JP2003127020A - Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting - Google Patents

Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting

Info

Publication number
JP2003127020A
JP2003127020A JP2001326297A JP2001326297A JP2003127020A JP 2003127020 A JP2003127020 A JP 2003127020A JP 2001326297 A JP2001326297 A JP 2001326297A JP 2001326297 A JP2001326297 A JP 2001326297A JP 2003127020 A JP2003127020 A JP 2003127020A
Authority
JP
Japan
Prior art keywords
cutting edge
carbide
cemented carbide
cutting
edge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001326297A
Other languages
Japanese (ja)
Inventor
Yukio Aoki
幸生 青木
Makoto Nishida
西田  真
Toshiyuki Yanai
俊之 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001326297A priority Critical patent/JP2003127020A/en
Publication of JP2003127020A publication Critical patent/JP2003127020A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a square endmill made of coated cemented carbide with cutting edges having superior chipping-resistance in high-speed cutting. SOLUTION: A cylindrical blind hole is formed on the bottom surface of the hard metal body longitudinally and coaxially. A cylindrical tip made of a heavy tungsten-base cemented carbide is fit into the cylindrical blind hole. The hard metal body of cutting edges is constituted by sintered compact-powder of; Co: 8-10 wt.%, chromium carbide and/or vanadium carbide: 0.1-1.5 wt.%, if necessary composite carbide of Ta and Nb: 0.1-1.5 wt.%, and tungsten carbide: remainder. The cylindrical tip is constituted by sintered compressed-powder of; Co: 0.5-2 wt.% and tungsten carbide: remainder. The diameter of the cylindrical tip will be equivalent to 25-45% of the peripheral cutting edge diameter, and the length to 20-40% of the length of cutting edges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、特に高速切削加
工で、外周刃がすぐれた耐チッピング性を発揮する表面
被覆超硬合金製スクエアエンドミル(以下、被覆超硬エ
ンドミルと云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-coated cemented carbide square end mill (hereinafter referred to as a coated cemented carbide end mill) which exhibits excellent chipping resistance of an outer peripheral blade particularly in high-speed cutting. .

【0002】[0002]

【従来の技術】従来、一般に、鋼や鋳鉄などの被削材の
面加工や溝加工、さらに肩加工などに被覆超硬エンドミ
ルが用いられており、この被覆超硬エンドミルとして、
底刃と外周刃が形成された切刃部と、シャンク部とから
なる形状を有し、かつ少なくとも前記切刃部が、結合相
形成成分として4〜16質量%の割合で含有するCo中
に0.1〜3質量%の割合で固溶含有したCrおよび/
またはV成分による粒成長抑制作用で、硬質相形成成分
としての炭化タングステン(以下、WCで示す)の粒径
を、平均粒径で、望ましくは0.7μm以下とした微粒
組織とし、さらに必要に応じて実質的に分散相を形成し
て高温硬さを向上させ、もって耐摩耗性の一段の向上を
図る目的で、TaとNbの複合炭化物[以下、(Ta,
Nb)Cで示す]を0.1〜1.5質量%の割合で含有
した超硬合金基体の表面に、 組成式:(Ti1-XAlX)N、同(Ti1-XAlX)C
1-mm、同[Ti1-(X+Y )AlXSiY]N、および同
[Ti1-(X+Y)AlXSiY]C1-mmで表わした場合、
厚さ方向中央部のオージェ分光分析装置による測定で、
原子比で、X:0.35〜0.70、Y:0.01〜
0.10、m:0.50〜0.99を満足するTiとA
lの複合窒化物[以下、(Ti,Al)Nで示す]層、
TiとAlの複合炭窒化物[以下、(Ti,Al)CN
で示す]層、TiとAlとSiの複合窒化物[以下、
(Ti,Al,Si)Nで示す]層、およびTiとAl
とSiの複合炭窒化物[以下、(Ti,Al,Si)C
Nで示す]層のうちのいずれかの単層、または2種以上
の複層、からなり、かつ0.5〜7μmの平均層厚を有
する硬質被覆層を蒸着形成してなる被覆超硬エンドミル
が知られている。
2. Description of the Related Art Conventionally, a coated carbide end mill has been generally used for surface machining, groove machining, shoulder machining, etc. of a work material such as steel or cast iron.
It has a shape consisting of a cutting edge portion having a bottom blade and an outer peripheral edge, and a shank portion, and at least the cutting edge portion is contained in Co contained in a proportion of 4 to 16 mass% as a binder phase forming component. Cr and / or solid solution containing 0.1 to 3 mass%
Or, by the grain growth suppressing effect of the V component, the grain size of tungsten carbide (hereinafter, referred to as WC) as a hard phase forming component is set to an average grain size of desirably 0.7 μm or less to form a fine grain structure, which is further required. Accordingly, for the purpose of substantially forming a dispersed phase to improve the high temperature hardness and thereby further improve the wear resistance, a composite carbide of Ta and Nb [hereinafter, (Ta,
Nb) C]] on the surface of the cemented carbide substrate containing 0.1 to 1.5% by mass of the composition formula: (Ti 1-X Al X ) N, (Ti 1-X Al X) ) C
1-m N m , the same [Ti 1- (X + Y ) Al x Si Y ] N, and the same [Ti 1- (X + Y) Al x Si Y ] C 1-m N m ,
By the measurement by the Auger spectroscopic analyzer in the central part in the thickness direction,
In atomic ratio, X: 0.35 to 0.70, Y: 0.01 to
Ti and A satisfying 0.10 and m: 0.50 to 0.99
a compound nitride [hereinafter, represented by (Ti, Al) N] layer of 1;
Composite carbonitride of Ti and Al [hereinafter, (Ti, Al) CN
Layer], a composite nitride of Ti, Al, and Si [hereinafter,
(Ti, Al, Si) N] layer, and Ti and Al
And Si compound carbonitride [hereinafter, (Ti, Al, Si) C
[N]] A coated carbide end mill formed by vapor deposition of a hard coating layer comprising any one of the layers or two or more types of multilayers and having an average layer thickness of 0.5 to 7 μm. It has been known.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
の省力化および省エネ化、さらに低コスト化に対する要
求は強く、これに伴い、切削装置の高性能化と相俟っ
て、切削加工は高速で行われる傾向にあるが、上記の従
来被覆超硬エンドミルにおいては、これを高速切削加工
に用いると、エンドミル自体に回転振動ぶれが発生し、
この回転振動ぶれは切削速度(回転速度)が速くなるほ
ど大きくなり、この結果特に外周刃は高ピッチの機械的
衝撃を受けるようになるため、外周刃にはチッピングが
発生し易くなり、したがってエンドミルは外周刃に発生
したチッピング(微小欠け)が原因で比較的短時間で使
用寿命に至るのが現状である。
On the other hand, in recent years, there is a strong demand for labor saving, energy saving, and cost reduction of the cutting process, and along with this, along with the high performance of the cutting device, the cutting process is Although it tends to be performed at high speed, in the above-mentioned conventional coated carbide end mill, when this is used for high-speed cutting, rotational vibration shake occurs in the end mill itself,
This rotational vibration shake increases as the cutting speed (rotation speed) increases, and as a result, the outer peripheral blade in particular receives a high-pitch mechanical impact, so the outer peripheral blade is prone to chipping, and therefore the end mill is The current situation is that the chip life (fine chipping) generated on the peripheral edge reaches the end of its useful life in a relatively short time.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上述のような観点から、高速切削加工で、回転振動ぶれ
の発生を防止できる被覆超硬エンドミルを開発すべく、
特に上記の従来被覆超硬エンドミルに着目し、研究を行
った結果、少なくとも切刃部、すなわち切刃部(この場
合シャンク部は例えば高速度鋼で構成した接合構造とな
る)または切刃部とシャンク部の超硬合金基体を、C
o:8〜10質量%、炭化クロム(以下、Cr32で示
す)および/または炭化バナジウム(以下、VCで示
す):0.1〜1.5質量%、必要に応じて、(Ta,
Nb)C、望ましくは組成式:(Ta1-XNbX)Cで表
した場合、X:0.1〜0.4を満足する(Ta,N
b)C:0.1〜1.5質量%、WC:残り、からなる
配合組成を有する圧粉体の焼結体(密度:約14.6g
/cm3)に特定した上で、図1にそれぞれ概略側面図
(a)、概略正面図(底刃面側)(b)、および概略縦
断面図(c)で例示される通り、前記切刃部の超硬合金
基体の底刃面に円筒状切り込み有底孔を切刃部の長さ方
向に沿って同心に形成し、この円筒状切り込み有底孔
に、Co:0.5〜2質量%、WC:残り、からなる配
合組成を有する圧粉体の焼結体(密度:約15.6g/
cm3)で構成された円筒状チップを嵌着した構造とす
ると共に、実験を重ねた結果として前記円筒状チップの
直径を切刃部の外周刃の外径の25〜45%、同長さを
切刃部の長さの20〜40%にそれぞれ相当する寸法を
もつものとすると、この結果の被覆超硬エンドミルにお
いては、前記切刃部の底刃面の円筒状切り込み有底孔に
篏着された相対的に重質の前記円筒状チップによって高
速切削でも回転振動ぶれの発生が著しく抑制され、これ
によって外周刃のチッピング発生が防止され、長期に亘
ってすぐれた切削性能を発揮するようになる、という研
究結果を得たのである。
Therefore, the present inventors have
From the above viewpoint, in order to develop a coated carbide end mill that can prevent the occurrence of rotational vibration shake in high-speed cutting,
In particular, as a result of conducting research by paying attention to the above conventional coated carbide end mill, at least the cutting edge portion, that is, the cutting edge portion (in this case, the shank portion has a joining structure composed of high-speed steel) or the cutting edge portion. Replace the cemented carbide substrate of the shank with C
o: 8 to 10% by mass, chromium carbide (hereinafter referred to as Cr 3 C 2 ) and / or vanadium carbide (hereinafter referred to as VC): 0.1 to 1.5% by mass, and if necessary (Ta ,
Nb) C, preferably expressed by the composition formula: (Ta 1-X Nb X ) C, X: 0.1 to 0.4 is satisfied (Ta, N
b) C: 0.1 to 1.5% by mass, WC: the balance, a sintered compact of a green compact (density: about 14.6 g
/ Cm 3 ), and as shown in the schematic side view (a), schematic front view (bottom blade surface side) (b), and schematic longitudinal sectional view (c) of FIG. A cylindrical notched bottomed hole is formed concentrically along the lengthwise direction of the cutting blade on the bottom blade surface of the cemented carbide substrate of the blade portion, and Co: 0.5 to 2 is provided in this cylindrical notched bottom hole. Mass%, WC: balance, sintered compact of green compact (density: about 15.6 g /
cm 3 ), the diameter of the cylindrical tip is 25 to 45% of the outer diameter of the outer peripheral blade of the cutting edge portion, and the same length is obtained as a result of repeated experiments. Is 20% to 40% of the length of the cutting edge portion, and in the coated carbide end mill obtained as a result, the cylindrical cutting bottomed hole of the bottom blade surface of the cutting edge portion is Due to the relatively heavy cylindrical tip attached, the occurrence of rotational vibration shake is significantly suppressed even at high speed cutting, thereby preventing the occurrence of chipping of the outer peripheral blade and achieving excellent cutting performance for a long period of time. I got the result of the research.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、切刃部とシャンク部からなり、少
なくとも前記切刃部が、超硬合金基体の表面に、 組成式:(Ti1-XAlX)N、同(Ti1-XAlX)C
1-mm、同[Ti1-(X+Y )AlXSiY]N、および同
[Ti1-(X+Y)AlXSiY]C1-mmで表わした場合、
厚さ方向中央部のオージェ分光分析装置による測定で、
原子比で、X:0.35〜0.70、Y:0.01〜
0.10、m:0.50〜0.99を満足する(Ti,
Al)N層、(Ti,Al)CN層、(Ti,Al,S
i)N層、および(Ti,Al,Si)CN層のうちの
いずれかの単層、または2種以上の複層、からなり、か
つ0.5〜7μmの平均層厚を有する硬質被覆層を蒸着
形成してなる被覆超硬エンドミルにおいて、前記切刃部
の超硬合金基体の底刃面に円筒状切り込み有底孔が切刃
部の長さ方向に沿って同心に存在し、前記円筒状切り込
み有底孔には相対的に重質の超硬合金で構成された円筒
状チップが嵌着された構造を有し、上記切刃部の超硬合
金基体の本体を、Co:8〜10質量%、Cr32およ
び/またはVC:0.1〜1.5質量%、必要に応じて
(Ta,Nb)C:0.1〜1.5質量%、WC:残
り、からなる配合組成を有する圧粉体の焼結体で、上記
円筒状チップを、Co:0.5〜2質量%、WC:残
り、からなる配合組成を有する圧粉体の焼結体で構成す
ると共に、上記円筒状チップの直径を切刃部の外周刃の
外径の25〜45%、同長さを切刃部の長さの20〜4
0%にそれぞれ相当する寸法としてなる、高速切削加工
で外周刃がすぐれた耐チッピング性を発揮する被覆超硬
エンドミルに特徴を有するものである。
The present invention has been made based on the above-mentioned research results, and is composed of a cutting edge portion and a shank portion, and at least the cutting edge portion is formed on the surface of the cemented carbide substrate by the composition formula: (Ti 1-X Al X ) N, the same (Ti 1-X Al X ) C
1-m N m , the same [Ti 1- (X + Y ) Al x Si Y ] N, and the same [Ti 1- (X + Y) Al x Si Y ] C 1-m N m ,
By the measurement by the Auger spectroscopic analyzer in the central part in the thickness direction,
In atomic ratio, X: 0.35 to 0.70, Y: 0.01 to
0.10, m: 0.50 to 0.99 are satisfied (Ti,
Al) N layer, (Ti, Al) CN layer, (Ti, Al, S
i) A hard coating layer comprising an N layer and a single layer of any one of (Ti, Al, Si) CN layers, or a multilayer of two or more kinds, and having an average layer thickness of 0.5 to 7 μm. In a coated cemented carbide end mill formed by vapor deposition, a cylindrical cutting bottomed hole exists concentrically along the length direction of the cutting edge portion on the bottom edge surface of the cemented carbide substrate of the cutting edge portion, The cut-out bottomed hole has a structure in which a cylindrical tip made of a relatively heavy cemented carbide is fitted, and the main body of the cemented carbide substrate of the cutting edge portion is made of Co: 8- 10% by mass, Cr 3 C 2 and / or VC: 0.1 to 1.5% by mass, optionally (Ta, Nb) C: 0.1 to 1.5% by mass, WC: balance. It is a sintered compact of a green compact having a blending composition, and the above cylindrical tip has a blending composition comprising Co: 0.5 to 2 mass% and WC: the rest. And the diameter of the cylindrical tip is 25 to 45% of the outer diameter of the outer peripheral blade of the cutting blade portion, and the same length is 20 to 4 of the length of the cutting blade portion.
It is characterized by a coated cemented carbide end mill that exhibits excellent chipping resistance in the outer peripheral blade in high-speed cutting, which has dimensions corresponding to 0%.

【0006】以下に、この発明の被覆超硬エンドミルに
おいて、上記の通りに数値限定した理由を説明する。 (a) 切刃部の超硬合金基体本体のCo量 Co成分には、焼結性を向上させ、かつ結合相を形成し
て超硬合金基体本体の強度を向上させる作用があるが、
その割合が8質量%未満では超硬合金基体本体に必要な
所望の強度を確保することができず、さらに円筒状チッ
プとの密度差が崩れて回転振動ぶれが発生し易くなり、
一方その割合が10質量%を超えると、耐摩耗性が急激
に軟化し、摩耗進行が促進するようになることから、そ
の割合を8〜10質量%と定めた。
The reasons why the coated carbide end mill of the present invention is numerically limited as described above will be described below. (A) Co content of the cemented carbide base body of the cutting edge The Co component has the effect of improving the sinterability and forming a binder phase to improve the strength of the cemented carbide base body.
If the proportion is less than 8% by mass, the desired strength required for the cemented carbide base body cannot be secured, and the density difference with the cylindrical tip collapses, and rotational vibration shake easily occurs.
On the other hand, when the proportion exceeds 10 mass%, the wear resistance is rapidly softened and the progress of wear is promoted. Therefore, the proportion is set to 8 to 10 mass%.

【0007】(b) 切刃部の超硬合金基体本体のCr
32およびVC量 これらの成分には、焼結時に結合相を形成するCo中に
固溶した状態で硬質相を形成するWCの成長を著しく抑
制して、WCの粒径を平均粒径で、望ましくは0.7μ
m以下とした微粒組織とする作用があるが、この作用は
Cr32およびVCの割合が0.1質量%未満では不充
分となり、一方その割合が1.5%質量を超えると、こ
れが固溶する結合相を硬化し、チッピング発生の原因と
なることから、その割合を0.1〜1.5質量%と定め
た。
(B) Cr of the cemented carbide base body of the cutting edge
3 C 2 and VC content These components significantly suppress the growth of WC that forms a hard phase in the state of solid solution in Co that forms a binder phase during sintering, and changes the WC particle size to the average particle size. And preferably 0.7μ
There is an effect of forming a fine grain structure of m or less, but this effect becomes insufficient when the ratio of Cr 3 C 2 and VC is less than 0.1% by mass, and when the ratio exceeds 1.5% by mass, The binder phase which is solid-dissolved is hardened and causes chipping, so the proportion thereof is set to 0.1 to 1.5% by mass.

【0008】(c) 切刃部の超硬合金基体本体の(T
a,Nb)C量 (Ta,Nb)C成分には、実質的に分散相を形成して
高温硬さを向上させ、もって耐摩耗性の一段の向上に寄
与する作用があるので、必要に応じて配合されるが、そ
の割合が0.1質量%未満では前記作用に所望の向上効
果が得られず、一方その割合が1.5%質量を超える
と、チッピングが発生し易くなることから、その割合を
0.1〜1.5質量%と定めた。
(C) (T of the cemented carbide base body of the cutting edge portion)
The a, Nb) C content (Ta, Nb) C component has a function of substantially forming a dispersed phase to improve high-temperature hardness, and thus contributes to further improvement of wear resistance. However, if the proportion is less than 0.1% by mass, the desired improving effect on the above-mentioned action cannot be obtained, and if the proportion exceeds 1.5% by mass, chipping tends to occur. The ratio was set to 0.1 to 1.5% by mass.

【0009】(d) 円筒状チップの超硬合金のCo量 円筒状チップは強度を必要としないが、焼結体形成には
0.5質量%以上必要であり、一方その割合が2質量%
を超えると、超硬合金基体本体との密度差が崩れて回転
振動ぶれが発生し易くなることから、その割合を0.5
〜2質量%と定めた。
(D) Co Content of Cemented Carbide of Cylindrical Tip Cylindrical tip does not require strength, but 0.5% by mass or more is required for forming a sintered body, while the ratio is 2% by mass.
When the value exceeds 0.5, the density difference from the main body of the cemented carbide substrate collapses, and rotational vibration shake easily occurs, so the ratio is 0.5.
Was determined to be 2% by mass.

【0010】(d) 円筒状チップの寸法 円筒状チップの寸法は、上記の通り経験的に定められた
ものであり、したがってその直径および長さが上記の範
囲を上下のいずれに外れても超硬合金基体本体との間の
密度差バランスが崩れて回転振動ぶれが発生するように
なることから、その直径を切刃部の外周刃の外径の25
〜45%、同長さを切刃部の長さの20〜40%にそれ
ぞれ相当する寸法と定めた。
(D) Dimension of Cylindrical Tip The dimension of the cylindrical tip is empirically determined as described above, and therefore, the diameter and the length of the tip may be above or below the above range. Since the balance of the density difference between the hard alloy base body and the main body of the hard alloy base is lost and rotational vibration shake occurs, its diameter is set to 25
.About.45%, and the same length was defined as a dimension corresponding to 20 to 40% of the length of the cutting edge portion.

【0011】(e) 硬質被覆層の組成および平均層厚 (Ti,Al)N層、(Ti,Al)CN層、(Ti,
Al,Si)N層、および(Ti,Al,Si)CN層
におけるAlは、層の高温硬さおよび耐熱性を高め、も
って耐摩耗性を向上させるために固溶するものであり、
したがって組成式:(Ti1-XAlX)N、同(Ti1-X
AlX)C1-mm、同[Ti1-(X+Y)AlXSiY]N、お
よび同[Ti1-(X+Y)AlXSiY]C1-mmのX値が
0.35未満では前記高温硬さおよび耐熱性に所望の向
上効果が得られず、一方その値が0.70を越えると、
硬質被覆層にチッピングが発生し易くなると云う理由に
よりX値を0.35〜0.70(原子比)と定めたもの
である。また、(Ti,Al,Si)N層および(T
i,Al,Si)CN層におけるSiには、層の耐熱性
を一段と向上させる作用があるが、上記組成式のY値が
0.01未満では所望の耐熱性向上効果が得られず、一
方その値が0.10を越えると、硬質被覆層にチッピン
グが発生し易くなると云う理由によりY値を0.01〜
0.10(原子比)と定めた。さらに、(Ti,Al)
CN層および(Ti,Al,Si)CN層におけるC成
分には、さらに硬さを向上させる作用があるので、(T
i,Al)CN層および(Ti,Al,Si)CN層は
それぞれ上記(Ti,Al)N層および(Ti,Al,
Si)N層に比して相対的に高い硬さをもつが、この場
合C成分の割合が0.01未満、すなわち m値が0.
99を越えると所定の硬さ向上効果が得られず、一方C
成分の割合が0.50を越える、すなわちm値が0.5
未満になると靭性が急激に低下するようになることか
ら、m値を0.50〜0.99と定めたのである。ま
た、この場合その平均層厚が0.5μm未満では、これ
の具備する上記の特性を十分に発揮させることができ
ず、一方その平均層厚が7μmを越えると、硬質被覆層
にチッピングが発生し易くなることから、その平均層厚
を0.5〜7μmと定めた。
(E) Composition of hard coating layer and average layer thickness (Ti, Al) N layer, (Ti, Al) CN layer, (Ti,
Al in the Al, Si) N layer and the (Ti, Al, Si) CN layer is a solid solution for increasing the high temperature hardness and heat resistance of the layer and thus improving wear resistance,
Therefore, the composition formula: (Ti 1-X Al X ) N, the same (Ti 1-X Al X ) N
Al X ) C 1-m N m , the same [Ti 1- (X + Y) Al X Si Y ] N, and the same [Ti 1- (X + Y) Al X Si Y ] C 1-m N m If the X value is less than 0.35, the desired effect of improving the high temperature hardness and heat resistance cannot be obtained. On the other hand, if the value exceeds 0.70,
The X value is set to 0.35 to 0.70 (atomic ratio) for the reason that chipping is likely to occur in the hard coating layer. Further, the (Ti, Al, Si) N layer and the (T
Si in the (i, Al, Si) CN layer has an effect of further improving the heat resistance of the layer, but if the Y value of the above composition formula is less than 0.01, the desired heat resistance improving effect cannot be obtained. If the value exceeds 0.10, chipping of the hard coating layer is likely to occur, so that the Y value is 0.01 to 0.01.
It was set to 0.10 (atomic ratio). Furthermore, (Ti, Al)
Since the C component in the CN layer and the (Ti, Al, Si) CN layer has a function of further improving hardness, (T
The i, Al) CN layer and the (Ti, Al, Si) CN layer are the (Ti, Al) N layer and the (Ti, Al,
Si) N layer has a relatively high hardness, but in this case the ratio of the C component is less than 0.01, that is, the m value is 0.
If it exceeds 99, the predetermined hardness improving effect cannot be obtained, while C
The ratio of the components exceeds 0.50, that is, the m value is 0.5.
If it is less than this, the toughness will drop sharply, so the m value was set to 0.50 to 0.99. Further, in this case, if the average layer thickness is less than 0.5 μm, the above-mentioned characteristics possessed by it cannot be sufficiently exhibited, while if the average layer thickness exceeds 7 μm, chipping occurs in the hard coating layer. Therefore, the average layer thickness is set to 0.5 to 7 μm.

【0012】[0012]

【発明の実施の態様】つぎに、この発明の被覆超硬エン
ドミルを実施例により具体的に説明する。原料粉末とし
て、いずれも0.1〜3μmの範囲内の所定の平均粒径
を有するWC粉末、Cr3 2 粉末、VC粉末、および
Co粉末、さらに(Ta,Nb)C[TaC/NbC=
質量比で、80/20]粉末を用意し、これら原料粉末
を、表1に示される配合組成に配合し、ボールミルで7
2時間湿式混合し、乾燥して、切刃部とシャンク部から
なる超硬合金基体の本体形成用混合粉末a−1〜a−1
4および円筒状チップ形成用混合粉末b−1〜b−4を
調整し、ついで、これらの混合粉末から、それぞれ75
MPaの圧力で所定の寸法(直径および長さ)をもった
超硬合金基体の本体形成用圧粉体および円筒状チップ形
成用圧粉体(いずれも丸棒形状)に押出プレス成形し、
まずこれら圧粉体のうちの前記円筒状チップ形成用圧粉
体を1.3Paの真空中、窒素雰囲気中、温度:135
0〜1480℃の範囲内の所定の温度に1時間保持の条
件で焼結して焼結体とし、一方前記本体形成用圧粉体に
は、100Paの減圧窒素雰囲気中、温度:600℃に
1時間保持の条件で脱脂した状態で、切刃面形成面に前
記円筒状チップの寸法に対応した寸法の円筒状切り込み
有底孔を同心に形成し、この円筒状切り込み有底孔に表
2に示される組み合わせで前記円筒状チップの焼結体を
篏着し、この状態で前記円筒状チップの焼結体の焼結条
件と同じ条件で焼結して焼結体とし、最終的に研削加工
を施して、それぞれ同じく表2に示される寸法および形
状をもった本発明超硬合金基体A1〜A14を製造し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the coated carbide end mill of the present invention will be specifically described by way of Examples. As the raw material powder, WC powder, Cr 3 C 2 powder, VC powder, and Co powder each having a predetermined average particle size within the range of 0.1 to 3 μm, and (Ta, Nb) C [TaC / NbC =
A mass ratio of 80/20] powder was prepared, and these raw material powders were compounded in the compounding composition shown in Table 1 and the results were measured by a ball mill.
Mixed powder a-1 to a-1 for forming a main body of a cemented carbide substrate including a cutting edge portion and a shank portion after wet mixing for 2 hours and drying.
4 and cylindrical tip forming mixed powders b-1 to b-4 were prepared, and then 75
Extrusion press molding with a pressure of MPa into a compact for forming a main body of a cemented carbide substrate having a predetermined dimension (diameter and length) and a compact for forming a cylindrical tip (both are round bar shapes),
First, among the green compacts, the green compact for forming a cylindrical tip is placed under a vacuum of 1.3 Pa in a nitrogen atmosphere at a temperature of 135.
Sintering is performed by sintering at a predetermined temperature within a range of 0 to 1480 ° C. for 1 hour, while the body forming green compact is heated to a temperature of 600 ° C. in a reduced pressure nitrogen atmosphere of 100 Pa. In the state of degreasing under the condition of holding for 1 hour, a cylindrical notched bottomed hole having a size corresponding to the size of the cylindrical tip was concentrically formed on the cutting edge surface forming surface, and Table 2 The sintered body of the cylindrical tip is bonded by the combination shown in, and in this state, the sintered body is sintered under the same conditions as the sintering conditions of the sintered body of the cylindrical tip, and finally ground. By processing, the cemented carbide bases A1 to A14 of the present invention each having the size and shape shown in Table 2 were manufactured.

【0013】また、比較の目的で、表3に示される通り
上記円筒状切り込み有底孔の形成を行なわず、したがっ
て前記円筒状切り込み有底孔への円筒状チップの篏着を
行なわない以外は上記の本発明超硬合金基体A1〜A1
4の製造条件と同じ条件で比較超硬合金基体B1〜B1
4をそれぞれ製造した。
For the purpose of comparison, as shown in Table 3, except that the above-mentioned cylindrical notched bottomed hole is not formed, and therefore the cylindrical tip is not attached to the cylindrical notched bottomed hole. The above-mentioned cemented carbide substrate A1 to A1 of the present invention
Comparative Cemented Carbide Substrates B1 to B1 under the same manufacturing conditions as in No. 4
4 were each manufactured.

【0014】ついで、これら超硬合金基体A1〜A14
およびB1〜B14を、アセトン中で超音波洗浄し、乾
燥した状態で、それぞれ図2に示されるアークイオンプ
レーティング装置に装入し、一方カソード電極(蒸発
源)として、種々の成分組成をもったTi−Al合金お
よびTi−Al−Si合金をそれぞれ装着し、装置内を
排気して0.5Paの真空に保持しながら、ヒーターで
装置内を500℃に加熱した後、Arガスを装置内に導
入して10PaのAr雰囲気とし、この状態で超硬合金
基体に−800Vのバイアス電圧を印加して超硬合金基
体表面をArガスボンバート洗浄し、ついで装置内を
1.3×10-3Paの真空に保持しながら、ヒーターで
装置内を600〜700℃の範囲内の所定の温度に加熱
した状態で、装置内に反応ガスとして窒素ガス、または
窒素ガスとメタンガスの混合ガスを導入して6Paの反
応雰囲気とすると共に、前記超硬基体に印加するバイア
ス電圧を−200Vに下げて、前記カソード電極(Ti
−Al合金またはTi−Al−Si合金)とアノード電
極との間にアーク放電を発生させ、もって前記超硬合金
基体のそれぞれの表面に、表4,5に示される目標組成
および目標層厚の硬質被覆層を形成することにより、本
発明被覆超硬エンドミル1〜14および比較被覆超硬エ
ンドミル1〜14をそれぞれ製造した。
Then, these cemented carbide substrates A1 to A14
And B1 to B14 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 2, respectively, while the cathode electrode (evaporation source) had various component compositions. After mounting the Ti-Al alloy and the Ti-Al-Si alloy respectively, and heating the inside of the apparatus to 500 ° C. with a heater while exhausting the inside of the apparatus and maintaining a vacuum of 0.5 Pa, Ar gas was introduced into the apparatus. And an Ar atmosphere of 10 Pa is introduced, and in this state, a bias voltage of −800 V is applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate by Ar gas bombardment, and then the inside of the apparatus is 1.3 × 10 −3. While maintaining the vacuum of Pa while heating the inside of the device to a predetermined temperature within the range of 600 to 700 ° C. with a heater, nitrogen gas or nitrogen gas and methane gas as reaction gas in the device. The mixed gas was introduced with a reactive atmosphere of 6 Pa, lowering the bias voltage applied to the carbide substrate to -200 V, the cathode electrode (Ti
-Al alloy or Ti-Al-Si alloy) and an anode electrode to generate an arc discharge, so that the target composition and the target layer thickness shown in Tables 4 and 5 are formed on the respective surfaces of the cemented carbide substrate. By forming the hard coating layer, the coated carbide end mills 1 to 14 of the present invention and the comparative coated carbide end mills 1 to 14 were manufactured.

【0015】なお、この結果得られた本発明被覆エンド
ミル1〜14および比較被覆超硬エンドミル1〜14の
硬質被覆層について、その構成層のそれぞれの厚さ方向
中央部の組成をオージェ分光分析装置を用いて測定する
と共に、前記硬質被覆層の構成層の厚さを、走査型電子
顕微鏡を用いて断面測定したところ、いずれも目標組成
および目標層厚と実質的に同じ値を示した。
Regarding the hard coating layers of the coated end mills 1 to 14 of the present invention and the comparative coated cemented carbide end mills 1 to 14 obtained as a result, the compositions of the respective central portions in the thickness direction of the constituent layers are analyzed by an Auger spectroscopic analyzer. And the thickness of the constituent layers of the hard coating layer were measured by a cross section using a scanning electron microscope, and both showed substantially the same values as the target composition and the target layer thickness.

【0016】つぎに、上記の各種の被覆超硬エンドミル
について、被削材として、幅:400mmを有するJI
S・SKD11(硬さ:HRC60)の板材を用い、表
6,7に示される条件で高速肩削り加工を行い、切刃部
の外周刃の逃げ面摩耗幅がそれぞれ表6,7に示される
使用目安とされる値に至るまでの切削長を測定した。こ
れらの測定結果を表6,7にそれぞれ平均値で示した。
Next, for each of the above coated carbide end mills, a JI having a width of 400 mm as a work material
Using S / SKD11 (hardness: HRC60) plate material, high-speed shoulder milling was performed under the conditions shown in Tables 6 and 7, and the flank wear width of the outer peripheral blade of the cutting edge portion is shown in Tables 6 and 7, respectively. The cutting length up to the value used as a guideline was measured. The results of these measurements are shown in Tables 6 and 7 as average values.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【表6】 [Table 6]

【0023】[0023]

【表7】 [Table 7]

【0024】[0024]

【発明の効果】表1〜7に示される結果から、本発明被
覆超硬エンドミル1〜14は、いずれも切刃部先端部に
おける相対的に重質の円筒状チップの篏着によって高速
切削でも自体の回転振動ぶれが著しく抑制されることか
ら、外周刃のチッピング発生がなくなり、すぐれた耐摩
耗性を発揮するのに対して、前記円筒状チップの篏着が
ない比較被覆超硬エンドミル1〜14においては、いず
れも高速切削加工では回転振動ぶれが発生し、これが原
因で外周刃にチッピングが発生し易くなり、比較的短時
間で使用寿命に至ることが明らかである。上述のよう
に、この発明の被覆超硬エンドミルは、通常の条件での
切削加工は勿論のこと、高速切削加工でも外周刃がすぐ
れた耐チッピング性を発揮し、長期に亘ってすぐれた切
削性能を示すものであるから、切削加工の省力化および
省エネ化、さらに低コスト化に十分満足に対応すること
ができるものである。
From the results shown in Tables 1 to 7, all of the coated carbide end mills 1 to 14 of the present invention can be used for high speed cutting due to the relatively heavy cylindrical tip attached to the tip of the cutting edge. Since the rotational vibration shake of itself is remarkably suppressed, chipping of the outer peripheral blade is eliminated and excellent wear resistance is exhibited, while the cylindrical coated comparative end mills 1- In No. 14, it is apparent that rotational vibration shake occurs in high-speed cutting, chipping easily occurs on the outer peripheral blade due to this, and the service life is reached in a relatively short time. As described above, the coated carbide end mill of the present invention exhibits excellent chipping resistance of the outer peripheral blade not only for cutting under normal conditions but also for high-speed cutting, and has excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily deal with labor saving and energy saving of the cutting process and further cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明被覆超硬エンドミルを例示する
概略側面図、(b)は同概略正面図、および(c)は同
概略縦断面図である。
1A is a schematic side view illustrating a coated carbide end mill of the present invention, FIG. 1B is a schematic front view thereof, and FIG. 1C is a schematic longitudinal sectional view thereof.

【図2】アークイオンプレーティング装置の概略説明図
である。
FIG. 2 is a schematic explanatory view of an arc ion plating device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷内 俊之 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C022 KK03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Taniuchi             1511 Furumagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works F-term (reference) 3C022 KK03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 切刃部とシャンク部からなり、少なくと
も前記切刃部が、炭化タングステン基超硬合金で構成さ
れた超硬合金基体の表面に、 組成式:(Ti1-XAlX)N、同(Ti1-XAlX)C
1-mm、同[Ti1-(X+Y )AlXSiY]N、および同
[Ti1-(X+Y)AlXSiY]C1-mmで表わした場合、
厚さ方向中央部のオージェ分光分析装置による測定で、
原子比で、X:0.35〜0.70、Y:0.01〜
0.10、m:0.50〜0.99を満足するTiとA
lの複合窒化物層、TiとAlの複合炭窒化物層、Ti
とAlとSiの複合窒化物層、およびTiとAlとSi
の複合炭窒化物層のうちのいずれかの単層、または2種
以上の複層からなり、かつ0.5〜7μmの平均層厚を
有する硬質被覆層を蒸着形成してなる表面被覆超硬合金
製スクエアエンドミルにおいて、 前記切刃部の超硬合金基体の底刃面に円筒状切り込み有
底孔が切刃部の長さ方向に沿って同心に存在し、前記円
筒状切り込み有底孔には相対的に重質の炭化タングステ
ン基超硬合金で構成された円筒状チップが嵌着された構
造を有し、 上記切刃部の超硬合金基体の本体を、 Co:8〜10質量%、 炭化クロムおよび/または炭化バナジウム:0.1〜
1.5質量%、 炭化タングステン:残り、 からなる配合組成を有する圧粉体の焼結体で、上記円筒
状チップを、 Co:0.5〜2質量%、 炭化タングステン:残り、 からなる配合組成を有する圧粉体の焼結体で構成すると
共に、 上記円筒状チップの直径を切刃部の外周刃の外径の25
〜45%、同長さを切刃部の長さの20〜40%にそれ
ぞれ相当する寸法としたこと、を特徴とする高速切削加
工で外周刃がすぐれた耐チッピング性を発揮する表面被
覆超硬合金製スクエアエンドミル。
1. A composition comprising a cutting edge portion and a shank portion, wherein at least the cutting edge portion is formed on a surface of a cemented carbide base made of a tungsten carbide based cemented carbide, a composition formula: (Ti 1-X Al X ). N, same (Ti 1-X Al X ) C
1-m N m , the same [Ti 1- (X + Y ) Al x Si Y ] N, and the same [Ti 1- (X + Y) Al x Si Y ] C 1-m N m ,
By the measurement by the Auger spectroscopic analyzer in the central part in the thickness direction,
In atomic ratio, X: 0.35 to 0.70, Y: 0.01 to
Ti and A satisfying 0.10 and m: 0.50 to 0.99
l composite nitride layer, Ti and Al composite carbonitride layer, Ti
And a composite nitride layer of Al and Si, and Ti, Al and Si
Of the composite carbonitride layer described above, or a surface-coated cemented carbide formed by vapor deposition forming a hard coating layer having a mean layer thickness of 0.5 to 7 μm, the hard coating layer being composed of two or more kinds of multiple layers. In an alloy square end mill, a cylindrical cutting bottomed hole exists concentrically in the bottom blade surface of the cemented carbide substrate of the cutting edge portion along the length direction of the cutting blade portion, and the cylindrical cutting bottomed hole Has a structure in which a cylindrical tip made of a relatively heavy tungsten carbide-based cemented carbide is fitted, and the main body of the cemented carbide substrate of the cutting edge portion is made of Co: 8 to 10% by mass. , Chromium carbide and / or vanadium carbide: 0.1
1.5% by mass, tungsten carbide: balance, a sintered compact of a powder compact having a compounding composition of the above cylindrical tip, Co: 0.5 to 2% by mass, tungsten carbide: balance, It is composed of a sintered compact of a green compact having a composition, and the diameter of the cylindrical tip is 25 times the outer diameter of the outer peripheral blade of the cutting edge portion.
~ 45%, and the same length was set to a dimension corresponding to 20 to 40% of the length of the cutting edge portion, respectively, the outer peripheral blade exhibits excellent chipping resistance in the high-speed cutting process. Hard alloy square end mill.
【請求項2】 切刃部とシャンク部からなり、少なくと
も前記切刃部が、炭化タングステン基超硬合金で構成さ
れた超硬合金基体の表面に、 組成式:(Ti1-XAlX)N、同(Ti1-XAlX)C
1-mm、同[Ti1-(X+Y )AlXSiY]N、および同
[Ti1-(X+Y)AlXSiY]C1-mmで表わした場合、
厚さ方向中央部のオージェ分光分析装置による測定で、
原子比で、X:0.35〜0.70、Y:0.01〜
0.10、m:0.50〜0.99を満足するTiとA
lの複合窒化物層、TiとAlの複合炭窒化物層、Ti
とAlとSiの複合窒化物層、およびTiとAlとSi
の複合炭窒化物層のうちのいずれかの単層、または2種
以上の複層からなり、かつ0.5〜7μmの平均層厚を
有する硬質被覆層を蒸着形成してなる表面被覆超硬合金
製スクエアエンドミルにおいて、 前記切刃部の超硬合金基体の底刃面に円筒状切り込み有
底孔が切刃部の長さ方向に沿って同心に存在し、前記円
筒状切り込み有底孔には相対的に重質の炭化タングステ
ン基超硬合金で構成された円筒状チップが嵌着された構
造を有し、 上記切刃部の超硬合金基体の本体を、 Co:8〜10質量%、 炭化クロムおよび/または炭化バナジウム:0.1〜
1.5質量%、 TaとNbの複合炭化物:0.1〜1.5質量%、 炭化タングステン:残り、 からなる配合組成を有する圧粉体の焼結体で、上記円筒
状チップを、 Co:0.5〜2質量%、 炭化タングステン:残り、 からなる配合組成を有する圧粉体の焼結体で構成すると
共に、 上記円筒状チップの直径を切刃部の外周刃の外径の25
〜45%、同長さを切刃部の長さの20〜40%にそれ
ぞれ相当する寸法としたこと、を特徴とする高速切削加
工で外周刃がすぐれた耐チッピング性を発揮する表面被
覆超硬合金製スクエアエンドミル。
2. A composition consisting of a cutting edge portion and a shank portion, at least the cutting edge portion being formed on a surface of a cemented carbide base made of a tungsten carbide based cemented carbide, a composition formula: (Ti 1-X Al X ). N, same (Ti 1-X Al X ) C
1-m N m , the same [Ti 1- (X + Y ) Al x Si Y ] N, and the same [Ti 1- (X + Y) Al x Si Y ] C 1-m N m ,
By the measurement by the Auger spectroscopic analyzer in the central part in the thickness direction,
In atomic ratio, X: 0.35 to 0.70, Y: 0.01 to
Ti and A satisfying 0.10 and m: 0.50 to 0.99
l composite nitride layer, Ti and Al composite carbonitride layer, Ti
And a composite nitride layer of Al and Si, and Ti, Al and Si
Of the composite carbonitride layer described above, or a surface-coated cemented carbide formed by vapor deposition of a hard coating layer composed of two or more types of multilayers and having an average layer thickness of 0.5 to 7 μm. In an alloy square end mill, a cylindrical cutting bottomed hole exists concentrically in the bottom blade surface of the cemented carbide substrate of the cutting edge portion along the length direction of the cutting blade portion, and the cylindrical cutting bottomed hole Has a structure in which a cylindrical tip made of a relatively heavy tungsten carbide-based cemented carbide is fitted, and the main body of the cemented carbide base body of the cutting edge portion is made of Co: 8 to 10% by mass. , Chromium carbide and / or vanadium carbide: 0.1
1.5 mass%, composite carbide of Ta and Nb: 0.1 to 1.5 mass%, tungsten carbide: balance, a sintered compact of a powder compact having the following composition: : 0.5 to 2% by mass, tungsten carbide: balance, and a sintered compact of a powder compact having a composition of: and the diameter of the cylindrical tip is 25 times the outer diameter of the outer peripheral blade of the cutting edge portion.
~ 45%, and the same length was set to a dimension corresponding to 20 to 40% of the length of the cutting edge portion, respectively, the outer peripheral blade exhibits excellent chipping resistance in high-speed cutting processing. Hard alloy square end mill.
JP2001326297A 2001-10-24 2001-10-24 Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting Withdrawn JP2003127020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326297A JP2003127020A (en) 2001-10-24 2001-10-24 Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326297A JP2003127020A (en) 2001-10-24 2001-10-24 Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting

Publications (1)

Publication Number Publication Date
JP2003127020A true JP2003127020A (en) 2003-05-08

Family

ID=19142702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326297A Withdrawn JP2003127020A (en) 2001-10-24 2001-10-24 Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP2003127020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062807A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd End mill made of cemented carbide
JP2011110692A (en) * 2009-11-24 2011-06-09 Hitachi Tool Engineering Ltd Cemented carbide-made end mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062807A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd End mill made of cemented carbide
JP2011110692A (en) * 2009-11-24 2011-06-09 Hitachi Tool Engineering Ltd Cemented carbide-made end mill

Similar Documents

Publication Publication Date Title
KR20180073572A (en) Surface-coated cutting tool
JP2003080412A (en) Surface covered cemented carbide made miniature drill with tip cutting blade surface to display excellent chipping resistance in high speed drilling work
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2002263941A (en) Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2003127020A (en) Square endmill made of coated cemented carbide with peripheral cutting edge having superior chipping- resistance in high-speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP3451949B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP2002187004A (en) End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP2004174616A (en) Method of manufacturing end mill made of surface covering cemented carbide exhibiting excellent chipping resistance in cutting under high feed condition
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP4510323B2 (en) Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting
JP2007136653A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel
JP3543768B2 (en) Surface coated cemented carbide gear cutting tool with a hard coating layer that exhibits excellent heat-resistant plastic deformation properties
JP2002187008A (en) Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP2007038343A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP4816844B2 (en) A surface-coated tungsten carbide-based cemented carbide cutting tool with excellent chipping resistance in high-speed gear cutting.
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004098205A (en) End mill made of surface-coated hard metal exerting excellent resistant against thermoplastic deformation in high-speed machining
JP2002254229A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP2002263934A (en) Surface coated cemented carbide drill showing superior chipping resistance in high-speed and high-feed cutting
JP3972775B2 (en) A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling.
JP4416960B2 (en) Slow-away cutting tip made of surface-coated cemented carbide that provides excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104