JP3972775B2 - A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. - Google Patents
A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. Download PDFInfo
- Publication number
- JP3972775B2 JP3972775B2 JP2002262983A JP2002262983A JP3972775B2 JP 3972775 B2 JP3972775 B2 JP 3972775B2 JP 2002262983 A JP2002262983 A JP 2002262983A JP 2002262983 A JP2002262983 A JP 2002262983A JP 3972775 B2 JP3972775 B2 JP 3972775B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- hard phase
- nitrogen
- hard
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Drilling Tools (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、特に超硬合金基体を構成する硬質相が強度の低下なく、すぐれた高温硬さと耐熱性を有し、したがって高熱発生を伴なう鋼や鋳鉄などの高速穴あけ切削加工で、すぐれた耐熱塑性変形性を発揮する表面被覆超硬合金製ドリル(以下、被覆超硬ドリルと云う)に関するものである。
【0002】
【従来の技術】
従来、一般に、鋼や鋳鉄などの被削材の穴あけ切削加工などに、例えば図1(a)に概略拡大正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する各種の超硬合金製ドリル(以下、超硬ドリルと云う)が用いられている。
また、切削性能の一段の向上を目的として、超硬ドリルを基体とし、この基体の表面に、
組成式:[Ti1-XAlX]Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.3〜0.7を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層で構成された硬質被覆層を0.5〜6μmの平均層厚で物理蒸着してなる被覆超硬ドリルも知られている(例えば、特許文献2参照)。
上記の超硬ドリルの少なくとも溝形成部が、実質的に結合相と硬質相で構成され、結合相形成成分として質量%(以下、%は質量%を示す)で、6〜16%の割合で含有するCo中に0.1〜3%の割合で固溶含有したCrおよび/またはV成分による粒成長抑制作用で、硬質相を構成する炭化タングステン(以下、WCで示す)の粒径を、平均粒径で、望ましくは0.7μm以下とした微粒組織の超硬合金からなることも知られている(例えば、特許文献1参照)。
さらに、上記の超硬ドリルが、例えば原料粉末として、いずれも0.1〜3μmの範囲内の所定の平均粒径を有するWC粉末、炭化クロム(以下、Cr3C2で示す)粉末、炭化バナジウム(以下、VCで示す)粉末、およびCo粉末を用い、これら原料粉末を所定の配合組成に配合し、湿式混合し、乾燥した後、押出しプレスにて所定の直径の長尺状成形体とし、この長尺状成形体を、1.3〜13.3Paの真空雰囲気中、1350〜1480℃の範囲内の所定の温度に昇温し、この昇温温度に1〜2時間保持後、雰囲気を、例えばArを導入して4.9〜14.7MPaの加圧雰囲気とし、前記昇温温度および加圧雰囲気の条件下に15〜60分間保持した後、少なくとも1200℃までを50〜100℃/minの冷却速度で冷却して、Cr(Cr3C2)および/またはV(VC)がCo中に固溶してなる結合相とWCの硬質相で構成された超硬合金からなる所定の直径の長尺状加圧焼結体を形成し、この加圧焼結体から図1に例示される形状に研削加工することにより製造されることも知られている(例えば、特許文献1参照)。
また、さらに上記の被覆超硬ドリルが、超硬ドリルを基体とし、この基体を、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に装入し、ヒータで装置内を、例えば雰囲気を1.3×10- 3Paの真空として、500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入し、一方前記基体には、例えば−200Vのバイアス電圧を印加した条件で、前記基体の表面に、上記の(Ti,Al)Nからなる硬質被覆層を物理蒸着することにより製造されることも知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開昭61−12847号公報
【特許文献2】
特開平8−20933号公報
【0004】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削装置の高性能化と相俟って、切削加工は高速で行われる傾向にあるが、上記の従来被覆超硬ドリルにおいては、これを高速穴あけ切削加工に用いると、特に超硬合金基体の高温硬さおよび耐熱性不足が原因で、先端部の切刃面に偏摩耗の原因となる熱塑性変形が発生し易くなり、この結果摩耗進行が促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、上述のような観点から、高速穴あけ切削加工で、すぐれた耐熱塑性変形性を発揮する被覆超硬ドリルを開発すべく、特に上記の従来被覆超硬ドリルに着目し、研究を行った結果、
(a)通常、従来の原料粉末としてのWC粉末は、高純度を意図して製造されているため、焼結後の超硬合金基体の硬質相を構成するWCの不純物である窒素および酸素の含有量は、前記硬質相の中心部をオージェ電子分光分析装置を用いて測定した値で、
酸素(O):0.001〜0.05%、
窒素(N):0.001〜0.03%、
であるのが一般的であること。
【0006】
(b)一般に、上記の従来高純度WC粉末は、原料粉末としてWO3粉末を用い、これに還元粉末として所定量のカーボンブラックを配合し、混合した後、この混合粉末を950〜1050℃に加熱し、窒素気流中で所定時間保持の条件で還元処理を行い、ついで加熱温度を1150〜1250℃とすると共に、前記窒素気流を水素気流に変えて所定時間保持の条件で炭化処理を行うことにより製造されているが、この従来高純度WC粉末の製造において、還元処理の窒素気流中および炭化処理の水素気流中に所定割合、望ましくは5〜15容量%の割合でCOガスを配合すると、製造されたWC粉末中の酸素含有量および窒素含有量が上昇するようになり、前記のCOガスの5〜15容量%の配合で、製造されたWC粉末は、
酸素(O):0.2〜0.6%、
窒素(N):0.1〜0.25%、
を含有するようになること。
【0007】
(c)この結果の高酸素高窒素含有のWC粉末を原料粉末として用いて製造された超硬合金基体においては、これの硬質相は、その中心部をオージェ電子分光分析装置を用いて測定した値で、前記高酸素高窒素含有のWC粉末と同じO:0.2〜0.6%、N:0.1〜0.25%、の含有量を示し、この結果前記含有量のOによってすぐれた高温硬さと耐熱性を具備し、一方前記O含有によって硬質相の強度は低下するようになるが、このO含有による強度低下を前記含有量のNによって抑制することから、高純度硬質相と同等の高強度が保持され、したがってこの超硬合金基体で構成された被覆超硬ドリルは、高熱発生を伴なう高速穴あけ切削加工でもすぐれた耐熱塑性変形性を発揮し、長期に亘ってすぐれた耐摩耗性を示すこと。
以上(a)〜(c)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、溝形成部とシャンク部からなり、少なくとも前記溝形成部が、実質的に結合相と硬質相で構成された超硬合金からなる基体の表面に、0.5〜6μmの平均層厚で、
組成式:[Ti1-XAlX]Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.3〜0.7を満足する(Ti,Al)Nからなる硬質被覆層を物理蒸着してなる被覆超硬ドリルにおいて、
上記超硬合金基体を、いずれも結合相形成成分として、
Co:6〜16%、
Crおよび/またはV:0.1〜3%、
を含有し、残りの硬質相が酸素(O)および窒素(N)を固溶含有するWCからなる組成を有し、かつ前記硬質相のOおよびN含有量が、前記硬質相の中心部をオージェ電子分光分析装置を用いて測定した値で、
O:0.2〜0.6%、
N:0.1〜0.25%、
である超硬合金で構成してなる、高速穴あけ切削加工ですぐれた耐熱塑性変形性を発揮する被覆超硬ドリルに特徴を有するものである。
【0009】
以下に、この発明の被覆超硬ドリルにおいて、これを構成する超硬合金基体の組成、および硬質被覆層の平均層厚を上記の通りに限定した理由を説明する。
(1)超硬合金基体のCo含有量
結合相形成成分としてのCo含有量が6%未満では基体に所望の強度および靭性を確保することができず、一方Co含有量が16%を超えると熱塑性変形を起し易くなり、偏摩耗の進行が促進するようになることから、Co含有量を6〜16%と定めた。
【0010】
(2)超硬合金基体のCrおよび/またはV
これらの成分には、結合相を形成するCo中に固溶した状態で硬質相の成長を著しく抑制して、これの粒径を平均粒径で、望ましくは0.7μm以下とした微粒組織とする作用があるが、この作用はCrおよびV成分の含有量が0.1%未満では不充分となり、一方その含有量が3%を超えると、これらの成分が炭化物として析出し、強度および靭性を低下させるようになることから、その含有量を0.1〜3%と定めた。
【0011】
(3)超硬合金基体の硬質相のO含有量
超硬合金基体の硬質相におけるO含有量が0.2%未満では、所望のすぐれた高温硬さと耐熱性を確保することができないので、前記硬質相を構成するWC粉末の製造時に、還元処理の窒素気流中および炭化処理の水素気流中に配合するCOガスの割合を調整して0.2%以上含有させ、すぐれた高温硬さと耐熱性を確保して、高熱発生の高速穴あけ切削加工でもすぐれた耐熱塑性変形性を発揮するようにするが、一方その含有量が0.6%を超えるとN含有によっても硬質相自体の強度低下を阻止することができず、この結果先端切刃面にチッピング(微小欠け)が発生し易くなり、使用寿命短命化をもたらすことから、その含有量を0.2〜0.6%と定めた。
【0012】
(4)超硬合金基体の硬質相のN含有量
また、N含有量が0.1%未満では、上記のO含有による強度低下を完全に阻止することができないので、原料粉末として用いられるWC粉末の製造に際して、還元処理の窒素気流中および炭化処理の水素気流中に配合するCOガスの割合を調整して0.1%以上含有するようにするが、一方その含有量が0.25%を超えると上記のO含有によってもたらされる高温硬さと耐熱性の向上効果が低下し、所望の高温硬さと耐熱性を確保することができなくなり、摩耗進行が著しく促進され、使用寿命短命化の原因となることから、その含有量を0.1〜0.25%と定めた。
【0013】
(5)硬質被覆層の組成式
硬質被覆層を構成する(Ti,Al)NにおけるAlはTiNに対して高温硬さおよび耐熱性を高め、もって耐摩耗性を向上させるために固溶するものであり、したがって組成式:(Ti1-XAlX)NのX値が原子比(以下同じ)で、0.3未満では所望の耐摩耗性を確保することができず、一方その値が0.7を越えると、先端切刃面に欠けやチッピングが発生し易くなると云う理由によりX値を0.3〜0.7と定めた。
【0014】
(6)硬質被覆層の平均層厚
その平均層厚が0.5μm未満では硬質被覆層によってもたらされるすぐれた耐摩耗性を確保することができず、一方その平均層厚が6μmを超えると硬質被覆層にチッピングが発生し易くなることから、その平均層厚を0.5〜6μmと定めた。
【0015】
【発明の実施の態様】
つぎに、この発明の被覆超硬ドリルを実施例により具体的に説明する。
原料粉末として、平均粒径:0.5μmを有するWO3粉末、および同0.2μmのカーボンブラックを用意し、まずこれら原料粉末を、カーボンブラック:17%、WO3粉末:残り、の割合に配合し、湿式ボールミルでアセトンを加えて3時間混合し、減圧乾燥した後、よくほぐした状態でカーボンボートに充填した後、この混合粉末を950〜1050℃に加熱し、COガスを5〜15容量%の範囲内の所定の割合で配合してなる窒素−CO混合気流中で3時間保持の条件で還元処理を行い、ついで加熱温度を1150〜1250℃とすると共に、前記窒素−CO混合気流を同じくCOガスを5〜15容量%の範囲内の所定の割合で配合してなる水素−CO混合気流に変えて3時間保持の条件で炭化処理を行い、最終的に粒度調整を行うことにより、表1に示される窒素および酸素を含有し、かつ平均粒径をもった本発明被覆超硬ドリルの超硬合金基体製造用原料粉末としてのWC粉末(以下、本発明原料WC粉末という)a−1〜a−7をそれぞれ製造した。
【0016】
また、比較の目的で、還元処理の反応雰囲気を窒素気流、炭化処理の反応雰囲気を水素気流とする以外は、同一の条件で、同じく表1に示される窒素および酸素含有量、並びに平均粒径の従来被覆超硬ドリルの超硬合金基体製造用原料粉末としてのWC粉末(以下、従来原料WC粉末という)b−1〜b−7をそれぞれ製造した。
【0017】
ついで、上記の本発明原料WC粉末a−1〜a−7および従来原料WC粉末b−1〜b−7のそれぞれに、平均粒径:1.2μmのCo粉末、同1.8μmのVC粉末、および同2.3μmのCr3C2粉末を表2に示される割合に配合し、ボールミルで72時間湿式混合し、減圧乾燥し、さらにワックスと溶剤を加えて1時間混和した後、押出しプレスにて4〜26mmの範囲内の所定の直径を有する長尺状成形体を形成し、これらの長尺状成形体を、1.3Paの真空雰囲気中、1380〜1480℃の範囲内の所定の温度に1時間保持して焼結した後、前記昇温温度に保持したまま、Arを導入して雰囲気を圧力:6MPaの加圧雰囲気として1時間保持し、その後冷却のHIP処理を施すことにより、3.3〜21.0mmの範囲内の所定の直径を有する長尺状加圧焼結体とし、さらにこれらの加圧焼結体から研削加工にて、溝形成部の外径をそれぞれ表2に示される寸法とした本発明超硬合金基体A−1〜A−7および従来超硬合金基体B−1〜B−7をそれぞれを製造した。
【0018】
ついで、これら超硬合金基体を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に例示される通常のアークイオンプレーティング装置に装入し、一方カソード電極(蒸発源)として、それぞれ種々の成分組成をもったTi−Al合金を装着し、装置内を排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で前記超硬合金基体に−800Vのバイアス電圧を印加して前記超硬合金基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして、窒素ガスを導入して6Paの反応雰囲気とすると共に、前記超硬合金基体に印加するバイアス電圧を−200Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬合金基体のそれぞれの表面に、表3に示される目標Al含有量および目標層厚の(Ti,Al)Nからなる硬質被覆層を蒸着することにより、本発明被覆超硬ドリル1〜7および従来被覆超硬ドリル1〜7をそれぞれ製造した。
【0019】
この結果得られた本発明被覆超硬ドリル1〜7および従来被覆超硬ドリル1〜7について、オージェ電子分光分析装置を用い、これを構成する超硬合金基体における任意5個の硬質相の中心部のO含有量およびN含有量を測定し、この結果を表2に平均値で示した。
表2には、これらの被覆超硬ドリルを構成する超硬合金基体の任意断面における硬質相の平均粒径を走査型電子顕微鏡を用いて測定した結果も示した。
また、同じく上記超硬合金基体のCo、Cr、およびVの含有量を測定したところ、配合組成と実質的に同じ値を示した。
さらに、上記の本発明被覆超硬ドリル1〜7および従来被覆超硬ドリル1〜7を構成するそれぞれの硬質被覆層について、その厚さ断面中央部の組成をオージェ分光分析装置を用いて測定し、またその層厚を走査型電子顕微鏡を用いて測定したところ、いずれの場合も目標組成および目標層厚と実質的に同じ組成および層厚を示した。
【0020】
つぎに、上記の各種の被覆超硬ドリルについて、被削材として、平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の合金鋼板材を用い、表3に示される条件で湿式高速穴あけ切削加工を行い、溝形成部の先端切刃面直上部における外径の縮径量が表3に示される値に達した時点を使用寿命とし、この使用寿命に至るまでの穴あけ加工数を測定した。これらの測定結果を表3にそれぞれ平均値で示した。
【0021】
【表1】
【0022】
【表2】
【0023】
【表3】
【0024】
【発明の効果】
表1〜3に示される結果から、本発明被覆超硬ドリル1〜7は、いずれもこれを構成する超硬合金基体の硬質相のOおよびNの含有量が相対的に高く、前記硬質相によってすぐれた高温硬さと耐熱性が確保されることから、高熱発生を伴なう高速穴あけ切削加工でも、特に先端部の切刃面部に偏摩耗の原因となる熱塑性変形の発生なく、正常摩耗を維持し、すぐれた耐摩耗性を発揮するのに対して、前記硬質相のOおよびNの含有量が相対的に低い従来被覆超硬ドリル1〜7においては、いずれも超硬合金基体の硬質相の高温硬さおよび耐熱性不足が原因で、高速穴あけ切削加工では前記切刃面部に熱塑性変形が起り易くなり、この結果摩耗は偏摩耗形態を採るようになることから、摩耗進行が著しく促進され、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬ドリルは、通常の条件での穴あけ切削加工は勿論のこと、高速穴あけ切削加工でもすぐれた耐摩耗性を長期に亘って発揮するものであるから、穴あけ切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応することができるものである。
【図面の簡単な説明】
【図1】(a)は被覆超硬ドリルを例示する概略拡大正面図、(b)は溝形成部の長さ方向中央部における中心線に対して直角な方向の概略断面図(概略横断面図)である。
【図2】アークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is particularly advantageous in high-speed drilling of steel and cast iron with high heat generation because the hard phase constituting the cemented carbide base body has excellent strength and heat resistance without deterioration in strength. The present invention relates to a surface-coated cemented carbide drill (hereinafter referred to as a coated carbide drill) that exhibits excellent heat-resistant plastic deformation.
[0002]
[Prior art]
Conventionally, in general, for example, a drilling process of a work material such as steel or cast iron, for example, a schematic enlarged front view in FIG. 1A and a schematic cross-sectional view of a groove forming portion in FIG. Various types of cemented carbide drills (hereinafter referred to as cemented carbide drills) are used.
Also, for the purpose of further improving the cutting performance, a carbide drill is used as a base, and the surface of the base is
Compositional formula: [Ti 1-X Al X ] N Ti and Al satisfying an atomic ratio of X: 0.3 to 0.7 as measured by an Auger spectrometer at the center in the thickness direction. There is also known a coated carbide drill formed by physically vapor-depositing a hard coating layer composed of a composite nitride (hereinafter referred to as (Ti, Al) N) layer with an average layer thickness of 0.5 to 6 μm ( For example, see Patent Document 2).
At least the groove forming part of the above-mentioned cemented carbide drill is substantially composed of a binder phase and a hard phase, and the binder phase forming component is in mass% (hereinafter,% indicates mass%), in a ratio of 6 to 16%. The particle size of tungsten carbide constituting the hard phase (hereinafter referred to as WC) by the grain growth suppressing action by Cr and / or V component contained in a solid solution at a ratio of 0.1 to 3% in the contained Co, It is also known that it is made of a cemented carbide having a fine grain structure with an average particle size of preferably 0.7 μm or less (see, for example, Patent Document 1).
Furthermore, the above carbide drills are, for example, WC powder, chromium carbide (hereinafter referred to as Cr 3 C 2 ) powder having a predetermined average particle diameter in the range of 0.1 to 3 μm, carbonization as raw material powder, for example. Using vanadium (hereinafter referred to as VC) powder and Co powder, these raw material powders are blended into a predetermined blending composition, wet-mixed, dried, and then formed into a long shaped body with a predetermined diameter by an extrusion press. The long shaped body was heated to a predetermined temperature within a range of 1350 to 1480 ° C. in a vacuum atmosphere of 1.3 to 13.3 Pa, and kept at this temperature rising temperature for 1 to 2 hours. For example, Ar is introduced to form a pressurized atmosphere of 4.9 to 14.7 MPa, and the temperature is maintained for 15 to 60 minutes under the conditions of the temperature rise and the pressurized atmosphere, and then at least 1200 ° C. is 50 to 100 ° C. Cool at a cooling rate of / min , Cr (Cr 3 C 2 ) and / or V (VC) is a long pressurization with a predetermined diameter made of a cemented carbide composed of a binder phase in which Co is dissolved in Co and a hard phase of WC. It is also known that a bonded body is formed and manufactured by grinding the pressure sintered body into the shape illustrated in FIG. 1 (see, for example, Patent Document 1).
Further, the above-mentioned coated carbide drill has a carbide drill as a base, and the base is loaded into, for example, an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. A cathode electrode (evaporation) in which a Ti—Al alloy having a predetermined composition is set in a state where the inside of the apparatus is heated to a temperature of 500 ° C., for example, with a vacuum of 1.3 × 10 −3 Pa in a heater. For example, arc discharge is generated under the conditions of a voltage of 35 V and a current of 90 A, and nitrogen gas is introduced as a reaction gas into the apparatus at the same time, while a bias voltage of −200 V is applied to the substrate, for example. It is also known that the hard coating layer made of the above (Ti, Al) N is physically vapor-deposited on the surface of the substrate under the applied conditions (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP 61-12847 [Patent Document 2]
JP-A-8-20933 gazette
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor saving and energy saving of cutting work and cost reduction in recent years, and along with this, cutting performance tends to be performed at a high speed in combination with high performance of cutting equipment. In the above-mentioned conventional coated carbide drill, if this is used for high-speed drilling, it causes uneven wear on the cutting edge surface of the tip, particularly due to the high temperature hardness and insufficient heat resistance of the cemented carbide substrate. Thermoplastic deformation is likely to occur, and as a result, the progress of wear is promoted, so that the service life is reached in a relatively short time.
[0005]
[Means for Solving the Problems]
In view of the above, the present inventors focused on the above-mentioned conventional coated carbide drill in order to develop a coated carbide drill that exhibits excellent heat-resistant plastic deformation by high-speed drilling. , As a result of research,
(A) Usually, WC powder as a conventional raw material powder is manufactured with the intention of high purity, so that nitrogen and oxygen, which are impurities of WC constituting the hard phase of the cemented carbide substrate after sintering, The content is a value obtained by measuring the central portion of the hard phase using an Auger electron spectroscopy analyzer,
Oxygen (O): 0.001 to 0.05%,
Nitrogen (N): 0.001 to 0.03%,
It is common to be.
[0006]
(B) In general, the above conventional high purity WC powder uses WO 3 powder as a raw material powder, and a predetermined amount of carbon black as a reducing powder is mixed and mixed, and then the mixed powder is heated to 950 to 1050 ° C. Heating and performing a reduction treatment under a condition of holding in a nitrogen stream for a predetermined time, then setting the heating temperature to 1150 to 1250 ° C., and changing the nitrogen stream into a hydrogen stream and performing a carbonization treatment under a condition of holding for a predetermined time In the production of this conventional high-purity WC powder, when CO gas is blended in a predetermined ratio, preferably 5 to 15% by volume, in a nitrogen stream of reduction treatment and a hydrogen stream of carbonization treatment, Oxygen content and nitrogen content in the produced WC powder are increased, and the produced WC powder with a blend of 5 to 15% by volume of the CO gas is
Oxygen (O): 0.2-0.6%
Nitrogen (N): 0.1-0.25%,
To come to contain.
[0007]
(C) In the cemented carbide substrate manufactured using the high oxygen content and high nitrogen content WC powder as a raw material powder, the hard phase of the cemented carbide base was measured using an Auger electron spectrometer. In the value, the same O: 0.2-0.6%, N: 0.1-0.25% content as the high oxygen-high nitrogen content WC powder is shown. It has excellent high-temperature hardness and heat resistance. On the other hand, the strength of the hard phase decreases due to the inclusion of O, but since the decrease in strength due to the inclusion of O is suppressed by the N content, the high purity hard phase Therefore, the coated carbide drill composed of this cemented carbide substrate exhibits excellent heat-resistant plastic deformation even in high-speed drilling with high heat generation. Exhibit excellent wear resistance.
The research results shown in (a) to (c) above were obtained.
[0008]
The present invention has been made based on the above research results, and is composed of a cemented carbide composed of a groove forming portion and a shank portion, at least the groove forming portion being substantially composed of a binder phase and a hard phase. On the surface of the substrate with an average layer thickness of 0.5-6 μm,
When expressed by the composition formula: [Ti 1-X Al X ] N, X: 0.3 to 0.7 is satisfied in terms of atomic ratio as measured by an Auger spectrometer at the center in the thickness direction (Ti, In a coated carbide drill formed by physical vapor deposition of a hard coating layer made of Al) N,
Any of the above cemented carbide substrates as a binder phase forming component,
Co: 6-16%
Cr and / or V: 0.1 to 3%,
And the remaining hard phase is composed of WC containing oxygen (O) and nitrogen (N) as a solid solution, and the O and N content of the hard phase is the center of the hard phase. A value measured using an Auger electron spectrometer,
O: 0.2-0.6%
N: 0.1-0.25%
This is characterized by a coated cemented carbide drill that is composed of a cemented carbide alloy that exhibits excellent heat-resistant plastic deformation by high-speed drilling.
[0009]
The reason why the composition of the cemented carbide substrate constituting the cemented carbide drill of the present invention and the average thickness of the hard coating layer are limited as described above will be described below.
(1) Co content of cemented carbide substrate If the Co content as the binder phase forming component is less than 6%, it is not possible to ensure the desired strength and toughness of the substrate, while if the Co content exceeds 16%. Since it becomes easy to cause thermoplastic deformation and the progress of uneven wear is promoted, the Co content is determined to be 6 to 16%.
[0010]
(2) Cr and / or V of cemented carbide substrate
These components include a fine-grained structure in which the growth of the hard phase is remarkably suppressed in a solid solution state in Co forming the binder phase, and the average particle size thereof is preferably 0.7 μm or less. However, if the content of Cr and V components is less than 0.1%, this effect is insufficient. On the other hand, if the content exceeds 3%, these components precipitate as carbides, resulting in strength and toughness. Therefore, the content is determined to be 0.1 to 3%.
[0011]
(3) O content in the hard phase of the cemented carbide substrate If the O content in the hard phase of the cemented carbide substrate is less than 0.2%, the desired excellent high temperature hardness and heat resistance cannot be secured. During the production of the WC powder constituting the hard phase, the proportion of CO gas blended in the nitrogen stream of reduction treatment and the hydrogen stream of carbonization treatment is adjusted to contain 0.2% or more, and excellent high temperature hardness and heat resistance To ensure excellent heat-resistant plastic deformation even in high-heat-generating high-speed drilling, but if its content exceeds 0.6%, the strength of the hard phase itself decreases even if it contains N As a result, chipping (small chipping) is likely to occur on the end cutting edge surface, resulting in shortening the service life. Therefore, the content is determined to be 0.2 to 0.6%. .
[0012]
(4) The N content of the hard phase of the cemented carbide substrate, and if the N content is less than 0.1%, the above-described decrease in strength due to the O content cannot be completely prevented. In the production of the powder, the proportion of CO gas blended in the nitrogen stream of reduction treatment and the hydrogen stream of carbonization treatment is adjusted to contain 0.1% or more, while the content is 0.25%. Exceeding the above results in a decrease in the high temperature hardness and heat resistance improvement effect brought about by the above-mentioned O content, it becomes impossible to ensure the desired high temperature hardness and heat resistance, the progress of wear is remarkably accelerated, the cause of shortening the service life Therefore, the content was determined to be 0.1 to 0.25%.
[0013]
(5) Composition of the hard coating layer Al in (Ti, Al) N constituting the hard coating layer is a solid solution to increase the high temperature hardness and heat resistance with respect to TiN and thereby improve the wear resistance. Therefore, if the X value of the composition formula: (Ti 1-X Al X ) N is an atomic ratio (hereinafter the same), and less than 0.3, the desired wear resistance cannot be ensured, while the value is If it exceeds 0.7, the X value is set to 0.3 to 0.7 for the reason that chipping and chipping are likely to occur on the end cutting edge surface.
[0014]
(6) Average layer thickness of the hard coating layer If the average layer thickness is less than 0.5 μm, the excellent wear resistance provided by the hard coating layer cannot be secured, while if the average layer thickness exceeds 6 μm, the hard layer is hard. Since chipping easily occurs in the coating layer, the average layer thickness is set to 0.5 to 6 μm.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated carbide drill of the present invention will be specifically described with reference to examples.
WO 3 powder having an average particle size of 0.5 μm and carbon black of 0.2 μm were prepared as raw material powders. First, these raw material powders were mixed in a ratio of carbon black: 17%, WO 3 powder: remaining. After blending, adding acetone with a wet ball mill and mixing for 3 hours, drying under reduced pressure, and filling in a carbon boat in a well-unraveled state, this mixed powder is heated to 950-1050 ° C., and the CO gas is changed to 5-15. Reduction treatment is performed under the condition of holding for 3 hours in a nitrogen-CO mixed gas stream blended at a predetermined ratio within a volume% range, and then the heating temperature is set to 1150 to 1250 ° C., and the nitrogen-CO mixed gas stream Is changed to a hydrogen-CO mixed gas stream in which CO gas is blended at a predetermined ratio in the range of 5 to 15% by volume, and carbonization is performed under the condition of holding for 3 hours, and finally the particle size is adjusted. WC powder as a raw material powder for manufacturing a cemented carbide substrate of the coated carbide drill of the present invention containing nitrogen and oxygen shown in Table 1 and having an average particle diameter (hereinafter referred to as the present material WC powder) ) A-1 to a-7 were produced respectively.
[0016]
For comparison purposes, the nitrogen and oxygen contents shown in Table 1 and the average particle diameter are the same under the same conditions except that the reaction atmosphere for the reduction treatment is a nitrogen stream and the reaction atmosphere for the carbonization treatment is a hydrogen stream. WC powders (hereinafter referred to as conventional raw material WC powders) b-1 to b-7 as raw material powders for manufacturing a cemented carbide substrate of the conventional coated carbide drill were manufactured.
[0017]
Next, each of the raw material WC powders a-1 to a-7 of the present invention and the conventional raw material WC powders b-1 to b-7, respectively, has an average particle size of 1.2 μm Co powder and 1.8 μm VC powder. And 2.3 μm Cr 3 C 2 powder in the proportions shown in Table 2, wet-mixed with a ball mill for 72 hours, dried under reduced pressure, mixed with wax and solvent for 1 hour, and then extruded. Are formed into long shaped bodies having a predetermined diameter within a range of 4 to 26 mm, and these long shaped bodies are formed in a vacuum atmosphere of 1.3 Pa at a predetermined range of 1380 to 1480 ° C. After sintering by maintaining at the temperature for 1 hour, Ar is introduced while maintaining the temperature rising temperature, and the atmosphere is maintained as a pressurized atmosphere of pressure: 6 MPa for 1 hour, and then cooling HIP treatment is performed. Within the range of 3.3 to 21.0 mm The cemented carbide of the present invention in which a long pressure sintered body having a constant diameter is formed, and the outer diameter of the groove forming portion is set to the dimensions shown in Table 2 by grinding from the pressure sintered body. Substrates A-1 to A-7 and conventional cemented carbide substrates B-1 to B-7 were produced, respectively.
[0018]
Then, these cemented carbide substrates were ultrasonically cleaned in acetone and dried, and each was loaded into a normal arc ion plating apparatus exemplified in FIG. 2, while the cathode electrode (evaporation source) was Each was equipped with Ti-Al alloys with various component compositions, and the inside of the apparatus was evacuated and maintained at a vacuum of 0.5 Pa, and the inside of the apparatus was heated to 500 ° C. with a heater, and then Ar gas was introduced into the apparatus. Introduced into an Ar atmosphere of 10 Pa, in this state, a bias voltage of −800 V was applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment, and then nitrogen gas was used as a reaction gas in the apparatus. Is introduced into the reaction atmosphere of 6 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −200 V so that an arc discharge is generated between the cathode electrode and the anode electrode. The hard coating layer made of (Ti, Al) N having the target Al content and the target layer thickness shown in Table 3 is deposited on each surface of the cemented carbide substrate. Carbide drills 1-7 and conventional coated carbide drills 1-7 were produced, respectively.
[0019]
About the present invention coated carbide drills 1 to 7 and the conventional coated carbide drills 1 to 7, using an Auger electron spectroscopy analyzer, the center of any five hard phases in the cemented carbide substrate constituting the same The O content and N content of the parts were measured, and the results are shown in Table 2 as average values.
Table 2 also shows the results of measuring the average particle size of the hard phase in an arbitrary cross section of the cemented carbide substrate constituting these coated carbide drills using a scanning electron microscope.
Further, when the contents of Co, Cr, and V of the cemented carbide substrate were measured, the values were substantially the same as the blend composition.
Furthermore, about each hard coating layer which comprises said invention coated carbide drills 1-7 and conventional coated carbide drills 1-7, the composition of the thickness cross-section center part was measured using an Auger spectroscopic analyzer. Moreover, when the layer thickness was measured using a scanning electron microscope, the composition and the layer thickness substantially the same as the target composition and the target layer thickness were shown in all cases.
[0020]
Next, for the various coated carbide drills described above, wet high speed drilling was performed under the conditions shown in Table 3, using a JIS / SCM440 alloy steel plate material having a planar size of 100 mm × 250 mm and a thickness of 50 mm as a work material. When cutting is performed, the service life is defined as the point when the outer diameter of the groove forming part directly above the cutting edge surface reaches the value shown in Table 3, and the number of drilling operations up to this service life is measured. did. These measurement results are shown in Table 3 as average values.
[0021]
[Table 1]
[0022]
[Table 2]
[0023]
[Table 3]
[0024]
【The invention's effect】
From the results shown in Tables 1 to 3, the coated carbide drills 1 to 7 of the present invention have a relatively high content of O and N in the hard phase of the cemented carbide substrate constituting the hard drill. As a result, high temperature hardness and heat resistance are ensured by high-speed drilling with high heat generation, so that normal wear is achieved without the occurrence of thermoplastic deformation that causes uneven wear, especially on the cutting edge surface of the tip. In the conventional coated cemented carbide drills 1 to 7 that maintain and exhibit excellent wear resistance, but the contents of O and N in the hard phase are relatively low, all of them are hard cemented carbide substrates. Due to the high-temperature hardness of the phase and insufficient heat resistance, high-speed drilling tends to cause thermoplastic deformation of the cutting edge surface, and as a result, wear takes an uneven wear form, so the progress of wear is significantly accelerated. And reach the service life in a relatively short time It is clear.
As described above, the coated carbide drill of the present invention exhibits excellent wear resistance over a long period of time not only in drilling under normal conditions but also in high-speed drilling. It is possible to sufficiently satisfy the labor-saving and energy-saving of cutting and cost reduction.
[Brief description of the drawings]
FIG. 1A is a schematic enlarged front view illustrating a coated carbide drill, and FIG. 1B is a schematic cross-sectional view (schematic cross-sectional view) in a direction perpendicular to the center line in the central portion in the longitudinal direction of the groove forming portion. Figure).
FIG. 2 is a schematic explanatory diagram of an arc ion plating apparatus.
Claims (1)
組成式:[Ti1-XAlX]Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.3〜0.7を満足するTiとAlの複合窒化物からなる硬質被覆層を物理蒸着してなる表面被覆超硬合金製ドリルにおいて、
上記超硬合金基体を、いずれも結合相形成成分として、以下いずれも質量%で、
Co:6〜16%、
Crおよび/またはV:0.1〜3%、
を含有し、残りの硬質相が酸素および窒素を固溶含有する炭化タングステンからなる組成を有し、かつ前記硬質相の酸素および窒素含有量が、前記硬質相の中心部をオージェ電子分光分析装置を用いて測定した値で、
酸素:0.2〜0.6%、
窒素:0.1〜0.25%、
である超硬合金で構成したこと、
を特徴とする高速穴あけ切削加工ですぐれた耐熱塑性変形性を発揮する表面被覆超硬合金製ドリル。It is composed of a groove forming part and a shank part, and at least the groove forming part is formed on the surface of a cemented carbide substantially composed of a binder phase and a hard phase, with an average layer thickness of 0.5 to 6 μm,
Compositional formula: [Ti 1-X Al X ] N Ti and Al satisfying an atomic ratio of X: 0.3 to 0.7 as measured by an Auger spectrometer at the center in the thickness direction. In a surface-coated cemented carbide drill made by physical vapor deposition of a hard coating layer made of a composite nitride of
The cemented carbide substrate as a binder phase forming component,
Co: 6-16%
Cr and / or V: 0.1 to 3%,
And the remaining hard phase has a composition made of tungsten carbide containing solid solution of oxygen and nitrogen, and the oxygen and nitrogen content of the hard phase is the Auger electron spectroscopic analyzer for the central portion of the hard phase. Is a value measured using
Oxygen: 0.2-0.6%,
Nitrogen: 0.1-0.25%,
Made of cemented carbide, which is
A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002262983A JP3972775B2 (en) | 2001-10-12 | 2002-09-09 | A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001314747 | 2001-10-12 | ||
JP2001-314747 | 2001-10-12 | ||
JP2002262983A JP3972775B2 (en) | 2001-10-12 | 2002-09-09 | A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003181712A JP2003181712A (en) | 2003-07-02 |
JP3972775B2 true JP3972775B2 (en) | 2007-09-05 |
Family
ID=27615364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002262983A Expired - Lifetime JP3972775B2 (en) | 2001-10-12 | 2002-09-09 | A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3972775B2 (en) |
-
2002
- 2002-09-09 JP JP2002262983A patent/JP3972775B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003181712A (en) | 2003-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5234357B2 (en) | Wear-resistant tool material with excellent lubricity | |
KR20090101383A (en) | Cubic boron nitride base ultra-high pressure sintered material cutting tip | |
JP2003080412A (en) | Surface covered cemented carbide made miniature drill with tip cutting blade surface to display excellent chipping resistance in high speed drilling work | |
JP4058758B2 (en) | Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting | |
JP3972775B2 (en) | A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling. | |
JP3972776B2 (en) | Slow-away surface-coated cemented carbide cutting tip that exhibits excellent chipping resistance in high-speed cutting | |
JP3451949B2 (en) | Surface-coated cemented carbide end mill with high toughness of substrate | |
JP2003236710A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JP3858256B2 (en) | Cemented carbide end mill with excellent wear resistance and chipping resistance | |
JP2001310212A (en) | Surface covered cemented carbide made end mill on which head end surface cutting surface and outer peripheral blade display excellent heat resistant plastic deformation property | |
JP2002187004A (en) | End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting | |
JP2001162411A (en) | Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance | |
JP2004174616A (en) | Method of manufacturing end mill made of surface covering cemented carbide exhibiting excellent chipping resistance in cutting under high feed condition | |
JP2000246507A (en) | Cutting tool made of surface coated super hard alloy exhibiting excellent high temperature heat conductivity at its hard coated layer | |
JP4058761B2 (en) | Surface-coated cemented carbide end mill with excellent torsional deformation resistance when cutting under high feed conditions | |
JP2002254228A (en) | Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting | |
JP4510323B2 (en) | Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting | |
JP2003236707A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JP2002187008A (en) | Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting | |
JP2002254229A (en) | Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting | |
JP3899500B2 (en) | Cutting tool made of surface-coated carbide material that exhibits excellent wear resistance in high heat generation cutting | |
JP3899501B2 (en) | Cutting tool made of surface-coated carbide material that exhibits excellent wear resistance in high heat generation cutting | |
JP4120243B2 (en) | A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear. | |
JP4416960B2 (en) | Slow-away cutting tip made of surface-coated cemented carbide that provides excellent wear resistance in high-speed cutting | |
JP2002187005A (en) | Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070515 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070604 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3972775 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |