JP2002263933A - Surface coated cemented carbide drill with hard coating layer showing superior heat radiation - Google Patents

Surface coated cemented carbide drill with hard coating layer showing superior heat radiation

Info

Publication number
JP2002263933A
JP2002263933A JP2001071628A JP2001071628A JP2002263933A JP 2002263933 A JP2002263933 A JP 2002263933A JP 2001071628 A JP2001071628 A JP 2001071628A JP 2001071628 A JP2001071628 A JP 2001071628A JP 2002263933 A JP2002263933 A JP 2002263933A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
cemented carbide
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071628A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Koichi Maeda
浩一 前田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Kobelco Tool Co Ltd
Original Assignee
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC Kobelco Tool Co Ltd filed Critical MMC Kobelco Tool Co Ltd
Priority to JP2001071628A priority Critical patent/JP2002263933A/en
Publication of JP2002263933A publication Critical patent/JP2002263933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide drill with a hard coating layer showing superior heat radiation. SOLUTION: The surface coated cemented carbide drill comprises first thin layers and second thin layers alternately laminated on the surface of a tungsten carbide based cemented carbide substrate with their individual average layer thicknesses being 0.01-0.1 μm and a hard coating layer physically deposited thereon with its total average layer thickness being 0.8-10 μm. The first thin layer is constructed by one of a Ti-Al composite nitride layer and a Ti-Al composite carbonitride layer or both of them, satisfied with an atomic ratio X: 0.30-0.70, m: 0.6-0.99 in measurement at a central portion in the direction of thickness with an Auger spectroscopy, if represented by composition formulae: [Ti1- XAlX]N and [Ti1- XAlX]C1-m Nm , and the second thin layer is constructed by an aluminum nitride layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に高熱発生を
伴なう鋼などの高速切削で、硬質被覆層がすぐれた放熱
性を発揮して、過熱による摩耗進行を抑制し、もって一
段の使用寿命の延命化を可能ならしめた表面被覆超硬合
金製ドリル(以下、被覆超硬ドリルという)に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed cutting of steel and the like, particularly when high heat is generated, in which a hard coating layer exhibits excellent heat radiation properties, suppresses the progress of abrasion due to overheating, and further enhances use. The present invention relates to a drill made of a surface-coated cemented carbide (hereinafter, referred to as a coated carbide drill) capable of extending the life.

【0002】[0002]

【従来の技術】従来、一般に、鋼や鋳鉄などの被削材の
穴あけ切削加工などに、例えば図1(a)に概略正面図
で、同(b)に溝形成部の概略横断面図で示される形状
を有するドリルや、さらにミニチュアドリルなどとして
各種の被覆超硬ドリルが用いられており、また前記被覆
超硬ドリルとして、炭化タングステン基超硬合金基体
(以下、超硬基体という)の表面に、TiとAlの複合
窒化物[以下、(Ti,Al)Nで示す]層およびTi
とAlの複合炭窒化物[以下、(Ti,Al)CNで示
す]層のうちのいずれか、または両方で構成された硬質
被覆層を0.8〜10μmの平均層厚で形成してなる被
覆超硬ドリルが知られている。
2. Description of the Related Art Conventionally, in general, for example, in FIG. 1A, a schematic front view and FIG. 1B, in a schematic cross-sectional view of a groove forming portion, for drilling and cutting a work material such as steel or cast iron. Various types of coated cemented carbide drills are used as drills having the shapes shown and further miniature drills, and the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) is used as the coated carbide drill. A composite nitride of Ti and Al [hereinafter, referred to as (Ti, Al) N] layer
And a composite carbonitride of Al and Al (hereinafter, referred to as (Ti, Al) CN), or a hard coating layer composed of both layers, with an average layer thickness of 0.8 to 10 μm. Coated carbide drills are known.

【0003】さらに、上記の被覆超硬ドリルの硬質被覆
層である(Ti,Al)N層または(Ti,Al)CN
層が、例えば図2に概略説明図で示される物理蒸着装置
の1種であるアークイオンプレーティング装置を用い、
ヒータで装置内を、例えば雰囲気を3Paの真空とし
て、700℃の温度に加熱した状態で、アノード電極と
所定組成を有するTi−Al合金がセットされたカソー
ド電極(蒸発源)との間に、例えば電圧:35V、電
流:90Aの条件でアーク放電を発生させ、同時に装置
内に反応ガスとして窒素ガス、または窒素ガスとメタン
ガスを導入し、一方超硬基体には、例えばー200Vの
バイアス電圧を印加する条件で形成されることも良く知
られるところである。
Further, a (Ti, Al) N layer or (Ti, Al) CN which is a hard coating layer of the above coated carbide drill.
The layer uses, for example, an arc ion plating apparatus which is a kind of a physical vapor deposition apparatus schematically shown in FIG.
In a state where the inside of the apparatus is heated to a temperature of 700 ° C. by, for example, setting the atmosphere to a vacuum of 3 Pa with a heater, the anode electrode and the cathode electrode (evaporation source) on which a Ti—Al alloy having a predetermined composition is set are heated. For example, arc discharge is generated under the conditions of a voltage: 35 V and a current: 90 A, and at the same time, a nitrogen gas or a nitrogen gas and a methane gas are introduced into the apparatus as a reaction gas, while a bias voltage of, for example, -200 V is applied to the carbide substrate. It is also well known that they are formed under the conditions of application.

【0004】[0004]

【発明が解決しようとする課題】一方、近年の穴あけ切
削加工などの切削加工に対する省力化および省エネ化、
さらに低コスト化の要求は強く、これに伴い、切削加工
は切削機械の高性能化とも相俟って高速化の傾向にある
が、上記の従来被覆超硬ドリルにおいては、これを鋼や
鋳鉄などの通常の条件での穴あけ切削加工に用いた場合
には問題はないが、これを高速切削条件で用いると、穴
あけ切削加工時に発生する高熱によって、特に硬質被覆
層の温度が上昇し、この結果硬質被覆層の摩耗は一段と
促進されるようになることから、比較的短時間で使用寿
命に至るのが現状である。
On the other hand, labor saving and energy saving for cutting such as drilling in recent years,
In addition, there is a strong demand for cost reduction, and with this, cutting tends to be accelerated in conjunction with the high performance of the cutting machine. There is no problem when used for drilling cutting under normal conditions such as, but if this is used under high-speed cutting conditions, the high heat generated during drilling cutting will increase the temperature of the hard coating layer, especially As a result, abrasion of the hard coating layer is further promoted, so that the service life of the hard coating layer can be reached in a relatively short time at present.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬ドリルに着
目し、特に高速切削時における硬質被覆層の温度上昇を
抑制すべく研究を行った結果、上記従来被覆超硬ドリル
の硬質被覆層の構成層である(Ti,Al)N層および
(Ti,Al)CN層を、組成式:[Ti1-XAlX]N
および同[Ti1-XAlX]C1-mmで表わした場合、厚
さ方向中央部のオージェ分光分析装置による測定で、原
子比で、X:0.30〜0.70、m:0.6〜0.9
9を満足する(Ti,Al)N層および(Ti,Al)
CN層に特定した上で、これと窒化アルミニウム(以
下、AlNで示す)層との交互積層とすると共に、これ
らの個々の層厚を平均層厚で0.01〜0.1μmのき
わめて薄い薄層とした状態で、0.8〜10μmの全体
平均層厚の硬質被覆層を構成すると、前記AlN層(以
下、第2薄層という)のもつすぐれた熱伝導性および熱
的安定性を前記両薄層による薄膜化交互積層構造によっ
て硬質被覆層全体が具備するようになり、この結果硬質
被覆層の放熱性が一段と向上し、高速切削時に発生する
高熱に曝されても硬質被覆層自体の過熱は著しく抑制さ
れ、一方前記(Ti,Al)N層および(Ti,Al)
CN層(以下、第1薄層という)の薄膜化交互積層構造
によって硬質被覆層は前記第1薄層による高硬度とすぐ
れた耐熱性も併せ持つようになることから、この結果の
被覆超硬ドリルは、これを特に鋼や鋳鉄などの高熱発生
を伴なう高速切削加工に用いても、硬質被覆層はすぐれ
た放熱性を発揮し、これ自体の過熱による摩耗進行が抑
制され、耐摩耗性が一段と向上するようになる、という
研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, focusing on the above-mentioned conventional coated carbide drill, as a result of conducting research especially to suppress the temperature rise of the hard coating layer during high-speed cutting, the hard coating layer of the conventional coated carbide drill The (Ti, Al) N layer and the (Ti, Al) CN layer, which are the constituent layers, are formed by a composition formula: [Ti 1-x Al x ] N
When expressed as [Ti 1-x Al x ] C 1-m N m , X: 0.30 to 0.70, m in atomic ratio as measured by an Auger spectrometer at the center in the thickness direction. : 0.6 to 0.9
(Ti, Al) N layer and (Ti, Al)
After specifying the CN layer, this is alternately laminated with an aluminum nitride (hereinafter, referred to as AlN) layer, and the individual layer thicknesses thereof are extremely thin, having an average layer thickness of 0.01 to 0.1 μm. When the hard coating layer having a total average layer thickness of 0.8 to 10 μm is formed in the layered state, the excellent thermal conductivity and thermal stability of the AlN layer (hereinafter, referred to as a second thin layer) can be obtained. The entire thin hard coating layer is provided by the thinned alternately laminated structure with both thin layers, and as a result, the heat dissipation of the hard coating layer is further improved, and even if the hard coating layer itself is exposed to the high heat generated during high speed cutting, Overheating is significantly suppressed, while the (Ti, Al) N layer and (Ti, Al)
Since the hard coating layer has both the high hardness of the first thin layer and the excellent heat resistance due to the thinned alternating layered structure of the CN layer (hereinafter, referred to as a first thin layer), the resulting coated carbide drill is obtained. Even if this is used for high-speed cutting of steel or cast iron, especially with high heat generation, the hard coating layer exhibits excellent heat dissipation, suppressing the progress of abrasion due to its own overheating, and abrasion resistance. The research results show that the quality will be further improved.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、0.8〜10
μmの全体平均層厚で物理蒸着した硬質被覆層が、個々
の平均層厚が0.01〜0.1μmの第1薄層と第2薄
層の交互積層からなり、上記第1薄層を、組成式:[T
1-XAlX]Nおよび同[Ti1-XAlX]C1- mmで表
わした場合、厚さ方向中央部のオージェ分光分析装置に
よる測定で、原子比で、X:0.30〜0.70、m:
0.6〜0.99を満足する(Ti,Al)N層および
(Ti,Al)CN層のうちのいずれか、または両方で
構成し、上記第2薄層を、AlN層で構成してなる、硬
質被覆層がすぐれた放熱性を発揮する被覆超硬ドリルに
特徴を有するものである。
The present invention has been made on the basis of the above research results, and has a surface of a super-hard substrate of 0.8 to 10 mm.
The hard coating layer physically vapor-deposited with a total average layer thickness of μm is composed of alternately laminated first and second thin layers each having an average layer thickness of 0.01 to 0.1 μm. , Composition formula: [T
When expressed as i 1-x Al x ] N and [Ti 1-x Al x ] C 1- m N m , the atomic ratio X: 0 was measured by an Auger spectrometer at the center in the thickness direction. .30 to 0.70, m:
The (Ti, Al) N layer and the (Ti, Al) CN layer satisfying 0.6 to 0.99 or both, and the second thin layer is formed of an AlN layer. The feature of the coated carbide drill is that the hard coating layer exhibits excellent heat dissipation.

【0007】なお、この発明の被覆超硬ドリルにおい
て、硬質被覆層の交互積層を構成する第1薄層および第
2薄層の個々の平均層厚をそれぞれ0.01〜0.1μ
mとしたのは、いずれの薄層においても、その平均層厚
が0.01μm未満になると、それぞれの薄層のもつ特
性、すなわち第1薄層による高硬度とすぐれた耐熱性、
第2薄層によるすぐれた熱伝導性および熱的安定性(放
熱性)を硬質被覆層に十分に具備せしめることができ
ず、一方その平均層厚がそれぞれ0.1μmを越える
と、それぞれの薄層のもつ問題点、すなわち第1薄層に
よる放熱性低下現象および第2薄層による摩耗進行の促
進現象が硬質被覆層に現われるようになるという理由に
よるものである。
In the coated carbide drill according to the present invention, the average thickness of each of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layers is 0.01 to 0.1 μm.
When the average thickness of any of the thin layers is less than 0.01 μm, the characteristics of each of the thin layers, that is, the high hardness and excellent heat resistance of the first thin layer,
The excellent heat conductivity and thermal stability (heat dissipation) of the second thin layer cannot be sufficiently provided in the hard coating layer. On the other hand, if the average layer thickness exceeds 0.1 μm, the thickness of each thin layer increases. This is because the problem of the layer, that is, the phenomenon of lowering the heat radiation property by the first thin layer and the phenomenon of promoting the abrasion progress by the second thin layer appear in the hard coating layer.

【0008】また、この発明の被覆超硬ドリルにおい
て、硬質被覆層の第1薄層を構成する(Ti,Al)N
層および(Ti,Al)CN層におけるAlはTiNお
よびTiCNに対して高温硬さおよび耐熱性を高め、も
って耐摩耗性を向上させるために固溶するものであり、
したがって組成式:(Ti1-XAlX)Nおよび同(Ti
1-XAlX)C1-mm、のX値が原子比(以下同じ)で、
0.3未満では所望の耐摩耗性を確保することができ
ず、一方その値が0.7を越えると、切刃面を含む先端
部や溝形成部の薄肉部に欠けやチッピングが発生し易く
なると云う理由によりX値を0.3〜0.7と定めた。
望ましくはX値を0.35〜0.65とするのがよい。
Further, the coated carbide drill according to the present invention has an odor.
(Ti, Al) N constituting the first thin layer of the hard coating layer
Al in the layer and the (Ti, Al) CN layer is TiN and
High temperature hardness and heat resistance to TiCN and TiCN
Is to form a solid solution to improve wear resistance.
Therefore, the composition formula: (Ti1-XAlX) N and (Ti)
1-XAlX) C1-mNm, The X value of which is the atomic ratio (the same applies hereinafter),
If it is less than 0.3, the desired wear resistance can be secured.
On the other hand, if the value exceeds 0.7, the tip
Chipping and chipping easily occur in the thin part of the part and groove formation part
For this reason, the X value was determined to be 0.3 to 0.7.
Desirably, the X value is set to 0.35 to 0.65.

【0009】また、上記の(Ti,Al)CN層におけ
るC成分には、硬さを向上させる作用があるので、(T
i,Al)CN層は上記(Ti,Al)N層に比して相
対的に高い硬さをもつが、この場合上記の組成式におけ
るC成分の割合が0.01未満、すなわちm値が0.9
9を越えると所定の硬さ向上効果が得られず、一方C成
分の割合が0.4を越える、すなわちm値が0.6未満
になると靭性が急激に低下するようになることから、m
値を0.6〜0.99と定めた。望ましくはm値を0.
8〜0.9とするのがよい。
Further, the C component in the (Ti, Al) CN layer has an effect of improving hardness, so that (T
The (i, Al) CN layer has a relatively high hardness as compared with the (Ti, Al) N layer. In this case, the ratio of the C component in the above composition formula is less than 0.01, that is, the m value is 0.9
If it exceeds 9, the predetermined hardness improving effect cannot be obtained, while if the ratio of the C component exceeds 0.4, that is, if the m value is less than 0.6, the toughness rapidly decreases.
The value was defined as 0.6-0.99. Desirably, the m value is set to 0.
It is good to be 8 to 0.9.

【0010】また、硬質被覆層の全体平均層厚を0.8
〜10μmとしたのは、その層厚が0.8μmでは所望
のすぐれた耐摩耗性を確保することができず、一方その
層厚が10μmを越えると、切刃面を含む先端部や溝形
成部の薄肉部に欠けやチッピングが発生し易くなるとい
う理由によるものである。
The hard coating layer has an overall average thickness of 0.8
When the thickness is 0.8 μm, the desired excellent wear resistance cannot be ensured. On the other hand, when the thickness exceeds 10 μm, the formation of the tip and groove including the cutting edge surface is not possible. This is because chipping and chipping easily occur in the thin portion of the portion.

【0011】[0011]

【発明の実施の形態】つぎに、この発明の被覆超硬ドリ
ルを実施例により具体的に説明する。原料粉末として、
平均粒径:5.5μmを有する中粗粒WC粉末、同0.
8μmの微粒WC粉末、同1.3μmのTaC粉末、同
1.2μmのNbC粉末、同1.2μmのZrC粉末、
同2.3μmのCr32粉末、同1.5μmのVC粉
末、同1.0μmの(Ti,W)C粉末、および同1.
8μmのCo粉末を用意し、これら原料粉末をそれぞれ
表1に示される配合組成に配合し、さらにワックスを加
えてアセトン中で24時間ボールミル混合し、減圧乾燥
した後、100MPaの圧力で所定形状の各種の圧粉体
にプレス成形し、これらの圧粉体を、6Paの真空雰囲
気中、7℃/分の昇温速度で1370〜1470℃の範
囲内の所定の温度に昇温し、この温度に1時間保持後、
炉冷の条件で焼結して、直径が8mm、13mm、およ
び26mmの3種の超硬基体形成用丸棒焼結体を形成
し、さらに前記の3種の丸棒焼結体から、研削加工に
て、表1に示される組合せで、溝形成部の直径×長さが
それぞれ4mm×13mm、8mm×22mm、および
16mm×45mmの寸法をもった超硬基体A−1〜A
−10をそれぞれ製造した。
Next, the coated carbide drill of the present invention will be described in detail with reference to examples. As raw material powder,
Average particle size: Medium-coarse WC powder having 5.5 μm;
8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC powder,
2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.
8 μm Co powder was prepared, and each of these raw material powders was blended to the composition shown in Table 1, further added with wax, and ball-milled in acetone for 24 hours, and dried under reduced pressure. Various green compacts are press-molded, and these green compacts are heated to a predetermined temperature within a range of 1370 to 1470 ° C. in a vacuum atmosphere of 6 Pa at a temperature rising rate of 7 ° C./min. After holding for 1 hour
Sintering was performed under furnace cooling conditions to form three types of round bar sintered bodies for forming a carbide substrate having a diameter of 8 mm, 13 mm, and 26 mm. In the processing, in the combinations shown in Table 1, the diameters and lengths of the groove forming portions were 4 mm × 13 mm, 8 mm × 22 mm, and carbide substrates A-1 to A having dimensions of 16 mm × 45 mm, respectively.
-10 were each produced.

【0012】ついで、これらの超硬基体A−1〜A−1
0のそれぞれを、アセトン中で超音波洗浄し、乾燥した
状態で、同じく図2に例示される通常のアークイオンプ
レーティング装置内の回転テーブル上に装着し、一方カ
ソード電極(蒸発源)として、種々の成分組成をもった
第1薄層形成用Ti−Al合金と第2薄層形成用金属A
lを装置内の所定位置に装着し、またボンバート洗浄用
金属Tiも装着し、まず装置内を排気して0.5Paの
真空に保持しながら、ヒーターで装置内を700℃に加
熱した後、前記回転テーブル上で回転する超硬基体に−
1000Vの直流バイアス電圧を印加して、カソード電
極の前記金属Tiとアノード電極との間にアーク放電を
発生させ、もって超硬基体表面をTiボンバート洗浄
し、ついで第1薄層の形成は、装置内に反応ガスとして
窒素ガス、または窒素ガスとメタンガスを導入して5P
aの反応雰囲気とすると共に、前記回転テーブル上で回
転する超硬基体に−200Vの直流バイアス電圧を印加
する条件で行い、また第2薄層の形成は、装置内に反応
ガスとして窒素ガスを導入して6Paの反応雰囲気とす
ると共に、同じく前記回転テーブル上で回転する超硬基
体に−300Vのパルスバイアス電圧を印加する条件で
行い、かつ前記第1薄層として(Ti,Al)CN層を
形成する場合にのみ前記第1薄層形成と第2薄層形成の
間には反応ガス排出のための真空引きを10秒間行う条
件で、前記カソード電極(前記第1薄層形成用Ti−A
l合金または第2薄層形成用金属Al)とアノード電極
との間にアーク放電を発生させ、もって前記超硬基体の
表面に、表2に示される目標組成および目標層厚の第1
薄層と第2薄層とを表3に示される組み合わせで、かつ
同じく表3に示される交互積層数からなる硬質被覆層を
蒸着することにより、図1(a)に概略正面図で、同
(b)に溝形成部の概略横断面図で示される形状を有す
る本発明被覆超硬ドリル1〜13をそれぞれ製造した。
Next, these super hard substrates A-1 to A-1
0 was ultrasonically cleaned in acetone and dried, and mounted on a rotary table in a usual arc ion plating apparatus also illustrated in FIG. 2, while a cathode electrode (evaporation source) was Ti-Al alloy for forming first thin layer and metal A for forming second thin layer having various component compositions
1 was mounted at a predetermined position in the apparatus, and also a metal Ti for bombarding was mounted. First, the inside of the apparatus was evacuated and heated to 700 ° C. with a heater while maintaining the vacuum at 0.5 Pa. For the carbide substrate rotating on the rotary table-
An arc discharge is generated between the metal Ti of the cathode electrode and the anode electrode by applying a DC bias voltage of 1000 V, and the surface of the super-hard substrate is cleaned by Ti bombardment. Introduce nitrogen gas or nitrogen gas and methane gas as reaction gas into
a, and a DC bias voltage of -200 V is applied to the superhard substrate rotating on the rotary table. The second thin layer is formed by using nitrogen gas as a reaction gas in the apparatus. The reaction was carried out under a condition of applying a pulsed bias voltage of -300 V to the carbide substrate rotating on the rotary table, and a (Ti, Al) CN layer was used as the first thin layer. Only when forming the first thin layer, the cathode electrode (the first thin layer forming Ti- layer) is evacuated for 10 seconds between the formation of the first thin layer and the formation of the second thin layer. A
An arc discharge is generated between the aluminum alloy or the second thin layer forming metal Al) and the anode electrode, so that the first composition having the target composition and the target layer thickness shown in Table 2 is formed on the surface of the cemented carbide substrate.
By depositing the thin layer and the second thin layer in a combination shown in Table 3 and also by depositing a hard coating layer having the number of layers alternately shown in Table 3, a schematic front view in FIG. (B) Coated carbide drills 1 to 13 of the present invention each having the shape shown in the schematic cross-sectional view of the groove forming portion were manufactured.

【0013】また、比較の目的で、同じく上記のアーク
イオンプレーティング装置にて、カソード電極(蒸発
源)として、種々の成分組成をもったTi−Al合金を
装着する以外は同一の条件で、上記超硬基体の表面に表
4に示される通りの目標組成および目標層厚の(Ti,
Al)N層または(Ti,Al)CN層で構成された硬
質被覆層を蒸着することにより、従来被覆超硬ドリル1
〜10をそれぞれ製造した。
For the purpose of comparison, the same conditions were used under the same conditions except that Ti—Al alloys having various component compositions were mounted as the cathode electrode (evaporation source) in the above-mentioned arc ion plating apparatus. On the surface of the cemented carbide substrate, (Ti,
By coating a hard coating layer composed of an (Al) N layer or a (Ti, Al) CN layer, a conventionally coated carbide drill 1 is formed.
To 10 were respectively manufactured.

【0014】さらに、この結果得られた各種の被覆超硬
ドリルについて、これを構成する各種硬質被覆層の組成
および層厚を、エネルギー分散型X線測定装置およびオ
ージェ分光分析装置、さらに走査型電子顕微鏡を用いて
測定したところ、表2〜4の目標組成および目標層厚と
実質的に同じ組成および平均層厚(任意5ヶ所測定の平
均値との比較)を示した。
Further, with respect to the various coated carbide drills obtained as a result, the composition and thickness of the various hard coating layers constituting the drills are determined by using an energy dispersive X-ray measuring apparatus, an Auger spectroscopic analyzer, and a scanning electron microscope. When measured using a microscope, the composition and the average layer thickness were substantially the same as the target compositions and the target layer thicknesses in Tables 2 to 4 (comparison with the average values of measurements at five arbitrary locations).

【0015】つぎに、上記本発明被覆超硬ドリル1〜1
3よび従来被覆超硬ドリル1〜10のうち、本発明被覆
超硬ドリル1〜5および従来被覆超硬ドリル1〜4につ
いては、 被削材:平面寸法:100mm×250厚さ:50mm
のJIS・S50Cの板材、 切削速度:95m/min.、 送り:0.15mm/rev、 の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル6〜9および従来被覆超硬ドリル5〜
7については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SNCM439の板材、 切削速度:80m/min.、 送り:0.16mm/rev、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル10〜13および従来被覆超硬ドリル
8〜10については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:100m/min.、 送り:0.25mm/rev、 の条件での鋳鉄の湿式高速穴あけ切削加工試験、 をそれぞれ行い、いずれの湿式(水溶性切削油使用)高
速穴あけ切削加工試験でも先端切刃面の逃げ面摩耗幅が
0.3mmに至るまでの穴あけ加工数を測定した。この
測定結果を表3、4にそれぞれ示した。
Next, the coated carbide drills 1 to 1 according to the present invention will be described.
3 and conventional coated carbide drills 1 to 10, of the present invention coated carbide drills 1 to 5 and conventional coated carbide drills 1 to 4, work material: plane dimension: 100 mm × 250 thickness: 50 mm
JIS S50C plate material, Cutting speed: 95 m / min. , Feed: 0.15 mm / rev, Wet high-speed drilling test of carbon steel under the following conditions: coated carbide drills 6 to 9 of the present invention and conventional coated carbide drills 5 to 5
About 7, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SNCM439 plate, Cutting speed: 80 m / min. , Feed: 0.16 mm / rev, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 10 to 13 of the present invention and conventional coated carbide drills 8 to 10 : 100mm x 250mm, thickness: 5
0 mm JIS FC250 plate material, Cutting speed: 100 m / min. , Feed: 0.25mm / rev, Wet high-speed drilling cutting test of cast iron under the following conditions. The number of holes drilled until the width reached 0.3 mm was measured. The measurement results are shown in Tables 3 and 4, respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】表3、4に示される結果から、硬質被覆
層が第1薄層と第2薄層の交互多重積層からなる本発明
被覆超硬ドリル1〜13は、いずれも鋼や鋳鉄の穴あけ
加工を高い発熱を伴う高速で行っても、前記第2薄層の
もつすぐれた熱伝導性と熱的安定性によって硬質被覆層
はすぐれた放熱性を発揮し、硬質被覆層自体が過熱され
ることがなくなることから、前記第1薄層の(Ti,A
l)N層および(Ti,Al)CN層によってもたらさ
れるすぐれた高硬度とすぐれた耐熱性と相俟って、欠け
やチッピングなどの発生なく、すぐれた耐摩耗性を発揮
するのに対して、実質的に硬質被覆層が前記第1薄層と
同じ組成の単一層からなる従来被覆超硬ドリル1〜10
においては、いずれも高速切削時に発生する高熱によっ
て硬質被覆層自体の温度が上昇し、このため摩耗進行が
著しく促進し、比較的短時間で使用寿命に至ることが明
らかである。上述のように、この発明の被覆超硬ドリル
は、各種の鋼や鋳鉄などの通常の条件での穴あけ切削加
工は勿論のこと、特に高速穴あけ切削加工においてもす
ぐれた耐摩耗性を発揮するものであるから、穴あけ切削
加工の省力化および省エネ化、さらに低コスト化に十分
満足に対応できるものである。
According to the results shown in Tables 3 and 4, the coated carbide drills 1 to 13 according to the present invention, in which the hard coating layer is composed of alternating multiple layers of the first thin layer and the second thin layer, are all steel or cast iron. Even when drilling at high speed with high heat generation, the hard coating layer exhibits excellent heat dissipation due to the excellent thermal conductivity and thermal stability of the second thin layer, and the hard coating layer itself is overheated. The first thin layer (Ti, A
l) In combination with the excellent high hardness provided by the N layer and the (Ti, Al) CN layer and the excellent heat resistance, it exhibits excellent wear resistance without occurrence of chipping or chipping. Conventional coated carbide drills in which the hard coating layer consists essentially of a single layer having the same composition as the first thin layer.
In any case, it is clear that the temperature of the hard coating layer itself rises due to the high heat generated at the time of high-speed cutting, so that the progress of wear is remarkably accelerated, and the service life is reached in a relatively short time. As described above, the coated carbide drill of the present invention exhibits excellent wear resistance not only in drilling and cutting under ordinary conditions such as various kinds of steel and cast iron, but also particularly in high-speed drilling and cutting. Therefore, it is possible to sufficiently and satisfactorily cope with labor saving and energy saving of drilling and cutting and further cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
FIG. 1A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

【図2】アークイオンプレーティング装置の概略説明図
である。
FIG. 2 is a schematic explanatory view of an arc ion plating apparatus.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月11日(2001.4.1
1)
[Submission date] April 11, 2001 (2001.4.1
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【発明の実施の形態】つぎに、この発明の被覆超硬ドリ
ルを実施例により具体的に説明する。原料粉末として、
いずれも1〜3μmの平均粒径を有するWC粉末、Ti
C粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉
末、Cr3 2 粉末、TiN粉末、TaN粉末、および
Co粉末を用意し、これら原料粉末をそれぞれ表1に示
される配合組成に配合し、さらにワックスを加えてアセ
トン中で24時間ボールミル混合し、減圧乾燥した後、
100MPaの圧力で所定形状の各種の圧粉体にプレス
成形し、これらの圧粉体を、6Paの真空雰囲気中、7
℃/分の昇温速度で1370〜1470℃の範囲内の所
定の温度に昇温し、この温度に1時間保持後、炉冷の条
件で焼結して、直径が8mm、13mm、および26m
mの3種の超硬基体形成用丸棒焼結体を形成し、さらに
前記の3種の丸棒焼結体から、研削加工にて、表1に示
される組合せで、溝形成部の直径×長さがそれぞれ4m
m×13mm、8mm×22mm、および16mm×4
5mmの寸法をもった超硬基体A−1〜A−10をそれ
ぞれ製造した。 ─────────────────────────────────────────────────────
Next, the coated carbide drill of the present invention will be described in detail with reference to examples. As raw material powder,
WC powder having an average particle size of 1 to 3 μm, Ti
C powder, ZrC powder, VC powder, TaC powder, NbC powder
Powder, Cr 3 C 2 powder, TiN powder, TaN powder, and
Co powder was prepared, and these raw material powders were respectively blended to the composition shown in Table 1, and further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
Each compact is press-molded at a pressure of 100 MPa into various compacts having a predetermined shape, and these compacts are compacted in a vacuum atmosphere of 6 Pa at 7 MPa.
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature rising rate of 1 ° C./min, held at this temperature for 1 hour, and then sintered under furnace cooling conditions to have diameters of 8 mm, 13 mm, and 26 m.
m, and three types of round bar sintered bodies for forming a cemented carbide substrate are formed. Further, from the three types of round bar sintered bodies described above, the diameter of the groove forming portion is determined by grinding in a combination shown in Table 1. × 4m in length
mx 13mm, 8mm x 22mm, and 16mm x 4
Carbide substrates A-1 to A-10 each having a size of 5 mm were manufactured. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年9月25日(2001.9.2
5)
[Submission Date] September 25, 2001 (2001.9.2)
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C037 CC02 CC04 CC09 4K029 AA04 BA54 BA58 BB02 BC02 BD05 CA03 CA04 DD06 EA01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yusuke Tanaka 179 Nishi-Oike, Kanegasaki, Uozumi-cho, Akashi-shi, Hyogo 1 F-term (reference) 3M037 CC02 CC04 CC09 4K029 AA04 BA54 BA58 BB02 BC02 BD05 CA03 CA04 DD06 EA01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、0.8〜10μmの全体平均層厚で物理蒸着した硬
質被覆層が、個々の平均層厚が0.01〜0.1μmの
第1薄層と第2薄層の交互積層からなり、 上記第1薄層を、組成式:[Ti1-XAlX]Nおよび同
[Ti1-XAlX]C1- mmで表わした場合、厚さ方向中
央部のオージェ分光分析装置による測定で、原子比で、
X:0.30〜0.70、m:0.6〜0.99を満足
するTiとAlの複合窒化物およびTiとAlの複合炭
窒化物のうちのいずれか、または両方で構成し、 上記第2薄層を、窒化アルミニウムで構成したこと、を
特徴とする硬質被覆層がすぐれた放熱性を発揮する表面
被覆超硬合金製ドリル。
1. A hard coating layer physically vapor-deposited with a total average layer thickness of 0.8 to 10 μm on the surface of a tungsten carbide-based cemented carbide substrate, and a hard coating layer having an individual average layer thickness of 0.01 to 0.1 μm. 1 consists alternate lamination of thin layer and the second thin layer, the first thin layer, the composition formula: in [Ti 1-X Al X] N and the [Ti 1-X Al X] C 1- m N m When expressed, the atomic ratio was measured by an Auger spectrometer at the center in the thickness direction.
X: 0.30 to 0.70, m: 0.6 to 0.99, and / or a composite nitride of Ti and Al and a composite carbonitride of Ti and Al, or both. A drill made of a surface-coated cemented carbide, wherein the hard coating layer exhibits excellent heat dissipation, wherein the second thin layer is made of aluminum nitride.
JP2001071628A 2001-03-14 2001-03-14 Surface coated cemented carbide drill with hard coating layer showing superior heat radiation Pending JP2002263933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071628A JP2002263933A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide drill with hard coating layer showing superior heat radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071628A JP2002263933A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide drill with hard coating layer showing superior heat radiation

Publications (1)

Publication Number Publication Date
JP2002263933A true JP2002263933A (en) 2002-09-17

Family

ID=18929323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071628A Pending JP2002263933A (en) 2001-03-14 2001-03-14 Surface coated cemented carbide drill with hard coating layer showing superior heat radiation

Country Status (1)

Country Link
JP (1) JP2002263933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
CN109513936A (en) * 2018-11-27 2019-03-26 汪杨志 High speed bit with damping performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
CN109513936A (en) * 2018-11-27 2019-03-26 汪杨志 High speed bit with damping performance

Similar Documents

Publication Publication Date Title
JP3873276B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2004345006A (en) Cutting tool of surface-coated cubic crystal boron nitride-based sintered material with hard coating layer achieving excellent chipping resistance in high speed heavy cutting work
JPH10251831A (en) Cutting tool made of surface-coated cemented carbide excellent in wear resistance
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP2002263941A (en) Surface coated cemented carbide end mill with hard coating layer showing superior heat radiation
JP3844285B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2002263933A (en) Surface coated cemented carbide drill with hard coating layer showing superior heat radiation
JP3620456B2 (en) Surface coated cemented carbide drill with excellent wear resistance in high speed cutting
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP5321360B2 (en) Surface coated cutting tool
JP2002263934A (en) Surface coated cemented carbide drill showing superior chipping resistance in high-speed and high-feed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP3619996B2 (en) Surface coated cemented carbide end mill with excellent chipping resistance in high speed heavy cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2005022021A (en) Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2002187004A (en) End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP2001162411A (en) Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance
JP2002273615A (en) Surface coat carbonitride titanium thermet made end mill with cutting edge part to display excellent chipping resistance in high speed cutting work
JP3899500B2 (en) Cutting tool made of surface-coated carbide material that exhibits excellent wear resistance in high heat generation cutting
JP2003326402A (en) Method for forming hard layer, providing excellent wear resistance in high speed cutting, on cutting tool surface
JP3619994B2 (en) Surface coated cemented carbide end mill with excellent wear resistance in high speed cutting
JP2005034925A (en) Surface coated cemented carbide cutting tool having surface coating layer which is excellent in wear resistance in high speed cutting

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050301

Free format text: JAPANESE INTERMEDIATE CODE: A02