmより大きいと、無電解Niめっきが施されていて
も、テーブルやクランパーの凸部に荷重が集中してしま
いガラスに食い込んでキズを発生させてしまう。
When the center line average surface roughness (Ra) after electroless Ni plating is 0.02 μm to 0.2 μm, the actual contact area of the glass is sufficiently small and the load is sufficiently dispersed on the fine convex portions. Therefore, it is possible to reduce the frequency of occurrence of scratches due to biting of chips and the like. The center line average surface roughness (Ra) is
When the particle size is smaller than 0.02 μm, when the chip is bitten, the chip bites into the glass surface to generate shell crack-like scratches. The center line average surface roughness (Ra) is 0.2
If it is larger than μm, even if electroless Ni plating is applied, the load is concentrated on the convex portions of the table and the clamper, and the load bites into the glass to cause scratches.

【0016】以下に、本発明を適用した具体的な実施例
について詳細に説明する。
Specific examples to which the present invention is applied will be described in detail below.

【0017】[実施例1]厚さ1μm、表面粗さRa=
0.3μmの無電解Niめっきを施したステンレス製テ
ーブル及びクランパーを、ガラス基板端面加工機(中村
留精密工業製:NFC−50)に取り付けて、表面粗さ
Ra=2nmのアルミノシリケート系ガラス基板を内径
20mm、外径65mmのドーナツ盤形状に端面加工を
行なった。
[Example 1] Thickness 1 μm, surface roughness Ra =
A 0.3 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end face processing machine (NFC-50 manufactured by Nakamuradome Precision Co., Ltd.), and an aluminosilicate glass substrate with a surface roughness Ra = 2 nm was attached. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0018】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate subjected to the grinding process was polished and finished by using cerium abrasive grains.

【0019】さらにその後、両研磨装置とセリウム砥粒
を用いて加工厚さ10〜20nm程度の軽ポリッシング
加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm by using both polishing devices and cerium abrasive grains to obtain a surface of Ra = 0.3 nm or less.

【0020】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the abrasive grains and powders, a laser-type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0021】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁生層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して磁気ディスク記憶媒体とし、R/W
テスタ、GHTテスタを用いてエラー数及び浮上量10
nmでのヘッドヒット数(GHT)を測定した。
After that, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt-based magnetism layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine-based liquid lubricant is applied by a dip coating method. R / W by applying it as a magnetic disk storage medium
Number of errors and flying height 10 using tester and GHT tester
The number of head hits (nm) in nm was measured.

【0022】[実施例2]厚さ2μm、表面粗さRa=
0.2μmの無電解Niめっきを施したステンレス製テ
ーブル及びクランパーを、ガラス基板端面加工機(中村
留精密工業製:NFC−50)に取り付けて、表面粗さ
Ra=2nmのアルミノシリケート系ガラス基板を内径
20mm、外径65mmのドーナツ盤形状に端面加工を
行なった。
Example 2 Thickness 2 μm, surface roughness Ra =
A 0.2 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end surface processing machine (NFC-50 manufactured by Nakamuradome Precision Co., Ltd.), and an aluminosilicate glass substrate with a surface roughness Ra = 2 nm was used. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0023】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate that was ground was polished and finished using cerium abrasive grains.

【0024】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing machine and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0025】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the abrasive grains and powders, a laser-type defect analyzer (System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect the entire surface for defects. Was done.

【0026】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
Thereafter, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt-based magnetic layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine-based liquid lubricant is applied by a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0027】[実施例3]厚さ3μm、表面粗さRa=
0.1μmの無電解Niめっきを施したステンレス製テ
ーブル及びクランパーを、ガラス基板端面加工機(中村
留精密工業製:NFC−50)に取り付けて、表面粗さ
Ra=2nmのアルミノシリケート系ガラス基板を内径
20mm、外径65mmのドーナツ盤形状に端面加工を
行なった。
[Embodiment 3] Thickness 3 μm, surface roughness Ra =
A 0.1 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate edge processing machine (NFC-50 manufactured by NakamuraTome Precision Co., Ltd.), and an aluminosilicate glass substrate with a surface roughness Ra = 2 nm was used. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0028】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate which had been ground was polished and finished by using cerium abrasive grains.

【0029】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing machine and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0030】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the polishing abrasive grains and polishing powder, a full-scale inspection of surface defects is carried out by using a laser type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more. Was done.

【0031】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘツドヒット数(GHT)を測定した。
Thereafter, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt-based magnetic layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine-based liquid lubricant is applied by a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0032】[実施例4]厚さ5μm、表面粗さRa=
0.03μmの無電解Niめっきを施したステンレス製
テーブル及びクランパーを、ガラス基板端面加工機(中
村留精密工業製:NFC−50)に取り付けて、表面粗
さRa=2nmのアルミノシリケート系ガラス基板を内
径20mm、外径65mmのドーナツ盤形状に端面加工
を行なった。
[Embodiment 4] Thickness 5 μm, surface roughness Ra =
A 0.03 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end face processing machine (NFC-50 manufactured by NakamuraTome Precision Co., Ltd.), and an aluminosilicate glass substrate with a surface roughness Ra = 2 nm. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0033】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate that had been ground was polished and finished using cerium abrasive grains.

【0034】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing apparatus and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0035】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After the polishing abrasive grains and polishing powder are completely washed and removed, a laser-type defect analyzer (System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect the entire surface for defects. Was done.

【0036】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
After that, a Ni--Al underlayer, a Cr underlayer, a Co--Cr--Pt type magnetic layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine type liquid lubricant is applied by a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0037】[実施例5]厚さ3μm、表面粗さRa=
0.02μmの無電解Niめっきを施したステンレス製
テーブル及びクランパーを、ガラス基板端面加工機(中
村留精密工業製:NFC−50)に取り付けて、表面粗
さRa=2nmのアルミノシリケート系ガラス基板を内
径20mm、外径65mmのドーナツ盤形状に端面加工
を行なった。
[Embodiment 5] Thickness 3 μm, surface roughness Ra =
A 0.02 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end surface processing machine (NFC-50 manufactured by NakamuraTome Precision Industry Co., Ltd.), and an aluminosilicate glass substrate having a surface roughness Ra = 2 nm. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0038】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate that had been ground was polished and finished by using cerium abrasive grains.

【0039】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing machine and cerium abrasive grains to obtain a surface having Ra = 0.3 nm or less.

【0040】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After the polishing abrasive grains and polishing powder are completely washed and removed, a laser-type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0041】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
Thereafter, a Ni--Al underlayer, a Cr underlayer, a Co--Cr--Pt type magnetic layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine type liquid lubricant is applied by a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0042】[実施例6]厚さ2μm、表面粗さRa=
0.005μmの無電解Niめっきを施したステンレス
製テーブル及びクランパーを、ガラス基板端面加工機
(中村留精密工業製:NFC−50)に取り付けて、表
面粗さRa=2nmのアルミノシリケート系ガラス基板
を内径20mm、外径65mmのドーナツ盤形状に端面
加工を行なった。
[Embodiment 6] Thickness 2 μm, surface roughness Ra =
A 0.005 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end surface processing machine (NFC-50 manufactured by Nakamuradome Precision Co., Ltd.), and an aluminosilicate glass substrate having a surface roughness Ra = 2 nm. The end surface was processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0043】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
Thereafter, the end surface of the glass substrate that had been ground was polished and finished using cerium abrasive grains.

【0044】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing apparatus and cerium abrasive grains to obtain a surface having Ra = 0.3 nm or less.

【0045】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the abrasive grains and particles, a laser-type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0046】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
Thereafter, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt based magnetic layer, and a C protective layer are sequentially formed by using a sputtering method, and a fluorine-based liquid lubricant is applied by using a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0047】[比較例1]厚さ0.3μm、表面粗さR
a=0.3μmの無電解Niめっきを施したステンレス
製テーブル及びクランパーを、ガラス基板端面加工機
(中村留精密工業製:NFC−50)に取り付けて、表
面粗さRa=2nmのアルミノシリケート系ガラス基板
を内径20mm、外径65mmのドーナツ盤形状に端面
加工を行なった。
[Comparative Example 1] Thickness 0.3 μm, surface roughness R
a = 0.3 μm electroless Ni-plated stainless steel table and clamper were attached to a glass substrate end face processing machine (NFC-50 manufactured by Nakamura Tome Precision Industry Co., Ltd.), and an aluminosilicate system with a surface roughness Ra = 2 nm was used. The glass substrate was end-face processed into a donut shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0048】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate that had been ground was polished and finished by using cerium abrasive grains.

【0049】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing machine and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0050】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the abrasive grains and powders, a laser-type defect analyzer (System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0051】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁生層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
After that, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt-based magnetism layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine-based liquid lubricant is applied by a dip coating method. R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0052】[比較例2]厚さ0.3μm、表面粗さR
a=0.03μmの無電解Niめっきを施したステンレ
ス製テーブル及びクランパーを、ガラス基板端面加工機
(中村留精密工業製:NFC−50)に取り付けて、表
面粗さRa=2nmのアルミノシリケート系ガラス基板
を内径20mm、外径65mmのドーナツ盤形状に端面
加工を行なった。
[Comparative Example 2] Thickness 0.3 μm, surface roughness R
A stainless steel table and clamper with electroless Ni plating of a = 0.03 μm were attached to a glass substrate end surface processing machine (NFC-50 manufactured by Nakamura Tome Precision Co., Ltd.), and an aluminosilicate system with a surface roughness Ra = 2 nm was used. The glass substrate was end-face processed into a donut shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0053】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate which had been ground was polished and finished by using cerium abrasive grains.

【0054】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing apparatus and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0055】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the polishing abrasive grains and polishing powder, a laser-type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0056】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
Thereafter, a Ni-Al underlayer, a Cr underlayer, a Co-Cr-Pt magnetic layer, and a C protective layer are sequentially formed by using a sputtering method, and a fluorine-based liquid lubricant is applied by using a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0057】[比較例3]表面粗さRa=0.1μmの
無電解Niめっき無しのステンレス製テーブル及びクラ
ンパーを、ガラス基板端面加工機(中村留精密工業製:
NFC−50)に取り付けて、表面粗さRa=2nmの
アルミノシリケート系ガラス基板を内径20mm、外径
65mmのドーナツ盤形状に端面加工を行なった。
[Comparative Example 3] A stainless steel table and a clamper having a surface roughness Ra of 0.1 μm without electroless Ni plating were mounted on a glass substrate end surface processing machine (Nakamura Tome Precision Industry Co., Ltd .:
NFC-50), and an aluminosilicate glass substrate having a surface roughness Ra = 2 nm was end-face processed into a donut disk shape having an inner diameter of 20 mm and an outer diameter of 65 mm.

【0058】その後、研削加工したガラス基板端面をセ
リウム砥粒を用いて研磨仕上げを行なった。
After that, the end surface of the glass substrate that had been ground was polished and finished by using cerium abrasive grains.

【0059】さらにその後、両面研磨装置とセリウム砥
粒を用いて加工厚さ10〜20nm程度の軽ポリッシン
グ加工を行ない、Ra=0.3nm以下の表面とした。
After that, light polishing was performed to a processing thickness of about 10 to 20 nm using a double-sided polishing machine and cerium abrasive grains to obtain a surface with Ra = 0.3 nm or less.

【0060】研磨砥粒と研磨粉を完全に洗浄除去した後
に、0.5μm以上の欠陥及び付着物を検出できるレー
ザー式欠陥解析装置(システム精工製:SDA)を用い
て、表面欠陥の全面検査を行なった。
After completely cleaning and removing the polishing abrasive grains and polishing powder, a laser-type defect analysis device (manufactured by System Seiko: SDA) capable of detecting defects and deposits of 0.5 μm or more is used to inspect all surface defects. Was done.

【0061】その後スパッタ法を用いて、Ni−Al下
地層、Cr下地層、Co−Cr−Pt系磁性層、C保護
層を順次形成し、ディップコート法を用いてフッ素系液
体潤滑剤を塗布して、磁気ディスク記憶媒体とし、R/
Wテスタ、GHTテスタを用いてエラー数及び浮上量1
0nmでのヘッドヒット数(GHT)を測定した。
Thereafter, a Ni—Al underlayer, a Cr underlayer, a Co—Cr—Pt type magnetic layer, and a C protective layer are sequentially formed by a sputtering method, and a fluorine type liquid lubricant is applied by a dip coating method. As a magnetic disk storage medium, and R /
Number of errors and flying height 1 using W tester and GHT tester
The number of head hits (GHT) at 0 nm was measured.

【0062】[評価]表面欠陥数10個/面以下、エラ
ー数20個/面以下、GHT5個以下を合格(○)とし
た。
[Evaluation] The number of surface defects was 10 or less, the number of errors was 20 or less, and the number of GHT was 5 or less was passed (◯).

【0063】実施例1乃至6は、端面研削加工時のキズ
が発生しづらいことから、エラー及びGHT特性の優れ
た磁気記録媒体とすることができた。特に実施例2、実
施例3、実施例4、実施例5は、基板把持具の表面粗さ
をRa=0.02μm以上0.2μm以下としたことに
より、端面加工時のキズが全く発生せず、表面欠陥数1
個/面以下、エラー5個/面以下、GHT1個以下と非
常に優れた特性を示した。
In Examples 1 to 6, since scratches were less likely to occur during the end surface grinding process, magnetic recording media having excellent error and GHT characteristics could be obtained. Particularly, in Examples 2, 3, 4, and 5, since the surface roughness of the substrate gripping tool was set to Ra = 0.02 μm or more and 0.2 μm or less, no scratch was generated during the end face processing. No, the number of surface defects is 1
It showed very excellent characteristics such as less than 1 piece / face, less than 5 errors / face, and less than 1 GHT.

【0064】これに対して、比較例1、比較例2、比較
例3は無電解Niめっきの厚さが薄いため或いは無電解
Niめっきが無いために、クランプ治具面のバリ等が残
っていて、ガラス基板にキズが発生してしまい、エラー
及びGHT特性を悪化させてしまう。
On the other hand, in Comparative Examples 1, 2, and 3, since the electroless Ni plating is thin or there is no electroless Ni plating, burrs and the like on the clamp jig surface remain. As a result, scratches occur on the glass substrate, degrading errors and GHT characteristics.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【発明の効果】以上の説明から明らかなように本発明に
よれば、端面研削加工時にチャックキズが発生しないこ
とから、端面研削加工後、ラッピング加工無しでポリッ
シング工程を省略するか、若しくは軽ポリッシングで済
む。これにより、工程が大幅に減少でき、高記憶密度媒
体を廉価に製造することができる。
As is apparent from the above description, according to the present invention, since no chuck scratch is generated during end face grinding, after the end face grinding, the polishing step can be omitted without lapping or the light polishing can be performed. It's done. As a result, the number of steps can be greatly reduced, and a high storage density medium can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気ディスク用基板を示す斜視図である。FIG. 1 is a perspective view showing a magnetic disk substrate.

【図2】磁気ディスク用基板端面研削加工機の基板把持
具を示す断面図である。
FIG. 2 is a cross-sectional view showing a substrate gripping tool of a magnetic disk substrate end surface grinding machine.

【図3】吸引式の磁気ディスク用基板端面研削加工機の
基板把持部を示す断面図である。
FIG. 3 is a cross-sectional view showing a substrate grip portion of a suction type magnetic disk substrate end surface grinding machine.

【符号の説明】[Explanation of symbols]

1 磁気ディスク用基板 1t 磁気ディスク用基板の上面 1b 磁気ディスク用基板の下面 1i 内周端面 1o 外周端面 10 端面研削加工機 12 テーブル 14 クランパー 15 内周端面研削砥石 16 外周端面研削砥石 1 Magnetic disk substrate Top of 1t magnetic disk substrate 1b Lower surface of magnetic disk substrate 1i Inner end face 1o outer peripheral edge 10 Edge grinding machine 12 tables 14 Clamper 15 Inner peripheral end face grinding wheel 16 Peripheral edge grinding wheel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 健太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5D006 CB04 CB07 DA03 5D112 AA02 BA03 BA09 EE01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenta Ito             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5D006 CB04 CB07 DA03                 5D112 AA02 BA03 BA09 EE01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁気ディスク用基板の端面加工を行う
際、該磁気ディスク用基板を回転可能に挟持するテーブ
ル及びクランパーを備える基板把持具において、前記テ
ーブル及び前記クランパーの前記磁気ディスク用基板と
の接触面に厚さ0.5μm以上20μm以下の無電解N
iめっきを施したことを特徴とする磁気ディスク用基板
の把持具。
1. A substrate gripping tool comprising a table and a clamper for rotatably sandwiching the magnetic disk substrate when processing an end face of the magnetic disk substrate. Electroless N with a thickness of 0.5 μm or more and 20 μm or less on the contact surface
A holding tool for a magnetic disk substrate, characterized by being plated with i.
【請求項2】 前記接触面の中心線平均表面粗さが、
0.02μm以上0.2μm以下であることを特徴とす
る請求項1に記載の磁気ディスク用基板の把持具。
2. The center line average surface roughness of the contact surface is
The holding tool for a magnetic disk substrate according to claim 1, wherein the holding tool has a thickness of 0.02 μm or more and 0.2 μm or less.
【請求項3】 請求項1又は2の把持具を備えることを
特徴とする磁気ディスク用基板加工機。
3. A magnetic disk substrate processing machine comprising the holding tool according to claim 1 or 2.
【請求項4】 請求項3の磁気ディスク用基板加工機を
用いて加工を行なったことを特徴とする磁気ディスク用
基板。
4. A magnetic disk substrate processed by using the magnetic disk substrate processing machine according to claim 3.
JP2001325385A 2001-10-23 2001-10-23 Holder for magnetic disc base plate Pending JP2003132529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325385A JP2003132529A (en) 2001-10-23 2001-10-23 Holder for magnetic disc base plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325385A JP2003132529A (en) 2001-10-23 2001-10-23 Holder for magnetic disc base plate

Publications (1)

Publication Number Publication Date
JP2003132529A true JP2003132529A (en) 2003-05-09

Family

ID=19141959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325385A Pending JP2003132529A (en) 2001-10-23 2001-10-23 Holder for magnetic disc base plate

Country Status (1)

Country Link
JP (1) JP2003132529A (en)

Similar Documents

Publication Publication Date Title
JP7326542B2 (en) Magnetic disk substrate and magnetic disk
JP2002219642A (en) Glass substrate for magnetic recording medium and its manufacturing method and magnetic recording medium using the same
JP2006079800A (en) Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP2009099250A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2006085887A (en) Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP4780607B2 (en) A method for manufacturing a glass substrate for a magnetic disk, a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP4905238B2 (en) Polishing method of glass substrate for magnetic recording medium
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
JP2003132529A (en) Holder for magnetic disc base plate
JP5977520B2 (en) Method for manufacturing glass substrate for magnetic disk and glass substrate for magnetic disk
JP2003030822A (en) Method for processing magnetic disk substrate
JP2009087409A (en) Manufacturing method of glass substrate for magnetic recording medium, and magnetic recording medium
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
JP2005293840A (en) Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk
WO2014148421A1 (en) Method for producing glass substrate for information recording medium
JP5392075B2 (en) Information recording device
JP5367231B2 (en) Method and apparatus for inspecting opening diameter of disk-shaped substrate having circular opening at center, and method for manufacturing disk-shaped substrate
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP2005285276A (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk and magnetic disk
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium