JP2003121806A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JP2003121806A
JP2003121806A JP2001314779A JP2001314779A JP2003121806A JP 2003121806 A JP2003121806 A JP 2003121806A JP 2001314779 A JP2001314779 A JP 2001314779A JP 2001314779 A JP2001314779 A JP 2001314779A JP 2003121806 A JP2003121806 A JP 2003121806A
Authority
JP
Japan
Prior art keywords
substrate
optical
waveguides
waveguide
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001314779A
Other languages
Japanese (ja)
Other versions
JP3800594B2 (en
Inventor
Shinji Mino
真司 美野
Ikuo Ogawa
育生 小川
Motochika Ishii
元速 石井
Yasuyuki Inoue
靖之 井上
Kazuo Fujiura
和夫 藤浦
Takeshi Kitagawa
毅 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001314779A priority Critical patent/JP3800594B2/en
Publication of JP2003121806A publication Critical patent/JP2003121806A/en
Application granted granted Critical
Publication of JP3800594B2 publication Critical patent/JP3800594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a small-sized modulator provided with satisfactory optical characteristics. SOLUTION: The optical modulator is constituted of three substrates 10, 20, and 30. The first substrate 10 is provided on the input side of an optical signal and a light transmitting circuit substrate using quartz glass and has one waveguide branched into two waveguides each of which is branched into two waveguides. The second substrate 20 is an optical waveguide substrate using a multi-element oxide having an electrooptic effect and has four waveguides corresponding to the waveguides of the first substrate and is provided with phase shifters 41, 42, and 43 using an electrooptic effect between the waveguides. The third substrate 30 is a light transmitting circuit substrate using quartz glass and is provided with waveguides corresponding to those of the second substrate out of which each two waveguides are multiplexed into one waveguide, and multiplexed waveguides are multiplexed into one waveguide. The first, second, and third substrates are connected by having the end faces butted to each other to optically connect optical waveguides to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システムに
応用可能な、光導波回路を用いた光変調器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator using an optical waveguide circuit applicable to an optical communication system.

【0002】[0002]

【従来の技術】インターネットの普及等により通信トラ
フィツクが増大し、通信路の大容量化が求められてい
る。そのため、波長分割多重(WDM)システムにおい
ては波長数の増加が求められている。しかし、光増幅器
の使用可能な帯域が限られていることから、波長数を増
やすと同時に、光信号波長の間隔を狭くする必要があ
る。但し、光ファイバ伝送で、高速で波長間隔を狭くす
ると四光波混合などの非線形効果によりパルス波形が劣
化するため、種々の対策が講じられている。非線形効果
は、光信号レベルを下げることにより抑制できる。
2. Description of the Related Art Due to the spread of the Internet and the like, communication traffic has increased, and there has been a demand for larger capacity communication channels. Therefore, it is required to increase the number of wavelengths in the wavelength division multiplexing (WDM) system. However, since the usable band of the optical amplifier is limited, it is necessary to increase the number of wavelengths and at the same time reduce the interval between the optical signal wavelengths. However, in optical fiber transmission, if the wavelength interval is narrowed at high speed, the pulse waveform deteriorates due to nonlinear effects such as four-wave mixing, so various measures have been taken. Non-linear effects can be suppressed by lowering the optical signal level.

【0003】従って、無線等で実績のある単側波帯通信
方式(Singe side-band :SSB)を用いれば、搬送波
分だけ光信号レベルを下げることができるので、非線形
効果を押さえた波長分割多重伝送を行うことができると
期待される。このような単側波帯通信方式用の変調器と
してLiNbO3(LN)基板上の光導波路を用いたもの
が既に報告されている(S. Shimotsu, et al. , ''Sing
le side-band modulation performance of LiNbO3 inte
grated modulator consisting of four-phase modulato
r waveguides, '' IEEE Photonics Technol. Lett.,Vo
l.13, pp. 364-366,2001.)。
Therefore, if a single sideband (SSB) communication system, which has a proven track record in wireless communication, is used, the optical signal level can be lowered by the amount of the carrier, so that wavelength division multiplexing that suppresses nonlinear effects is suppressed. It is expected that the transmission can take place. As a modulator for such a single sideband communication system, one using an optical waveguide on a LiNbO 3 (LN) substrate has already been reported (S. Shimotsu, et al., `` Sing.
le side-band modulation performance of LiNbO 3 inte
grated modulator consisting of four-phase modulato
r waveguides, `` IEEE Photonics Technol. Lett., Vo
l.13, pp. 364-366, 2001.).

【0004】従来の単側波帯通信方式変調器の構成を図
4に示す。図4に示すように、単側波帯通信方式変調器
は、電気光学効果は持つ多元系酸化物であるLiNbO3
基板1枚により構成されている。即ち、光信号の入力側
では、1本の入力導波路がY分岐01により2本の導波
路に分岐され、 更に、これら2本の導波路がY分岐0
2,03により各々2本の導波路、つまり、合計4本の
導波路に分岐されている。これら4本の導波路は、更
に、Δφ,−Δφ,Δφ’,−Δφ’の位相変調器0
4,05,06,07に接続すると共にこれらの中間に
は電気光学効果を用いた位相シフタ08、09、010
が設けられている。
FIG. 4 shows the configuration of a conventional single sideband communication type modulator. As shown in FIG. 4, the single sideband communication type modulator is a multi-element oxide having an electro-optic effect, LiNbO 3
It is composed of one substrate. That is, on the input side of the optical signal, one input waveguide is branched into two waveguides by the Y branch 01, and these two waveguides are further divided into Y branch 0.
2, 03 are branched into two waveguides, that is, a total of four waveguides. These four waveguides are further provided with a phase modulator 0 of Δφ, −Δφ, Δφ ′, −Δφ ′.
4,05,06,07, and phase shifters 08, 09, 010 using electro-optic effect in the middle of them.
Is provided.

【0005】更に、4個の位相変調器04,05,0
6,07を経た導波路は、二つのY分岐011,012
により合波され、更に、Y分岐013により導波路が1
本に合波される。但し、図4において、Δφ=cos(ωm
t)、Δφ’=sin(ωmt)であり、ω mは変調角周波
数である。また、図4に示す単側波帯通信方式変調器の
光出力スペクトラム(実線)を図5に示す。点線は、入
力の分布帰還型半導体レーザ(DFB−LD)のスペク
トラムであり、変調周波数は、10GHzである。
Further, four phase modulators 04, 05, 0
The waveguide passing through 6,07 has two Y branches 011 and 012.
By the Y branch 013, and
Combined with the book. However, in FIG. 4, Δφ = cos (ωm
t), Δφ ′ = sin (ωmt) and ω mIs the modulation angular frequency
Is a number. In addition, the single sideband communication system modulator shown in FIG.
The optical output spectrum (solid line) is shown in FIG. The dotted line is
Spectrum of force distributed feedback semiconductor laser (DFB-LD)
It is a tram and the modulation frequency is 10 GHz.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した単側
波帯通信方式変調器は以下のような課題が存在する。 (I)LiNbO3基板上の導波路は、最小曲がり半径が
一般に大きく、例えば、曲率半径が40mm以下にすると
曲がり導波路による伝搬損失が大きくなる。従って、回
路全体が、例えば、4インチ規模まで大きくなる。この
ようなデバイスでは基板面積分だけコストが高くなる。
However, the above-mentioned single sideband communication type modulator has the following problems. (I) A waveguide on a LiNbO 3 substrate generally has a large minimum bending radius. For example, when the radius of curvature is 40 mm or less, the propagation loss due to the bending waveguide increases. Therefore, the entire circuit is enlarged to, for example, a 4-inch scale. In such a device, the cost is increased by the area of the substrate.

【0007】(II)また、この単側波帯通信方式変調器
を並べて多チャネル化した時には、同一基板上に光レベ
ルをモニタするための分岐回路や、光レベルを調整でき
る可変アッテネータを組み込めると有用である。しか
し、LiNbO3導波路でこれらの回路を作り込むのは困
難である。
(II) Further, when the single sideband communication type modulators are arranged to form multiple channels, a branch circuit for monitoring the optical level and a variable attenuator capable of adjusting the optical level can be incorporated on the same substrate. It is useful. However, it is difficult to fabricate these circuits with the LiNbO 3 waveguide.

【0008】(III)一般に光回路においては分岐比等
も含め高い作製精度が要求され、作製誤差による光学特
性の劣化を改善する手段が存在した方がよい。例えば、
分岐比等についてトリミングによる調整や電流による調
整ができると便利である。しかし、LiNbO3基板上に
分岐比を調整できる回路を作製することは困難である。
本発明の目的は、上記の課題を解決した単側波帯通信方
式変調器を提供することにある。
(III) In general, an optical circuit is required to have a high manufacturing precision including a branching ratio and the like, and it is better to have a means for improving deterioration of optical characteristics due to a manufacturing error. For example,
It would be convenient if the branching ratio etc. could be adjusted by trimming or current. However, it is difficult to fabricate a circuit on the LiNbO 3 substrate whose branching ratio can be adjusted.
An object of the present invention is to provide a single sideband communication system modulator that solves the above problems.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の請求項1に係る光変調器は、3枚の基板から構成さ
れ、第1の基板は、光信号の入力側に備えられ、石英ガ
ラスを用いた光導波回路の基板であり、1本の導波路が
2本の導波路に分岐され、 更に、2本の導波路が各々2
本の導波路に分岐される構成であり、第2の基板は、電
気光学効果を有する多元系酸化物を用いた光導波路の基
板であり、第1の基板の導波路に対応する4本の導波路
を持ち、上記導波路の中間には電気光学効果を用いた位
相シフタが設けられており、第3の基板は、石英ガラス
を用いた光導波回路の基板であり、第2の基板の導波路
に対応した導波路が設けられ、そのうちの2本の導波路
は各々1本に合波され、更にその各々の導波路が1本に
合波される構成であり、前記第1、第2、第3の基板
は、基板同士を端面で突き合わせて各光導波路同士を光
結合することにより接続されることを特徴とする。
An optical modulator according to claim 1 of the present invention which achieves the above object is composed of three substrates, and the first substrate is provided on an optical signal input side, A substrate for an optical waveguide circuit using quartz glass, in which one waveguide is branched into two waveguides, and two waveguides are each divided into two waveguides.
The second substrate is a substrate of an optical waveguide using a multi-element oxide having an electro-optical effect, and the second substrate has four waveguides corresponding to the waveguides of the first substrate. A phase shifter using an electro-optic effect is provided in the middle of the waveguide having a waveguide, and the third substrate is a substrate of an optical waveguide circuit using quartz glass, and a third substrate Waveguides corresponding to the waveguides are provided, and two of the waveguides are multiplexed into one waveguide, and each of the waveguides is multiplexed into one waveguide. The second and third substrates are characterized in that they are connected by abutting the end faces of the substrates and optically coupling the optical waveguides.

【0010】上記目的を達成する本発明の請求項2に係
る光変調器は、請求項1において、前記第2の基板とし
て、Li1-xNbx3又はLi1-xTax3を用いることを特
徴とする。
An optical modulator according to claim 2 of the present invention which achieves the above object is the optical modulator according to claim 1, wherein the second substrate is Li 1-x Nb x O 3 or Li 1-x Ta x O 3. Is used.

【0011】上記目的を達成する本発明の請求項3に係
る光変調器は、請求項1において、前記第2の基板とし
て、KTa1-xNbx3又はK1-yLiyTa1-xNbx3を用
いることを特徴とする。
An optical modulator according to claim 3 of the present invention which achieves the above object, is the optical modulator according to claim 1, wherein the second substrate is KTa 1-x Nb x O 3 or K 1-y Li y Ta 1. characterized by using the -x Nb x O 3.

【0012】[0012]

【発明の実施の形態】本発明は、既に報告されているL
iNbO3基板1枚により構成された単側波帯通信方式変
調器を、3枚の基板による分割構成とし、光入力部に存
在する第1の基板、光出力側に存在する第3の基板に石
英系の光導波回路(Planar LightwaveCircuit:PL
C)を用いる。この光導波回路は、LiNbO3のような
電気光学効果は持たないが、低損失で種々のパッシブ光
回路として十分な実績がある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been reported in L.
The single sideband communication type modulator composed of one iNbO 3 substrate is divided into three substrates, and the first substrate existing in the light input part and the third substrate existing in the light output side are divided into three parts. Planar Lightwave Circuit (PL)
C) is used. Although this optical waveguide circuit does not have the electro-optical effect unlike LiNbO 3 , it has low loss and has a sufficient track record as various passive optical circuits.

【0013】そして、変調器を含む第2の基板には、L
i1-xNbx3に代表される、電気光学効果を持つ多元系
酸化物による基板を用いる。このように本発明は各基板
の特徴を生かすように組み合わせている結果、下記のよ
うな利点を持つ。
The second substrate including the modulator is L
A substrate made of a multi-component oxide having an electro-optical effect, which is represented by i 1-x Nb x O 3 , is used. As described above, the present invention has the following advantages as a result of combining the features of each substrate so as to be utilized.

【0014】(1)入力側に光導波回路を用いることに
より、従来のようにLiNbO3基板1枚による単側波帯
通信方式変調器で用いられていたY分岐の代わりに、 例
えば、分岐比が可変なマッハツェンダ回路を用いること
ができる。この可変分岐回路を用いることにより、例え
ば、抑圧すべき側波帯が最小になるように調整、トリミ
ングを行うことができる。
(1) By using an optical waveguide circuit on the input side, instead of the Y-branch used in the conventional single sideband communication type modulator with one LiNbO 3 substrate, for example, a branching ratio It is possible to use a Mach-Zehnder circuit whose variable is variable. By using this variable branch circuit, for example, adjustment and trimming can be performed so that the sideband to be suppressed is minimized.

【0015】分岐比が可変なマッハツェンダ回路を図6
に示す。 図6に示すように、このマッハツェンダ回路は、二つの
3dBカプラ51,52とこれらの3dBカプラ51,
52を接続する二本の導波路アームからなり、片側の導
波路アームに熱光学効果により光の位相を調整可能なヒ
ータ50を装荷したものである。そして、このマッハツ
ェンダ回路は、 アーム長を調整しヒータオフの状態で5
0%ずつ光を分岐するよう設計している。その結果、1
×2の分岐回路として用いることができるとともに、ヒ
ータ電流により分岐比を調節することができ、後段の光
回路の例えば損失バラツキや、光導波回路とLiNbO3
基板との接続における損失バラツキ等を後から調整して
補正することができる。
FIG. 6 shows a Mach-Zehnder circuit whose branching ratio is variable.
Shown in. As shown in FIG. 6, this Mach-Zehnder circuit includes two 3 dB couplers 51 and 52 and these 3 dB couplers 51 and 52.
It is composed of two waveguide arms connecting 52, and a heater 50 capable of adjusting the phase of light by a thermo-optical effect is loaded on one waveguide arm. And this Mach-Zehnder circuit adjusts the arm length to
It is designed to split the light by 0%. As a result, 1
Together can be used as a branching circuit × 2, it is possible to adjust the branching ratio by the heater current, for example, the loss variation in the latter stage of the optical circuit, the optical waveguide circuit and the LiNbO 3
Loss variation and the like in the connection with the substrate can be adjusted and corrected later.

【0016】更に、ヒータ50で電流を流し続けなくと
も、 分岐比を恒久的に補正するトリミングを行うことも
できる(例えば、 郷隆司他、 “大規模集積石英系熱光学
スイッチ”, NTT R&D,Vol.50, pp.278,2001.) 。このよ
うな方法を用いれば、ヒータ電流を流すことなく、所望
の分岐比を実現でき、低消費電力化が図れる。
Further, it is possible to perform trimming for permanently correcting the branching ratio without continuing to flow the current through the heater 50 (for example, Takashi Go et al., "Large-scale integrated silica-based thermo-optical switch", NTT R & D, Vol.50, pp.278, 2001.). By using such a method, a desired branching ratio can be realized without flowing a heater current, and power consumption can be reduced.

【0017】(2)更に第3の光導波回路基板上に、例
えば、光出力信号の1%を分岐する、光出力レベルモニ
ター用のカプラを加えることも可能である。 (3)更に、図6と同様な構成を持つ、ヒータ電流によ
り損失を調節可能なマッハツェンダ回路を、可変光アッ
テネータとして加えることも可能である。
(2) It is also possible to add a coupler for optical output level monitoring, which branches 1% of the optical output signal, for example, on the third optical waveguide circuit board. (3) Further, it is possible to add a Mach-Zehnder circuit, which has the same configuration as that of FIG. 6 and whose loss can be adjusted by the heater current, as a variable optical attenuator.

【0018】従って、(2)、(3)を用いれば、例え
ば、波長分割多重システムに変調器を応用し、多チャネ
ル並列に並ぶ時に、各チャネルのレベルを等化したり調
整することが可能となる。このような各波長のモニタと
レベル調整回路は、近年の波長分割多重システムで強く
求められている。
Therefore, by using (2) and (3), for example, it is possible to apply a modulator to a wavelength division multiplexing system and equalize or adjust the level of each channel when multiple channels are arranged in parallel. Become. Such a monitor and level adjusting circuit for each wavelength is strongly required in recent wavelength division multiplexing systems.

【0019】〔実施例〕以下、本発明について、図1に
示す実施例を参照して説明する。図1に示すように、第
1、第3の光導波回路基板10,30はSi基板上に形
成した光導波回路により作製した。また、第2のLiNb
3基板20においては、z面上に形成したTi拡散導波
路を光導波路として用いた。本実施例の光変調器は、既
に報告されている全てLiNbO3基板上の導波路で構成
した単側波帯通信方式変調器と基本的は構造は全く同じ
である。
EXAMPLES The present invention will be described below with reference to the examples shown in FIG. As shown in FIG. 1, the first and third optical waveguide circuit substrates 10 and 30 were manufactured by the optical waveguide circuit formed on the Si substrate. Also, the second LiNb
In the O 3 substrate 20, the Ti diffusion waveguide formed on the z plane was used as an optical waveguide. The optical modulator of the present embodiment is basically the same in structure as all the single sideband communication type modulators which have been already reported and are constituted by the waveguides on the LiNbO 3 substrate.

【0020】即ち、第2のLiNbO3基板20上におけ
る変調器21,22,23,24は、図4に示すΔφ,
−Δφ,Δφ’,−Δφ’の位相変調器04,05,0
6,07に相当する。また、第3の光導波回路基板30
上の2×1カプラ31,32,33は、図4に示すY分
岐011,012,013に相当する。但し、下記の点
(a)(b)が異なっている分、特性が改善されると予
想される。 (a)第1の光導波回路基板10上の1×2の分岐とし
てY分岐ではなく、分岐比を調整可能なマッハツェンダ
回路11,12,13を用いる。 (b)第3の光導波回路基板30上の2×1の合波回路
としてY分岐ではなく、図2に示すように、2×2カプ
ラ34,35,36を用いると、出力ポートでない側の
ポートは、例えば、1%の光を分岐して光レベルモニタ
ー用のポートとして用いる。従って、この回路は従来回
路に比較して、前記(1)〜(3)のメリットがある。
That is, the modulators 21, 22, 23 and 24 on the second LiNbO 3 substrate 20 have Δφ,
-Δφ, Δφ ', -Δφ' phase modulators 04, 05, 0
This corresponds to 6,07. In addition, the third optical waveguide circuit board 30
The upper 2 × 1 couplers 31, 32, 33 correspond to the Y branches 011, 012, 013 shown in FIG. However, it is expected that the characteristics will be improved because the following points (a) and (b) are different. (A) As the 1 × 2 branch on the first optical waveguide circuit substrate 10, Mach-Zehnder circuits 11, 12, and 13 that can adjust the branch ratio are used instead of the Y branch. (B) If the 2 × 2 couplers 34, 35, and 36 are used as the 2 × 1 multiplexing circuit on the third optical waveguide circuit board 30 instead of the Y branch, as shown in FIG. Is used as a port for monitoring the optical level by branching 1% of the light. Therefore, this circuit has the advantages (1) to (3) as compared with the conventional circuit.

【0021】実際の光導波路のレイアウトの模式図を図
2に示す。ここで、第1、第3の光導波回路基板10,
30における光導波路について更に詳細に説明する。こ
こでは、光導波路として、コアが方形でクラツド中に埋
め込まれている埋め込み型の光導波路を用い、コアとク
ラッドとの比屈折率差が0.75%でスポットサイズが
半径3.6μmの高Δ導波路を用いる。図2に示す分岐
比可変なマッハツェンダ回路11,12,13として
は、既に述べた図6に示すものを用いた。
A schematic diagram of the layout of the actual optical waveguide is shown in FIG. Here, the first and third optical waveguide circuit boards 10,
The optical waveguide in 30 will be described in more detail. Here, as the optical waveguide, an embedded optical waveguide having a rectangular core embedded in a cladding is used, and the relative refractive index difference between the core and the clad is 0.75%, and the spot size is high with a radius of 3.6 μm. A delta waveguide is used. As the Mach-Zehnder circuits 11, 12, and 13 with variable branching ratio shown in FIG. 2, the one shown in FIG. 6 already described is used.

【0022】このように分岐比可変マッハツェンダ回路
の電流或いはトリミングによる調整を用いることによ
り、方向性結合器の結合率が50%からずれた波長にお
いても分岐比を正確に50%に調整できるので、伝送波
長によらず良好な変調特性の変調器を得ることができ
る。更に、それぞれ2×2カプラ34,35,36のモ
ニタ出力M1,M2,M3をモニタしながら、分岐比可変
なマッハツェンダ回路11,12,13を調整すること
により、良好な消光比の光信号を得ることができる。次
に、LiNbO3基板20における光導波路については、
基板をz面で切り出した後、Tiを表面から拡散して作
製したスポツトサイズが約3.6μmのものを用いる。
By using the adjustment of the branching ratio variable Mach-Zehnder circuit by current or trimming, the branching ratio can be accurately adjusted to 50% even at the wavelength where the coupling ratio of the directional coupler deviates from 50%. A modulator having good modulation characteristics can be obtained regardless of the transmission wavelength. Furthermore, by adjusting the Mach-Zehnder circuits 11, 12, and 13 with variable branching ratios while monitoring the monitor outputs M 1 , M 2 , and M 3 of the 2 × 2 couplers 34, 35, and 36, respectively, a good extinction ratio can be obtained. An optical signal can be obtained. Next, regarding the optical waveguide in the LiNbO 3 substrate 20,
A substrate having a spot size of about 3.6 .mu.m is prepared by cutting the substrate in the z plane and diffusing Ti from the surface.

【0023】このLiNbO3基板20上のTi拡散導波路
は、光半導体増幅器(SOA:Semiconductor Optical A
mplifier)など半導体の光導波路に比較してスポットサ
イズが大きく光導波回路コアのスポツトサイズにより近
いため、位置ズレトレランスが大きく低損失で結合が可
能できる。また、光導波回路10,30、LiNbO3
板20は共に硬質であるため、基板の端面同士を直接突
き合わせて光結合することが可能である。
The Ti diffusion waveguide on the LiNbO 3 substrate 20 is an optical semiconductor amplifier (SOA: Semiconductor Optical A).
Since the spot size is larger than that of semiconductor optical waveguides such as mplifier) and is closer to the spot size of the optical waveguide circuit core, the positional tolerance is large and the coupling can be performed with low loss. Further, since the optical waveguide circuits 10 and 30 and the LiNbO 3 substrate 20 are both rigid, it is possible to directly abut the end faces of the substrates and optically couple them.

【0024】基板同士の接続を表す斜視図を図3に示
す。図3に示すように、光導波回路10,30、LiNb
3基板20を紫外線硬化形接着剤60により端面接続
すると共に光導波回路10,30と光入力信号側光ファ
イバ70、光出力信号側光ファイバ80とを接続した。
このように端面結合したところ、結合損失として平均
0.2dBという極めて低損失な値が得られ、損失バラ
ツキも0.1dB以内に収まった。この端面接続の方法
は、信頼性も含め十分な実績がある、光導波回路基板と
光ファイバーアレイとを接続する方法と技術的に等しい
ため、同じく十分な信頼性を有すると予想される。
FIG. 3 is a perspective view showing the connection between the substrates. As shown in FIG. 3, the optical waveguide circuits 10 and 30, LiNb
The O 3 substrate 20 was end-face connected by an ultraviolet curing adhesive 60, and the optical waveguide circuits 10 and 30 were connected to the optical input signal side optical fiber 70 and the optical output signal side optical fiber 80.
When the end faces were coupled in this way, the coupling loss was 0.2 dB on average, which was extremely low, and the loss variation was within 0.1 dB. This end face connection method is technically equivalent to the method of connecting the optical waveguide circuit board and the optical fiber array, which has a sufficient track record including reliability, and is therefore expected to have sufficient reliability as well.

【0025】更に、光導波回路基板は、LiNbO3基板
等の光導波路より最小曲げ半径が小さいため、小型に製
作することが可能であり、回路全体の大きさが小型化で
きる。例えば、コアとクラツドとの比屈折率差が1.5
%のSHΔの光導波路を用いると、最小曲げ半径は2m
mで設計できる。光導波路は基板の大きさにより制限さ
れるため、これは3枚の基板10,20,30で構成し
たことと合わせ、より多チャネルな変調器を同一平面上
で作製できるというメリットもある。
Furthermore, since the optical waveguide circuit board has a smaller minimum bending radius than the optical waveguide such as the LiNbO 3 substrate, it can be manufactured in a small size and the size of the entire circuit can be reduced. For example, the relative refractive index difference between the core and the cladding is 1.5.
% SHΔ optical waveguide, the minimum bend radius is 2m
It can be designed with m. Since the optical waveguide is limited by the size of the substrate, this has an advantage that a modulator with more channels can be manufactured on the same plane in combination with the configuration of the three substrates 10, 20, and 30.

【0026】このように説明したように、本発明は、電
気光学効果を有する光導波路を用いた光変調器に関する
ものであり、電気光学効果を有する光導波路と、従来の
石英系光導波路とを組み合わせたものである。そして、
位相シフトなどの変調機能は電気光学効果を有する光導
波路部分が担当し、光分岐、光合波、モニタなどの回路
は石英系光導波路が担当するように構成したものであ
る。
As described above, the present invention relates to an optical modulator using an optical waveguide having an electro-optical effect, and includes an optical waveguide having an electro-optical effect and a conventional silica-based optical waveguide. It is a combination. And
A modulation function such as a phase shift is handled by an optical waveguide portion having an electro-optic effect, and a circuit such as optical branching, optical multiplexing, and a monitor is configured by a quartz optical waveguide.

【0027】従って、一般に最小曲げ半径が大きな、電
気光学効果を有する光導波路は直線のみで構成すること
が可能となる。また、電気光学効果を有する光導波路
に、分岐比可変な分岐回路(例えばマッハツェンダ干渉
計を利用)を作製することは困難であるが、石英系光導
波路では既に確立された技術を用いて比較的容易に実現
できるという利点もある。以上の結果、小型で良好な光
学特性を備えた変調器が実現される。
Therefore, an optical waveguide having an electro-optical effect, which generally has a large minimum bending radius, can be constituted by only straight lines. In addition, it is difficult to fabricate a branch circuit with variable branching ratio (for example, using a Mach-Zehnder interferometer) in an optical waveguide having an electro-optical effect, but a silica-based optical waveguide is relatively difficult to manufacture using already established technology. There is also an advantage that it can be easily realized. As a result, a small-sized modulator having good optical characteristics is realized.

【0028】なお、図1に示す実施例では、電気光学効
果を有する多元系酸化物により製作された第2の光導波
回路基板として、LiNbO3基板の例を挙げたが、KTa
1-xNbx3又はK1-yLiyTa1-xNbx3を初めとした他
の多元系酸化物でも全く同様の効果を得られるのは言う
までもない。
In the embodiment shown in FIG. 1, a LiNbO 3 substrate is used as the second optical waveguide circuit substrate made of a multi-element oxide having an electro-optical effect.
Needless to say, other multi-component oxides such as 1-x Nb x O 3 or K 1-y Li y Ta 1-x Nb x O 3 can achieve the same effect.

【0029】[0029]

【発明の効果】以上、詳細に説明したように本発明によ
れば、小型で、光導波路の作製誤差による損失バラツキ
等を分岐比で調整可能で、不要な側帯波の抑制比の十分
大きい、良好な光学特性を実現できる。更に光出力レベ
ルをモニタする回路や、光出力レベルを調整する回路を
同一基板上に含む、信頼性が高い単側波帯通信方式用変
調器を実現できる。
As described above in detail, according to the present invention, the size is small, the loss variation due to the manufacturing error of the optical waveguide can be adjusted by the branching ratio, and the suppression ratio of the unnecessary sideband is sufficiently large. Good optical characteristics can be realized. Further, it is possible to realize a highly reliable modulator for the single sideband communication system, which includes a circuit for monitoring the optical output level and a circuit for adjusting the optical output level on the same substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1に係る光変調器の構成図で
ある。
FIG. 1 is a configuration diagram of an optical modulator according to a first embodiment of the present invention.

【図2】実際の光導波路のレイアウトを示す模式図であ
る。
FIG. 2 is a schematic diagram showing a layout of an actual optical waveguide.

【図3】モジュールの基板同士の接続を表す斜視図であ
る。
FIG. 3 is a perspective view showing a connection between substrates of a module.

【図4】単側波帯通信方式変調器の構成図である。FIG. 4 is a configuration diagram of a single sideband communication system modulator.

【図5】単側波帯通信方式変調器の光出力スペクトルを
示すグラフである。
FIG. 5 is a graph showing an optical output spectrum of a single sideband communication type modulator.

【図6】分岐比可変なマッハツェンダ回路の構成図であ
る。
FIG. 6 is a configuration diagram of a Mach-Zehnder circuit having a variable branching ratio.

【符号の説明】[Explanation of symbols]

10 第1の光導波回路基板 11,12,13 マッハツェンダ回路 20 第2のLiNbO3基板 21,22,23,24 変調器 30 第3の光導波回路基板 31,32,33 2×1カプラ 34,35,36 2×2カプラ 41,42,43 位相シフタ 50 位相シフタ用薄膜ヒータ 51,52 3dBカプラ 60 UV接着剤 70 光入力信号側光ファイバ 80 光出力信号側光ファイバ10 First Optical Waveguide Circuit Board 11, 12, 13 Mach-Zehnder Circuit 20 Second LiNbO 3 Substrate 21, 22, 23, 24 Modulator 30 Third Optical Waveguide Circuit Board 31, 32, 33 2 × 1 Coupler 34, 35, 36 2 × 2 coupler 41, 42, 43 Phase shifter 50 Thin film heater for phase shifter 51, 52 3 dB coupler 60 UV adhesive 70 Optical input signal side optical fiber 80 Optical output signal side optical fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 元速 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 井上 靖之 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 藤浦 和夫 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 北川 毅 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H079 AA02 AA06 AA12 AA13 BA01 DA03 DA17 EA05 EB27 GA01 GA03 JA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Motoi Ishii             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Yasuyuki Inoue             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Kazuo Fujiura             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Takeshi Kitagawa             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation F-term (reference) 2H079 AA02 AA06 AA12 AA13 BA01                       DA03 DA17 EA05 EB27 GA01                       GA03 JA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3枚の基板から構成され、 第1の基板は、光信号の入力側に備えられ、石英ガラス
を用いた光導波回路の基板であり、1本の導波路が2本
の導波路に分岐され、 更に、2本の導波路が各々2本の
導波路に分岐される構成であり、 第2の基板は、電気光学効果を有する多元系酸化物を用
いた光導波路の基板であり、第1の基板の導波路に対応
する4本の導波路を持ち、上記導波路の中間には電気光
学効果を用いた位相シフタが設けられており、 第3の基板は、石英ガラスを用いた光導波回路の基板で
あり、第2の基板の導波路に対応した導波路が設けら
れ、そのうちの2本の導波路は各々1本に合波され、更
にその各々の導波路が1本に合波される構成であり、 前記第1、第2、第3の基板は、基板同士を端面で突き
合わせて各光導波路同士を光結合することにより接続さ
れることを特徴とする光変調器。
1. An optical waveguide circuit substrate comprising three substrates, wherein the first substrate is provided on the input side of an optical signal, and is a substrate of an optical waveguide circuit using quartz glass, and one waveguide has two waveguides. The waveguide is branched into two waveguides, and each of the two waveguides is branched into two waveguides. The second substrate is an optical waveguide substrate using a multi-element oxide having an electro-optical effect. And has four waveguides corresponding to the waveguides of the first substrate, and a phase shifter using the electro-optic effect is provided in the middle of the waveguides. The third substrate is quartz glass. Is a substrate of an optical waveguide circuit using, and a waveguide corresponding to the waveguide of the second substrate is provided. Two of the waveguides are combined into one, and each of the waveguides is combined. The first, second, and third substrates are joined together at their end faces. Optical modulator, characterized in that it is connected by optical coupling of the optical waveguide to each other.
【請求項2】 請求項1において、前記第2の基板とし
て、Li1-xNbx3又はLi1-xTax3を用いることを特
徴とする光変調器。
2. The optical modulator according to claim 1, wherein Li 1-x Nb x O 3 or Li 1-x Tax x O 3 is used as the second substrate.
【請求項3】 請求項1において、前記第2の基板とし
て、KTa1-xNbx 3又はK1-yLiyTa1-xNbx3を用
いることを特徴とする光変調器。
3. The second substrate according to claim 1,
And KTa1-xNbxO 3Or K1-yLiyTa1-xNbxO3For
An optical modulator characterized in that
JP2001314779A 2001-10-12 2001-10-12 Light modulator Expired - Lifetime JP3800594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314779A JP3800594B2 (en) 2001-10-12 2001-10-12 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314779A JP3800594B2 (en) 2001-10-12 2001-10-12 Light modulator

Publications (2)

Publication Number Publication Date
JP2003121806A true JP2003121806A (en) 2003-04-23
JP3800594B2 JP3800594B2 (en) 2006-07-26

Family

ID=19133036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314779A Expired - Lifetime JP3800594B2 (en) 2001-10-12 2001-10-12 Light modulator

Country Status (1)

Country Link
JP (1) JP3800594B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274806A (en) * 2004-03-24 2005-10-06 National Institute Of Information & Communication Technology Optical ssb modulator
JP2006221111A (en) * 2005-02-14 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Mach-zehnder type optical element and the driving method thereof
JP2006251429A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Variable dispersion compensator
WO2007063871A1 (en) * 2005-12-01 2007-06-07 National Institute Of Information And Communications Technology Optical switch system by optical interference
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2010064417A1 (en) * 2008-12-02 2010-06-10 日本電信電話株式会社 Light modulator
JP2010181489A (en) * 2009-02-03 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> Light modulator
JP2010185978A (en) * 2009-02-10 2010-08-26 Fujitsu Optical Components Ltd Optical modulator
JP2010211060A (en) * 2009-03-11 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2010250125A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2011034057A (en) * 2009-07-10 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2011043575A (en) * 2009-08-19 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2011043449A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical branching element, optical branching circuit, optical branching element manufacturing method, and optical branching circuit manufacturing method
JP2011150089A (en) * 2010-01-20 2011-08-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
US7995872B2 (en) 2007-02-14 2011-08-09 Ngk Insulators, Ltd. Optical modulator component and optical modulator
WO2012017644A1 (en) * 2010-08-06 2012-02-09 日本電信電話株式会社 Optical component
JP2012063701A (en) * 2010-09-17 2012-03-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2012073366A (en) * 2010-09-28 2012-04-12 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2012156335A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
WO2014157456A1 (en) * 2013-03-29 2014-10-02 住友大阪セメント株式会社 Optical modulator
EP2881787A4 (en) * 2012-07-30 2016-04-27 Fujitsu Optical Components Ltd Light receiving circuit
JP2016071256A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Optical modulator
JP2018116199A (en) * 2017-01-19 2018-07-26 日本電信電話株式会社 Polarization multiplexed optical modulator
JP2019164260A (en) * 2018-03-20 2019-09-26 住友大阪セメント株式会社 Optical modulator
CN112965270A (en) * 2021-02-05 2021-06-15 中国电子科技集团公司第四十四研究所 Lithium niobate thin film double Y branch optical waveguide modulator adopting curve optical waveguide connection

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524482B2 (en) * 2004-03-24 2010-08-18 独立行政法人情報通信研究機構 Optical SSB modulator
JP2005274806A (en) * 2004-03-24 2005-10-06 National Institute Of Information & Communication Technology Optical ssb modulator
JP2006221111A (en) * 2005-02-14 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Mach-zehnder type optical element and the driving method thereof
JP2006251429A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Variable dispersion compensator
JP4550630B2 (en) * 2005-03-11 2010-09-22 古河電気工業株式会社 Variable dispersion compensator
WO2007063871A1 (en) * 2005-12-01 2007-06-07 National Institute Of Information And Communications Technology Optical switch system by optical interference
JP2007155876A (en) * 2005-12-01 2007-06-21 National Institute Of Information & Communication Technology Optical switch system utilizing optical interference
US8270780B2 (en) 2005-12-01 2012-09-18 National Institute Of Information And Communications Technology Optical switch system using optical interference
US7995872B2 (en) 2007-02-14 2011-08-09 Ngk Insulators, Ltd. Optical modulator component and optical modulator
JP5421595B2 (en) * 2007-02-14 2014-02-19 日本碍子株式会社 Traveling wave type optical modulator
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2010064417A1 (en) * 2008-12-02 2010-06-10 日本電信電話株式会社 Light modulator
JP5363504B2 (en) * 2008-12-02 2013-12-11 日本電信電話株式会社 Light modulator
US8467635B2 (en) 2008-12-02 2013-06-18 Nippon Telegraph And Telephone Corporation Optical modulator
JP2010181489A (en) * 2009-02-03 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> Light modulator
JP2010185978A (en) * 2009-02-10 2010-08-26 Fujitsu Optical Components Ltd Optical modulator
JP2010211060A (en) * 2009-03-11 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2010250125A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2011034057A (en) * 2009-07-10 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2011043575A (en) * 2009-08-19 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2011043449A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical branching element, optical branching circuit, optical branching element manufacturing method, and optical branching circuit manufacturing method
JPWO2011043449A1 (en) * 2009-10-09 2013-03-04 日本電気株式会社 Optical branching device, optical branching circuit, optical branching device manufacturing method, and optical branching circuit manufacturing method
JP2011150089A (en) * 2010-01-20 2011-08-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2012017644A1 (en) * 2010-08-06 2012-02-09 日本電信電話株式会社 Optical component
JP2012037731A (en) * 2010-08-06 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical component
US8721191B2 (en) 2010-08-06 2014-05-13 Nippon Telegraph And Telephone Corporation Optical component
CN103052901A (en) * 2010-08-06 2013-04-17 日本电信电话株式会社 Optical component
JP2012063701A (en) * 2010-09-17 2012-03-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2012073366A (en) * 2010-09-28 2012-04-12 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2012156335A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
EP2881787A4 (en) * 2012-07-30 2016-04-27 Fujitsu Optical Components Ltd Light receiving circuit
US9461753B2 (en) 2012-07-30 2016-10-04 Fujitsu Optical Components Limited Optical receiver circuit
WO2014157456A1 (en) * 2013-03-29 2014-10-02 住友大阪セメント株式会社 Optical modulator
JP2014197054A (en) * 2013-03-29 2014-10-16 住友大阪セメント株式会社 Optical modulator
JP2016071256A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Optical modulator
JP2018116199A (en) * 2017-01-19 2018-07-26 日本電信電話株式会社 Polarization multiplexed optical modulator
JP2019164260A (en) * 2018-03-20 2019-09-26 住友大阪セメント株式会社 Optical modulator
CN112965270A (en) * 2021-02-05 2021-06-15 中国电子科技集团公司第四十四研究所 Lithium niobate thin film double Y branch optical waveguide modulator adopting curve optical waveguide connection
CN112965270B (en) * 2021-02-05 2023-05-16 中国电子科技集团公司第四十四研究所 Lithium niobate thin film double-Y branch optical waveguide modulator adopting curve optical waveguide connection

Also Published As

Publication number Publication date
JP3800594B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP3800594B2 (en) Light modulator
US8078015B2 (en) Optical modulator
US9081216B2 (en) Optical device having optical modulators
EP2453295B1 (en) Optical modulator
US8374467B2 (en) Optical device having a plurality of Mach-Zehnder modulators
JP4594744B2 (en) Optical communication device and optical device
JP5069144B2 (en) Light modulator
US7826689B2 (en) Optical device which outputs independently modulated light beams in respective TE and TM polarization modes
JP4241622B2 (en) Light modulator
JP5243334B2 (en) Light modulator
US9568801B2 (en) Optical modulator
JP6506169B2 (en) Light modulator
CN112835215B (en) Lithium niobate thin film electro-optical modulator chip and modulator
JP2012203339A (en) Optical waveguide device
US8606053B2 (en) Optical modulator
US11892743B2 (en) Optical modulation element and optical modulation module
CN115380240A (en) Optical control element, optical modulation device using the same, and optical transmission device
JP2008009314A (en) Optical waveguide element, optical modulator, and optical communication device
JP2000250081A (en) Wavelength conversion circuit
JP2564999B2 (en) Light modulator
JP2551980B2 (en) Waveguide optical frequency filter
JPH0553157A (en) Optical control device
WO2022097289A1 (en) Iq optical modulator
JPH09288255A (en) Optical wave guide element
Yamada et al. High-speed optical functional modulators using hybrid assembly technique with silica-based planar lightwave circuits and LiNbO3 devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3800594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350