JP2004345006A - Cutting tool of surface-coated cubic crystal boron nitride-based sintered material with hard coating layer achieving excellent chipping resistance in high speed heavy cutting work - Google Patents

Cutting tool of surface-coated cubic crystal boron nitride-based sintered material with hard coating layer achieving excellent chipping resistance in high speed heavy cutting work Download PDF

Info

Publication number
JP2004345006A
JP2004345006A JP2003142857A JP2003142857A JP2004345006A JP 2004345006 A JP2004345006 A JP 2004345006A JP 2003142857 A JP2003142857 A JP 2003142857A JP 2003142857 A JP2003142857 A JP 2003142857A JP 2004345006 A JP2004345006 A JP 2004345006A
Authority
JP
Japan
Prior art keywords
content point
hard coating
coating layer
cutting
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003142857A
Other languages
Japanese (ja)
Other versions
JP4284503B2 (en
Inventor
Keiji Nakamura
惠滋 中村
Itsuro Tajima
逸郎 田嶋
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003142857A priority Critical patent/JP4284503B2/en
Publication of JP2004345006A publication Critical patent/JP2004345006A/en
Application granted granted Critical
Publication of JP4284503B2 publication Critical patent/JP4284503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool of surface-coated cubic crystal boron nitride-based sintered material with a hard coating layer achieving excellent chipping resistance in high-speed heavy cutting work. <P>SOLUTION: On the surface of a base, a hard coating layer of composite nitride of Ti, Al and Si is physically deposited in layer thickness of 0.5-10μm. In the hard coating layer, highest content points of Al and lowest content points of Al alternately exist at a prescribed interval in a layer thickness direction, and the content ratio of Ti and Al is varied from the highest content point of Al to the lowest content point of Al, and from the lowest content point of Al to the highest content point of Al in component concentration distribution structure. The highest content point of Al satisfies a formula of [Ti<SB>1-(X+Z</SB>)Al<SB>X</SB>Si<SB>Z</SB>] (X is 0.45-0.65, and Z is 0.01-0.15 by atomic ratio). The lowest content point of Al satisfies a formula of [Ti<SB>1-(Y+Z)</SB>Al<SB>Y</SB>Si<SB>Z</SB>]N (Y is 0.10-0.35, and Z is 0.01-0.15 by atomic ratio). The interval between the highest content point of Al and the lowest content point of Al adjoining each other is 0.01-0.1 μm in the hard coating layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層がすぐれた高温強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの切削加工を、高い発熱の発生が不可避の高速で、かつ高い負荷を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化硼素基焼結材料製切削工具(以下、被覆BN基工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆BN基工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、前記スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。
【0003】
また、被覆BN基工具として、すぐれた高温硬さおよび耐熱性を具備する反面、高温強度の低いものであるために、切削速度は高いが、切り込みや送りを著しく小さくした条件の高速表面仕上げ加工にしか用いられていなかった立方晶窒化硼素基焼結材料からなる切削工具を基体(以下、BN基基体という)とし、このBN基基体の表面に、切削工具自体の強度向上を図る目的で、
組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.45〜0.65を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]からなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着して、通常の条件での切り込みや送りで各種の鋼や鋳鉄などの連続切削加工や断続切削加工を行なっても、切刃部に欠けやチッピング(微小欠け)などが発生しないようにした被覆BN基工具が知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆BN基工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記のBN基基体を装入し、ヒータで装置内を、例えば530℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:150Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記BN基基体には、例えば−100Vのバイアス電圧を印加した条件で、前記BN基基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【特許文献1】
特開平8−119774号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速で、かつ高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆BN基工具においては、これを通常の切削加工条件で用いた場合には問題はないが、切削加工を、高い発熱を伴なう高速で、かつ高い負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の高温強度不足が原因でチッピング(微小割れ)が発生し易くなり、さらに耐熱性も不十分であるために、摩耗が促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆BN基工具を開発すべく、上記の従来被覆BN基工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆BN基工具の硬質被覆層を構成する(Ti,Al)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、および高温強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部にBN基基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有割合の高いTi−Al−Si合金、他方側に相対的にAl含有割合の低いTi−Al−Si合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に、外周部に沿って複数のBN基基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的でBN基基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記BN基基体の表面にTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]からなる硬質被覆層を形成すると、この結果の(Ti,Al,Si)N層においては、回転テーブル上にリング状に配置された前記BN基基体が上記の一方側の相対的にAl含有割合の高いTi−Al−Si合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記BN基基体が上記の他方側の相対的にAl含有割合の低いTi−Al−Si合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Al,Si)N層において、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成を調製すると共に、BN基基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、
組成式:[Ti1−(X+Z)AlSiN](ただし、原子比で、Xは0.45〜0.65、Zは0.01〜0.15を示す)、
上記Al最低含有点が、
組成式:[Ti1−(Y+Z)AlSiN](ただし、原子比で、Yは0.10〜0.35、Zは0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、Si含有による耐熱性向上効果と相俟って、上記の従来(Ti,Al)N層のもつ耐熱性に比して相対的に高い耐熱性を示し、一方上記Al最低含有点部分では、同じくSi含有によって耐熱性が向上し、しかも前記Al最高含有点部分に比してAl含有割合が低く、Ti含有割合の高いものとなるので、相対的に高い高温強度が確保され、かつこれらAl最高含有点とAl最低含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さおよび耐熱性に加えて、一段と高い高温強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Al,Si)N層からなる被覆BN基工具は、特に各種の鋼や鋳鉄などの切削加工を、高い発熱を伴なう高速で、かつ高い負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、BN基基体の表面に、(Ti,Al,Si)Nからなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着してなる被覆BN基工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、
組成式:[Ti1−(X+Z)AlSiN](ただし、原子比で、Xは0.45〜0.65、Zは0.01〜0.15を示す)、
上記Al最低含有点が、
組成式:[Ti1−(Y+Z)AlSiN](ただし、原子比で、Yは0.10〜0.35、Zは0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆BN基工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆BN基工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
(Ti,Al,Si)N層において、上記の通りTiは高温強度を向上させ、Alは高温硬さおよび耐熱性を向上させ、さらにSiはAlとの共存において耐熱性を一段と向上させる作用を有するものであり、したがってAl成分の含有割合が高いAl最高含有点では相対的に高い高温硬さおよび耐熱性を具備し、高熱発生を伴なう高速切削ですぐれた耐摩耗性を発揮するが、Alの含有割合を示すX値がTiとSiの合量に占める割合(原子比、以下同じ)で0.45未満では所望の高温硬さおよび耐熱性を確保することができず、一方前記X値が同じく0.65を越えて高くなると、高い高温強度を有するAl最低含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、X値を0.45〜0.65と定めた。
また、Siの含有割合を示すZ値がTiとAlの合量に占める割合が0.01未満では所望の耐熱性向上効果が得られず、一方前記Z値が0.15を越えると高温強度が急激に低下するようになることから、Z値を0.01〜0.15と定めた。
【0011】
(b)Al最低含有点の組成
上記の通りAl最高含有点は相対的に高い高温硬さおよび耐熱性を有するが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、相対的にTi含有割合が高く、これによってすぐれた高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させ、高い負荷のかかる重切削条件でもチッピングなどの発生が起らないようにするものであるが、Alの含有割合を示すY値がTiとSiの合量に占める割合で0.10未満になると、Al最低含有点の高温硬さおよび耐熱性が低くなり過ぎ、これが摩耗促進の原因となり、一方前記Y値が0.35を越えると、高温強度が急激に低下し、切刃部にチッピングが発生し易くなることから、Y値を0.10〜0.35と定めた。
さらに、Siの含有割合を示すZ値を0.01〜0.15としたのは、上記のAl最高含有点におけると同じ理由によるものである。
【0012】
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高温硬さおよび耐熱性と、高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その平均層厚が0.5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が10μmを越えると、切刃部ににチッピングが発生し易くなることから、その平均層厚を0.5〜10μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆BN基工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(以下、c−BNで示す)粉末、炭化チタン(以下、TiCで示す)粉末、窒化チタン(以下、TiNで示す)粉末、炭窒化チタン(以下、TiCNで示す)粉末、炭化タングステン(以下、WCで示す)粉末、Al粉末、Co粉末、TiとAlの金属間化合物粉末であるTiAl粉末、TiAl粉末、およびTiAl粉末、さらに組成式:TiAlNを有する複合金属窒化物粉末、硼化チタン(以下、TiBで示す)粉末、窒化アルミニウム(以下、AlNで示す)粉末、硼化アルミニウム(以下、AlBで示す)粉末、酸化アルミニウム(Alで示す)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.7時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研摩し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:30%、Zn:28%、Ni:2%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.15mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもったBN基基体A〜Pをそれぞれ製造した。
【0015】
ついで、上記のBN基基体A〜Pのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に、外周部に沿って所定間隔をもって設けた多段回転支持板上に載置し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Ti−Al−Si合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Ti−Al−Si合金を前記回転テーブルを挟んで対向配置し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を430℃に加熱した後、Arガスを導入して1.5PaのArガス雰囲気とし、前記回転テーブル上で自転しながら回転するBN基基体に−1050Vの直流バイアス電圧を印加して、前記BN基基体表面をArボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するBN基基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Ti−Al−Si合金およびAl最高含有点形成用Ti−Al−Si合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記BN基基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着形成することにより、本発明被覆BN基工具1〜16をそれぞれ製造した。
【0016】
また、比較の目的で、上記のBN基チップ基体A〜Pの表面への硬質被覆層の形成を、図2に示される通常のアークイオンプレーティング装置を用い、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金およびTi−Al−Si合金をそれぞれ装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して5PaのAr雰囲気とし、この状態でBN基基体に−800Vのバイアス電圧を印加してBN基基体表面をArガスボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記BN基基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させる条件にて行なって、前記BN基基体A〜Pのそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ上記の従来被覆BN基工具を構成する硬質被覆層に相当する(Ti,Al)N層、すなわち層厚方向に沿って実質的に組成変化のない(Ti,Al)N層、および同じく層厚方向に沿って実質的に組成変化のない(Ti,Al,Si)N層からなる硬質被覆層を蒸着形成する以外は、上記の本発明被覆BN基工具1〜16の製造条件と同じ条件で比較被覆BN基工具1〜16をそれぞれ製造した。
【0017】
つぎに、上記本発明被覆BN基工具1〜16および比較被覆BN基工具1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の浸炭焼入れ丸棒(表面硬さ:HRC60)、
切削速度:300m/min.、
切り込み:0.3mm、
送り:0.07mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式高速高切り込み切削加工試験、
被削材:JIS・S15Cの高周波焼入れ丸棒(表面硬さ:HRC55)、
切削速度:330m/min.、
切り込み:0.1mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式高速高送り切削加工試験、さらに、
被削材:JIS・FC300の丸棒、
切削速度:850m/min.、
切り込み:0.5mm、
送り:0.1mm/rev.、
切削時間:15分、
の条件での鋳鉄の乾式高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表2〜5に示した。
【0018】
【表1】

Figure 2004345006
【0019】
【表2】
Figure 2004345006
【0020】
【表3】
Figure 2004345006
【0021】
【表4】
Figure 2004345006
【0022】
【表5】
Figure 2004345006
【0023】
この結果得られた本発明被覆BN基工具1〜16を構成する硬質被覆層におけるAl最高含有点とAl最低含有点の組成、並びに比較被覆BN基工具1〜16の硬質被覆層の組成について、厚さ方向に沿ってTi、Al、およびSi成分の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆BN基工具1〜16の硬質被覆層では、Al最高含有点とAl最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAl成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、また硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。
一方前記比較被覆BN基工具1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すことが確認された。
【0024】
【発明の効果】
表2〜5に示される結果から、硬質被覆層が層厚方向にAl最低含有点とAl最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有する本発明被覆BN基工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高い発熱を伴なう高速で、かつ高い負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al)N層または(Ti,Al,Si)N層からなる比較被覆BN基工具においては、前記硬質被覆層が高温硬さと耐熱性を有するものの、十分な高温強度を具備するものでないために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆BN基工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を高速重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆BN基工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】比較被覆BN基工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having excellent high-temperature strength, and excellent high-temperature hardness and heat resistance. Therefore, cutting of various types of steel and cast iron is particularly required at high speeds where generation of high heat is inevitable. A cutting tool made of a surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance even when it is performed under heavy cutting conditions such as high cutting and high feed with high load. BN base tool).
[0002]
[Prior art]
In general, a coated BN base tool has a throw-away tip that is detachably attached to the tip of a cutting tool for turning a work material such as various steels or cast irons, and the throw-away tip is detachably attached. Also, a throw-away end mill or the like that performs cutting in the same manner as a solid type end mill used for face milling, grooving, and shoulder machining is known.
[0003]
In addition, as a coated BN-based tool, it has excellent high-temperature hardness and heat resistance, but because of its low high-temperature strength, it has a high cutting speed but high-speed surface finishing under conditions where cutting and feeding are significantly reduced. A cutting tool made of a cubic boron nitride-based sintered material, which has been used only in the above, is used as a substrate (hereinafter referred to as a BN-based substrate), and on the surface of the BN-based substrate, for the purpose of improving the strength of the cutting tool itself,
Compositional formula: (Ti 1-X Al X ) N (where X represents 0.45 to 0.65 in atomic ratio),
A hard coating layer made of a composite nitride of Ti and Al (hereinafter, referred to as (Ti, Al) N) satisfying the following conditions is physically deposited with an average layer thickness of 0.5 to 10 μm, and cuts under ordinary conditions are performed. A coated BN base tool is known in which cutting or chipping (small chipping) does not occur in the cutting edge portion even when continuous cutting or intermittent cutting of various kinds of steel or cast iron is performed by feed (for example, Patent Document 1).
[0004]
Further, the coated BN-based tool is charged with the above-described BN-based substrate in an arc ion plating apparatus, which is a kind of a physical vapor deposition apparatus, for example, schematically illustrated in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti-Al alloy having a predetermined composition is set under a condition of, for example, a current of 150 A while being heated to a temperature of 530 ° C. At the same time, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the above-mentioned BN base substrate is subjected to, for example, a bias voltage of −100 V under the condition that It is also known to be manufactured by depositing a hard coating layer consisting of a (Ti, Al) N layer.
[0005]
[Patent Document 1]
JP-A-8-119774
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, but on the other hand, there is a strong demand for labor saving, energy saving, and lower cost for cutting. Although it tends to be performed under heavy cutting conditions, in the above-mentioned conventional coated BN base tool, there is no problem when this is used under normal cutting conditions, but cutting is performed at a high speed with high heat generation. In addition, when the cutting is performed under heavy cutting conditions such as high cutting and high feed with a high load, chipping (micro cracking) tends to occur especially due to insufficient high temperature strength of the hard coating layer, and heat resistance is also increased. Insufficiency leads to accelerated abrasion, so that at present the service life is reached in a relatively short time.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated BN-based tool in order to develop a coated BN-based tool in which the hard coating layer exhibits excellent chipping resistance especially in high-speed heavy cutting. As a result of conducting research, focusing on the constituent hard coating layer,
(A) The (Ti, Al) N layer constituting the hard coating layer of the conventional coated BN-based tool formed using the arc ion plating apparatus shown in FIG. 2 is substantially over the entire layer thickness. Has a uniform composition and therefore a uniform high-temperature hardness and heat resistance, and a high-temperature strength. For example, an arc having a structure shown in a schematic plan view in FIG. An ion plating apparatus, that is, a rotary table for mounting a BN-based substrate is provided at the center of the apparatus, and a Ti-Al-Si alloy having a relatively high Al content on one side and a rotary table An arc ion plating apparatus is used in which a Ti-Al-Si alloy having a low Al content is opposed to each other as a cathode electrode (evaporation source), and a predetermined distance in a radial direction from a central axis on the rotary table of the apparatus is used. At a distant position, a plurality of BN-based substrates are mounted in a ring shape along the outer peripheral portion. In this state, the atmosphere in the apparatus is set to a nitrogen atmosphere, the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is formed. An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides while rotating the BN base substrate itself for the purpose of uniforming, and Ti and Al are formed on the surface of the BN base substrate. When a hard coating layer made of a composite nitride of Si [hereinafter, referred to as (Ti, Al, Si) N] is formed, the resulting (Ti, Al, Si) N layer is formed in a ring shape on a rotary table. When the disposed BN-based substrate comes closest to the cathode electrode (evaporation source) of the Ti-Al-Si alloy having a relatively high Al content on one side, an Al highest content point is formed in the layer. And B When the base substrate comes closest to the cathode electrode of the Ti-Al-Si alloy having a relatively low Al content on the other side, an Al lowest content point is formed in the layer. The Al maximum content point and the Al minimum content point alternately and repeatedly appear at predetermined intervals along the layer thickness direction, and the Al maximum content point from the Al maximum content point and the Al maximum content from the Al minimum content point. To have a component concentration distribution structure in which the content ratios of Ti and Al continuously change, respectively.
[0008]
(B) In the (Ti, Al, Si) N layer having the repeated and continuously changing component concentration distribution structure of the above (a), for example, the respective compositions of the cathode electrodes (evaporation sources) arranged opposite to each other are adjusted, and the BN base substrate is formed. By controlling the rotation speed of the mounted rotary table,
The above Al maximum content point is
Formula: [Ti 1- (X + Z ) Al X Si Z N] ( where in atomic ratio, X is 0.45 to 0.65, Z represents a 0.01 to 0.15),
The above Al minimum content point is
Formula: [Ti 1- (Y + Z ) Al Y Si Z N] ( where in atomic ratio, Y is 0.10 to 0.35, Z represents a 0.01 to 0.15),
Each satisfying the above, and the distance in the thickness direction between the adjacent Al maximum content point and Al minimum content point is 0.01 to 0.1 μm,
In the Al highest content portion, the heat resistance of the conventional (Ti, Al) N layer is relatively higher than that of the conventional (Ti, Al) N layer, in combination with the heat resistance improving effect of the Si content. In the Al lowest content portion, the heat resistance is also improved by Si content, and the Al content ratio is lower and the Ti content ratio is higher than the Al highest content portion, so that the relatively high high-temperature strength is obtained. Is ensured, and the interval between these Al maximum content points and Al minimum content points is extremely small, so that in addition to excellent high-temperature hardness and heat resistance as the properties of the entire layer, it is possible to provide even higher high-temperature strength. Therefore, the coated BN-based tool including the (Ti, Al, Si) N layer having the hard coating layer has such a configuration that the cutting process of various kinds of steel and cast iron can be performed at a high speed with high heat generation. High load If you make heavy cutting conditions, such as mowing high cut and high feed also be like exhibits chipping resistance of the hard coating layer has excellent.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and a hard coating layer made of (Ti, Al, Si) N having a physical layer thickness of 0.5 to 10 μm is formed on the surface of a BN base substrate. In a coated BN base tool formed by evaporation,
The hard coating layer has an Al maximum content point and an Al minimum content point alternately and repeatedly provided at predetermined intervals along the layer thickness direction, and the Al maximum content point and the Al minimum content point, the Al From the lowest content point to the Al highest content point, the content ratios of Ti and Al each have a component concentration distribution structure that continuously changes,
Furthermore, the above Al maximum content point is
Formula: [Ti 1- (X + Z ) Al X Si Z N] ( where in atomic ratio, X is 0.45 to 0.65, Z represents a 0.01 to 0.15),
The above Al minimum content point is
Formula: [Ti 1- (Y + Z ) Al Y Si Z N] ( where in atomic ratio, Y is 0.10 to 0.35, Z represents a 0.01 to 0.15),
Respectively, and the interval between the adjacent Al maximum content point and Al minimum content point is 0.01 to 0.1 μm,
The present invention is characterized by a coated BN base tool in which a hard coating layer exhibits excellent chipping resistance by high-speed heavy cutting.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated BN base tool of the present invention is limited as described above will be described.
(A) In the composition (Ti, Al, Si) N layer having the highest Al content, as described above, Ti improves high-temperature strength, Al improves high-temperature hardness and heat resistance, and Si coexists with Al. Has a function of further improving the heat resistance, and therefore has a relatively high high-temperature hardness and heat resistance at the highest Al content point where the content ratio of the Al component is high, and is used in high-speed cutting accompanied by high heat generation. Although it exhibits excellent abrasion resistance, if the X value indicating the Al content ratio is less than 0.45 in the ratio (atomic ratio, the same applies hereinafter) to the total amount of Ti and Si, desired high-temperature hardness and heat resistance are not achieved. On the other hand, when the X value is higher than 0.65, the lowering of the high-temperature strength of the layer itself is inevitable even if there is an adjacent Al minimum content point having high high-temperature strength. , This results in chipping etc. Since the more likely to occur, defining the X value as 0.45 to 0.65.
If the Z value indicating the Si content ratio is less than 0.01 in the total amount of Ti and Al, the desired effect of improving heat resistance cannot be obtained. On the other hand, if the Z value exceeds 0.15, the high temperature strength cannot be improved. Is rapidly reduced, so the Z value is set to 0.01 to 0.15.
[0011]
(B) Composition of Al minimum content point As described above, the Al maximum content point has relatively high high-temperature hardness and heat resistance, but is inferior in high-temperature strength. For the purpose of compensating, the content ratio of Ti is relatively high, and thereby the Al minimum content point which has excellent high-temperature strength is alternately interposed in the thickness direction. If the Y value indicating the Al content ratio is less than 0.10 in the ratio of the total amount of Ti and Si, the high-temperature hardness and heat resistance of the lowest Al content point are to be prevented. Is excessively low, which causes acceleration of wear. On the other hand, when the Y value exceeds 0.35, the high-temperature strength sharply decreases and chipping easily occurs in the cutting edge portion. 10 to 0.35 .
Further, the Z value indicating the Si content ratio is set to 0.01 to 0.15 for the same reason as in the case of the Al maximum content point described above.
[0012]
(C) Interval between the highest Al content point and the lowest Al content point If the interval is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the desired high-temperature hardness for the layer is obtained. In addition, heat resistance and high-temperature strength cannot be ensured, and if the distance exceeds 0.1 μm, each point has a disadvantage, that is, if the Al content is the highest, the high-temperature strength is insufficient, and the Al content is the lowest. For example, high-temperature hardness and insufficient heat resistance locally appear in the layer, which may cause chipping on the cutting edge or promote abrasion. .1 μm.
[0013]
(D) Average layer thickness of the hard coating layer If the average layer thickness is less than 0.5 μm, it is not possible to secure desired wear resistance. Since chipping is likely to occur, the average layer thickness is set to 0.5 to 10 μm.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated BN-based tool of the present invention will be specifically described with reference to examples.
As raw material powders, cubic boron nitride (hereinafter, referred to as c-BN) powder, titanium carbide (hereinafter, referred to as TiC) powder, and titanium nitride (hereinafter, referred to as c-BN) each having an average particle diameter in the range of 0.5 to 4 μm. , TiN) powder, titanium carbonitride (hereinafter referred to as TiCN) powder, tungsten carbide (hereinafter referred to as WC) powder, Al powder, Co powder, Ti 3 Al powder which is an intermetallic compound powder of Ti and Al , TiAl powder, and TiAl 3 powder, a composite metal nitride powder having a composition formula: Ti 2 AlN, a titanium boride (hereinafter, referred to as TiB 2 ) powder, an aluminum nitride (hereinafter, referred to as AlN) powder, boride aluminum (hereinafter, indicated by AlB 2) powder, prepared powders (indicated by Al 2 O 3) of aluminum oxide, are blended raw material powder formulation compositions shown in Table 1, Bo After wet-mixing with a mill for 60 hours and drying, the mixture was press-molded at a pressure of 100 MPa into a green compact having a size of diameter: 50 mm × thickness: 1.5 mm. Sintering was performed in a vacuum atmosphere at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a pre-sintered body for a cutting blade, and this pre-sintered body was separately prepared, Co: 8 mass %, WC: remaining composition, and placed in a normal ultra-high pressure sintering apparatus in a state of being superimposed on a WC-based cemented carbide support piece having dimensions of 50 mm × thickness: 2 mm, Ultra-high pressure sintering under the conditions of pressure: 5 GPa, temperature: 1200 to 1400 ° C. and holding time: 0.7 hour, and after sintering, polishing the upper and lower surfaces using a diamond grindstone. Into a regular triangle with a side of 3mm by wire electric discharge machine WC having the following composition: Co: 5% by mass, TaC: 5% by mass, WC: Remaining composition and shape (regular triangle of thickness: 4.76 mm × side length: 12.7 mm) of CIS standard SNGA120412. A brazing material of an Ag alloy having a composition consisting of 30% by weight of Cu, 28% by weight of Zn, 2% by weight of Ni and 2% by weight of Ag is used for the brazing portion (corner portion) of the chip body made of a base cemented carbide. After performing brazing using an outer periphery to a predetermined size, the cutting edge portion is subjected to a honing process with a width of 0.15 mm and an angle of 25 °, and further subjected to finish polishing to obtain a chip shape of ISO standard SNGA120412. BN-based substrates AP were manufactured respectively.
[0015]
Next, each of the BN-based substrates A to P was ultrasonically cleaned in acetone and dried, and then dried in a radial direction from a central axis on a rotary table in an arc ion plating apparatus shown in FIG. It is placed on a multi-stage rotating support plate provided at predetermined distances along the outer periphery at a distance, and serves as a cathode electrode (evaporation source) on one side for forming the lowest Al content point having various component compositions. A Ti-Al-Si alloy and a Ti-Al-Si alloy for forming the highest content point of Al having various component compositions as a cathode electrode (evaporation source) on the other side are arranged to face each other with the rotary table interposed therebetween. The inside of the apparatus was heated to 430 ° C. with a heater while maintaining the vacuum at 0.5 Pa or less, and then Ar gas was introduced to form an atmosphere of 1.5 Pa Ar gas. A DC bias voltage of -1050 V is applied to the rotating BN base substrate, the surface of the BN base substrate is washed with Ar bombard, and nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. A DC bias voltage of -100 V is applied to the BN substrate rotating while rotating on the rotary table, and each of the cathode electrodes (the Ti-Al-Si alloy for forming the lowest Al content point and the Al highest content point is formed). A current of 100 A flows between the Ti-Al-Si alloy) and the anode electrode to generate an arc discharge, and thus the target composition shown in Tables 3 and 4 on the surface of the BN base along the layer thickness direction. The Al minimum content point and the Al maximum content point alternately and repeatedly exist at the target intervals shown in Tables 3 and 4, and the Al minimum content point and the Al minimum content point A hard coating layer having a component concentration distribution structure in which the content ratio of Al and Ti continuously changes from the lowest Al content point to the highest Al content point, and also having the target layer thickness shown in Tables 3 and 4. Was formed by vapor deposition to produce each of the coated BN-based tools 1 to 16 of the present invention.
[0016]
For the purpose of comparison, the formation of the hard coating layer on the surfaces of the BN-based chip substrates A to P was carried out by using a normal arc ion plating apparatus shown in FIG. 2 as a cathode electrode (evaporation source). After mounting the Ti-Al alloy and the Ti-Al-Si alloy having the component compositions of, respectively, and evacuating the inside of the apparatus to maintain a vacuum of 0.5 Pa or less, the inside of the apparatus was heated to 500 ° C with a heater. Ar gas was introduced into the apparatus to form an Ar atmosphere of 5 Pa, and in this state, a BN base substrate was applied with a bias voltage of -800 V to clean the surface of the BN base substrate with Ar gas bombardment. Nitrogen gas was introduced to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the BN substrate was reduced to -100 V to discharge an arc between the cathode electrode and the anode electrode. Is carried out under the conditions for generating the above-mentioned conventional BN-based tools having the target composition and the target layer thickness shown in Tables 5 and 6 on the surfaces of the BN-based substrates A to P, respectively. The (Ti, Al) N layer corresponding to the hard coating layer, that is, the (Ti, Al) N layer having substantially no composition change along the layer thickness direction, and also having the composition change substantially along the layer thickness direction. The comparative coated BN-based tools 1 to 16 were respectively manufactured under the same conditions as the manufacturing conditions of the coated BN-based tools 1 to 16 of the present invention described above, except that a hard coating layer composed of a (Ti, Al, Si) N layer was not formed. Manufactured.
[0017]
Next, with respect to the above-mentioned present invention coated BN base tools 1 to 16 and comparative coated BN base tools 1 to 16 in a state where they were screwed to the tip of a tool steel tool with a fixing jig,
Work material: JIS SCM415 carburized hardened round bar (surface hardness: HRC60),
Cutting speed: 300 m / min. ,
Notch: 0.3mm,
Feed: 0.07 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed high-cut cutting test of alloy steel under the following conditions:
Work material: JIS S15C induction hardened round bar (surface hardness: HRC55),
Cutting speed: 330 m / min. ,
Notch: 0.1mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed high-feed cutting test of carbon steel under the following conditions,
Work material: JIS FC300 round bar,
Cutting speed: 850 m / min. ,
Cut: 0.5mm,
Feed: 0.1 mm / rev. ,
Cutting time: 15 minutes,
A dry high-speed high-cut cutting test was performed on cast iron under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. The measurement results are shown in Tables 2 to 5.
[0018]
[Table 1]
Figure 2004345006
[0019]
[Table 2]
Figure 2004345006
[0020]
[Table 3]
Figure 2004345006
[0021]
[Table 4]
Figure 2004345006
[0022]
[Table 5]
Figure 2004345006
[0023]
The composition of the highest Al content and the lowest Al content in the hard coating layers constituting the resulting coated BN base tools 1 to 16 of the present invention, and the composition of the hard coating layers of the comparative coated BN base tools 1 to 16, When the contents of Ti, Al, and Si components were measured along the thickness direction using an Auger spectrometer, the hard coating layers of the coated BN base tools 1 to 16 of the present invention showed that the highest Al content point and the lowest Al content were obtained. And the content points are alternately and repeatedly present at substantially the same composition and interval as the target value, and from the Al maximum content point to the Al minimum content point, from the Al minimum content point to the Al maximum content point, Ti and Al It was confirmed that each component had a component concentration distribution structure in which the content ratio of each component continuously changed, and the average layer thickness of the hard coating layer also showed substantially the same value as the target layer thickness.
On the other hand, in the hard coating layers of the comparative coated BN base tools 1 to 16, no composition change is observed in the thickness direction, and the composition and the average layer thickness are substantially the same as the target composition and the target layer thickness. Was confirmed.
[0024]
【The invention's effect】
From the results shown in Tables 2 to 5, the hard coating layer has Al minimum content points and Al maximum content points alternately and repeatedly provided at predetermined intervals in the layer thickness direction, and the Al minimum content point and the Al minimum content point The coated BN-based tool of the present invention having a component concentration distribution structure in which the content ratio of Al and Ti continuously changes from the content point and the Al minimum content point to the Al maximum content point, respectively, can be any of various steels and cast irons. The hard coating layer exhibits excellent chipping resistance even when the cutting process is performed at high speed with high heat generation and under heavy cutting conditions such as high cutting and high feed with high load. On the other hand, in the comparative coated BN base tool in which the hard coating layer is substantially composed of a (Ti, Al) N layer or a (Ti, Al, Si) N layer with no composition change along the layer thickness direction, The layer has high temperature hardness and resistance Although having sex, because not intended to comprise a sufficient high-temperature strength, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated BN-based tool of the present invention is excellent not only in cutting under normal conditions, but also particularly when cutting various kinds of steel and cast iron under high-speed heavy cutting conditions. Since it exhibits chipping resistance and exhibits excellent wear resistance over a long period of time, it can sufficiently cope with labor saving and energy saving of cutting work, and furthermore, cost reduction.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used to form a hard coating layer constituting a coated BN-based tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used for forming a hard coating layer constituting a comparative coated BN-based tool.

Claims (1)

立方晶窒化硼素基焼結材料からなる基体の表面に、TiとAlとSiの複合窒化物からなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:[Ti1−(X+Z)AlSiN](ただし、原子比で、Xは0.45〜0.65、Zは0.01〜0.15を示す)、
上記Al最低含有点が、組成式:[Ti1−(Y+Z)AlSiN](ただし、原子比で、Yは0.10〜0.35、Zは0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化硼素基焼結材料製切削工具。
A surface-coated cemented carbide obtained by physically depositing a hard coating layer made of a composite nitride of Ti, Al and Si on a surface of a substrate made of a cubic boron nitride-based sintered material with an average layer thickness of 0.5 to 10 μm. Cutting tools
The hard coating layer has an Al maximum content point and an Al minimum content point alternately and repeatedly provided at predetermined intervals along the layer thickness direction, and the Al maximum content point and the Al minimum content point, the Al From the lowest content point to the Al highest content point, the content ratios of Ti and Al each have a component concentration distribution structure that continuously changes,
Furthermore, the Al highest content point, composition formula: [Ti 1- (X + Z ) Al X Si Z N] ( where in atomic ratio, X is 0.45 to 0.65, Z is from 0.01 to 0. 15),
The Al minimum content point, composition formula: [Ti 1- (Y + Z ) Al Y Si Z N] ( where in atomic ratio, Y is 0.10 to 0.35, Z is a 0.01 to 0.15 Show),
Respectively, and the interval between the adjacent Al maximum content point and Al minimum content point is 0.01 to 0.1 μm,
A cutting tool made of a surface-coated cubic boron nitride-based sintered material having a hard coating layer exhibiting excellent chipping resistance by high-speed heavy cutting.
JP2003142857A 2003-05-21 2003-05-21 Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Expired - Lifetime JP4284503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142857A JP4284503B2 (en) 2003-05-21 2003-05-21 Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142857A JP4284503B2 (en) 2003-05-21 2003-05-21 Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2004345006A true JP2004345006A (en) 2004-12-09
JP4284503B2 JP4284503B2 (en) 2009-06-24

Family

ID=33530801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142857A Expired - Lifetime JP4284503B2 (en) 2003-05-21 2003-05-21 Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4284503B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346835A (en) * 2005-06-20 2006-12-28 Mitsubishi Materials Corp Cutting tip made of surface coated cubic crystal boron nitride group superhigh pressure sintered material exerting excellent abrasion resistance in high speed intermittent cutting work of high hardness steel
JP2007190668A (en) * 2005-12-22 2007-08-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material exhibiting excellent finished surface accuracy in high-speed machining of high hard steel over long period of time
JP2007253271A (en) * 2006-03-22 2007-10-04 Mitsubishi Materials Corp Cutting tool made from surface coated cubic boron nitride group ultra high pressure sintering material with excellent finished surface accuracy
JP2008018505A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008018504A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008049453A (en) * 2006-08-25 2008-03-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer showing superior wear resistance
JP2008254159A (en) * 2007-04-09 2008-10-23 Mitsubishi Materials Corp Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP2008302439A (en) * 2007-06-05 2008-12-18 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP2008302438A (en) * 2007-06-05 2008-12-18 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
WO2009119682A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Cutting tool
DE102007046380B4 (en) * 2006-09-27 2010-09-30 Kyocera Corporation cutting tool
US7939186B2 (en) * 2006-05-26 2011-05-10 Mitsubishi Materials Corporation Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
US8003231B2 (en) * 2007-11-15 2011-08-23 Kobe Steel, Ltd. Wear-resistant member with hard coating
CN115121991B (en) * 2022-06-13 2023-11-03 桂林航天工业学院 Sn58Bi-xBN composite solder and preparation method and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346835A (en) * 2005-06-20 2006-12-28 Mitsubishi Materials Corp Cutting tip made of surface coated cubic crystal boron nitride group superhigh pressure sintered material exerting excellent abrasion resistance in high speed intermittent cutting work of high hardness steel
JP2007190668A (en) * 2005-12-22 2007-08-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material exhibiting excellent finished surface accuracy in high-speed machining of high hard steel over long period of time
US8017225B2 (en) 2005-12-22 2011-09-13 Mitsubishi Materials Corporation Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material
JP2007253271A (en) * 2006-03-22 2007-10-04 Mitsubishi Materials Corp Cutting tool made from surface coated cubic boron nitride group ultra high pressure sintering material with excellent finished surface accuracy
US7939186B2 (en) * 2006-05-26 2011-05-10 Mitsubishi Materials Corporation Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2008018504A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008018505A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008049453A (en) * 2006-08-25 2008-03-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer showing superior wear resistance
DE102007046380B4 (en) * 2006-09-27 2010-09-30 Kyocera Corporation cutting tool
US7811683B2 (en) 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
DE102007046380B9 (en) * 2006-09-27 2012-12-06 Kyocera Corporation cutting tool
JP2008254159A (en) * 2007-04-09 2008-10-23 Mitsubishi Materials Corp Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP2008302439A (en) * 2007-06-05 2008-12-18 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP2008302438A (en) * 2007-06-05 2008-12-18 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
US8003231B2 (en) * 2007-11-15 2011-08-23 Kobe Steel, Ltd. Wear-resistant member with hard coating
WO2009119682A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Cutting tool
US8236411B2 (en) 2008-03-26 2012-08-07 Kyocera Corporation Cutting tool
CN115121991B (en) * 2022-06-13 2023-11-03 桂林航天工业学院 Sn58Bi-xBN composite solder and preparation method and application thereof

Also Published As

Publication number Publication date
JP4284503B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP4284509B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP3700658B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
JP4304438B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2011051060A (en) Surface coating cutting tool
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4284510B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP4284506B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP5246596B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP3928466B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent wear resistance with a hard coating layer in high-speed cutting
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Effective date: 20081225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090121

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090225

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120403

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130403