JP2002263941A - Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation - Google Patents

Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation

Info

Publication number
JP2002263941A
JP2002263941A JP2001071629A JP2001071629A JP2002263941A JP 2002263941 A JP2002263941 A JP 2002263941A JP 2001071629 A JP2001071629 A JP 2001071629A JP 2001071629 A JP2001071629 A JP 2001071629A JP 2002263941 A JP2002263941 A JP 2002263941A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
end mill
carbide end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071629A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Koichi Maeda
浩一 前田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Kobelco Tool Co Ltd
Original Assignee
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC Kobelco Tool Co Ltd filed Critical MMC Kobelco Tool Co Ltd
Priority to JP2001071629A priority Critical patent/JP2002263941A/en
Publication of JP2002263941A publication Critical patent/JP2002263941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide end mill with a hard coating layer showing superior heat radiation. SOLUTION: The surface coated cemented carbide end mill comprises first thin layers and second thin layers alternately laminated on the surface of a tungsten carbide based carbide substrate with their individual average layer thicknesses being 0.01-0.1 μm and a hard coating layer physically deposited thereon with its total average layer thickness being 0.8-10 μm. The first thin layer is represented by composition formulae: [Ti1- XAlX]N and [Ti1- XAlX]C1-m Nm , by constituting one of a Ti-Al composite nitride layer and a Ti-Al composite carbon-nitride layer of both of them, where X is 0.30-0.70, and m is 0.6-0.99 by an atomic ratio in measurement at a central portion in the direction of thickness with an auger spectroscopy, and the second thin layer is constructed by an aluminum nitride layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に高熱発生を
伴なう鋼などの高速切削で、硬質被覆層がすぐれた放熱
性を発揮して、過熱による摩耗進行を抑制し、もって一
段の使用寿命の延命化を可能ならしめた表面被覆超硬合
金製エンドミル(以下、被覆超硬エンドミルという)に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed cutting of steel and the like, particularly when high heat is generated, in which a hard coating layer exhibits excellent heat radiation properties, suppresses the progress of abrasion due to overheating, and further enhances use. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-coated cemented carbide end mill (hereinafter, referred to as a coated cemented carbide end mill) capable of extending the life.

【0002】[0002]

【従来の技術】従来、一般に、鋼や鋳鉄などの被削材の
面加工や溝加工、さらに肩加工などに、例えば図1
(a)に概略正面図で、同(b)に切刃部の概略横断面
図で例示される形状を有する被覆超硬エンドミルが用い
られており、また前記被覆超硬エンドミルとして、超硬
基体の表面に、TiとAlの複合窒化物[以下、(T
i,Al)Nで示す]層およびTiとAlの複合炭窒化
物[以下、(Ti,Al)CNで示す]層のうちのいず
れか、または両方で構成された硬質被覆層を0.8〜1
0μmの平均層厚で形成してなる被覆超硬エンドミルが
知られている。
2. Description of the Related Art Conventionally, in general, for surface processing, groove processing, and shoulder processing of a work material such as steel or cast iron, for example, FIG.
(A) is a schematic front view, and (b) is a coated carbide end mill having a shape exemplified by a schematic cross-sectional view of a cutting edge portion. The coated carbide end mill is a cemented carbide substrate. On the surface of the composite nitride of Ti and Al [hereinafter, (T
i, Al) N] layer and a composite carbonitride of Ti and Al [hereinafter, referred to as (Ti, Al) CN] layer, or a hard coating layer composed of both layers. ~ 1
A coated carbide end mill formed with an average layer thickness of 0 μm is known.

【0003】さらに、上記の被覆超硬エンドミルの硬質
被覆層である(Ti,Al)N層および(Ti,Al)
CN層が、例えば図2に概略説明図で示される物理蒸着
装置の1種であるアークイオンプレーティング装置を用
い、ヒータで装置内を、例えば雰囲気を3Paの真空と
して、500℃の温度に加熱した状態で、アノード電極
と所定組成を有するTi−Al合金がセットされたカソ
ード電極(蒸発源)との間に、例えば電圧:35V、電
流:90Aの条件でアーク放電を発生させ、同時に装置
内に反応ガスとして窒素ガス、または窒素ガスとメタン
ガスを導入し、一方超硬基体には、例えばー200Vの
バイアス電圧を印加する条件で形成されることも良く知
られるところである。
Further, a (Ti, Al) N layer and a (Ti, Al) N which are hard coating layers of the above coated carbide end mill.
The CN layer is heated to a temperature of 500 ° C., for example, by using an arc ion plating apparatus which is a kind of a physical vapor deposition apparatus schematically shown in FIG. In this state, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti-Al alloy having a predetermined composition is set, for example, under the conditions of a voltage: 35 V and a current: 90 A, It is also well known that a nitrogen gas or a nitrogen gas and a methane gas are introduced as a reaction gas into the substrate, while the carbide substrate is formed under a condition of applying a bias voltage of, for example, -200V.

【0004】[0004]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は切削機械の高性能化
とも相俟って高速化の傾向にあるが、上記の従来被覆超
硬エンドミルの場合、これを鋼や鋳鉄などの通常の条件
での切削加工に用いた場合には問題はないが、これを高
速切削条件で用いると、切削時に発生する高熱によっ
て、特に硬質被覆層の温度が上昇し、この結果硬質被覆
層の摩耗は一段と促進されるようになることから、比較
的短時間で使用寿命に至るのが現状である。
On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction in cutting work, and with this, cutting work has been performed at high speeds in conjunction with high performance of cutting machines. However, in the case of the above-mentioned conventional coated carbide end mill, there is no problem if this is used for cutting under normal conditions such as steel or cast iron, but if this is used under high speed cutting conditions In particular, the high heat generated during cutting raises the temperature of the hard coating layer in particular, and as a result, the wear of the hard coating layer is further promoted. .

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬エンドミル
に着目し、特に高速切削時における硬質被覆層の温度上
昇を抑制すべく研究を行った結果、上記従来被覆超硬エ
ンドミルの硬質被覆層の構成層である(Ti,Al)N
層および(Ti,Al)CN層を、組成式:[Ti1-X
AlX]Nおよび同[Ti1- XAlX]C1-mmで表わし
た場合、厚さ方向中央部のオージェ分光分析装置による
測定で、原子比で、X:0.30〜0.70、m:0.
6〜0.99を満足する(Ti,Al)N層および(T
i,Al)CN層に特定した上で、これと窒化アルミニ
ウム(以下、AlNで示す)層との交互積層とすると共
に、これらの個々の層厚を平均層厚で0.01〜0.1
μmのきわめて薄い薄層とした状態で、0.8〜10μ
mの全体平均層厚の硬質被覆層を構成すると、前記Al
N層(以下、第2薄層という)のもつすぐれた熱伝導性
および熱的安定性を前記両薄層による薄膜化交互積層構
造によって硬質被覆層全体が具備するようになり、この
結果硬質被覆層の放熱性が一段と向上し、高速切削時に
発生する高熱に曝されても硬質被覆層自体の過熱は著し
く抑制され、一方前記(Ti,Al)N層および(T
i,Al)CN層(以下、第1薄層という)の薄膜化交
互積層構造によって硬質被覆層は前記第1薄層による高
硬度とすぐれた耐熱性も併せ持つようになることから、
この結果の被覆超硬エンドミルは、これを特に鋼や鋳鉄
などの高熱発生を伴なう高速切削加工に用いても、硬質
被覆層はすぐれた放熱性を発揮し、これ自体の過熱によ
る摩耗進行が抑制され、耐摩耗性が一段と向上するよう
になる、という研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above point of view, focusing on the conventional coated carbide end mill described above, as a result of conducting research especially to suppress the temperature rise of the hard coating layer during high-speed cutting, the hard coating layer of the conventional coated carbide end mill Constituent layer (Ti, Al) N
The layer and the (Ti, Al) CN layer are represented by a composition formula: [Ti 1-X
When expressed in Al X] N and the [Ti 1- X Al X] C 1-m N m, as measured by Auger spectroscopy apparatus in the thickness direction central portion, in terms of atomic ratio, X: from .30 to 0 .70, m: 0.
(Ti, Al) N layer satisfying 6 to 0.99 and (T
(i, Al) CN layer, and alternately laminated with an aluminum nitride (hereinafter abbreviated as AlN) layer, and these individual layer thicknesses are 0.01 to 0.1 in average layer thickness.
0.8-10 μm in a very thin layer of μm
m to form a hard coating layer having an overall average thickness of m
The excellent thermal conductivity and thermal stability of the N layer (hereinafter, referred to as the second thin layer) is provided by the thin hardened layered structure of the two thin layers so that the entire hard coating layer is provided. The heat dissipation of the layer is further improved, and even if the layer is exposed to high heat generated during high-speed cutting, overheating of the hard coating layer itself is significantly suppressed, while the (Ti, Al) N layer and (T
Since the hard coating layer has both the high hardness of the first thin layer and the excellent heat resistance due to the thinned alternately laminated structure of the (i, Al) CN layer (hereinafter, referred to as a first thin layer),
Even if this coated carbide end mill is used for high-speed cutting of steel, cast iron, etc. with high heat generation, the hard coating layer exhibits excellent heat dissipation, and the wear progresses due to its own overheating. Was suppressed, and the abrasion resistance was further improved.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、0.8〜10
μmの全体平均層厚で物理蒸着した硬質被覆層が、個々
の平均層厚が0.01〜0.1μmの第1薄層と第2薄
層の交互積層からなり、上記第1薄層を、組成式:[T
1-XAlX]Nおよび同[Ti1-XAlX]C1- mmで表
わした場合、厚さ方向中央部のオージェ分光分析装置に
よる測定で、原子比で、X:0.30〜0.70、m:
0.6〜0.99を満足する(Ti,Al)N層および
(Ti,Al)CN層のうちのいずれか、または両方で
構成し、上記第2薄層を、AlN層で構成してなる、硬
質被覆層がすぐれた放熱性を発揮する被覆超硬エンドミ
ルに特徴を有するものである。
The present invention has been made on the basis of the above research results, and has a surface of a super-hard substrate of 0.8 to 10 mm.
The hard coating layer physically vapor-deposited with a total average layer thickness of μm is composed of alternately laminated first and second thin layers each having an average layer thickness of 0.01 to 0.1 μm. , Composition formula: [T
When expressed as i 1-x Al x ] N and [Ti 1-x Al x ] C 1- m N m , the atomic ratio X: 0 was measured by an Auger spectrometer at the center in the thickness direction. .30 to 0.70, m:
The (Ti, Al) N layer and the (Ti, Al) CN layer satisfying 0.6 to 0.99 or both, and the second thin layer is formed of an AlN layer. This is characterized by a coated carbide end mill in which a hard coating layer exhibits excellent heat dissipation.

【0007】なお、この発明の被覆超硬エンドミルにお
いて、硬質被覆層の交互積層を構成する第1薄層および
第2薄層の個々の平均層厚をそれぞれ0.01〜0.1
μmとしたのは、いずれの薄層においても、その平均層
厚が0.01μm未満になると、それぞれの薄層のもつ
特性、すなわち第1薄層による高硬度とすぐれた耐熱
性、第2薄層によるすぐれた熱伝導性および熱的安定性
(放熱性)を硬質被覆層に十分に具備せしめることがで
きず、一方その平均層厚がそれぞれ0.1μmを越える
と、それぞれの薄層のもつ問題点、すなわち第1薄層に
よる放熱性低下現象および第2薄層による摩耗進行の促
進現象が硬質被覆層に現われるようになるという理由に
よるものである。
[0007] In the coated carbide end mill of the present invention, the average thickness of each of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layers is 0.01 to 0.1.
The reason why the thickness is set to μm is that when the average thickness of any of the thin layers is less than 0.01 μm, the characteristics of each thin layer, that is, the high hardness and excellent heat resistance of the first thin layer, and the second thin layer The excellent thermal conductivity and thermal stability (heat dissipation) due to the layers cannot be provided sufficiently in the hard coating layer, while when the average layer thickness exceeds 0.1 μm, the thickness of each thin layer increases. This is because the first heat-dissipation phenomenon caused by the first thin layer and the accelerated wear phenomenon by the second thin layer appear on the hard coating layer.

【0008】また、この発明の被覆超硬エンドミルにお
いて、硬質被覆層の第1薄層を構成する(Ti,Al)
N層および(Ti,Al)CN層におけるAlはTiN
およびTiCNに対して高温硬さと耐熱性を高め、もっ
て耐摩耗性を向上させるために固溶するものであり、し
たがって組成式:(Ti1-XAlX)Nおよび同(Ti
1-XAlX)C1-mm、のX値が原子比(以下同じ)で、
0.3未満では所望の耐摩耗性を確保することができ
ず、一方その値が0.7を越えると、切刃部の外周刃や
底刃にチッピングが発生し易くなると云う理由によりX
値を0.3〜0.7と定めた。望ましくはX値を0.3
5〜0.65とするのがよい。
The coated carbide end mill of the present invention is
To form the first thin layer of the hard coating layer (Ti, Al)
Al in the N layer and the (Ti, Al) CN layer is TiN
High temperature hardness and heat resistance to TiCN and TiCN
Solid solution to improve wear resistance.
Therefore, the composition formula: (Ti1-XAlX) N and (Ti)
1-XAlX) C1-mNm, The X value of which is the atomic ratio (the same applies hereinafter),
If it is less than 0.3, the desired wear resistance can be secured.
On the other hand, if the value exceeds 0.7,
The reason is that chipping is likely to occur on the bottom blade.
The value was defined as 0.3-0.7. Preferably, the X value is 0.3
It is good to be 5 to 0.65.

【0009】また、上記の(Ti,Al)CN層におけ
るC成分には、硬さを向上させる作用があるので、(T
i,Al)CN層は上記(Ti,Al)N層に比して相
対的に高い硬さをもつが、この場合上記の組成式におけ
るC成分の割合が0.01未満、すなわちm値が0.9
9を越えると所定の硬さ向上効果が得られず、一方C成
分の割合が0.4を越える、すなわちm値が0.6未満
になると靭性が急激に低下するようになることから、m
値を0.6〜0.99と定めた。望ましくはm値を0.
8〜0.9とするのがよい。
Further, the C component in the (Ti, Al) CN layer has an effect of improving hardness, so that (T
The (i, Al) CN layer has a relatively high hardness as compared with the (Ti, Al) N layer. In this case, the ratio of the C component in the above composition formula is less than 0.01, that is, the m value is 0.9
If it exceeds 9, the predetermined hardness improving effect cannot be obtained, while if the ratio of the C component exceeds 0.4, that is, if the m value is less than 0.6, the toughness rapidly decreases.
The value was defined as 0.6-0.99. Desirably, the m value is set to 0.
It is good to be 8 to 0.9.

【0010】また、硬質被覆層の全体平均層厚を0.8
〜10μmとしたのは、その層厚が0.8μmでは所望
のすぐれた耐摩耗性を確保することができず、一方その
層厚が10μmを越えると、切刃部の外周刃や底刃にチ
ッピングが発生し易くなるという理由によるものであ
る。
The hard coating layer has an overall average thickness of 0.8
When the layer thickness is 0.8 μm, the desired excellent wear resistance cannot be ensured. On the other hand, when the layer thickness exceeds 10 μm, the outer edge and the bottom edge of the cutting edge portion are not provided. This is because chipping is likely to occur.

【0011】[0011]

【発明の実施の形態】つぎに、この発明の被覆超硬エン
ドミルを実施例により具体的に説明する。原料粉末とし
て、平均粒径:5.5μmを有する中粗粒WC粉末、同
0.8μmの微粒WC粉末、同1.3μmのTaC粉
末、同1.2μmのNbC粉末、同1.2μmのZrC
粉末、同2.3μmのCr32粉末、同1.5μmのV
C粉末、同1.0μmの(Ti,W)C粉末、および同
1.8μmのCo粉末を用意し、これら原料粉末をそれ
ぞれ表1に示される配合組成に配合し、さらにワックス
を加えてアセトン中で24時間ボールミル混合し、減圧
乾燥した後、100MPaの圧力で所定形状の各種の圧
粉体にプレス成形し、これらの圧粉体を、6Paの真空
雰囲気中、7℃/分の昇温速度で1370〜1470℃
の範囲内の所定の温度に昇温し、この温度に1時間保持
後、炉冷の条件で焼結して、直径が8mm、13mm、
および26mmの3種の超硬基体形成用丸棒焼結体を形
成し、さらに前記の3種の丸棒焼結体から、研削加工に
て、表1に示される組合せで、かつ同じく表1に示され
る寸法(切刃部の直径×長さ)および形状をもった超硬
基体A−1〜A−10をそれぞれ製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide end mill of the present invention will be specifically described with reference to examples. As raw material powders, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, and ZrC of 1.2 μm
Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm V
C powder, 1.0 μm (Ti, W) C powder and 1.8 μm Co powder were prepared, and these raw material powders were respectively blended into the composition shown in Table 1. After being mixed in a ball mill for 24 hours and dried under reduced pressure, various green compacts having a predetermined shape are press-molded at a pressure of 100 MPa, and these green compacts are heated at 7 ° C./min in a vacuum atmosphere of 6 Pa. 1370-1470 ° C at speed
The temperature was raised to a predetermined temperature within the range described above, and after maintaining at this temperature for 1 hour, sintering was performed under furnace cooling conditions, and the diameter was 8 mm, 13 mm,
And three types of round bar sintered bodies for forming a carbide substrate having a diameter of 26 mm and formed from the above three types of round bar sintered bodies by grinding in the combinations shown in Table 1, and also in Table 1 The carbide substrates A-1 to A-10 having the dimensions (diameter x length of the cutting edge portion) and the shape shown in Table 1 were respectively manufactured.

【0012】ついで、これらの超硬基体A−1〜A−1
0のそれぞれを、アセトン中で超音波洗浄し、乾燥した
状態で、同じく図2に例示される通常のアークイオンプ
レーティング装置内の回転テーブル上に装着し、一方カ
ソード電極(蒸発源)として、種々の成分組成をもった
第1薄層形成用Ti−Al合金と第2薄層形成用金属A
lを装置内の所定位置に装着し、またボンバート洗浄用
金属Tiも装着し、まず装置内を排気して0.5Paの
真空に保持しながら、ヒーターで装置内を700℃に加
熱した後、前記回転テーブル上で回転する超硬基体に−
1000Vの直流バイアス電圧を印加して、カソード電
極の前記金属Tiとアノード電極との間にアーク放電を
発生させ、もって超硬基体表面をTiボンバート洗浄
し、ついで第1薄層の形成は、装置内に反応ガスとして
窒素ガス、または窒素ガスとメタンガスを導入して5P
aの反応雰囲気とすると共に、前記回転テーブル上で回
転する超硬基体に−200Vの直流バイアス電圧を印加
する条件で行い、また第2薄層の形成は、装置内に反応
ガスとして窒素ガスを導入して6Paの反応雰囲気とす
ると共に、同じく前記回転テーブル上で回転する超硬基
体に−300Vのパルスバイアス電圧を印加する条件で
行い、かつ前記第1薄層として(Ti,Al)CN層を
形成する場合にのみ前記第1薄層形成と第2薄層形成の
間には反応ガス排出のための真空引きを10秒間行う条
件で、前記カソード電極(前記第1薄層形成用Ti−A
l合金または第2薄層形成用金属Al)とアノード電極
との間にアーク放電を発生させ、もって前記超硬基体の
表面に、表2に示される目標組成および目標層厚の第1
薄層と第2薄層とを表3に示される組み合わせで、かつ
同じく表3に示される交互積層数からなる硬質被覆層を
蒸着することにより、本発明被覆超硬エンドミル1〜1
6をそれぞれ製造した。
Next, these super hard substrates A-1 to A-1
0 was ultrasonically cleaned in acetone and dried, and mounted on a rotary table in a usual arc ion plating apparatus also illustrated in FIG. 2, while a cathode electrode (evaporation source) was Ti-Al alloy for forming first thin layer and metal A for forming second thin layer having various component compositions
1 was mounted at a predetermined position in the apparatus, and also a metal Ti for bombarding was mounted. First, the inside of the apparatus was evacuated and heated to 700 ° C. with a heater while maintaining the vacuum at 0.5 Pa. For the carbide substrate rotating on the rotary table-
An arc discharge is generated between the metal Ti of the cathode electrode and the anode electrode by applying a DC bias voltage of 1000 V, and the surface of the super-hard substrate is cleaned by Ti bombardment. Introduce nitrogen gas or nitrogen gas and methane gas as reaction gas into
a, and a DC bias voltage of -200 V is applied to the superhard substrate rotating on the rotary table. The second thin layer is formed by using nitrogen gas as a reaction gas in the apparatus. The reaction was carried out under a condition of applying a pulsed bias voltage of -300 V to the carbide substrate rotating on the rotary table, and a (Ti, Al) CN layer was used as the first thin layer. Only when forming the first thin layer, the cathode electrode (the first thin layer forming Ti- layer) is evacuated for 10 seconds between the formation of the first thin layer and the formation of the second thin layer. A
An arc discharge is generated between the aluminum alloy or the second thin layer forming metal Al) and the anode electrode, so that the first composition having the target composition and the target layer thickness shown in Table 2 is formed on the surface of the cemented carbide substrate.
By coating a thin layer and a second thin layer in a combination shown in Table 3 and depositing a hard coating layer having the same number of layers as shown in Table 3, the coated carbide end mills 1 to 1 according to the present invention are deposited.
6 were each manufactured.

【0013】また、比較の目的で、同じく上記のアーク
イオンプレーティング装置にて、カソード電極(蒸発
源)として、種々の成分組成をもったTi−Al合金を
装着する以外は同一の条件で、上記超硬基体の表面に表
4に示される通りの目標組成および目標層厚の(Ti,
Al)N層または(Ti,Al)CN層で構成された硬
質被覆層を蒸着することにより、従来被覆超硬エンドミ
ル1〜13をそれぞれ製造した。
For the purpose of comparison, the same conditions were used under the same conditions except that Ti—Al alloys having various component compositions were mounted as the cathode electrode (evaporation source) in the above-mentioned arc ion plating apparatus. On the surface of the cemented carbide substrate, (Ti,
Conventionally coated carbide end mills 1 to 13 were manufactured by depositing a hard coating layer composed of an (Al) N layer or an (Ti, Al) CN layer.

【0014】さらに、この結果得られた各種の被覆超硬
エンドミルについて、これを構成する各種硬質被覆層の
組成および層厚を、エネルギー分散型X線測定装置およ
びオージェ分光分析装置、さらに走査型電子顕微鏡を用
いて測定したところ、表2〜4の目標組成および目標層
厚と実質的に同じ組成および平均層厚(任意5ヶ所測定
の平均値との比較)を示した。
Further, the composition and thickness of the various hard coating layers constituting the various coated carbide end mills obtained as described above were measured using an energy dispersive X-ray measuring apparatus, an Auger spectroscopic analyzer, and a scanning electron microscope. When measured using a microscope, the composition and the average layer thickness were substantially the same as the target compositions and the target layer thicknesses in Tables 2 to 4 (comparison with the average values of measurements at five arbitrary locations).

【0015】つぎに、上記本発明被覆超硬エンドミル1
〜16よび従来被覆超硬エンドミル1〜13のうち、本
発明被覆超硬エンドミル1〜6および従来被覆超硬エン
ドミル1〜5については、 被削材:100mm×250の平面寸法、50mmの厚
さを有するJIS・S55Cの板材、 回転速度:1800r.p.m.、 溝深さ(切り込み):3.5mm、 テーブル送り:220mm/分、 の条件での炭素鋼の湿式高速溝切削加工試験(水溶性切
削油使用)、本発明被覆超硬エンドミル7〜11および
従来被覆超硬エンドミル6〜9については、 被削材:100mm×250の平面寸法、50mmの厚
さを有するJIS・SCM440の板材、 回転速度:2400r.p.m.、 溝深さ(切り込み):3.5mm、 テーブル送り:210mm/分、 の条件での合金鋼の湿式高速溝切削加工試験(水溶性切
削油使用)、本発明被覆超硬エンドミル12〜16およ
び従来被覆超硬エンドミル10〜13については、 被削材:100mm×250の平面寸法、50mmの厚
さを有するJIS・FC250の板材、 回転速度:6600r.p.m.、 溝深さ(切り込み):3mm、 テーブル送り:380mm/分、 の条件での鋳鉄の湿式高速溝切削加工試験(水溶性切削
油使用)、をそれぞれ行い、いずれの湿式高速溝切削加
工試験でも外周刃の逃げ面摩耗量が使用寿命の目安とさ
れる0.1mmに至るまでの切削長を測定した。この測
定結果を表3、4にそれぞれ示した。
Next, the coated carbide end mill 1 of the present invention will be described.
-16 and the conventional coated carbide end mills 1-13, the coated coated carbide end mills 1-6 and the coated conventional carbide end mills 1-5 are: Work material: 100 mm × 250 plane dimension, 50 mm thickness JIS S55C plate material having a rotation speed of 1800 r. p. m. , Groove depth (cut): 3.5 mm, Table feed: 220 mm / min, Wet high-speed grooving test (using water-soluble cutting oil) of carbon steel under the following conditions: coated carbide end mills 7 to 11 of the present invention and For the conventional coated carbide end mills 6 to 9, work material: JIS SCM440 plate material having a plane size of 100 mm x 250 and a thickness of 50 mm, rotation speed: 2400 r. p. m. , Groove depth (cut): 3.5 mm, Table feed: 210 mm / min, Wet high-speed grooving test (using water-soluble cutting oil) of alloy steel under the following conditions: coated carbide end mills 12 to 16 of the present invention and For the conventional coated carbide end mills 10 to 13, a work material: a plate material of JIS FC250 having a plane dimension of 100 mm × 250 and a thickness of 50 mm, a rotation speed of 6600 rpm. p. m. , Groove depth (cut): 3 mm, Table feed: 380 mm / min, Wet cast high speed grooving test (using water-soluble cutting oil) under the following conditions: The cutting length was measured until the flank wear amount of the outer peripheral edge reached 0.1 mm, which is a standard of service life. The measurement results are shown in Tables 3 and 4, respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】表3、4に示される結果から、硬質被覆
層が第1薄層と第2薄層の交互多重積層からなる本発明
被覆超硬エンドミル1〜16は、いずれも鋼や鋳鉄のエ
ンドミル加工を高い発熱を伴う高速で行っても、前記第
2薄層のもつすぐれた熱伝導性と熱的安定性によって硬
質被覆層はすぐれた放熱性を発揮し、硬質被覆層自体が
過熱されることがなくなることから、前記第1薄層の
(Ti,Al)N層および(Ti,Al)CN層によっ
てもたらされるすぐれた高硬度とすぐれた耐熱性と相俟
って、チッピングなどの発生なく、すぐれた耐摩耗性を
発揮するのに対して、実質的に硬質被覆層が前記第1薄
層と同じ組成の単一層からなる従来被覆超硬エンドミル
1〜10においては、いずれも高速切削時に発生する高
熱によって硬質被覆層自体の温度が上昇し、このため摩
耗進行が著しく促進し、比較的短時間で使用寿命に至る
ことが明らかである。上述のように、この発明の被覆超
硬エンドミルは、各種の鋼や鋳鉄などの通常の条件での
面加工や溝加工、さらに肩加工などの切削加工は勿論の
こと、特にこれらの高速切削加工においてもすぐれた耐
摩耗性を発揮するものであるから、切削加工の省力化お
よび省エネ化、さらに低コスト化に十分満足に対応でき
るものである。
From the results shown in Tables 3 and 4, the coated carbide end mills 1 to 16 according to the present invention, in which the hard coating layer is formed by alternately laminating the first thin layer and the second thin layer, are all steel or cast iron. Even when the end milling is performed at high speed with high heat generation, the hard coating layer exhibits excellent heat dissipation due to the excellent thermal conductivity and thermal stability of the second thin layer, and the hard coating layer itself is overheated. And the excellent heat resistance and excellent heat resistance provided by the (Ti, Al) N layer and the (Ti, Al) CN layer of the first thin layer. In the conventional coated carbide end mills 1 to 10 in which the hard coating layer substantially consists of a single layer having the same composition as that of the first thin layer, the hard coating layer exhibits excellent wear resistance without generation. Hard coating due to high heat generated during cutting Temperature itself is increased, and therefore the wear progress is significantly accelerated, it is clear that lead to a relatively short time service life. As described above, the coated carbide end mill of the present invention can be used not only for cutting such as surface machining and grooving under various conditions such as steel and cast iron, but also for shoulder machining, and especially for high-speed machining of these. Therefore, it is possible to satisfactorily cope with labor saving and energy saving of the cutting process, and further lowering the cost because it exhibits excellent wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は被覆超硬エンドミルの概略正面図、
(b)は同切刃部の概略横断面図である。
FIG. 1 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic cross-sectional view of the cutting blade portion.

【図2】アークイオンプレーティング装置の概略説明図
である。
FIG. 2 is a schematic explanatory view of an arc ion plating apparatus.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月11日(2001.4.1
1)
[Submission date] April 11, 2001 (2001.4.1
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【発明の実施の形態】つぎに、この発明の被覆超硬エン
ドミルを実施例により具体的に説明する。原料粉末とし
て、いずれも1〜3μmの平均粒径を有するWC粉末、
TiC粉末、ZrC粉末、VC粉末、TaC粉末、Nb
C粉末、Cr3 2 粉末、TiN粉末、TaN粉末、お
よびCo粉末を用意し、これら原料粉末をそれぞれ表1
に示される配合組成に配合し、さらにワックスを加えて
アセトン中で24時間ボールミル混合し、減圧乾燥した
後、100MPaの圧力で所定形状の各種の圧粉体にプ
レス成形し、これらの圧粉体を、6Paの真空雰囲気
中、7℃/分の昇温速度で1370〜1470℃の範囲
内の所定の温度に昇温し、この温度に1時間保持後、炉
冷の条件で焼結して、直径が8mm、13mm、および
26mmの3種の超硬基体形成用丸棒焼結体を形成し、
さらに前記の3種の丸棒焼結体から、研削加工にて、表
1に示される組合せで、かつ同じく表1に示される寸法
(切刃部の直径×長さ)および形状をもった超硬基体A
−1〜A−10をそれぞれ製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide end mill of the present invention will be specifically described with reference to examples. WC powder having an average particle size of 1 to 3 μm,
TiC powder, ZrC powder, VC powder, TaC powder, Nb
C powder, Cr 3 C 2 powder, TiN powder, TaN powder,
And Co powder were prepared, and these raw material powders were listed in Table 1 respectively.
And further mixed with a wax, mixed with a ball mill in acetone for 24 hours, dried under reduced pressure, and then press-molded into various compacts having a predetermined shape at a pressure of 100 MPa. Is heated in a vacuum atmosphere of 6 Pa at a heating rate of 7 ° C./min to a predetermined temperature within a range of 1370 to 1470 ° C., and after maintaining at this temperature for 1 hour, sintering is performed under furnace cooling conditions. Forming three types of round bar sintered bodies for forming a cemented carbide substrate having a diameter of 8 mm, 13 mm, and 26 mm;
Further, from the above three types of round bar sintered bodies, by grinding, a combination having the dimensions (diameter of cutting edge portion × length) and the shape shown in Table 1 in combination shown in Table 1 was obtained. Hard substrate A
-1 to A-10 were produced respectively.

フロントページの続き (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 4K029 AA02 AA04 BA54 BA58 BB02 BC10 BD05 CA04 EA01 FA05Continued on the front page (72) Inventor Yusuke Tanaka 179 Nishi-Oike, Kanegasaki, Uozumi-cho, Akashi-shi, Hyogo 1 F-term in MMC Cobelco Tool Co., Ltd. 4K029 AA02 AA04 BA54 BA58 BB02 BC10 BD05 CA04 EA01 FA05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、0.8〜10μmの全体平均層厚で物理蒸着した硬
質被覆層が、個々の平均層厚が0.01〜0.1μmの
第1薄層と第2薄層の交互積層からなり、 上記第1薄層を、組成式:[Ti1-XAlX]Nおよび同
[Ti1-XAlX]C1- mmで表わした場合、厚さ方向中
央部のオージェ分光分析装置による測定で、原子比で、
X:0.30〜0.70、m:0.6〜0.99を満足
するTiとAlの複合窒化物およびTiとAlの複合炭
窒化物のうちのいずれか、または両方で構成し、 上記第2薄層を、窒化アルミニウムで構成したこと、を
特徴とする硬質被覆層がすぐれた放熱性を発揮する表面
被覆超硬合金製エンドミル。
1. A hard coating layer physically vapor-deposited with a total average layer thickness of 0.8 to 10 μm on the surface of a tungsten carbide-based cemented carbide substrate, and a hard coating layer having an individual average layer thickness of 0.01 to 0.1 μm. 1 consists alternate lamination of thin layer and the second thin layer, the first thin layer, the composition formula: in [Ti 1-X Al X] N and the [Ti 1-X Al X] C 1- m N m When expressed, the atomic ratio was measured by an Auger spectrometer at the center in the thickness direction.
X: 0.30 to 0.70, m: 0.6 to 0.99, which is composed of one or both of a composite nitride of Ti and Al and a composite carbonitride of Ti and Al, An end mill made of a surface-coated cemented carbide, wherein the second thin layer is made of aluminum nitride, wherein the hard coating layer exhibits excellent heat dissipation.
JP2001071629A 2001-03-14 2001-03-14 Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation Pending JP2002263941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071629A JP2002263941A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071629A JP2002263941A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation

Publications (1)

Publication Number Publication Date
JP2002263941A true JP2002263941A (en) 2002-09-17

Family

ID=18929324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071629A Pending JP2002263941A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation

Country Status (1)

Country Link
JP (1) JP2002263941A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105024A1 (en) * 2008-02-21 2009-08-27 Seco Tools Ab Multilayered coated cutting tool
JP2010115740A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
CN102634753A (en) * 2011-02-12 2012-08-15 深圳职业技术学院 Hard coating and preparation method thereof
US20140272391A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US20150050489A1 (en) * 2013-08-16 2015-02-19 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
EP3929328A1 (en) * 2020-06-24 2021-12-29 Tungaloy Corporation Coated cutting tool

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US8409696B2 (en) 2008-02-21 2013-04-02 Seco Tools Ab Multilayered coated cutting tool
WO2009105024A1 (en) * 2008-02-21 2009-08-27 Seco Tools Ab Multilayered coated cutting tool
JP2010115740A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
CN102634753B (en) * 2011-02-12 2016-04-27 深圳职业技术学院 Hard coat and preparation method thereof
CN102634753A (en) * 2011-02-12 2012-08-15 深圳职业技术学院 Hard coating and preparation method thereof
US20140272391A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9103036B2 (en) * 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US20150050489A1 (en) * 2013-08-16 2015-02-19 Kennametal Inc. Low stress hard coatings and applications thereof
US9168664B2 (en) * 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
US10184187B2 (en) 2013-08-16 2019-01-22 Kennametal Inc. Low stress hard coatings and applications thereof
EP3929328A1 (en) * 2020-06-24 2021-12-29 Tungaloy Corporation Coated cutting tool
US11660678B2 (en) 2020-06-24 2023-05-30 Tungaloy Corporation Coated cutting tool

Similar Documents

Publication Publication Date Title
JP3873276B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP2002263941A (en) Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation
JP2010207917A (en) Surface coated cutting tool
JP5035527B2 (en) Surface coated cutting tool
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5321360B2 (en) Surface coated cutting tool
JP6959577B2 (en) Surface coating cutting tool
JP3620456B2 (en) Surface coated cemented carbide drill with excellent wear resistance in high speed cutting
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP3619996B2 (en) Surface coated cemented carbide end mill with excellent chipping resistance in high speed heavy cutting
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2002187004A (en) End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP6471546B2 (en) Surface coated cutting tool
JP2002263933A (en) Surface coated cemented carbide drill with hard coating layer showing superior heat radiation
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2002263934A (en) Surface coated cemented carbide drill showing superior chipping resistance in high-speed and high-feed cutting
JP5686254B2 (en) Surface coated cutting tool
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP4158191B2 (en) A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041108