JP2003130491A - Fuel cell exhaust heat utilizing air conditioning system - Google Patents

Fuel cell exhaust heat utilizing air conditioning system

Info

Publication number
JP2003130491A
JP2003130491A JP2001320316A JP2001320316A JP2003130491A JP 2003130491 A JP2003130491 A JP 2003130491A JP 2001320316 A JP2001320316 A JP 2001320316A JP 2001320316 A JP2001320316 A JP 2001320316A JP 2003130491 A JP2003130491 A JP 2003130491A
Authority
JP
Japan
Prior art keywords
exhaust heat
fuel cell
air conditioning
heat
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001320316A
Other languages
Japanese (ja)
Other versions
JP4007442B2 (en
Inventor
Yasuhiro Arai
康弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba International Fuel Cells Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba International Fuel Cells Corp filed Critical Toshiba International Fuel Cells Corp
Priority to JP2001320316A priority Critical patent/JP4007442B2/en
Publication of JP2003130491A publication Critical patent/JP2003130491A/en
Application granted granted Critical
Publication of JP4007442B2 publication Critical patent/JP4007442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell exhaust heat utilizing air conditioning system capable of effectively utilizing a DC power and exhaust heat generated from a fuel cell and effectively utilizing an electric energy by directly passing the DC power generated from the fuel cell through the air conditioner. SOLUTION: This fuel cell exhaust heat utilizing air conditioning system comprises: a fuel cell system 59 feeding fuel gas to an anode 14, feeding oxidizer gas to a cathode 15, generating a DC power when the gas causes reaction, and generating exhaust heat; a power system 44 supplying a DC power generated from the fuel cell system 59 to drive an air conditioner system 60, and performing at least either one of storing the surplus amount of the DC power or increasing a load from the system; an air conditioner system for utilizing the exhaust heat generated from the fuel cell system 59 for heating, cooling, and dehumidifying indoors; and a means 40 for storing the exhaust heat generated from the fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池から出る
排熱を巧みに利用して空調の冷房運転、暖房運転、除湿
運転等に必要な熱エネルギを空調機器に供給し、エネル
ギの有効活用を図る燃料電池の排熱利用空調システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention cleverly utilizes exhaust heat from a fuel cell to supply heat energy required for air conditioning cooling operation, heating operation, dehumidifying operation, etc. to an air conditioner to effectively utilize the energy. The present invention relates to an air conditioning system utilizing exhaust heat of a fuel cell.

【0002】[0002]

【従来の技術】最近の燃料電池、例えば固体高分子形燃
料電池は、形状をコンパクトにすることができ、電気出
力が高出力密度であり、さらにシステムを簡素化させて
運転ができるので、家庭住宅用電源システムとして将来
有望視されている。
2. Description of the Related Art Recent fuel cells, such as polymer electrolyte fuel cells, can be made compact in size, have a high power output density, and can be operated by simplifying the system. It is regarded as a promising future power supply system for homes.

【0003】また、固体高分子形燃料電池は、家庭住宅
用電源システムの利用のみならず、電力発生後に出る排
熱の利用として空調システムやコージェネレーションへ
の適用が検討されている。
Further, application of the polymer electrolyte fuel cell to an air-conditioning system and a cogeneration system is under consideration for use of exhaust heat generated after generation of electric power, as well as use of a power source system for homes and houses.

【0004】この固体高分子形燃料電池からは、電気エ
ネルギの発生とともに、約100℃程度の排熱が出てい
る。
From this polymer electrolyte fuel cell, along with the generation of electric energy, exhaust heat of about 100 ° C. is emitted.

【0005】一方、燃料を水素に改質させる燃料処理系
統でも、改質器等の改質反応の加熱に燃焼器を使う関係
上、燃焼排ガス等の排熱が出ている。
On the other hand, in a fuel processing system for reforming fuel into hydrogen, exhaust heat such as combustion exhaust gas is generated because a combustor is used to heat the reforming reaction of the reformer and the like.

【0006】このように、燃料電池システム全体から出
る排熱が多量になっており、排熱を給湯、風呂等の温水
や空調用の熱媒体等に活用すれば、熱回収の有効な手段
の一つと考えられる。ちなみに、熱回収が充分になされ
たとして、電気と熱を合わせた熱利用総合効率は、試算
によれば、約80%にもなっている。
As described above, a large amount of exhaust heat is generated from the entire fuel cell system, and if the exhaust heat is used for hot water for hot water supply, hot water for baths, heat medium for air conditioning, etc., it is an effective means for heat recovery. Considered one. By the way, if the heat is recovered sufficiently, the total efficiency of heat utilization combining electricity and heat is about 80% according to the calculation.

【0007】この電気と熱の両方のエネルギを有効に活
用する発明には、例えば、特開平10−311564号
公報や特開平11−132105号公報が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. 10-311564 and Japanese Patent Application Laid-Open No. 11-132105 are disclosed as inventions that effectively utilize both energy of electricity and heat.

【0008】前者の発明は、燃料電池駆動空調システム
を適用対象とし、カソード(酸化剤極)から生成される
水蒸気を、全熱変換形室内機を介して室内に供給し、冷
暖房および加湿用に利用している。
The former invention is applied to a fuel cell driven air-conditioning system, and water vapor generated from a cathode (oxidizer electrode) is supplied to the room through a total heat conversion type indoor unit to be used for cooling and heating and humidification. We are using.

【0009】また、後者の発明は、排熱分配装置および
排熱利用システムに関するもので、燃料電池から出た排
熱を、排熱分配装置の流量調整弁や水ポンプを使って温
水パネルや貯湯槽等に分配している。
The latter invention relates to an exhaust heat distribution device and an exhaust heat utilization system, in which exhaust heat from a fuel cell is heated by a flow control valve or a water pump of the exhaust heat distribution device to a hot water panel or hot water storage. It is distributed to tanks.

【0010】[0010]

【発明が解決しようとする課題】特開平10−3115
64号公報や特開平11−132105号公報に記載さ
れた発明は、ともに、暖房等の熱利用を、燃料電池から
出る排熱で行う構成になっているが、燃料電池から発生
する電力を用いて空調機を直接運転する構成になってい
ないため、直流電力から交流電力に変換する際、変換に
伴う損失が発生する不具合、不都合があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The inventions described in Japanese Patent Laid-Open No. 64 and Japanese Patent Application Laid-Open No. 11-132105 both have a configuration in which heat such as heating is utilized by exhaust heat emitted from the fuel cell, but electric power generated from the fuel cell is used. Therefore, when the DC power is converted to the AC power, there is a problem or inconvenience that a loss is generated due to the conversion.

【0011】すなわち、特開平10−311564号公
報や特開平11−132105号公報に記載された発明
は、ともに、燃料電池から発生する直流電力を空調機に
直接、通電させていないので、例えば、燃料電池から発
生する直流電力を用いて空調機を運転させるとき、一旦
燃料電池から発生する直流電力を電力系統に供給した
後、その電力系統から空調機に交流電力を供給すること
になる。その際、燃料電池からの直流電力を電力系統に
通電させるためには、直流・交流変換機、例えばインバ
ータが必要になるので変換に伴う損失が生じていた。
That is, in both of the inventions described in JP-A-10-311564 and JP-A-11-132105, the DC power generated from the fuel cell is not directly supplied to the air conditioner. When the air conditioner is operated by using the DC power generated from the fuel cell, the DC power generated from the fuel cell is first supplied to the power system, and then the AC power is supplied from the power system to the air conditioner. At that time, a DC / AC converter, for example, an inverter is required to apply the DC power from the fuel cell to the power system, so that a loss due to the conversion occurs.

【0012】本発明は、このような事情に基づいてなさ
れたもので、燃料電池から発生する直流電力や排熱をよ
り一層有効に活用するとともに、燃料電池から発生する
直流電力を、直接、空調機に通電させ、より一層電気エ
ネルギの有効利用を図る燃料電池の排熱利用空調システ
ムを提供することを目的とする。
The present invention has been made in view of the above circumstances, and more effectively utilizes the direct current power and exhaust heat generated from the fuel cell, and directly controls the direct current power generated from the fuel cell. It is an object of the present invention to provide an air conditioning system utilizing exhaust heat of a fuel cell, which energizes a machine to further effectively utilize electric energy.

【0013】[0013]

【課題を解決するための手段】本発明に係る燃料電池の
排熱利用空調システムは、上述の目的を達成するため
に、請求項1に記載したように、アノードに燃料ガスを
供給し、カソードに酸化剤ガスを供給し、各ガスを反応
させる際、直流電力を発生させるとともに、排熱を発生
させる燃料電池システムと、この燃料電池システムから
発生する直流電力を供給して空調機システムを駆動する
とともに、前記直流電力の余剰分を蓄電および系統から
の負荷に加えるもののうち、少なくともいずれか一方を
行う電力システムと、前記燃料電池システムから発生す
る排熱を利用して室内の暖房、冷房、除湿に利用する空
調機システムと、前記燃料電池から発生する排熱を貯湯
する手段とを備えているものである。
In order to achieve the above-mentioned object, an exhaust air heat utilization air conditioning system for a fuel cell according to the present invention, as set forth in claim 1, supplies a fuel gas to an anode and a cathode. Supply an oxidizer gas to each gas and generate DC power when reacting each gas, and also drive the air conditioner system by supplying the fuel cell system that generates exhaust heat and the DC power generated from this fuel cell system. Along with, the surplus of the DC power is added to the load from the power storage and the grid, a power system that performs at least one of the two, heating the room by using exhaust heat generated from the fuel cell system, cooling, It is provided with an air conditioner system used for dehumidification and means for storing exhaust heat generated from the fuel cell.

【0014】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項2
に記載したように、燃料電池システムは、直流電力と排
熱を発生させる電池本体と、この電池本体に接続され、
燃料ガスを改質させる燃料処理系とを備えるとともに、
前記電池本体から発生する排熱および前記燃料処理系か
ら発生する排熱のうち、少なくともいずれか一方の排熱
の一部を暖房熱に利用する空調機システムの空調部を備
えるものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, the fuel cell system is connected to the battery main body that generates direct current power and exhaust heat, and the battery main body.
With a fuel processing system for reforming the fuel gas,
An air conditioning unit of an air conditioner system is provided, which uses a part of exhaust heat of at least one of exhaust heat generated from the battery main body and exhaust heat generated from the fuel processing system as heating heat.

【0015】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項3
に記載したように、電力システムは、電池本体から発生
する直流電力を空調部の圧縮機に通電して駆動させる
際、前記直流電力の増減に関係なく優先的に通電させる
ものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, in the electric power system, when the DC power generated from the battery main body is energized and driven by the compressor of the air conditioning unit, the DC power is preferentially energized regardless of the increase or decrease of the DC power.

【0016】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項4
に記載したように、空調機システムの空調部は、互いに
区分けされた室内機と室外機とを備えるとともに、室内
機および室外機は、ともに、ファン、熱交換器、排熱利
用側熱交換器を備えているものである。
Further, in order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, the air conditioning unit of the air conditioning system includes an indoor unit and an outdoor unit that are separated from each other, and the indoor unit and the outdoor unit are both a fan, a heat exchanger, and an exhaust heat utilization side heat exchanger. It is equipped with.

【0017】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項5
に記載したように、空調機システムの空調部は、暖房運
転時、ヒートポンプ運転の最低負荷運転においても熱が
余る場合、電池本体、燃料処理系のうち、少なくともい
ずれか一方からの排熱の一部を回収して貯める貯湯槽を
備えているものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, when heat remains in the air conditioning unit of the air conditioner system during heating operation or even at the lowest load operation of the heat pump operation, one of the exhaust heat from at least one of the battery main body and the fuel processing system is discharged. It is equipped with a hot water storage tank for collecting and storing parts.

【0018】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項6
に記載したように、空調機システムの空調部は、冷房運
転時、電池本体、燃料処理系および室外機の室外熱交換
器のうち、少なくともいずれか一方からの熱を回収して
貯める貯湯槽と、前記熱が余る場合、大気に放出させる
放熱器とを備えているものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, the air conditioning unit of the air conditioning system has a hot water storage tank that collects and stores heat from at least one of the battery body, the fuel processing system, and the outdoor heat exchanger of the outdoor unit during the cooling operation. A heat radiator for releasing the heat to the atmosphere when the heat remains.

【0019】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項7
に記載したように、放熱器は、貯湯槽側および床暖房パ
ネルのうち、いずれか一方に設置するものである。
Further, in order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, the radiator is installed on one of the hot water storage tank side and the floor heating panel.

【0020】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項8
に記載したように、放熱器は、放熱ファンを備えている
ものである。
Further, in order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described in (1), the radiator is equipped with a radiator fan.

【0021】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項9
に記載したように、空調機システムの空調部は、除湿運
転時、電池本体および燃料処理系のうち、少なくとも一
方から発生する熱の一部を室内機の排熱利用側熱交換器
に供給し、室内を暖房気味に維持させる手段を備えてい
るものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described above, during the dehumidifying operation, the air conditioning unit of the air conditioning system supplies part of the heat generated from at least one of the battery main body and the fuel processing system to the exhaust heat utilization side heat exchanger of the indoor unit. It is equipped with means for keeping the room warm.

【0022】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項1
0に記載したように、電力システムは、電池本体から発
生する直流電力を優先的に通電させて空調部の圧縮機を
駆動するインバータと、前記電池本体から発生する直流
電力が余ったとき調整してバッテリに蓄電させるコンバ
ータと、前記電池本体から発生する直流電力が余ったと
き、系統からの負荷に加える商用インバータとを備えて
いるものである。
In order to achieve the above-mentioned object, an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention has the following features.
As described in 0, the power system adjusts when the DC power generated from the battery main body is excessive and the inverter that drives the compressor of the air conditioning unit by preferentially energizing the DC power generated from the battery main body. And a commercial inverter that is added to the load from the grid when the DC power generated from the battery main body is surplus.

【0023】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項1
1に記載したように、空調機システムの空調部は、圧縮
機に使用する冷媒ガスを、フロンR410A、R407
Cおよびニ酸化炭素のうち、いずれか一方を選択するも
のである。
In order to achieve the above-mentioned object, the air conditioner system utilizing exhaust heat of the fuel cell according to the present invention has the following features.
As described in No. 1, the air conditioning unit of the air conditioning system uses the refrigerant gas used for the compressor as fluorocarbons R410A, R407.
Either C or carbon dioxide is selected.

【0024】また、本発明に係る燃料電池の排熱利用空
調システムは、上述の目的を達成するために、請求項1
2に記載したように、燃料処理系は、燃料ガスとして炭
化系水素および灯油のうち、いずれか一方を選択するも
のである。
Further, in order to achieve the above-mentioned object, the air conditioning system utilizing exhaust heat of the fuel cell according to the present invention has the following features.
As described in 2, the fuel processing system selects either one of hydrocarbon and kerosene as the fuel gas.

【0025】[0025]

【発明の実施の形態】以下、本発明に係る燃料電池の排
熱利用空調システムの実施形態を図面および図面に付し
た符号を引用して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

【0026】図1および図2は、本発明に係る燃料電池
の排熱利用空調システムの実施形態を示す概略系統図で
ある。なお、図1は、燃料電池の排熱利用空調システム
のうち、燃料電池システム59を示す概略全体系統図で
あり、図2は、燃料電池の排熱利用空調システムのう
ち、空調機システム60を示す概略全体系統図である。
1 and 2 are schematic system diagrams showing an embodiment of an exhaust heat utilization air conditioning system for a fuel cell according to the present invention. Note that FIG. 1 is a schematic overall system diagram showing a fuel cell system 59 of the exhaust heat utilization air conditioning system of the fuel cell, and FIG. 2 shows an air conditioner system 60 of the exhaust heat utilization air conditioning system of the fuel cell. It is a schematic whole system diagram shown.

【0027】また、本発明に係る燃料電池の排熱利用空
調システムのうち、燃料電池は、例示として固体高分子
形燃料電池を適用対象にしている。
In the air conditioning system utilizing exhaust heat of the fuel cell according to the present invention, the fuel cell is applied to a solid polymer fuel cell as an example.

【0028】本実施形態に係る燃料電池システム59
は、燃料処理系(FPS;FuelProcessin
g System)1と電池本体(CSA;Cell
Stack Assembly)2とを備えて構成され
ている。
The fuel cell system 59 according to this embodiment.
Is a fuel processing system (FPS; FuelProcessin)
g System 1 and battery (CSA; Cell)
Stack Assembly) 2.

【0029】燃料処理系1は、燃料F等の流れに沿って
順に、燃料部3、脱硫器4、燃焼器5a、熱交換器5
b、改質器6、COシフト反応器7、CO選択酸化器
8、水蒸気分離器9、改質用水タンク10、改質用水ポ
ンプ11、排熱熱交換器12、排熱供給水ポンプ13等
を備える構成になっている。
The fuel processing system 1 includes a fuel section 3, a desulfurizer 4, a combustor 5a, and a heat exchanger 5 in order along the flow of the fuel F and the like.
b, reformer 6, CO shift reactor 7, CO selective oxidizer 8, steam separator 9, reforming water tank 10, reforming water pump 11, exhaust heat heat exchanger 12, exhaust heat supply water pump 13, etc. It is configured to include.

【0030】なお、燃料部3から脱流器4に供給される
燃料Fは、炭化水素系燃料、例えばプロパンや都市ガ
ス、あるいは、例えばガス化した灯油等が適宜、選択し
て用いられる。
As the fuel F supplied from the fuel section 3 to the scavenger 4, a hydrocarbon fuel such as propane or city gas, or gasified kerosene is appropriately selected and used.

【0031】一方、電池本体2は、アノード14、カソ
ード15、水冷却部16、電池冷却水ポンプ17等を備
える構成になっている。
On the other hand, the battery main body 2 is configured to include an anode 14, a cathode 15, a water cooling unit 16, a battery cooling water pump 17, and the like.

【0032】また、燃料処理系1および電池本体2に共
通な構成部品には、空気ブロア18、凝縮熱交換器19
等が設けられている。
The components common to the fuel processing system 1 and the cell body 2 include an air blower 18 and a condensing heat exchanger 19.
Etc. are provided.

【0033】このような構成を備える固体高分子形燃料
電池システムの発電原理を簡単に説明する。
The power generation principle of the polymer electrolyte fuel cell system having the above structure will be briefly described.

【0034】プロパンまたは灯油等の燃料Fのうち、例
えばプロパンを選択する場合、プロパンから水素ガスへ
の改質は、燃料処理系1で行われる。まず、プロパンを
選択する燃料Fは、脱硫器4を通る際、器内に収容され
ている、例えば活性炭やゼオライト吸着によって硫黄分
が取り除かれ、水蒸気分離器9から分離されるガス状の
水蒸気と合流して改質器6に供給される。
When propane, for example, is selected from the fuel F such as propane or kerosene, the reforming of propane to hydrogen gas is performed in the fuel processing system 1. First, when the fuel F for selecting propane passes through the desulfurizer 4, the sulfur content is removed by, for example, activated carbon or zeolite adsorption, and is converted into gaseous steam separated from the steam separator 9. They are merged and supplied to the reformer 6.

【0035】この水蒸気分離器9は、改質用水タンク1
0から改質用水ポンプ11および水供給系10aを介し
て供給される水を熱交換器5bおよび燃焼器5aで加熱
させ、ガス状の水蒸気として改質器6に供給し、ここで
燃料Fに合流させるようになっている。なお、水蒸気分
離器9は、ガス状の水蒸気から分離するドレン水を水回
収系10bを介して改質用水タンク10に回収させてい
る。
This steam separator 9 is used in the reforming water tank 1
Water supplied from 0 through the reforming water pump 11 and the water supply system 10a is heated by the heat exchanger 5b and the combustor 5a, and is supplied to the reformer 6 as gaseous steam. It is designed to merge. The steam separator 9 collects the drain water separated from the gaseous steam in the reforming water tank 10 via the water recovery system 10b.

【0036】一方、改質器6では、供給される燃料(プ
ロパン)Fと水蒸気とで水蒸気改質反応が行われ、水素
のほかにCOやCO等も生成される。その際、水蒸気
改質反応は吸熱反応になるばかりでなく、改質器6も加
熱器として用いられるようになっている。
On the other hand, in the reformer 6, the supplied fuel (propane) F and steam are subjected to a steam reforming reaction to produce CO, CO 2 and the like in addition to hydrogen. At that time, not only the steam reforming reaction becomes an endothermic reaction, but also the reformer 6 is used as a heater.

【0037】ところで、固体高分子形燃料電池は、アノ
ード14に供給される燃料ガスの改質CO濃度が高い
と、電池本体2の触媒層(図示せず)などが被毒し、活
性力が低下し、電池能力が著しく低下する等の悪影響が
でる。このため、COはCOに酸化させる必要があ
る。
By the way, in the polymer electrolyte fuel cell, when the reforming CO concentration of the fuel gas supplied to the anode 14 is high, the catalyst layer (not shown) of the cell body 2 is poisoned and the activation power becomes high. As a result, the battery capacity will decrease, and the battery capacity will decrease significantly. Therefore, CO needs to be oxidized to CO 2 .

【0038】本実施形態は、このような点を考慮したも
ので、改質器6の下流側にCOシフト反応器7とCO選
択酸化器8を備えるとともに、CO選択酸化器8に空気
ブロア18からの空気を供給し、改質器6で生成される
改質ガスのうち、COがCOシフト反応器7およびCO
選択酸化器8を流れる間に触媒とともに酸化促進させる
ようになっている。
In the present embodiment, in consideration of such a point, a CO shift reactor 7 and a CO selective oxidizer 8 are provided on the downstream side of the reformer 6, and an air blower 18 is provided in the CO selective oxidizer 8. Of the reformed gas produced in the reformer 6 by supplying air from the CO 2 to the CO shift reactor 7 and CO.
While flowing through the selective oxidizer 8, the oxidation is promoted together with the catalyst.

【0039】また、図示しないが、改質器6、CO選択
酸化器8の触媒反応温度は、それぞれ異なり、改質器6
の数百度からCO選択酸化器8の百数十度と、改質ガス
の上流と下流の温度差が大きいため、実際には下流側温
度を下げるための水熱交換器が必要となり、例えば、C
Oシフト反応器7とCO選択酸化器8との間に水熱交換
器を設ける構成にしてもよい。
Although not shown, the catalyst reaction temperatures of the reformer 6 and the CO selective oxidizer 8 are different from each other and are different from each other.
Since the temperature difference between the upstream side and the downstream side of the reformed gas is large, from several hundred degrees to several hundred degrees of the CO selective oxidizer 8, a water heat exchanger for lowering the downstream temperature is actually required. C
A water heat exchanger may be provided between the O shift reactor 7 and the CO selective oxidizer 8.

【0040】例えば、燃料Fのプロパンを改質させる場
合、COからCOへの酸化反応を省略し、全体をスル
ーする水蒸気改質反応は、以下の(1)式による。
For example, in the case of reforming propane of the fuel F, the steam reforming reaction in which the oxidation reaction from CO to CO 2 is omitted and the whole is passed through is based on the following equation (1).

【0041】[0041]

【化1】 [Chemical 1]

【0042】また、CO選択酸化器8を通過する改質ガ
スは、主に水素、炭酸ガス、水蒸気等の成分からなる。
これらのガスが電池本体2のアノード14に供給される
と、水素ガスは膜電極接合体MEA(Membrane
Electrode Assembly;以下MEA
と記す)の触媒層(図示せず)を経てプロトンHが電
解質膜(図示せず)を流れ、空気ブロア18によりカソ
ード15を流れる空気中の酸素および電子と結び付いて
水を生成する。
The reformed gas passing through the CO selective oxidizer 8 is mainly composed of components such as hydrogen, carbon dioxide and water vapor.
When these gases are supplied to the anode 14 of the battery main body 2, hydrogen gas is supplied to the membrane electrode assembly MEA (Membrane).
Electrode Assembly; MEA
Proton H + flows through an electrolyte membrane (not shown) through a catalyst layer (not shown) of FIG. 1) and is combined with oxygen and electrons in the air flowing through the cathode 15 by the air blower 18 to generate water.

【0043】したがって、アノード14は−極、カソー
ド15は+極になり、電位を持って直流電力を発生す
る。この電位間に電気負荷を存在させると、電源として
機能を持たせることができる。
Therefore, the anode 14 has a negative pole and the cathode 15 has a positive pole, and has a potential to generate DC power. When an electric load is present between these potentials, it can function as a power source.

【0044】他方、発電に寄与しないまま残ったアノー
ド14の出口から出るガスは、水蒸気蒸発器5の燃焼器
5a等の加熱用燃焼ガスとして使用される。
On the other hand, the gas remaining from the outlet of the anode 14 that does not contribute to power generation is used as a combustion gas for heating the combustor 5a of the steam evaporator 5 and the like.

【0045】また、カソード15の出口から出る水蒸気
および燃焼排ガス中の水蒸気は、水蒸気蒸発器5の燃焼
器5aで燃焼ガスと合流し、凝縮熱交換器19を介して
改質用タンク10に回収され、燃料電池システム50で
の水自立を図っている。
Further, the water vapor emitted from the outlet of the cathode 15 and the water vapor in the combustion exhaust gas are combined with the combustion gas in the combustor 5a of the water vapor evaporator 5 and recovered in the reforming tank 10 via the condensation heat exchanger 19. Therefore, the water self-sustaining in the fuel cell system 50 is achieved.

【0046】電池本体2のMEAにおける触媒での反応
温度は、通常百度以下が適当であるから、電池本体2の
温度がそれ以下になるように、電池冷却水ポンプ17で
冷却水を循環させ、排熱熱交換器12で放熱させ、電池
本体2の入口側冷却水温度が一定になるように電気制御
部(図示せず)で制御している。
Since the reaction temperature of the catalyst in the MEA of the battery main body 2 is usually not more than 100 degrees Celsius, cooling water is circulated by the battery cooling water pump 17 so that the temperature of the battery main body 2 becomes lower than that. Heat is dissipated by the exhaust heat exchanger 12 and controlled by an electric control unit (not shown) so that the inlet side cooling water temperature of the battery body 2 becomes constant.

【0047】このような構成を備える固体高分子形燃料
電池システムにおいて、排熱熱交換器12で電池本体2
の水冷却部16からの高温水と熱交換して温められる媒
体(不凍液)もしくは温水は、排熱供給水ポンプ13の
駆動により図2に示す空調機システム60における空調
部20の室内機22に供給される。
In the polymer electrolyte fuel cell system having such a structure, the exhaust heat heat exchanger 12 is used for the battery main body 2
The medium (antifreeze liquid) or hot water that is heated by exchanging heat with the high temperature water from the water cooling unit 16 of the above is supplied to the indoor unit 22 of the air conditioning unit 20 in the air conditioning system 60 shown in FIG. 2 by driving the exhaust heat supply water pump 13. Supplied.

【0048】なお、固体高分子形燃料電池システムの簡
素化のために、排熱熱交換器12を使わずに、排熱給水
ポンプ13の代りに、燃料処理系1の電池冷却水ポンプ
17から空調部20の室内機22に直接温水を供給して
もよい。温水が直接室内機22に供給されるので、その
分だけ熱効率が向上することに基づく。
In order to simplify the polymer electrolyte fuel cell system, the exhaust heat exchanger 12 is not used, and the exhaust heat feed water pump 13 is replaced by the cell cooling water pump 17 of the fuel processing system 1. The warm water may be directly supplied to the indoor unit 22 of the air conditioning unit 20. Since the hot water is directly supplied to the indoor unit 22, the heat efficiency is improved by that much.

【0049】なお、電池本体2からの排熱は、空調部2
0への熱源としての供給にとどまらず、給湯用として用
いてもよく、また、放熱器41から大気に放出させても
よい。
Exhaust heat from the battery body 2 is transferred to the air conditioner 2
The heat source may be used not only as a heat source for supplying heat to 0, but also for supplying hot water, or may be released from the radiator 41 to the atmosphere.

【0050】この場合、放熱器41は、放熱ファン42
を備える一方、貯湯槽40および床暖房パネルのうち、
いずれか一方に設置される。
In this case, the radiator 41 is the radiator fan 42.
On the other hand, among the hot water storage tank 40 and the floor heating panel,
Installed on either side.

【0051】図2は、燃料電池システム50に接続さ
れ、一体として扱われる空調機システム60を示す概略
系統図である。
FIG. 2 is a schematic system diagram showing an air conditioner system 60 which is connected to the fuel cell system 50 and is treated as one unit.

【0052】空調機システム60は、空調部20を室外
機21と室内機22とに区分けするスプリットタイプに
構成するとともに、室外機21と室内機22とを互いに
接続させる冷媒渡り配管を備える構成になっている。
The air conditioner system 60 is of a split type in which the air conditioner 20 is divided into an outdoor unit 21 and an indoor unit 22, and is also provided with a refrigerant crossover pipe for connecting the outdoor unit 21 and the indoor unit 22 to each other. Has become.

【0053】室外機21は、例えば、圧縮機23、四方
弁24、室外熱交換器25、室外ファン26、排熱利用
側熱交換器27aおよび絞り機構28等を含めた構成に
なっている。
The outdoor unit 21 has a structure including, for example, a compressor 23, a four-way valve 24, an outdoor heat exchanger 25, an outdoor fan 26, an exhaust heat utilization side heat exchanger 27a and a throttle mechanism 28.

【0054】また、室内機22は、室内熱交換器31、
室内ファン32および排熱利用側熱交換器27b等を備
えている。
The indoor unit 22 includes an indoor heat exchanger 31,
The indoor fan 32 and the exhaust heat utilization side heat exchanger 27b are provided.

【0055】なお、室外機21の排熱利用側熱交換器2
7aと室内機22の排熱利用側熱交換器27bとは、室
外熱交換器25および室内熱交換器31のそれぞれの矢
印で示す送風機(図示せず)の下流側に配置させるか、
あるいは各排熱熱交換器専用に別送風機を設けた構造に
してもよい。
The waste heat utilization side heat exchanger 2 of the outdoor unit 21
7a and the exhaust heat utilization side heat exchanger 27b of the indoor unit 22 are arranged downstream of the blower (not shown) of the outdoor heat exchanger 25 and the indoor heat exchanger 31, respectively, or
Alternatively, the structure may be such that a separate blower is provided exclusively for each exhaust heat heat exchanger.

【0056】さらにまた、空調機システム60は、燃料
電池システム50の排熱供給水ポンプ13に連通させる
三方遮断弁39のほかに、水ポンプ(P)34、第1
二方遮断弁(V)35、第2二方遮断弁(V)3
6、第3二方遮断弁(V)37、第4二方遮断弁(V
)38、貯湯槽40、放熱器41、放熱ファン42、
第5二方遮断弁(V)43を備える構成になってい
る。なお、貯湯槽40、あるいは放熱器41および放熱
ファン42は、燃料電池一体空調システムに必ずしも一
体として設置しなくともよい。また、第1二方遮断弁
(V)35と第2二方遮断弁(V)36とは、上述
三方遮断弁39のように、弁1個で同じ機能を持たせる
ものであれば、どのような種類の弁でもよい。
Furthermore, in addition to the three-way cutoff valve 39 which communicates with the exhaust heat supply water pump 13 of the fuel cell system 50, the air conditioner system 60 has a water pump (P 2 ) 34, a first
Two-way shutoff valve (V 1 ) 35, second two-way shutoff valve (V 2 ) 3
6, third two-way shutoff valve (V 3 ) 37, fourth two-way shutoff valve (V 3
4 ) 38, hot water storage tank 40, radiator 41, radiation fan 42,
The fifth two-way cutoff valve (V 5 ) 43 is provided. The hot water storage tank 40, or the radiator 41 and the radiation fan 42 do not necessarily have to be integrally installed in the fuel cell integrated air conditioning system. Further, the first two-way shutoff valve (V 1 ) 35 and the second two-way shutoff valve (V 2 ) 36 may be one valve having the same function as the three-way shutoff valve 39 described above. , Any kind of valve.

【0057】このような構成を備える空調機システム6
0の暖房運転原理を簡単に説明する。
Air conditioner system 6 having such a configuration
The heating operation principle of 0 will be briefly described.

【0058】表1は、暖房運転、冷房運転、除湿運転、
発電運転の各運転モードにおける四方弁24の媒体流れ
経路、放熱ファン42の運転の有無、第1二方遮断弁
(V)35〜第5二方遮断弁(V)43の開閉の有
無、系統への連系や2次電池(バッテリ)への電力余剰
分の供給または蓄電、排熱供給水ポンプ(P)13や
水ポンプ(P)34の運転の有無を一覧表にまとめた
ものである。
Table 1 shows heating operation, cooling operation, dehumidifying operation,
Medium flow path of the four-way valve 24, presence / absence of operation of the radiating fan 42, presence / absence of opening / closing of the first two-way shutoff valve (V 1 ) 35 to the fifth two-way shutoff valve (V 5 ) 43 in each operation mode of power generation operation , A list of the presence or absence of operation of the interconnection to the grid, supply or storage of surplus power to the secondary battery (battery), and operation of the waste heat supply water pump (P 1 ) 13 and the water pump (P 2 ) 34 It is a thing.

【0059】[0059]

【表1】 [Table 1]

【0060】その際、空調機システム60を駆動する電
力システム44は、図3に示すように、電池本体2から
発生する直流電力を、昇圧させるチョッパ45と、この
チョッパ45で昇圧する直流電力が余剰の場合、例えば
高圧の直流電力から低圧の直流電力(DC/DC)にコ
ンバータ46で調整して蓄電させるバッテリ(2次電
池)47とを備える構成になっている。
At that time, as shown in FIG. 3, the power system 44 for driving the air conditioner system 60 includes a chopper 45 for boosting the DC power generated from the battery main body 2 and a DC power boosted by the chopper 45. In the case of surplus, for example, a battery (secondary battery) 47 that adjusts the high-voltage DC power to a low-voltage DC power (DC / DC) by the converter 46 and stores the power is provided.

【0061】また、電力システム44は、チョッパ45
で昇圧する直流電力が余剰電力になっているか否かに関
係なく、図2に示す圧縮機23に優先的に通電させて駆
動するモータ駆動のインバータ(DC/AC)48と、
系統49からの交流電力に余剰電力を加えて電気負荷5
0を増加させる商用インバータ(DC/AC)51とを
備える構成になっている。
The power system 44 also includes a chopper 45.
A motor-driven inverter (DC / AC) 48 that preferentially energizes and drives the compressor 23 shown in FIG. 2 regardless of whether or not the direct-current power boosted in step 1 is surplus power,
Electric load 5 by adding surplus power to AC power from grid 49
A commercial inverter (DC / AC) 51 for increasing 0 is provided.

【0062】このような電力システム44を備える空調
機システム60において、暖房運転時、電池本体2から
チョッパ45、インバータ48を介して余剰電力とは無
関係に優先的に通電され、その通電により駆動される圧
縮機25から送り出される高温高圧の冷媒ガスは、図2
に示す四方弁24の実線部分の流れ経路を通り、室内機
22の室内ファン32から供給され、冷媒ガスの凝縮温
度よりも低い室内空気により室内熱交換器31で冷され
凝縮する。このとき、室内ファン32からの室内空気
は、冷媒ガスからの高温熱を受けて暖気になる。
In the air conditioner system 60 including the electric power system 44, during heating operation, the battery main body 2 is preferentially energized via the chopper 45 and the inverter 48 regardless of the surplus power, and is driven by the energization. The high-temperature and high-pressure refrigerant gas sent from the compressor 25 shown in FIG.
In the indoor heat exchanger 31, the air is supplied from the indoor fan 32 of the indoor unit 22 through the flow path of the solid line portion of the four-way valve 24 shown in FIG. At this time, the indoor air from the indoor fan 32 receives the high-temperature heat from the refrigerant gas and becomes warm.

【0063】一方、室内熱交換器31で凝縮する冷媒ガ
スは、室外機21に供給され、絞り機構28で絞られた
後、低温、低圧の二相流となり、室外ファン26から供
給され、冷媒ガスの蒸発温度の高い室外空気により室外
熱交換器25で加熱され、蒸発する。
On the other hand, the refrigerant gas condensed in the indoor heat exchanger 31 is supplied to the outdoor unit 21, is throttled by the throttling mechanism 28, becomes a low-temperature, low-pressure two-phase flow, is supplied from the outdoor fan 26, and is the refrigerant. The outdoor heat exchanger 25 heats and evaporates the outdoor air having a high gas evaporation temperature.

【0064】室外熱交換器25で蒸発する冷媒ガスは、
四方弁24の実線部分の流れ経路を通って圧縮機23に
戻され、ここで再び圧縮されて高温、高圧のガスとな
り、室内機22の室内熱交換器31に供給される。
The refrigerant gas evaporated in the outdoor heat exchanger 25 is
It is returned to the compressor 23 through the flow path indicated by the solid line of the four-way valve 24, where it is compressed again into high-temperature and high-pressure gas, which is supplied to the indoor heat exchanger 31 of the indoor unit 22.

【0065】このような通常の暖房運転に対し、本実施
形態に係る電池本体2からの排熱を利用する排熱利用暖
房運転モードでは、図1および図2に示す排熱供給水ポ
ンプ13から供給される、例えば排熱温水を、室内機2
2の排熱利用側熱交換器27bに供給し、ここで室内フ
ァン32からの室内空気を加温させた後、燃料電池シス
テム59の排熱供給水ポンプ(P)13に戻すように
なっている。この排熱供給水ポンプ(P)13からの
排熱温水は、表1のNo.1の欄に示すように、第1二
方遮断弁(V)35を開、第2二方遮断弁(V)3
6、第3二方遮断弁(V)37および第5二方遮断弁
(V)43を閉にする状態で、三方遮断弁39の切り
換えにより、放熱器41をバイパスさせ、室内機22の
排熱利用熱交換器27bで室内ファン32からの室内空
気を加温させるようになっている。
In contrast to such a normal heating operation, in the exhaust heat utilization heating operation mode utilizing the exhaust heat from the battery main body 2 according to the present embodiment, the exhaust heat supply water pump 13 shown in FIG. 1 and FIG. For example, the exhaust hot water supplied is supplied to the indoor unit 2
2 is supplied to the exhaust heat utilization side heat exchanger 27b, where the indoor air from the indoor fan 32 is heated, and then returned to the exhaust heat supply water pump (P 1 ) 13 of the fuel cell system 59. ing. The exhaust heat hot water from the exhaust heat supply water pump (P 1 ) 13 is No. 1 in Table 1. As shown in column 1, the first two-way shutoff valve (V 1 ) 35 is opened and the second two-way shutoff valve (V 2 ) 3
6, while the third two-way cutoff valve (V 3 ) 37 and the fifth two-way cutoff valve (V 5 ) 43 are closed, the radiator 41 is bypassed by switching the three-way cutoff valve 39, and the indoor unit 22 The indoor heat from the indoor fan 32 is heated by the exhaust heat utilizing heat exchanger 27b.

【0066】この場合、通常、冷媒ガスによる室内熱交
換器31の凝縮温度が40℃前後であるのに対し、電池
本体2からの排熱温度が60℃前後の高温になっている
ので、矢印で示す室内熱交換器31の下流側に位置する
排熱利用側熱交換器27bからの吹き出し温度が高めら
れ、安定した暖房感を維持させることができる。
In this case, the condensation temperature of the indoor heat exchanger 31 due to the refrigerant gas is usually around 40 ° C., whereas the exhaust heat temperature from the battery body 2 is around 60 ° C., so that the arrow The exhaust temperature from the exhaust heat utilization side heat exchanger 27b located on the downstream side of the indoor heat exchanger 31 shown by is increased, and a stable heating feeling can be maintained.

【0067】そして、電池本体2からの排熱を利用する
排熱利用暖房運転の場合、電力システム44は、図3に
示すように、電池本体2から発生する直流電力を、イン
バータ48を介して優先的に圧縮機23に通電し、駆動
させている。
Then, in the case of the exhaust heat utilization heating operation utilizing the exhaust heat from the battery main body 2, the electric power system 44 supplies the direct-current power generated from the battery main body 2 via the inverter 48 as shown in FIG. The compressor 23 is preferentially energized and driven.

【0068】このように、本実施形態は、電池本体2か
らの直流電力を、インバータ48を介して優先的に圧縮
機23に通電させているので、起動電流の負担が少なく
なり、圧縮機23の成績係数(COP)が高くなり、よ
り一層効率の高いヒートポンプ運転を行うことができ
る。
As described above, in the present embodiment, the DC power from the battery main body 2 is preferentially supplied to the compressor 23 via the inverter 48, so that the burden of the starting current is reduced and the compressor 23 is reduced. The coefficient of performance (COP) is increased, and the heat pump operation can be performed with higher efficiency.

【0069】また、本実施形態は、電池本体2からの排
熱を巧みに利用し、圧縮機23からの冷媒ガスによる通
常の暖房と組み合わせて併用させているので、経済的に
して安定な暖房運転を行うことができる。
Further, in the present embodiment, the exhaust heat from the battery main body 2 is skillfully used and combined with the normal heating by the refrigerant gas from the compressor 23, so that the heating is economical and stable. You can drive.

【0070】上述の暖房負荷運転中におけるヒートポン
プ運転の最低負荷時、電池本体2から発生する排熱に余
剰が出た場合、本実施形態では、図2に示す電池本体2
の排熱供給水ポンプ(P)13から供給される、例え
ば排熱温水または燃料処理系1からの排熱温水を、放熱
器41でバイパスさせ、表1のNo.2欄に示すよう
に、貯湯槽40に貯める貯湯運転モードが行われる。
In the present embodiment, when the exhaust heat generated from the battery main body 2 is excessive at the minimum load of the heat pump operation during the heating load operation, the battery main body 2 shown in FIG.
For example, the exhaust heat hot water or the exhaust heat hot water from the fuel processing system 1 supplied from the exhaust heat supply water pump (P 1 ) 13 of No. 1 is bypassed by the radiator 41. As shown in the second column, a hot water storage operation mode for storing in the hot water storage tank 40 is performed.

【0071】この貯湯運転モードは、図2に示すよう
に、第1二方遮断弁(V)35、第3二方遮断弁(V
)37および第5二方遮断弁(V)43のそれぞれ
を閉じ、第2二方遮断弁(V)36を開にする状態
で、排熱供給水ポンプ(P)13から供給される、例
えば排熱温水を、三方遮断弁39の切り換えにより、放
熱器41をバイパスさせ、貯湯槽40に供給する。そし
て、この排熱温水を給湯や風呂等に利用する場合、貯湯
槽40の第4二方遮断弁(V)38を開ける。
In this hot water storage operation mode, as shown in FIG. 2, the first two-way shutoff valve (V 1 ) 35 and the third two-way shutoff valve (V 1
3 ) 37 and the fifth two-way cutoff valve (V 5 ) 43 are closed, and the second two-way cutoff valve (V 2 ) 36 is opened, and the waste heat supply water pump (P 1 ) 13 supplies the water. For example, waste heat hot water is supplied to the hot water storage tank 40 by bypassing the radiator 41 by switching the three-way shutoff valve 39. Then, when the hot waste water is used for hot water supply, a bath or the like, the fourth two-way shutoff valve (V 4 ) 38 of the hot water storage tank 40 is opened.

【0072】上述の排熱利用貯湯時のヒートポンプ暖房
運転においても、電気負荷が余る場合、電力システム4
4は、図3に示すように、余剰電力分をコンバータ46
を介してバッテリ(2次電池)47に蓄電するととも
に、商用インバータ51を介して系統49に接続し、動
力として他の電気機器の電気負荷50に使用する。
Even in the heat pump heating operation for storing hot water using the exhaust heat, when the electric load is excessive, the power system 4 is used.
As shown in FIG. 3, the converter 4 converts the surplus electric power into a converter 46.
The electric power is stored in a battery (secondary battery) 47 via a commercial inverter 51 and is connected to a system 49 via a commercial inverter 51 to be used as a power for an electric load 50 of another electric device.

【0073】このように、本実施形態は、暖房運転中に
貯湯運転モードを行うことにより、電池本体2からの排
熱や余剰電力を有効に利用することができ、地球資源の
有効活用に寄与することができる。なお、本実施形態で
は、電池本体2から出る排熱利用を、主として暖房運転
に適用しているので、貯湯槽40に貯める貯湯熱量が比
較的少なくなっている。しかし、その分だけ貯湯槽40
は小形化することができる。
As described above, according to the present embodiment, by performing the hot water storage operation mode during the heating operation, the exhaust heat from the battery main body 2 and the surplus electric power can be effectively used, which contributes to the effective utilization of the earth resources. can do. In the present embodiment, the use of the exhaust heat from the battery main body 2 is mainly applied to the heating operation, so the amount of stored hot water stored in the hot water storage tank 40 is relatively small. However, only that much 40
Can be miniaturized.

【0074】また、本実施形態は、電池本体2に供給す
る燃料を炭化系水素、例えばプロパンを使用している
が、ガス化する灯油を燃料として使用してもよい。この
場合、ランニングコストが安く、特に暖房ニーズの大き
い寒冷地では、灯油インフラも整備されているので、本
システムを利用する利点は大きい。
Further, in the present embodiment, the hydrocarbon supplied to the battery main body 2 is hydrocarbon, for example, propane, but kerosene which is gasified may be used as fuel. In this case, since the running cost is low and the kerosene infrastructure is in place especially in the cold district where the heating needs are large, the advantage of using this system is great.

【0075】また、本実施形態は、圧縮機23に使用す
る冷媒ガスとして、成績係数(COP)が高く、給湯用
の熱源媒体としても使える、70℃〜80℃の高温凝縮
が可能なフロンR410A、フロンR407C、二酸化
炭素COのうち、いずれかを選択すれば、効果的な暖
房運転を行うことができる。
Further, in the present embodiment, as a refrigerant gas used in the compressor 23, a CFC having a high coefficient of performance (COP) and usable as a heat source medium for hot water supply and capable of high temperature condensation at 70 ° C. to 80 ° C. R410A. , Freon R407C, of carbon dioxide CO 2, by selecting one, it is possible to perform effective heating operation.

【0076】なお、本実施形態は、燃料電池システム5
9として燃料処理系1と電池本体2とを組み合わせ、水
素に酸素を反応させて発生する直流電力や排熱を巧みに
活用し、暖房運転や貯湯運転を行っているが、暖房運転
や貯湯運転等は電池本体2から発生する電力や熱を利用
するにすぎないので、純水素を電池本体2に直接供給し
て燃料処理系1を省略してもよい。
In this embodiment, the fuel cell system 5
The fuel processing system 1 and the battery main body 2 are combined as 9, and the DC power and exhaust heat generated by reacting oxygen with hydrogen are skillfully utilized to perform heating operation and hot water storage operation. Since, for example, only uses the electric power and heat generated from the battery main body 2, pure hydrogen may be directly supplied to the battery main body 2 and the fuel processing system 1 may be omitted.

【0077】また、凝縮熱交換器19から出る熱は、改
質用水タンク10のほかに温水として他の設備に供給し
てもよい。
The heat emitted from the condensation heat exchanger 19 may be supplied to other equipment as hot water in addition to the reforming water tank 10.

【0078】次に、電池本体2からの排熱を利用しない
排熱非利用用冷房運転モードを説明する。
Next, a cooling operation mode for not using exhaust heat from the battery main body 2 will be described.

【0079】通常の冷房運転は、図2に示す四方弁24
を反転させ、冷媒ガスの流れ経路を破線部分にし、室外
熱交換器25を凝縮器として機能させ、室内熱交換器3
1を蒸発器として機能させている。
In the normal cooling operation, the four-way valve 24 shown in FIG. 2 is used.
To reverse the flow path of the refrigerant gas to the broken line portion to make the outdoor heat exchanger 25 function as a condenser,
1 is functioning as an evaporator.

【0080】この通常の冷房運転に対し、本実施形態に
係る排熱非利用冷房運転モードは、表1のNo.3欄に
示すように、第1二方遮断弁(V)35、第2二方遮
断弁(V)36および第3二方遮断弁(V)37の
それぞれを閉じ、第5二方遮断弁(V)43を開にす
る状態で、排熱供給水ポンプ(P)13から供給され
る、例えば排熱温水あるいは燃料処理系1からの排熱温
水を、三方遮断弁39の切り換えにより、放熱器41に
供給し、放熱ファン42の駆動動力で大気に熱を放出さ
せる。
In contrast to the normal cooling operation, the exhaust heat non-use cooling operation mode according to the present embodiment is No. 1 in Table 1. As shown in column 3, each of the first two-way shutoff valve (V 1 ) 35, the second two-way shutoff valve (V 2 ) 36, and the third two-way shutoff valve (V 3 ) 37 is closed, and the fifth two-way shutoff valve (V 3 ) 37 is closed. With the one-way shutoff valve (V 5 ) 43 open, the three-way shutoff valve 39 receives, for example, the hot exhaust hot water supplied from the exhaust heat supply water pump (P 1 ) 13 or the hot exhaust hot water from the fuel processing system 1. The heat is supplied to the radiator 41 and the heat is emitted to the atmosphere by the driving power of the heat radiation fan 42.

【0081】一方、排熱非利用冷房運転中、電池本体2
からの排熱を貯湯槽40に貯める貯湯運転モードは、表
1のNo.4欄に示すように、第1二方遮断弁(V
35、第3二方遮断弁(V)37および第5二方遮断
弁(V)43を閉じ、第2二方遮断弁(V)36を
開にする状態で、排熱供給水ポンプ(P)13から供
給される、例えば排熱温水を、三方遮断弁39の切り換
えにより、放熱器41をバイパスさせて貯湯槽40に供
給する。そして、この温水を給湯や風呂等に利用する場
合、貯湯槽40の第4二方遮断弁(V)38を開け
る。
On the other hand, during the cooling operation without using the exhaust heat, the battery main body 2
The hot water storage operation mode in which the exhaust heat from the hot water storage tank 40 is stored in No. 1 of Table 1. As shown in column 4, the first two-way shutoff valve (V 1 )
35, the third two-way cutoff valve (V 3 ) 37 and the fifth two-way cutoff valve (V 5 ) 43 are closed, and the second two-way cutoff valve (V 2 ) 36 is opened, and the exhaust heat supply water is supplied. For example, waste heat hot water supplied from the pump (P 1 ) 13 is supplied to the hot water storage tank 40 by bypassing the radiator 41 by switching the three-way cutoff valve 39. Then, when the hot water is used for hot water supply, a bath or the like, the fourth two-way shutoff valve (V 4 ) 38 of the hot water storage tank 40 is opened.

【0082】他方、冷房運転中に貯湯運転を併用する、
いわゆる冷房パワフル貯湯運転モードは、表1のNo.
5欄に示すように、空調部20の室外熱交換器25の凝
縮熱を汲み上げ、貯湯槽40の温水熱に利用するように
なっている。すなわち、空調部20が冷房運転を行う場
合、冷房パワフル貯湯運転モードは、図2に示すよう
に、四方弁24を破線部分に反転させ、圧縮機23から
出る高温高圧の冷媒ガスを室外熱交換器25で凝縮させ
る。その際に発生する熱を、矢印で示す室外ファン26
の空気の流れ方向で、室外熱交換器25の下流側に位置
する排熱利用熱交換器27aに向って水ポンプ(P
から供給される水に与え、温水として貯湯槽40に蓄え
る。
On the other hand, the hot water storage operation is also used during the cooling operation,
The so-called cooling powerful hot water storage operation mode is No. 1 in Table 1.
As shown in column 5, the heat of condensation of the outdoor heat exchanger 25 of the air conditioner 20 is pumped up and used as the hot water heat of the hot water storage tank 40. That is, when the air conditioning unit 20 performs the cooling operation, in the cooling powerful hot water storage operation mode, as shown in FIG. 2, the four-way valve 24 is reversed to the broken line portion, and the high-temperature and high-pressure refrigerant gas discharged from the compressor 23 is exchanged with the outdoor heat. Condensate in vessel 25. The heat generated at that time is indicated by an arrow in the outdoor fan 26.
The water pump (P 2 ) toward the exhaust heat utilization heat exchanger 27a located on the downstream side of the outdoor heat exchanger 25 in the direction of the air flow.
It is given to the water supplied from and stored in the hot water storage tank 40 as hot water.

【0083】このとき、第1二方遮断弁(V)35お
よび第5二方遮断弁(V)43のそれぞれを閉じ、第
2二方遮断弁(V)36および第3二方遮断弁
(V)37のそれぞれを開く。そして、排熱供給水ポ
ンプ(P)13から供給される、例えば排熱温水を、
貯湯槽40に蓄え、給湯や風呂等に利用する場合、第4
二方遮断弁(V)38を開ける。
At this time, each of the first two-way shutoff valve (V 1 ) 35 and the fifth two-way shutoff valve (V 5 ) 43 is closed, and the second two-way shutoff valve (V 2 ) 36 and the third two-way shutoff valve (V 2 ). Open each of the shutoff valves (V 3 ) 37. Then, for example, exhaust heat hot water supplied from the exhaust heat supply water pump (P 1 ) 13
When stored in the hot water storage tank 40 and used for hot water supply, bath, etc.,
Open the two-way shutoff valve (V 4 ) 38.

【0084】このように、本実施形態は、冷房運転中、
室外機21の室外熱交換器25の冷媒凝縮熱および電池
本体2から出る排熱温水を貯湯槽40に貯めるパワフル
給湯を行うことができるようにしているので、経済的に
してエネルギ効率の高い冷房運転を実現することができ
る。
As described above, in this embodiment, during the cooling operation,
Since the heat of refrigerant condensation of the outdoor heat exchanger 25 of the outdoor unit 21 and the exhaust heat hot water discharged from the battery main body 2 can be stored in the hot water storage tank 40 as a powerful hot water supply, it is economical and highly energy efficient cooling. Driving can be realized.

【0085】さらに、電池本体2からの排熱を利用する
除湿運転モードを説明する。
Further, the dehumidifying operation mode utilizing the exhaust heat from the battery main body 2 will be described.

【0086】ここで、除湿運転モードとは、室内の温度
を下げない暖気味の除湿運転をいう。
Here, the dehumidifying operation mode means a warm dehumidifying operation in which the temperature in the room is not lowered.

【0087】通常、除湿運転は、図2に示すように、圧
縮機23からの冷媒ガスを、四方弁24の破線で示す経
路、室外熱交換器25、絞り機構28を介して室内熱交
換器31に供給し、ここで、冷媒ガスを蒸発させて室内
を除湿させるものであるが、その際、室温を下げざるを
得ないのが一般的である。しかし、本実施形態では電池
排熱を利用して室温を温めるようになっている。
Normally, in the dehumidifying operation, as shown in FIG. 2, the refrigerant gas from the compressor 23 is passed through the path shown by the broken line of the four-way valve 24, the outdoor heat exchanger 25, and the throttle mechanism 28 to the indoor heat exchanger. It is supplied to No. 31, and here, the refrigerant gas is evaporated to dehumidify the inside of the room, but at that time, it is generally necessary to lower the room temperature. However, in this embodiment, the room temperature is adapted to be warmed by utilizing the exhaust heat of the battery.

【0088】このような運転を行う場合、第1二方遮断
弁(V)35を開き、第2二方遮断弁(V)36、
第3二方遮断弁(V)37および第5二方遮断弁(V
)43のそれぞれを閉じた状態で、電池本体2から出
る排熱を利用し、排熱供給水ポンプ(P)13から供
給される、例えば排熱温水を排熱利用熱交換器27bに
供給し、ここで室内に向って熱を放出させている。
When performing such an operation, the first two-way shutoff valve (V 1 ) 35 is opened and the second two-way shutoff valve (V 2 ) 36,
The third two-way cutoff valve (V 3 ) 37 and the fifth two-way cutoff valve (V 3
5 ) With each of the 43 closed, the exhaust heat from the battery main body 2 is used to supply, for example, exhaust hot water supplied from the exhaust heat supply water pump (P 1 ) 13 to the exhaust heat utilization heat exchanger 27b. It is supplied, and heat is released here toward the room.

【0089】このように、本実施形態は、電池本体2か
ら出る排熱を利用し、排熱供給水ポンプ(P)13か
ら供給される排熱温水を排熱利用熱交換器27bに供給
し、室内を暖めるので、梅雨時期や秋期に室温が下がる
底冷のない快適な除湿環境に維持させることができる。
As described above, in this embodiment, the exhaust heat from the battery main body 2 is used, and the exhaust heat water supplied from the exhaust heat supply water pump (P 1 ) 13 is supplied to the exhaust heat utilization heat exchanger 27b. However, since it warms the room, it can be maintained in a comfortable dehumidifying environment without bottom cooling where the room temperature drops during the rainy season and autumn.

【0090】最後に、空調機システム60を使用する季
節にとらわれることなく行われる発電運転モードを説明
する。
Finally, a power generation operation mode that is performed regardless of the season when the air conditioner system 60 is used will be described.

【0091】この発電運転モードは、表1のNo.7欄
に示す電池排熱利用モードと、表1のNo.8欄に示す
電池排熱非利用モードとに区分けされる。
This power generation operation mode is No. 1 in Table 1. Battery exhaust heat utilization mode shown in column 7 and No. 1 in Table 1. It is classified into a battery waste heat non-use mode shown in column 8.

【0092】前者の排熱利用モードは、図3に示すよう
に、電池本体2から発生する直流電力をチョッパ45を
介して優先的にインバータ(DC/AC)48に供給し
て圧縮機23を駆動し、余剰電力を一部をコンバータ
(DC/DC)46を介してバッテリ(2次電池)47
で蓄電し、さらに余剰電力の残りを商用インバータ(D
C/AC)51を介して系統49からの交流電力に加え
て電気負荷50を増加させるとともに、電池本体2から
出る排熱を利用し、排熱供給水ポンプ(P)13から
供給される排熱温水を、第1二方遮断弁(V)35、
第3二方遮断弁(V)37および第5二方遮断弁(V
)43のそれぞれを閉じ、第2二方遮断弁(V)3
6を開く状態で、三方遮断弁39の切り換えにより、放
熱器41をバイパスさせて貯湯槽40に供給する。そし
て、この排熱温水を給湯や風呂等に利用する場合、貯湯
槽40の第4二方遮断弁(V)38を開ける。
In the former waste heat utilization mode, as shown in FIG. 3, the DC power generated from the battery main body 2 is preferentially supplied to the inverter (DC / AC) 48 via the chopper 45 to drive the compressor 23. A battery (secondary battery) 47 is driven by driving a part of surplus power through a converter (DC / DC) 46.
Electricity is stored by the commercial inverter (D
The electric load 50 is increased in addition to the AC power from the grid 49 via the C / AC) 51, and the exhaust heat from the battery main body 2 is used to be supplied from the exhaust heat supply water pump (P 1 ) 13. The exhaust heat water is supplied to the first two-way shutoff valve (V 1 ) 35,
The third two-way cutoff valve (V 3 ) 37 and the fifth two-way cutoff valve (V 3
5 ) 43 respectively, and the second two-way shutoff valve (V 2 ) 3
In the state where 6 is opened, the radiator 41 is bypassed and supplied to the hot water storage tank 40 by switching the three-way cutoff valve 39. Then, when the hot waste water is used for hot water supply, a bath or the like, the fourth two-way shutoff valve (V 4 ) 38 of the hot water storage tank 40 is opened.

【0093】また、後者の電池排熱非利用モードは、発
電運転に対して上述と同様な運転モードを採るととも
に、排熱供給水ポンプ(P)13から供給される排熱
温水を、第1二方遮断弁(V)35、第2二方遮断弁
(V)36および第3二方遮断弁(V)37のそれ
ぞれを閉じ、第5二方遮断弁(V)43を開く状態
で、三方遮断弁39の切り換えにより、放熱器41に供
給し、放熱ファン42で熱を大気に捨てる。
In the latter battery waste heat non-use mode, the same operation mode as described above is adopted for the power generation operation, and the waste heat heat water supplied from the waste heat supply water pump (P 1 ) 13 is The first two-way shutoff valve (V 1 ) 35, the second two-way shutoff valve (V 2 ) 36, and the third two-way shutoff valve (V 3 ) 37 are closed, and the fifth two-way shutoff valve (V 5 ) 43. In the open state, the three-way cutoff valve 39 is switched to supply the heat to the radiator 41, and the heat is dissipated to the atmosphere by the heat radiation fan 42.

【0094】このように、本実施形態は、電池本体2か
ら発生する直流電力を用いて発電運転を行うとともに、
電池本体2から発生する排熱を利用して暖冷房運転や貯
湯運転等を行うので、直流電力の有効利用と相俟って、
経済的にしてエネルギ効率の高い運転を行うことができ
る。
As described above, in this embodiment, the direct-current power generated from the battery main body 2 is used to perform the power generation operation, and
Since exhaust heat generated from the battery body 2 is used to perform heating / cooling operation, hot water storage operation, etc., in combination with effective use of DC power,
It is possible to operate economically and with high energy efficiency.

【0095】[0095]

【発明の効果】以上の説明のとおり、本発明に係る燃料
電池の排熱利用空調システムは、電池本体から発生する
直流電力を優先的に活用する空調部駆動手段、その直流
電力の余剰電力を貯える蓄電手段、系統の負荷を増加さ
せる手段を備える一方、電池本体から発生する熱エネル
ギを有効に活用する暖・冷房手段、除湿および貯湯手段
を備えているので、経済的でエネルギ効率の高い電力供
給、熱併給を同時に行うことができる。
As described above, the exhaust heat utilization air conditioning system for a fuel cell according to the present invention uses the air conditioning unit driving means that preferentially utilizes the DC power generated from the battery body, and the surplus power of the DC power. While it is provided with a storage means for storing electricity and a means for increasing the load on the system, it is provided with heating / cooling means, dehumidification and hot water storage means that effectively utilize the heat energy generated from the battery main body, so that it is economical and highly energy efficient. Supply and co-heating can be performed simultaneously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池の排熱利用空調システム
のうち、燃料電池システムの実施形態を示す概略全体系
統図。
FIG. 1 is a schematic overall system diagram showing an embodiment of a fuel cell system in an exhaust heat utilization air conditioning system for a fuel cell according to the present invention.

【図2】本発明に係る燃料電池の排熱利用空調システム
のうち、空調機システムの実施形態を示す概略全体系統
図。
FIG. 2 is a schematic overall system diagram showing an embodiment of an air conditioner system of the exhaust heat utilization air conditioning system for a fuel cell according to the present invention.

【図3】本発明に係る燃料電池の排熱利用空調システム
に適用する電力システムを示すブロック図。
FIG. 3 is a block diagram showing an electric power system applied to an air conditioning system utilizing exhaust heat of a fuel cell according to the present invention.

【符号の説明】[Explanation of symbols]

1 燃料処理系 2 電池本体 3 燃料部 4 脱流器 5 水蒸気蒸発器 5a 燃焼器 5b 熱交換器 6 改質器 7 COシフト反応器 8 CO選択酸化器 9 水蒸気分離器 10 改質用水タンク 10a 水供給系 10b 水回収系 11 改質用水ポンプ 12 排熱熱交換器 13 排熱供給水ポンプ 14 アノード 15 カソード 16 水冷却部 17 電池冷却水ポンプ 18 空気ブロア 19 凝縮熱交換器 19a 残留ガス回収系 20 空調部 21 室外機 22 室内機 23 圧縮機 24 四方弁 25 室外熱交換器 26 室外ファン 27a,27b 排熱利用側熱交換器 28 絞り機構 31 室内熱交換器 32 室内ファン 34 水ポンプ 35 第1二方遮断弁 36 第2二方遮断弁 37 第3二方遮断弁 38 第4二方遮断弁 39 三方遮断弁 40 貯湯槽 41 放熱器 42 放熱ファン 43 第5二方遮断弁 44 電力システム 45 チョッパ 46 コンバータ 47 バッテリ 48 インバータ 49 系統 50 電気負荷 51 商用インバータ 59 燃料電池システム 60 空調機システム 1 Fuel processing system 2 Battery body 3 Fuel Department 4 drainers 5 Steam evaporator 5a Combustor 5b heat exchanger 6 reformer 7 CO shift reactor 8 CO selective oxidizer 9 Water vapor separator 10 Reforming water tank 10a Water supply system 10b Water recovery system 11 Reforming water pump 12 Exhaust heat heat exchanger 13 Waste heat supply water pump 14 Anode 15 cathode 16 Water cooling unit 17 Battery cooling water pump 18 air blower 19 Condensation heat exchanger 19a Residual gas recovery system 20 Air conditioning unit 21 outdoor unit 22 Indoor unit 23 Compressor 24 four-way valve 25 outdoor heat exchanger 26 outdoor fan 27a, 27b Exhaust heat utilization side heat exchanger 28 Aperture mechanism 31 Indoor heat exchanger 32 indoor fan 34 water pump 35 1st 2-way shutoff valve 36 Second 2-way shutoff valve 37 Third two-way shutoff valve 38 4th two-way shutoff valve 39 3-way shutoff valve 40 hot water storage tank 41 radiator 42 Heat dissipation fan 43 5th two-way shutoff valve 44 power system 45 chopper 46 converter 47 battery 48 inverter 49 lines 50 electric load 51 commercial inverter 59 Fuel cell system 60 air conditioner system

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アノードに燃料ガスを供給し、カソード
に酸化剤ガスを供給し、各ガスを反応させる際、直流電
力を発生させるとともに、排熱を発生させる燃料電池シ
ステムと、この燃料電池システムから発生する直流電力
を供給して空調機システムを駆動するとともに、前記直
流電力の余剰分を蓄電および系統からの負荷に加えるも
ののうち、少なくともいずれか一方を行う電力システム
と、前記燃料電池システムから発生する排熱を室内の暖
房、冷房、除湿に利用する空調機システムと、前記燃料
電池から発生する排熱を利用して貯湯する手段とを備え
ていることを特徴とする燃料電池の排熱利用空調システ
ム。
1. A fuel cell system for generating direct-current power and exhaust heat when a fuel gas is supplied to an anode and an oxidant gas is supplied to a cathode to react each gas, and a fuel cell system for the same. From the fuel cell system, a power system that supplies at least one of a power supply and a load from the grid while supplying the DC power generated from the air conditioner system to drive the air conditioner system. Exhaust heat of a fuel cell, comprising an air conditioner system for utilizing exhaust heat generated for heating, cooling and dehumidifying the room, and means for storing hot water by utilizing exhaust heat generated from the fuel cell Use air conditioning system.
【請求項2】 燃料電池システムは、直流電力と排熱を
発生させる電池本体と、この電池本体に接続され、燃料
ガスを改質させる燃料処理系とを備えるとともに、前記
電池本体から発生する排熱および前記燃料処理系から発
生する排熱のうち、少なくともいずれか一方の排熱の一
部を暖房熱に利用する空調機システムの空調部を備える
ことを特徴とする請求項1記載の燃料電池の排熱利用空
調システム。
2. A fuel cell system includes a battery main body for generating direct current power and exhaust heat, and a fuel processing system connected to the battery main body for reforming fuel gas, and exhaust gas generated from the battery main body. The fuel cell according to claim 1, further comprising an air conditioning unit of an air conditioner system that utilizes at least one of exhaust heat generated from the heat and the fuel processing system as heating heat. Exhaust heat utilization air conditioning system.
【請求項3】 電力システムは、電池本体から発生する
直流電力を空調部の圧縮機に通電して駆動させる際、前
記直流電力の増減に関係なく優先的に通電させることを
特徴とする請求項1記載の燃料電池の排熱利用空調シス
テム。
3. The electric power system preferentially energizes the DC power generated from the battery main body when the compressor in the air conditioning unit is energized and driven, regardless of the increase or decrease of the DC power. 1. An air conditioning system for exhaust heat of a fuel cell according to 1.
【請求項4】 空調機システムの空調部は、互いに区分
けされた室内機と室外機とを備えるとともに、室内機お
よび室外機は、ともに、ファン、熱交換器、排熱利用側
熱交換器を備えていることを特徴とする請求項2記載の
燃料電池の排熱利用空調システム。
4. The air conditioner of the air conditioner system includes an indoor unit and an outdoor unit that are separated from each other, and the indoor unit and the outdoor unit both include a fan, a heat exchanger, and a heat exchanger using exhaust heat. The exhaust heat utilization air conditioning system for a fuel cell according to claim 2, which is provided.
【請求項5】 空調機システムの空調部は、暖房運転
時、ヒートポンプ運転の最低負荷運転においても熱が余
る場合、電池本体、燃料処理系のうち、少なくともいず
れか一方からの排熱の一部を回収して貯める貯湯槽を備
えていることを特徴とする請求項2記載の燃料電池の排
熱利用空調システム。
5. A part of exhaust heat from at least one of a battery main body and a fuel processing system, when heat remains in the air conditioning section of the air conditioner system during heating operation or even under minimum load operation of heat pump operation. The exhaust heat utilization air conditioning system for a fuel cell according to claim 2, further comprising a hot water storage tank for collecting and storing the fuel.
【請求項6】 空調機システムの空調部は、冷房運転
時、電池本体、燃料処理系および室外機の室外熱交換器
のうち、少なくともいずれか一方からの熱を回収して貯
める貯湯槽と、前記熱が余る場合、大気に放出させる放
熱器とを備えていることを特徴とする請求項2記載の燃
料電池の排熱利用空調システム。
6. A hot water tank for collecting and storing heat from at least one of a battery main body, a fuel processing system, and an outdoor heat exchanger of an outdoor unit, during the cooling operation, the air conditioning unit of the air conditioning system, The exhaust heat utilization air-conditioning system for a fuel cell according to claim 2, further comprising a radiator for discharging the heat to the atmosphere when the heat is excessive.
【請求項7】 放熱器は、貯湯槽側および床暖房パネル
のうち、いずれか一方に設置することを特徴とする請求
項6記載の燃料電池の排熱利用空調システム。
7. The exhaust heat utilization air conditioning system for a fuel cell according to claim 6, wherein the radiator is installed on one of the hot water storage tank side and the floor heating panel.
【請求項8】 放熱器は放熱ファンを備えていることを
特徴とする請求項6記載の燃料電池の排熱利用空調シス
テム。
8. The air conditioning system utilizing exhaust heat of a fuel cell according to claim 6, wherein the radiator is provided with a radiation fan.
【請求項9】 空調機システムの空調部は、除湿運転
時、電池本体および燃料処理系のうち、少なくとも一方
から発生する熱の一部を室内機の排熱利用側熱交換器に
供給し、室内を暖房気味に維持させる手段を備えている
ことを特徴とする請求項2記載の燃料電池の排熱利用空
調システム。
9. The air conditioner of the air conditioner system supplies a part of heat generated from at least one of the battery main body and the fuel processing system to a heat exchanger using exhaust heat of the indoor unit during dehumidifying operation, The exhaust heat utilization air conditioning system for a fuel cell according to claim 2, further comprising means for keeping the room warm.
【請求項10】 電力システムは、電池本体から発生す
る直流電力を優先的に通電させて空調部の圧縮機を駆動
するインバータと、前記電池本体から発生する直流電力
が余ったとき調整してバッテリに蓄電させるコンバータ
と、前記電池本体から発生する直流電力が余ったとき、
系統からの負荷に加える商用インバータとを備えている
ことを特徴とする請求項1記載の燃料電池の排熱利用空
調システム。
10. An electric power system, wherein an inverter drives a compressor in an air conditioner by preferentially energizing direct current power generated from a battery body, and a battery that adjusts when the direct current power generated from the battery body is excessive. When the DC power generated from the battery main body and the converter to be stored in
The exhaust heat utilization air conditioning system for a fuel cell according to claim 1, further comprising a commercial inverter that applies a load from the grid.
【請求項11】 空調機システムの空調部は、圧縮機に
使用する冷媒ガスを、フロンR410A、R407Cお
よびニ酸化炭素のうち、いずれか一方を選択することを
特徴とする請求項2記載の燃料電池の排熱利用空調シス
テム。
11. The fuel according to claim 2, wherein the air conditioner of the air conditioner system selects one of CFCs R410A, R407C and carbon dioxide as the refrigerant gas used in the compressor. An air conditioning system that uses the exhaust heat of the battery.
【請求項12】 燃料処理系は、燃料ガスとして炭化系
水素および灯油のうち、いずれか一方を選択することを
特徴とする請求項2記載の燃料電池の排熱利用空調シス
テム。
12. The exhaust heat utilization air conditioning system for a fuel cell according to claim 2, wherein the fuel processing system selects one of a hydrocarbon and a kerosene as the fuel gas.
JP2001320316A 2001-10-18 2001-10-18 Air conditioning system using exhaust heat of fuel cells Expired - Lifetime JP4007442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320316A JP4007442B2 (en) 2001-10-18 2001-10-18 Air conditioning system using exhaust heat of fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320316A JP4007442B2 (en) 2001-10-18 2001-10-18 Air conditioning system using exhaust heat of fuel cells

Publications (2)

Publication Number Publication Date
JP2003130491A true JP2003130491A (en) 2003-05-08
JP4007442B2 JP4007442B2 (en) 2007-11-14

Family

ID=19137724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320316A Expired - Lifetime JP4007442B2 (en) 2001-10-18 2001-10-18 Air conditioning system using exhaust heat of fuel cells

Country Status (1)

Country Link
JP (1) JP4007442B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228583A (en) * 2004-02-12 2005-08-25 Ebara Ballard Corp Fuel cell power generation system and starting method of fuel cell power generation system
JP2005293997A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Fuel cell power generation and refrigeration system
JP2007080710A (en) * 2005-09-15 2007-03-29 Nippon Steel Engineering Co Ltd Exhaust heat recovery system of air-cooled air-conditioner
JP2007155188A (en) * 2005-12-02 2007-06-21 Tokyo Gas Co Ltd Heat pump type heat source device using solid oxide fuel cell as power source to carry out driving, and its operating method
JP2008094184A (en) * 2006-10-10 2008-04-24 Toyota Motor Corp Air-conditioning control system
DE112010005573T5 (en) 2010-05-19 2013-05-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and heating method. that uses fuel cell heat
JP2020153611A (en) * 2019-03-20 2020-09-24 大阪瓦斯株式会社 Heating system
CN114628735A (en) * 2022-05-12 2022-06-14 佛山市清极能源科技有限公司 Air drainage system and method of fuel cell stack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228583A (en) * 2004-02-12 2005-08-25 Ebara Ballard Corp Fuel cell power generation system and starting method of fuel cell power generation system
JP4610906B2 (en) * 2004-02-12 2011-01-12 株式会社荏原製作所 Fuel cell power generation system and method for starting fuel cell power generation system
US7614245B2 (en) 2004-03-31 2009-11-10 Daikin Industries, Ltd. Fuel cell power generation refrigerating system
JP2005293997A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Fuel cell power generation and refrigeration system
WO2005099006A1 (en) * 2004-03-31 2005-10-20 Daikin Industries, Ltd. Fuel cell power generating refrigeration system
JP2007080710A (en) * 2005-09-15 2007-03-29 Nippon Steel Engineering Co Ltd Exhaust heat recovery system of air-cooled air-conditioner
JP2007155188A (en) * 2005-12-02 2007-06-21 Tokyo Gas Co Ltd Heat pump type heat source device using solid oxide fuel cell as power source to carry out driving, and its operating method
JP2008094184A (en) * 2006-10-10 2008-04-24 Toyota Motor Corp Air-conditioning control system
DE112010005573T5 (en) 2010-05-19 2013-05-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and heating method. that uses fuel cell heat
JP2020153611A (en) * 2019-03-20 2020-09-24 大阪瓦斯株式会社 Heating system
JP7274896B2 (en) 2019-03-20 2023-05-17 大阪瓦斯株式会社 heating system
CN114628735A (en) * 2022-05-12 2022-06-14 佛山市清极能源科技有限公司 Air drainage system and method of fuel cell stack
CN114628735B (en) * 2022-05-12 2022-09-06 佛山市清极能源科技有限公司 Air drainage system and method of fuel cell stack

Also Published As

Publication number Publication date
JP4007442B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
KR20090089859A (en) Fuel cell heat exchange systems and methods
US9318761B2 (en) Cogeneration system
JP5980025B2 (en) Fuel cell cogeneration system
JP2009021047A (en) Indoor type fuel cell power generation system
JP2009036473A (en) Fuel cell system
JPWO2002023661A1 (en) Polymer electrolyte fuel cell system
JP2000156236A (en) Solid polymer type fuel cell system
JP4007442B2 (en) Air conditioning system using exhaust heat of fuel cells
JP4140269B2 (en) Fuel cell system
JP3823439B2 (en) Fuel cell drive air conditioning system
JP2007213942A (en) Fuel cell system and starting method of fuel cell system
JP2005093374A (en) Fuel cell power generating system, and method of stopping the same
JP5138889B2 (en) Fuel cell system
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2005116256A (en) Fuel cell cogeneration system
JP2008177052A (en) Domestic fuel cell system, and exhaust heat distribution unit used for it
JP4791661B2 (en) Polymer electrolyte fuel cell system
JP4939053B2 (en) Fuel cell system
JP5171103B2 (en) Fuel cell cogeneration system
JP2009170189A (en) Fuel cell system and method of recovering flocculated water in the fuel cell system
JP4660933B2 (en) Fuel cell driven heat pump device
JP2005259440A (en) Fuel cell system
JP4148623B2 (en) Cogeneration system
JP2004100990A (en) Cogeneration system
EP1816695B1 (en) Combined heat and power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350