JP4550630B2 - Variable dispersion compensator - Google Patents

Variable dispersion compensator Download PDF

Info

Publication number
JP4550630B2
JP4550630B2 JP2005068548A JP2005068548A JP4550630B2 JP 4550630 B2 JP4550630 B2 JP 4550630B2 JP 2005068548 A JP2005068548 A JP 2005068548A JP 2005068548 A JP2005068548 A JP 2005068548A JP 4550630 B2 JP4550630 B2 JP 4550630B2
Authority
JP
Japan
Prior art keywords
optical
coupler
stage
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005068548A
Other languages
Japanese (ja)
Other versions
JP2006251429A (en
Inventor
洋志 川島
一孝 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005068548A priority Critical patent/JP4550630B2/en
Publication of JP2006251429A publication Critical patent/JP2006251429A/en
Application granted granted Critical
Publication of JP4550630B2 publication Critical patent/JP4550630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光通信分野に用いられる可変分散補償器に関するものである。   The present invention relates to a tunable dispersion compensator used in the field of optical communication.

一般に、光通信(光伝送)を行う光伝送路は、その光伝送帯域において正の波長分散を有している。この波長分散による信号光の歪みを抑制するために、従来は、光伝送帯域において負の波長分散を有する分散補償光ファイバを光伝送路に接続し、光伝送路の波長分散を補償していた。この分散補償技術は、信号光の伝送速度が10Gbit/s以下の光伝送において実用化されつつある。   In general, an optical transmission line that performs optical communication (optical transmission) has positive chromatic dispersion in the optical transmission band. In order to suppress distortion of signal light due to this chromatic dispersion, conventionally, a dispersion compensating optical fiber having negative chromatic dispersion in the optical transmission band is connected to the optical transmission line to compensate for the chromatic dispersion of the optical transmission line. . This dispersion compensation technique is being put into practical use in optical transmission where the transmission speed of signal light is 10 Gbit / s or less.

しかしながら、上述した分散補償技術では、信号光の伝送速度が更に高速化された場合、適用が困難となる。例えば、信号光の伝送速度が40Gbit/s以上の場合、上述の分散補償技術よりもさらに正確な分散補償技術が必要となってくる。   However, the above-described dispersion compensation technique is difficult to apply when the transmission speed of the signal light is further increased. For example, when the transmission speed of signal light is 40 Gbit / s or more, a more accurate dispersion compensation technique is required than the above-described dispersion compensation technique.

また、上述した分散補償光ファイバは、その光ファイバ長で分散補償量を制御する構成となっている。このため、数ps/nm〜数十ps/nm以下のように分散補償量が小さい場合に分散補償が困難であり、上述した40Gbit/s以上の高速伝送に対応した分散補償が難しい。また、分散補償光ファイバによって光伝送路の分散補償を行うためには、光伝送路1本1本にあった長さの分散補償光ファイバをそれぞれの光伝送路に対応させて形成する必要があり、コスト、サイズの面からも好ましくない。   Further, the dispersion compensating optical fiber described above is configured to control the amount of dispersion compensation by the length of the optical fiber. For this reason, dispersion compensation is difficult when the dispersion compensation amount is small, such as several ps / nm to several tens ps / nm, and dispersion compensation corresponding to the above-described high-speed transmission of 40 Gbit / s or more is difficult. In addition, in order to perform dispersion compensation of an optical transmission line using a dispersion compensating optical fiber, it is necessary to form a dispersion compensating optical fiber having a length corresponding to each optical transmission line so as to correspond to each optical transmission line. However, it is not preferable in terms of cost and size.

そこで、上述したような状況に対応するため、分散補償光ファイバを利用した従来構成とは異なる構成で分散値を変化させることができる可変分散補償器が研究されるようになった。この可変分散補償器として、例えば、平面光導波回路(PLC)で形成されたラティスフィルタ型の可変分散補償器が提案されている(非特許文献1)。   Therefore, in order to cope with the situation as described above, a variable dispersion compensator capable of changing the dispersion value with a configuration different from the conventional configuration using the dispersion compensating optical fiber has been studied. As this tunable dispersion compensator, for example, a lattice filter type tunable dispersion compensator formed of a planar optical waveguide circuit (PLC) has been proposed (Non-Patent Document 1).

ラティスフィルタを用いた可変分散補償器の例を図24に示す。ラティスフィルタ型分散補償器は、2本の光導波路1、2からなる対称マッハツェンダー干渉計(MZI)3および非対称MZI4を交互に多段に接続して構成されており、各MZI3、4の干渉アーム部に位相シフタ5を形成して結合率・位相を可変可能としている。   An example of a tunable dispersion compensator using a lattice filter is shown in FIG. The lattice filter type dispersion compensator is configured by alternately connecting a symmetric Mach-Zehnder interferometer (MZI) 3 and an asymmetric MZI 4 composed of two optical waveguides 1 and 2, and an interference arm of each MZI 3 and 4. A phase shifter 5 is formed in the part to make the coupling rate and phase variable.

このようなラティスフィルタの周波数特性はインパルス時間応答のフーリエ変換で得られ、フーリエ級数を用いて以下のように表される。

Figure 0004550630
The frequency characteristic of such a lattice filter is obtained by Fourier transform of impulse time response, and is expressed as follows using a Fourier series.
Figure 0004550630

ここでN:光フィルタのタップ数、j=√(-1)、neff:導波路の等価屈折率、f:光周波数、ΔL:遅延回路の光路長差であり、gn:タップ係数である。この光フィルタでは、タップ係数gn、すなわち光フィルタの位相シフト値を変化させることにより、タップ数Nによって決まる値を上限とした任意のフィルタ特性が実現可能である。また、光路長差ΔLで決まる自由スペクトルレンジ(Free Spectral Range : FSR)ごとに特性が周期的に現れる。 Where N is the number of taps of the optical filter, j = √ (−1), n eff is the equivalent refractive index of the waveguide, f is the optical frequency, ΔL is the optical path length difference of the delay circuit, and g n is the tap coefficient. is there. In this optical filter, by changing the tap coefficient g n , that is, the phase shift value of the optical filter, it is possible to realize arbitrary filter characteristics with the upper limit being a value determined by the tap number N. In addition, characteristics appear periodically for each free spectral range (FSR) determined by the optical path length difference ΔL.

このような特性を利用し、ラティスフィルタを用いて、非特許文献1のような可変分散補償器を構成可能である。ラティスフィルタでは、常に2本の導波路に光を閉じ込めるため、原理的損失および損失変動が無いという利点を有する。   Using such characteristics, a variable dispersion compensator as in Non-Patent Document 1 can be configured using a lattice filter. Lattice filters have the advantage that there is no fundamental loss and loss variation because light is always confined in two waveguides.

一方、非特許文献1でも提案されているように、図25に示すようなトランスバーサルフィルタを用いても、ラティスフィルタと同様のフィルタ特性を得ることができ、可変分散補償器を構成可能である。   On the other hand, as proposed in Non-Patent Document 1, even when a transversal filter as shown in FIG. 25 is used, filter characteristics similar to those of a lattice filter can be obtained, and a variable dispersion compensator can be configured. .

トランスバーサルフィルタは、図25に示すように可変光分岐器#1〜#nを用いて入力光をN本の経路(タップ)に分岐し、各経路間に遅延ΔLを付与し、さらに各経路に位相シフタψ1〜ψn+1を形成して、各経路の光強度および位相を可変させて、光合波器kによって合波して出力させる構成になっている。   As shown in FIG. 25, the transversal filter branches input light into N paths (taps) using variable optical splitters # 1 to #n, adds a delay ΔL between the paths, and further passes each path. The phase shifters ψ1 to ψn + 1 are formed in the optical path, the light intensity and the phase of each path are varied, and the light is combined and output by the optical multiplexer k.

このトランスバーサルフィルタでは、フーリエ係数が各経路の光強度および位相に直接対応するため、フーリエフィルタに比べて所望特性の設定が容易であり、また、フィルタ特性の分解能を増大させるためにタップ数Nを大きくした場合においても、遅延回路を並列に配置しているため、遅延回路を縦列接続しているフーリエフィルタに比べて小型にできる利点を有する。   In this transversal filter, since the Fourier coefficient directly corresponds to the light intensity and phase of each path, it is easy to set a desired characteristic as compared with the Fourier filter, and the number of taps N is increased to increase the resolution of the filter characteristic. Even when the delay circuit is made larger, the delay circuits are arranged in parallel, so that there is an advantage that the delay circuits can be reduced in size as compared with the Fourier filters in which the delay circuits are connected in cascade.

瀧口浩一、「平面光波回路の光機能デバイスへの展開」、応用物理 第72巻 第11号 (2003) 1387〜1392ページKoichi Higuchi, “Development of planar lightwave circuit to optical functional devices”, Applied Physics Vol. 72, No. 11 (2003), pages 1387 to 1392

しかしながら、このラティスフィルタを用いて可変分散補償器を構成する場合、フーリエ係数と各MZIの結合率とが直接対応しないため、所望特性の設定が難しいといった問題点があった。また、フィルタ特性の分解能を向上させるためにタップ数Nを増大させると回路長がタップ数Nに比例して増大するため、小型化が困難であるといった問題点があった。   However, when a tunable dispersion compensator is configured using this lattice filter, there is a problem that it is difficult to set desired characteristics because the Fourier coefficient and the coupling rate of each MZI do not correspond directly. Further, when the number of taps N is increased in order to improve the resolution of the filter characteristics, the circuit length increases in proportion to the number of taps N, which makes it difficult to reduce the size.

一方、トランスバーサルフィルタでは、位相設定条件によって損失変動が生じるという問題点があった。   On the other hand, the transversal filter has a problem in that loss variation occurs depending on the phase setting condition.

本発明は上記課題を解決するために成されたものであり、その目的は損失および損失変動が小さく、所望特性の設定が容易で、分解能が増大しても小型化が可能な可変分散補償器を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its object is to provide a variable dispersion compensator that is small in loss and loss fluctuation, can easily set desired characteristics, and can be miniaturized even when resolution is increased. Is to provide.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、本発明は、基板上に形成された光導波路の回路を有し、該光導波路の回路は、光分岐カプラを各ノードに配置したツリー構造を備える多段光分岐カプラであって、当該ツリー構造は、ルートノードに該当する一の光分岐カプラを初段とし、当該一の光分岐カプラに入力された光が分岐されて出力され、当該分岐されて出力された光のそれぞれが次段の別個の光分岐カプラに入力され、段が進むにつれて分岐数が増加する構造である多段光分岐カプラと、前記多段分光岐カプラの最終段から出力された光をそれぞれ入力し、伝搬光の伝搬時間を設定時間遅延させてそれぞれ出力する複数の光遅延線と、光合波カプラが前記光遅延線を挟んで前記光分岐カプラと対称な位置に配置された逆ツリー構造を備える多段光合波カプラであって、当該逆ツリー構造は、それぞれが有する光入力端が前記光遅延線と一対一に接続された複数の光合波カプラを初段とし、前記初段の光合波カプラに入力された光がそれぞれ合波されて出力され、当該合波されて出力された光のそれぞれが次段の別個の光合波カプラに入力され、段が進むにつれて分岐数が減少し、最終段の一の光合波カプラから光を出力する構造である多段光合波カプラと、前記光遅延線は互いに間隔を介して並設されて該並設方向の一端側から他端側に向けて順に長さが設定量ずつ長くなるように形成されて光トランスバーサルフィルタ回路を構成し、一個以上の前記光分岐カプラには光分岐比を可変可能な光分岐比調節手段を設け、一個以上の前記光合波カプラには光合波比を可変可能な光合波比調節手段を設け、一本以上の前記光遅延線には伝搬光の位相を可変可能な光位相調節手段を設け、前記光遅延線を挟んで対称な位置に配置される前記光分岐カプラおよび前記光合波カプラのそれぞれの分岐光の強度比および合波光の強度比を互いに等しい設定値に調節し、かつ、前記初段の前記光分岐カプラの光入力端(光入力ポート)から入力されて前記最終段の前記光合波カプラの光出力端(光出力ポート)から出力される光の通過波長特性が所定の通過波長帯域内において所望の群遅延特性を有するように調節し、前記基板上には、共通ポートから入力される光を直交する2つの偏波モード光に分離して第一および第二の偏波ポートから出力し、更にこの第一および第二の偏波ポートから入力される互いに直交する2つの偏波モード光を合成して前記共通ポートから出力する導波路型偏波スプリッタ/コンバイナが集積され、前記第一または第二の偏波ポートには半波長板が挿入され、前記第一の偏波ポートは前記初段の前記光分岐カプラの前記光入力端に接続され、前記第二の偏波ポートは前記最終段の前記光合波カプラの前記光出力端に接続されていることを特徴とする可変分散補償器である。 In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the present invention has an optical waveguide circuit formed on a substrate, and the optical waveguide circuit is a multi-stage optical branching coupler having a tree structure in which an optical branching coupler is arranged at each node, The structure is such that one optical branching coupler corresponding to the root node is the first stage, the light input to the one optical branching coupler is branched and output, and each of the branched and output lights is separated in the next stage. The multi-stage optical branch coupler, which has a structure in which the number of branches increases as the stage progresses, and the light output from the final stage of the multi-stage spectral coupler are respectively input, and the propagation time of the propagation light is calculated. A multi-stage optical multiplexing coupler having a plurality of optical delay lines that are output after being delayed by a set time, and an inverted tree structure in which an optical multiplexing coupler is disposed at a position symmetrical to the optical branching coupler with the optical delay line in between. In the inverted tree structure, a plurality of optical multiplexing couplers each having an optical input terminal connected to the optical delay line in a one-to-one manner are used as the first stage, and light input to the first stage optical multiplexing coupler is multiplexed. Each of the combined and output light is input to a separate optical multiplexing coupler in the next stage, and the number of branches decreases as the stage progresses, and light is output from one optical multiplexing coupler in the final stage. The multi-stage optical multiplexing coupler having the structure and the optical delay line are arranged in parallel with each other at an interval so that the length is increased by a set amount in order from one end side to the other end side in the parallel arrangement direction. An optical transversal filter circuit is configured, and one or more of the optical branching couplers are provided with an optical branching ratio adjusting means capable of changing an optical branching ratio, and one or more of the optical multiplexing couplers can change an optical multiplexing ratio. One optical multiplexing ratio adjustment means is provided. The said optical delay line of the upper is provided a variable capable optical phase adjusting means the phase of the propagating light, each branch of said optical branch coupler and said optical multiplexing coupler are disposed at positions symmetrical across the optical delay line The intensity ratio of the light and the intensity ratio of the combined light are adjusted to be equal to each other , and input from the optical input terminal (optical input port) of the optical branching coupler at the first stage and the optical multiplexing coupler of the final stage. Light that is output from the optical output terminal (optical output port) is adjusted so that the pass wavelength characteristic of the light has a desired group delay characteristic within a predetermined pass wavelength band. Are split into two orthogonal polarization mode lights, output from the first and second polarization ports, and further input from the first and second polarization ports. The common port A waveguide-type polarization splitter / combiner that is output from the first polarization port, a half-wave plate is inserted into the first or second polarization port, and the first polarization port is the first-stage optical branching coupler. The tunable dispersion compensator is connected to the optical input terminal of the optical fiber, and the second polarization port is connected to the optical output terminal of the optical multiplexing coupler at the final stage.

本発明によれば、損失および損失変動が小さく、所望特性の設定が容易で、分解能が増大しても小型化が可能な可変分散補償器を形成できる。   According to the present invention, it is possible to form a tunable dispersion compensator that is small in loss and loss variation, can easily set desired characteristics, and can be downsized even when the resolution is increased.

以下、本発明の第一の実施形態を、図面を参照して説明する。図1には、本発明に係る可変分散補償器の構成図を示す。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of a tunable dispersion compensator according to the present invention.

図1に示すように、本実施形態例の可変分散補償器は、石英系平面光導波路により作製されており、2入力2出力型MZI回路からなる光分岐カプラVCx-x(x-xは2-1から4-4間の任意の値)をツリー状に3段接続して形成された、8個の光出力端を有する多段光分岐カプラと、2入力2出力型MZI回路からなる光合波カプラを逆ツリー状に3段接続して形成された、8個の光入力端を有する多段光合波カプラVCy-y(y-yは5-1から8-1間の任意の値)と、前記多段光分岐カプラVCx-xのそれぞれの光出力端と前記多段光合波カプラVCy-yの対応する光入力端との間に介設されて伝搬光の伝搬時間を設定時間遅延させる8本の光遅延線dとを有し、該光遅延線dは互いに間隔を介して並設されて該並設方向の一端側から他端側に向けて順に長さが設定量ずつ長くなるように形成された光トランスバーサルフィルタ回路で構成されている。   As shown in FIG. 1, the tunable dispersion compensator of the present embodiment is made of a quartz-based planar optical waveguide, and is an optical branching coupler VCx-x (xx is 2) consisting of a 2-input 2-output MZI circuit. Optical multiplexing consisting of a multi-stage optical branching coupler with 8 optical output terminals and a 2-input 2-output MZI circuit, formed by connecting three stages of arbitrary values between -1 and 4-4 in a tree shape A multi-stage optical multiplexing coupler VCy-y (y is an arbitrary value between 5-1 and 8-1) having eight optical input ends, formed by connecting couplers in three stages in an inverted tree; Eight interleaved between the respective optical output terminals of the multistage optical branching coupler VCx-x and the corresponding optical input terminals of the multistage optical multiplexing coupler VCy-y, which delay the propagation time of the propagation light by a set time. An optical delay line d, and the optical delay lines d are arranged in parallel to each other with a gap therebetween and directed from one end side to the other end side in the parallel arrangement direction. The length in the order Te is constituted by an optical transversal filter circuit formed to be longer by a set amount.

また前記各光分岐カプラVCx-x及び光合波カプラVCy-yは、図2のように2本の光導波路11・12を2カ所で近接させて形成した2つの方向性結合器13・14と、2つの方向性結合器13・14を接続する第一及び第二の接続導波路11'・12'からなり、2本の接続導波路11'・12'上には熱光学効果によって接続導波路の屈折率を変化させ、2本の接続導波路11'・12'間の光路長差を変化させることにより分岐比を調節する光分岐比調節手段である薄膜ヒータ15が形成されている。   Each of the optical branching couplers VCx-x and VCy-y includes two directional couplers 13 and 14 formed by bringing two optical waveguides 11 and 12 close to each other as shown in FIG. The first and second connecting waveguides 11 ′ and 12 ′ connecting the two directional couplers 13 and 14 are connected to the two connecting waveguides 11 ′ and 12 ′ by a thermo-optic effect. A thin film heater 15 is formed as an optical branching ratio adjusting means for adjusting the branching ratio by changing the refractive index of the waveguide and changing the optical path length difference between the two connecting waveguides 11 ′ and 12 ′.

また、各光遅延線d上には各光遅延線dを伝搬する伝搬光の位相を熱光学効果によって可変可能な位相調節手段である薄膜ヒータが形成され、位相シフタPS1〜PS8を構成している。   Further, on each optical delay line d, there is formed a thin film heater which is a phase adjusting means capable of changing the phase of propagating light propagating through each optical delay line d by the thermo-optic effect, and constitutes phase shifters PS1 to PS8. Yes.

上記各薄膜ヒータには金薄膜からなる電気配線により給電しているが、簡略化のため、ここでは図示を省略した。   Each of the thin film heaters is supplied with electric wiring made of a gold thin film, but the illustration is omitted here for the sake of simplicity.

また前記光トランスバーサルフィルタ回路において、1段目の光分岐カプラVC2-1における2本の光入力端のうちの一方は光入力ポート104としてチップ端面に接続され、他方はモニタポート105としてチップ端面に接続されている。また1段目の光合波カプラVC8-1における2本の光出力端のうち、前記光入力ポート104に対応する一方は光出力ポート204としてチップ端面に接続されており、他方はモニタポート205としてチップ端面に接続されている   In the optical transversal filter circuit, one of the two optical input ends of the first-stage optical branching coupler VC2-1 is connected to the chip end surface as the optical input port 104, and the other is connected to the chip end surface as the monitor port 105. It is connected to the. Of the two optical output ends of the first-stage optical multiplexing coupler VC8-1, one corresponding to the optical input port 104 is connected to the chip end face as the optical output port 204, and the other as the monitor port 205. Connected to chip end face

2段目以降の光分岐カプラVCx-xにおける2本の光入力端のうち、前段の光分岐カプラVCx-xとの接続に供しない光入力端は、モニタポート101〜103および106〜108としてチップ端面に接続されている。同様に、2段目以降の光合波カプラVCy-yにおける2本の光出力端のうち、前段の光合波カプラVCy-yとの接続に供しない光出力端は、モニタポート201〜203および206〜208としてチップ端面に接続されている。   Of the two optical input terminals in the second and subsequent optical branching couplers VCx-x, the optical input terminals that are not used for connection to the preceding optical branching coupler VCx-x are monitor ports 101 to 103 and 106 to 108, respectively. Connected to the chip end face. Similarly, of the two optical output terminals in the optical couplers VCy-y at the second stage and thereafter, the optical output terminals that are not used for connection with the optical coupler coupler VCy-y at the previous stage are the monitor ports 201 to 203 and 206. ˜208 are connected to the chip end face.

また、ヒータの消費電力削減のため、各薄膜ヒータの両脇には、光導波路膜を基板に達するまで除去した断熱溝16が形成されている。   Further, in order to reduce the power consumption of the heater, heat insulating grooves 16 are formed on both sides of each thin film heater by removing the optical waveguide film until it reaches the substrate.

このような構成により、多段光分岐カプラVCx-x及び多段光合波カプラVCy-yを構成する各MZI回路上の薄膜ヒータ15への通電量を適宜調整し、各MZI回路の結合率を変化させることにより、8本の光経路(タップ)の光振幅を任意に調整することが出来る。また、各光遅延線d上の薄膜ヒータへの通電量を適宜調整することにより、各タップの位相を任意に調整することができる。   With such a configuration, the energization amount to the thin film heater 15 on each MZI circuit constituting the multistage optical branching coupler VCx-x and the multistage optical multiplexing coupler VCy-y is appropriately adjusted, and the coupling rate of each MZI circuit is changed. Thus, the light amplitudes of the eight light paths (taps) can be arbitrarily adjusted. Moreover, the phase of each tap can be arbitrarily adjusted by appropriately adjusting the energization amount to the thin film heater on each optical delay line d.

本分散補償器の作製は、以下のように行った。   The dispersion compensator was manufactured as follows.

まず、シリコン基板上に火炎加水分解堆積法(FHD法)とリアクティブイオンエッチング(RIE)を用いて石英系光導波路からなる光トランスバーサルフィルタ回路を形成した。導波路の比屈折率差は1.5%、コアサイズは5μm×5μmとした。次にスパッタ法により薄膜ヒータ及び給電用電極を形成した。次に、RIEにより断熱溝を形成した。最後にチップをダイシングにより切り出した。   First, an optical transversal filter circuit composed of a silica-based optical waveguide was formed on a silicon substrate by using a flame hydrolysis deposition method (FHD method) and reactive ion etching (RIE). The relative refractive index difference of the waveguide was 1.5%, and the core size was 5 μm × 5 μm. Next, a thin film heater and a power supply electrode were formed by sputtering. Next, a heat insulating groove was formed by RIE. Finally, the chip was cut out by dicing.

本光トランスバーサルフィルタ回路を構成するのに使用した各種パラメータを表1に示す。

Figure 0004550630
Table 1 shows various parameters used to configure this optical transversal filter circuit.
Figure 0004550630

次に、所望の分散特性を得るための各タップの光振幅および位相を決定する方法を以下に述べる。   Next, a method for determining the optical amplitude and phase of each tap for obtaining desired dispersion characteristics will be described below.

今、光トランスバーサルフィルタのタップ数(光遅延線の総数)をN(Nは3以上の整数)とすると、光トランスバーサルフィルタの伝達関数は、式(数2)により表される。   Now, assuming that the number of taps (total number of optical delay lines) of the optical transversal filter is N (N is an integer of 3 or more), the transfer function of the optical transversal filter is expressed by the equation (Equation 2).

Figure 0004550630
Figure 0004550630

ここで、αn、βnは、それぞれ多段光分岐カプラと多段光合波カプラの光電界振幅の比であり、光電界振幅の二乗が光強度である。また、Φnは光位相調節手段PS1〜PS8の位相変化量、ΔLは、光遅延線の光路長差、neffは光導波路の等価屈折率、fは光周波数、cは光速であり、jは√(-1)である。 Here, α n and β n are the ratios of the optical electric field amplitudes of the multistage optical branching coupler and the multistage optical multiplexing coupler, respectively, and the square of the optical electric field amplitude is the light intensity. Φ n is the phase change amount of the optical phase adjusting means PS1 to PS8, ΔL is the optical path length difference of the optical delay line, n eff is the equivalent refractive index of the optical waveguide, f is the optical frequency, c is the speed of light, j Is √ (-1).

また、nはタップ番号であり、この番号は、光遅延線の配列番号である。ここでは、最短の長さの光遅延線から順に、0、1、2、・・・とし、最長の長さの光遅延線の番号をN−1とする。   Further, n is a tap number, and this number is an array number of the optical delay line. Here, in order from the optical delay line with the shortest length, 0, 1, 2,... Are set, and the number of the optical delay line with the longest length is N-1.

ここで、光トランスバーサルフィルタの挿入損失を低減させるため、αn=βnとし、γn=αn 2=βn 2すると、(数2)は、式(数3)のように書き直せる。 Here, in order to reduce the insertion loss of the optical transversal filter, when α n = β n and γ n = α n 2 = β n 2 , (Equation 2) can be rewritten as Equation (Equation 3).

Figure 0004550630
Figure 0004550630

今、式(数4)〜(数6)とし(ただし、mは正の整数)、さらに、タップ係数gn=γnexp(jΦn)とすると、式(数7)が得られ、周波数領域で離散化できる。

Figure 0004550630
Assuming that the equations (Equation 4) to (Equation 6) are used (where m is a positive integer), and further the tap coefficient g n = γ n exp (jΦ n ), the equation (Equation 7) is obtained and the frequency Can be discretized in a region.
Figure 0004550630

Figure 0004550630
Figure 0004550630

Figure 0004550630
Figure 0004550630

Figure 0004550630
Figure 0004550630

ここで、所望の周波数特性をG、サンプリング数をN'とすると、式(数6)から、下の離散的フーリエ変換により、式(数8)に示すタップ係数gnが求まり、式(数9)、(数10)のようにγnと位相変化量Φnが求まる。 Here, if the desired frequency characteristic is G l and the number of samplings is N ′, the tap coefficient g n shown in the equation (Equation 8) is obtained from the equation (Equation 6) by the following discrete Fourier transform, and the equation ( As in (Equation 9) and (Equation 10), γ n and the phase change amount Φ n are obtained.

Figure 0004550630
Figure 0004550630
Figure 0004550630
Figure 0004550630
Figure 0004550630
Figure 0004550630

このようにして、所望のターゲット特性を満足するタップ係数gnを求めることができる。 In this way, it is possible to determine the tap coefficient g n that satisfies the desired target properties.

本実施例に於いては、可変分散補償器を構成するので、ターゲット特性としては、通過帯域内に於ける損失の波長特性は平坦で低く、且つ通過帯域内で一定の波長分散を示す特性が望ましい。波長分散は位相の2次微分で与えられるので、位相特性としては通過帯域内で2次曲線的な特性が望ましいこととなる。   In the present embodiment, since the variable dispersion compensator is configured, the target characteristics include a characteristic that the wavelength characteristic of the loss in the pass band is flat and low, and exhibits a constant wavelength dispersion in the pass band. desirable. Since the chromatic dispersion is given by the second derivative of the phase, a quadratic curve characteristic is desirable in the pass band as the phase characteristic.

そこで、通過帯域内での損失はゼロ、位相は通過帯域中心を頂点とする2次曲線とした式(数11)に示す定義式を用い、係数εを−1.5〜1.5の範囲で変化させることにより、ターゲット特性を定義した。

Figure 0004550630
Therefore, using the definition equation shown in the equation (Equation 11), in which the loss in the passband is zero and the phase is a quadratic curve with the passband center at the top, the coefficient ε is in the range of −1.5 to 1.5. The target characteristics were defined by changing in.
Figure 0004550630

ここで、λ:波長、λc:中心波長、ε:係数である。   Here, λ: wavelength, λc: center wavelength, and ε: coefficient.

このようにして求めたターゲット特性の例を図3に示す。図3の例は係数ε=0.4の場合である。   An example of the target characteristics obtained in this way is shown in FIG. The example of FIG. 3 is for the case where the coefficient ε = 0.4.

次に、式(数8)の離散的フーリエ変換により各εの時のタップ係数を求めた。結果を表2に示す。表2よりわかる通り、光遅延線の配列番号とそれぞれの光遅延線内を通る光強度と位相の関係が、N/2の光遅延線番号を中心として対称になることがわかる。なお、Nが奇数の時には(N−1)/2の光遅延線配列番号を中心として対称になる。即ち、表2におけるタップ番号=0が省略された形となる。

Figure 0004550630
Next, the tap coefficient at each ε was obtained by the discrete Fourier transform of equation (Equation 8). The results are shown in Table 2. As can be seen from Table 2, the relationship between the array number of the optical delay line and the intensity and phase of the light passing through each optical delay line is symmetric about the N / 2 optical delay line number. When N is an odd number, the optical delay line array number of (N-1) / 2 is symmetric. That is, the tap number = 0 in Table 2 is omitted.
Figure 0004550630

続いて、求めたタップ係数を用いてタップ数=8の時に得られる損失及び群遅延スペクトルを計算した。求めた群遅延スペクトルを図4に、損失スペクトルを図5に、係数εに対する波長分散の変化を示すグラフを図6に示す。   Subsequently, the loss and group delay spectrum obtained when the number of taps = 8 was calculated using the obtained tap coefficients. FIG. 4 shows the obtained group delay spectrum, FIG. 5 shows the loss spectrum, and FIG. 6 shows a graph showing changes in chromatic dispersion with respect to the coefficient ε.

図4より、係数εの変化に応じて群遅延スペクトルの傾き、即ち波長分散が変化することがわかる。また、図5より、約0.6nmの通過帯域内における損失変動は3dB以内に抑えられていることがわかる。また、波長分散の値としては、図6に示す通り、係数ε=±1.5において、±92ps/nmが得られることがわかる。群遅延、損失ともに、同様の波形がFSRの波長間隔(波長間隔=約0.8nm、周波数間隔=100GHz)の周期で現れることになる。   FIG. 4 shows that the slope of the group delay spectrum, that is, the chromatic dispersion changes according to the change in the coefficient ε. Further, it can be seen from FIG. 5 that the loss fluctuation within the pass band of about 0.6 nm is suppressed to within 3 dB. Further, as shown in FIG. 6, it can be seen that ± 92 ps / nm is obtained as the value of chromatic dispersion when the coefficient ε = ± 1.5. For both group delay and loss, a similar waveform appears at a period of the FSR wavelength interval (wavelength interval = about 0.8 nm, frequency interval = 100 GHz).

次に、求めたタップ係数を用いて、実際の可変分散補償器を制御するが、求めたタップ係数に正確に設定するため、モニタポートに通光して各光分岐カプラ及び光合波カプラの可変分岐特性を測定した。   Next, the actual variable dispersion compensator is controlled using the obtained tap coefficient. In order to accurately set the obtained tap coefficient, light is passed through the monitor port and each optical branching coupler and optical multiplexing coupler can be changed. The branching characteristics were measured.

例えば、光分岐カプラVC2-1の特性を測定する場合、光分岐カプラVC2-1の薄膜ヒータへの通電量を変化させながらモニタポート107から波長1.55μmのLED光を入力してモニタポート207から出力された光強度を測定した。モニタポート207には光分岐カプラVC2-1で分岐された光のうち一方のみが出力されるので、その光強度は光分岐カプラVC2-1の可変分岐特性に応じて変化し、図7のような特性が得られる。これを分岐比に直すと、図8のようになるので、これを用いて、任意の分岐比に設定するための通電量を求めることができる。   For example, when measuring the characteristics of the optical branching coupler VC2-1, LED light having a wavelength of 1.55 μm is input from the monitor port 107 while changing the energization amount to the thin film heater of the optical branching coupler VC2-1. The output light intensity was measured. Since only one of the lights branched by the optical branching coupler VC2-1 is output to the monitor port 207, the light intensity changes according to the variable branching characteristics of the optical branching coupler VC2-1, as shown in FIG. Characteristics can be obtained. If this is converted into a branching ratio, it becomes as shown in FIG. 8, and this can be used to determine the energization amount for setting an arbitrary branching ratio.

一方、光分岐カプラの2つの出力ポートが共に1つの光合波カプラに接続されている場合、分岐された光のうち一方のみを測定することが出来ないため、例えば光合波カプラVC4-1の場合、モニタポート101から入力してモニタポート201に出力された光強度を測定することとした。この場合、モニタポート201には光合波カプラVC4-1で分岐された光が位相シフタPS1及びPS2を伝搬した後、光合波カプラVC5-1で再び合波されて出力されるため、分岐光間の干渉が測定の妨げとなる問題が発生する。   On the other hand, when both of the two output ports of the optical branching coupler are connected to one optical multiplexing coupler, only one of the branched lights cannot be measured. For example, in the case of the optical multiplexing coupler VC4-1 The light intensity input from the monitor port 101 and output to the monitor port 201 is measured. In this case, since the light branched by the optical multiplexing coupler VC4-1 propagates through the phase shifters PS1 and PS2 to the monitor port 201 and is output again after being combined by the optical multiplexing coupler VC5-1. There arises a problem that the interference between the two interferes with the measurement.

しかし、今回は該光分岐カプラ及び光合波カプラ間を接続する2本の光遅延線間の光路長差が測定に使用するLED光のコヒーレント長よりも十分に長いため、分岐光間の干渉は発生しないため、問題なく測定することができた。   However, this time, the optical path length difference between the two optical delay lines connecting the optical branching coupler and the optical multiplexing coupler is sufficiently longer than the coherent length of the LED light used for measurement. Since it did not occur, it was possible to measure without problems.

同様にして、他の光分岐カプラ及び光合波カプラについても通電量と分岐比の関係を測定し、すべての光分岐カプラ及び光合波カプラについて、任意の分岐比を得るための通電量を求められるようにした。   Similarly, the relationship between the energization amount and the branching ratio is measured for other optical branching couplers and optical multiplexing couplers, and the energizing amount for obtaining an arbitrary branching ratio can be obtained for all optical branching couplers and optical multiplexing couplers. I did it.

次に、各位相シフタの特性を把握するため、モニタポートより波長可変光源の光を入力し、多段光分岐カプラ及び多段光合波カプラの分岐比を適宜調整して互いに隣接する2つの位相シフタのみに等しい光強度で入力光が分配される状態として、一方の位相シフタへの通電量を変化させながら干渉スペクトルを測定した。   Next, in order to grasp the characteristics of each phase shifter, the light of the wavelength tunable light source is input from the monitor port, and the branching ratios of the multistage optical branching coupler and the multistage optical multiplexing coupler are appropriately adjusted, so that only two phase shifters adjacent to each other The interference spectrum was measured while changing the amount of current applied to one phase shifter in a state where the input light was distributed with a light intensity equal to.

例えば、位相シフタPS4−PS5間に通光しながら位相シフタPS4へ通電して測定を行う場合、光入力ポート104から入力してポート204からの出力光を測定することとし、光合波カプラVC2−1及び光合波カプラVC7−1を結合率50%に、光合波カプラVC3-1、VC3-2、VC6-1、VC6-2を結合率0%に、光合波カプラVC4-2、VC4−3、VC5−2、VC5−3を結合率100%に設定することにより、位相シフタPS4と位相シフタPS5にそれぞれ50%の割合で光が分岐されるようにした。   For example, when measurement is performed by energizing the phase shifter PS4 while passing light between the phase shifters PS4 and PS5, the input light from the optical input port 104 is measured and the output light from the port 204 is measured, and the optical multiplexing coupler VC2- 1 and the optical multiplexing coupler VC7-1 at a coupling rate of 50%, the optical multiplexing couplers VC3-1, VC3-2, VC6-1, VC6-2 at a coupling rate of 0%, the optical multiplexing couplers VC4-2, VC4-3 , VC5-2, and VC5-3 are set to a coupling rate of 100%, so that light is branched to the phase shifter PS4 and the phase shifter PS5 at a ratio of 50%.

このようにして測定した結果を図9に、図9に示すピーク波長と通電量の関係を図10に示す。図9、10より、通電量の変化に伴い、波長シフトが発生し、約650mWの通電により無通電時の隣接ピークと重なることがわかる。即ち、約650mWの通電により位相が1回転(2π)シフトすることになる。この結果から、任意の位相シフト量に設定するための位相シフタPS4への通電量を求めることができる。   The measurement results are shown in FIG. 9, and the relationship between the peak wavelength and the energization amount shown in FIG. 9 is shown in FIG. 9 and 10, it can be seen that a wavelength shift occurs with a change in the energization amount and overlaps with an adjacent peak at the time of no energization due to energization of about 650 mW. That is, the phase shifts by one rotation (2π) by energization of about 650 mW. From this result, the energization amount to the phase shifter PS4 for setting an arbitrary phase shift amount can be obtained.

同様にして他の位相シフタの特性も測定した。   Similarly, the characteristics of other phase shifters were also measured.

しかしながら、無通電状態におけるすべての隣接する位相シフタ間のスペクトル測定結果を比較したところ、本来であれば隣接する位相シフタ間の光路長差は一定値であるためすべての波形は一致するはずであるが、実際には図11に示すように波形が一致しないことがわかった。これは作製プロセス誤差により、実効的な光路長差がわずかに変動しているためと考えられる。   However, when comparing the spectrum measurement results between all adjacent phase shifters in the non-energized state, the optical path length difference between adjacent phase shifters is a constant value, so all waveforms should match. However, it was found that the waveforms do not coincide as shown in FIG. This is presumably because the effective optical path length difference slightly varies due to manufacturing process errors.

そこで、上記のようにして測定した位相シフタの駆動特性を用い、すべての波形が一致するように各位相シフタに通電を行い、誤差の補正を行なった。結果を図12に示す。   Therefore, using the phase shifter driving characteristics measured as described above, each phase shifter was energized so that all the waveforms matched to correct the error. The results are shown in FIG.

図12より、各隣接位相シフタ間で測定した波形が一致していることがわかる。以後の測定においては、この状態を初期値として位相シフトを与えることにより、正確に所望の位相に設定することができた。   FIG. 12 shows that the waveforms measured between the adjacent phase shifters match. In the subsequent measurement, it was possible to accurately set a desired phase by giving a phase shift with this state as an initial value.

以上のようにして得られた特性を用い、各光分岐カプラ、光合波カプラ、および位相シフタの通電量を表2の各タップ係数を満足するように設定した。   Using the characteristics obtained as described above, the energization amounts of the respective optical branching couplers, optical multiplexing couplers, and phase shifters were set so as to satisfy the respective tap coefficients in Table 2.

各光分岐カプラ、光合波カプラの分岐比設定にあたっては、例えば光合波カプラVC4−1と光合波カプラVC5−1のように、光遅延線を挟んで対称な位置にある光分岐カプラおよび光合波カプラの分岐比が等しくなるように設定し、合波時に過剰な損失が発生しないようにした。   When setting the branching ratio of each optical branching coupler and optical multiplexing coupler, for example, as in the optical multiplexing coupler VC4-1 and the optical multiplexing coupler VC5-1, the optical branching coupler and the optical multiplexing at symmetrical positions with the optical delay line in between. The coupler branching ratio is set to be equal so that excessive loss does not occur during multiplexing.

このようにして測定した群遅延スペクトルを図13に、損失スペクトルを図14に、係数εに対する波長分散の変化を示すグラフを図15に示す。   FIG. 13 shows the group delay spectrum measured in this way, FIG. 14 shows the loss spectrum, and FIG. 15 shows a graph showing the change in chromatic dispersion with respect to the coefficient ε.

図13より、係数εの変化に応じて群遅延スペクトルの傾き、即ち波長分散が変化することが確認できた。また、図14より、係数ε=±1.5の時の約0.6nmの通過帯域内における最小損失は約10.4dBであり、損失変動は3.5dB程度であった。また、群遅延、損失ともに、FSR=約0.8nm(周波数間隔=100GHz)の周期で同様の波形が確認できた。波長分散の値としては、図15に示す通り、係数ε=±1.5において、約±90ps/nmが得られた。   From FIG. 13, it was confirmed that the slope of the group delay spectrum, that is, the chromatic dispersion changes according to the change of the coefficient ε. Further, from FIG. 14, the minimum loss in the pass band of about 0.6 nm when the coefficient ε = ± 1.5 is about 10.4 dB, and the loss fluctuation is about 3.5 dB. Moreover, the same waveform could be confirmed with a period of FSR = 0.8 nm (frequency interval = 100 GHz) for both group delay and loss. As a value of chromatic dispersion, as shown in FIG. 15, about ± 90 ps / nm was obtained at a coefficient ε = ± 1.5.

なお、上記すべての光学特性測定に際しては、偏光子と偏波保持ファイバを用いてTE偏波光のみを可変分散補償器に入力して行った。これは、本実施形態例の可変分散補償器は偏波依存性を有するためである。   Note that all the optical characteristics were measured by inputting only TE polarized light into the tunable dispersion compensator using a polarizer and a polarization maintaining fiber. This is because the tunable dispersion compensator of this embodiment example has polarization dependency.

従って、本実施形態例の可変分散補償器を任意偏波が伝搬するシステムに適用する場合は、図16に示すようにサーキュレータ21を通して偏波スプリッタ/コンバイナ22に伝搬光を挿入し、TE偏波光とTM偏波光に分離したのち、偏波保持ファイバ23を用いて、TE偏波光は可変分散補償器24の光入力端から入力し、TM偏波光はTE偏波光に変換した上で可変分散補償器24の光出力端から入力し、可変分散補償器24を通過後の各偏波光を再び偏波スプリッタ/コンバイナ22により合波し、サーキュレータ21を通して出力させる、所謂偏波ダイバーシティ技術を用いて使用すれば良い。   Therefore, when the tunable dispersion compensator of this embodiment is applied to a system in which arbitrary polarization propagates, propagation light is inserted into the polarization splitter / combiner 22 through the circulator 21 as shown in FIG. And TM polarization light, and then using the polarization maintaining fiber 23, TE polarization light is input from the optical input end of the tunable dispersion compensator 24, and TM polarization light is converted into TE polarization light and then tunable dispersion compensation is performed. This is used by using so-called polarization diversity technology in which each polarized light that has been input from the optical output terminal of the optical device 24 and passes through the tunable dispersion compensator 24 is again combined by the polarization splitter / combiner 22 and output through the circulator 21. Just do it.

次に、本発明の第二の実施形態を、図面を参照して説明する。図17には、本発明に係る可変分散補償器の構成図を示す。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 17 shows a configuration diagram of a tunable dispersion compensator according to the present invention.

本実施例による可変分散補償器の構成は、第一の実施例による可変分散補償器とほぼ同様であるが、4段の光分岐カプラVCx-x(x-xは1-1から4-8間の任意の値)および光合波カプラVCy-y(y-yは5-1から8-1間の任意の値)と16個の位相シフタPS1〜PS16からなる16タップの光トランスバーサルフィルタ回路で構成されている。   The configuration of the tunable dispersion compensator according to the present embodiment is almost the same as that of the tunable dispersion compensator according to the first embodiment, but the four-stage optical branching coupler VCx-x (xx is 1-1 to 4-8). 16-tap optical transversal filter circuit composed of an optical multiplexing coupler VCy-y (y is an arbitrary value between 5-1 and 8-1) and 16 phase shifters PS1 to PS16 It consists of

また、本実施例による可変分散補償器では、可変分散補償器を構成する石英系光導波路チップ上に導波路型偏波スプリッタ/コンバイナ31と半波長板32が集積化されている。   In the tunable dispersion compensator according to the present embodiment, a waveguide polarization splitter / combiner 31 and a half-wave plate 32 are integrated on a quartz optical waveguide chip constituting the tunable dispersion compensator.

このように、タップ数を16に増やすことにより、トランスバーサルフィルタの分解能が高まり、より大きな波長分散が得られるようになり、また導波路型偏波スプリッタ/コンバイナ31と半波長板32を集積化することにより部品点数の削減・小型化などが可能となるが、図17中に破線で囲って示すようにモニタ用導波路との交差部分が増加するため、交差部における放射損失の増大が問題となる。   Thus, by increasing the number of taps to 16, the resolution of the transversal filter is increased, and a larger wavelength dispersion can be obtained, and the waveguide-type polarization splitter / combiner 31 and the half-wave plate 32 are integrated. As a result, the number of parts can be reduced and the size can be reduced. However, since the number of intersections with the monitor waveguide increases as shown by the broken lines in FIG. 17, an increase in radiation loss at the intersections is a problem. It becomes.

図17より分かるとおり、本実施例の光トランスバーサルフィルタ回路において交差導波路が存在するのは、各光分岐カプラVCx-x間または各光合波カプラVCy-y間を接続する接続導波路乃至偏波スプリッタ/コンバイナと光トランスバーサルフィルタ回路間を接続する接続導波路と、モニタポート用導波路との交差部分である。   As can be seen from FIG. 17, the cross waveguides exist in the optical transversal filter circuit of this embodiment because the connection waveguides or polarizations connecting the optical branching couplers VCx-x or optical multiplexing couplers VCy-y. This is the intersection of the connection waveguide connecting the wave splitter / combiner and the optical transversal filter circuit and the monitor port waveguide.

ここで、実際に分散補償器として使用する場合、前記各接続導波路には信号光が伝搬するので損失増加が問題となるが、モニタポート用導波路は光分岐カプラ等の特性把握時に用いるだけで、信号光は伝搬しないので、特性把握に支障が出ない程度であれば損失増加が発生しても問題は無い。   Here, when actually used as a dispersion compensator, signal light propagates through each of the connection waveguides, so there is a problem of increased loss. However, the monitor port waveguide is used only for grasping the characteristics of an optical branching coupler or the like. Since the signal light does not propagate, there is no problem even if the loss increases as long as the characteristics are not hindered.

そこで、本実施例においては、各光分岐カプラ間を接続する接続導波路または各光合波カプラ間を接続する接続導波路と、モニタポート用導波路との交差部分において、モニタ用導波路に不連続部分を設け、接続導波路とモニタ用導波路とが互いに分離されるようにした。   Therefore, in this embodiment, the monitor waveguide is not connected at the intersection of the connection waveguide connecting each optical branching coupler or the connection waveguide connecting each optical multiplexing coupler with the monitor port waveguide. A continuous portion was provided so that the connecting waveguide and the monitoring waveguide were separated from each other.

図18にその交差部分の模式図を示す。図18に示すように、接続導波路41とモニタ用導波路42との交差部分においては、モニタ用導波路42に不連続部分43を設け、モニタ用導波路42の不連続部分43間の端面を接続導波路41と平行になるようにした。   FIG. 18 shows a schematic diagram of the intersection. As shown in FIG. 18, at the intersection between the connection waveguide 41 and the monitor waveguide 42, a discontinuous portion 43 is provided in the monitor waveguide 42, and an end surface between the discontinuous portions 43 of the monitor waveguide 42. Was made parallel to the connection waveguide 41.

これにより、入出力ポート109から入力し、再び入出力ポート109出力される信号光の各経路にモニタ用導波路との接触部分が無くなるので、損失増加を抑制できる。   Thereby, since there is no contact portion with the monitoring waveguide in each path of the signal light that is input from the input / output port 109 and is output again from the input / output port 109, an increase in loss can be suppressed.

しかしながら、不連続部分の大きさによっては接続導波路に若干の損失が発生したり、モニタ用導波路の損失が大きくなりすぎるため、不連続部分の大きさと各導波路の交差部における損失の関係を調べた。   However, depending on the size of the discontinuous part, some loss may occur in the connecting waveguide, or the loss of the monitoring waveguide will be too large, so the relationship between the size of the discontinuous part and the loss at the intersection of each waveguide I investigated.

図19は、接続導波路の中心線から不連続部分の端面までの垂直距離(図18中のG、以下ギャップGという。)と、接続導波路およびモニタ用導波路の損失の関係を交差角45度及び63度の場合について調べたものである。比較のため、不連続部分無しの場合についても調べ、ギャップG=0μmとして図19にプロットした。なお、図19は図18に示す交差部分を24点有する導波路で測定したものである。   FIG. 19 shows the relationship between the vertical distance from the center line of the connection waveguide to the end face of the discontinuous portion (G in FIG. 18; hereinafter referred to as gap G) and the loss of the connection waveguide and the monitoring waveguide. The case of 45 degrees and 63 degrees was examined. For comparison, a case without a discontinuous portion was also examined and plotted in FIG. 19 with a gap G = 0 μm. FIG. 19 shows the measurement with a waveguide having 24 points of intersection as shown in FIG.

図19より、接続導波路については、ギャップG=4.65μmで大幅に損失低下し、6.4μm以上でほぼ損失がゼロとなるのが分かる。一方、モニタ用導波路については、ギャップGの増大とともに損失が増加し、ギャップG=8.1μmで約20dBの損失が生じている。しかしながら、交差一点あたりの損失で考えると1dB/点以下の損失であり、特性把握用測定で使用する経路での交差点数は図17の場合最大6点なので(例えばポート112からポート212)、損失としては6dB以下であるので、特性把握用としては支障の無い損失である。従って、G=4.65〜8.1μm程度の範囲であれば問題なく使用できると考えられる。   From FIG. 19, it can be seen that for the connection waveguide, the loss is significantly reduced when the gap G = 4.65 μm, and the loss becomes almost zero at 6.4 μm or more. On the other hand, for the monitoring waveguide, the loss increases as the gap G increases, and a loss of about 20 dB occurs when the gap G = 8.1 μm. However, when considering the loss per intersection, the loss is 1 dB / point or less, and the maximum number of intersections in the path used for characteristic measurement is 6 in the case of FIG. 17 (for example, port 112 to port 212). Is 6 dB or less, so it is a loss without any problem for the purpose of grasping characteristics. Therefore, it can be considered that it can be used without problems if G is in the range of about 4.65 to 8.1 μm.

この結果から、図17に示した光トランスバーサルフィルタ回路の交差部分では、モニタ用導波路にギャップG=6.4μmの不連続部分を設けた。   From this result, a discontinuous portion with a gap G = 6.4 μm was provided in the monitoring waveguide at the intersection of the optical transversal filter circuit shown in FIG.

このようにして設計した光トランスバーサルフィルタ回路を用いた可変分散補償器を第一の実施例と同様に作製・評価した。評価に当たっては、モニタポートを用いた測定については第1の実施例と同様に偏光子と偏波保持ファイバを用いてTE偏波のみを入力して行い、分散特性の測定時にはサーキュレータを通じて入出力端にシングルモードファイバを接続して行った。   A tunable dispersion compensator using the optical transversal filter circuit designed as described above was produced and evaluated in the same manner as in the first embodiment. In the evaluation, the measurement using the monitor port is performed by inputting only the TE polarized light using the polarizer and the polarization maintaining fiber as in the first embodiment, and the dispersion characteristic is measured through the circulator. A single mode fiber was connected to the cable.

なお、モニタポートを用いた測定時の損失が実施例1の場合と比較して最大6dB増加したが、通電量と分岐比または位相シフトの関係を把握する上では支障にはならなかった。   In addition, although the loss at the time of measurement using a monitor port increased by 6 dB at maximum compared with the case of Example 1, it did not become a hindrance in grasping the relationship between an energization amount and a branching ratio or a phase shift.

このようにして測定した群遅延スペクトルを図20に、損失スペクトルを図21に、係数εに対する通過帯域幅および波長分散の変化を示すグラフを図22に示す。これらのグラフより、係数ε=±2.0において、約±105ps/nmの波長分散、約0.6nmの通過帯域、約7.7dBの帯域内最小損失、1.2dB以内の帯域内損失変動が得られた。   FIG. 20 shows the group delay spectrum thus measured, FIG. 21 shows the loss spectrum, and FIG. 22 shows a graph showing changes in the pass bandwidth and chromatic dispersion with respect to the coefficient ε. From these graphs, when the coefficient ε is ± 2.0, the chromatic dispersion is about ± 105 ps / nm, the passband is about 0.6 nm, the in-band minimum loss is about 7.7 dB, and the in-band loss fluctuation is within 1.2 dB. was gotten.

なお、比較のため、交差部に不連続部を有しない可変分散補償器を作製したところ、約8.8dBの帯域内最小損失となり、約1.1dB高いことが分かった。これは交差部での損失のためである。   For comparison, when a tunable dispersion compensator having no discontinuous portion at the intersection was fabricated, it was found that the in-band minimum loss was about 8.8 dB, which was about 1.1 dB higher. This is due to loss at the intersection.

なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。   In addition, this invention is not limited to the said embodiment example, Various aspects can be taken.

例えば分散補償器を形成する光トランスバーサルフィルタのタップ数は特に限定されるものでなく適宜設定されるものである。   For example, the number of taps of the optical transversal filter that forms the dispersion compensator is not particularly limited, and is appropriately set.

また、交差部の形状は図17に示したものに限らず、例えば図23aに示すようにモニタ用導波路42と不連続部分43との境界線角度が接続導波路41と平行でない形状や、図23bに示すようにモニタ用導波路42と接続導波路41の幅方向や深さ方向の一部が接触する形状や、図23cに示すように接続導波路41の方側面にのみ不連続部分が存在する形状など、接続導波路41およびモニタ用導波路42に求められる損失に応じて適宜選択可能である。   In addition, the shape of the intersection is not limited to that shown in FIG. 17, for example, as shown in FIG. 23a, the boundary angle between the monitoring waveguide 42 and the discontinuous portion 43 is not parallel to the connection waveguide 41, As shown in FIG. 23b, the shape in which a part in the width direction and the depth direction of the monitoring waveguide 42 and the connection waveguide 41 are in contact with each other, or the discontinuous portion only on the side surface of the connection waveguide 41 as shown in FIG. The shape can be appropriately selected according to the loss required for the connection waveguide 41 and the monitoring waveguide 42.

また、上記実施形態例においてはFHD法とRIE法によって作製した石英系光導波路を用いたが、これに限定されるものではなく、ポリマーや半導体などの各種導波路材料や、化学的気相成長法、やスパッタリング法、蒸着法、塗布法などの各種成膜法、リフトオフ法、ウェットエッチング、型押し成型、押し出し成型、射出成型などの各種導波路パターン形成法適宜選択可能である。   In the above embodiment, the quartz optical waveguide manufactured by the FHD method and the RIE method is used. However, the present invention is not limited to this. Various waveguide materials such as polymers and semiconductors, chemical vapor deposition, and the like are used. Various waveguide pattern forming methods such as a method, various film forming methods such as a sputtering method, a vapor deposition method, and a coating method, a lift-off method, wet etching, stamping molding, extrusion molding, and injection molding can be appropriately selected.

また、上記実施形態例においては分岐比調節手段および位相調節手段として熱光学効果を利用した薄膜ヒータを用いたが、これに限定されるものではなく、電気光学効果や音響光学効果、磁気光学効果などを用いた種々の調節手段が選択可能である。   In the above embodiment, the thin film heater using the thermo-optic effect is used as the branching ratio adjusting means and the phase adjusting means. However, the invention is not limited to this, and the electro-optic effect, the acousto-optic effect, and the magneto-optic effect are not limited thereto. Various adjustment means using the above can be selected.

また、上記実施形態例においては2次関数状の位相特性を有するターゲット特性を用いたが、これに限定されるものではなく、サイン関数形状などの各種関数形状や、分散補償すべき伝送路の分散特性の逆特性をそのままターゲット特性として用いるなど、適宜選択可能である。   In the above embodiment, the target characteristic having a quadratic function-like phase characteristic is used. However, the present invention is not limited to this. Various function shapes such as a sine function shape, and the transmission path to be compensated for dispersion are used. For example, the inverse characteristic of the dispersion characteristic can be used as it is as the target characteristic.

また、上記実施形態例においてはFSRを100GHzに設定したが、これに限定されるものではなく、必要とされる分散補償量や帯域を鑑みて適宜設定可能である。   In the above embodiment, the FSR is set to 100 GHz. However, the present invention is not limited to this, and can be set as appropriate in view of the required dispersion compensation amount and band.

第一実施例による可変分散補償器の回路構成を示す模式図。The schematic diagram which shows the circuit structure of the variable dispersion compensator by a 1st Example. 光分岐カプラおよび光導波カプラの構成を示す模式図。The schematic diagram which shows the structure of an optical branch coupler and an optical waveguide coupler. 第一実施例で用いたターゲット特性を示す特性図。The characteristic view which shows the target characteristic used in the 1st Example. 第一実施例での可変分散補償器の群遅延スペクトル計算結果を示す特性図。The characteristic view which shows the group delay spectrum calculation result of the variable dispersion compensator in a 1st Example. 第一実施例での可変分散補償器の損失スペクトル計算結果を示す特性図。The characteristic view which shows the loss spectrum calculation result of the variable dispersion compensator in a 1st Example. 第一実施例での係数εに対する波長分散変化の計算結果を示す特性図。The characteristic view which shows the calculation result of the chromatic dispersion change with respect to the coefficient (epsilon) in a 1st Example. 第一実施例での光分岐カプラVC2-1の通電量に対する損失変化測定結果を示す特性図。The characteristic view which shows the loss change measurement result with respect to the energization amount of the optical branching coupler VC2-1 in a 1st Example. 第一実施例での光分岐カプラVC2-1の通電量に対する損失変化を分岐比変化に変換した結果を示す特性図。The characteristic view which shows the result of having converted the loss change with respect to the energizing amount of the optical branching coupler VC2-1 in a 1st Example into the branching ratio change. 第一実施例での位相シフタPS−4の通電量に対する位相シフタPS−4、PS−5間の干渉スペクトル変化測定結果を示す特性図。The characteristic view which shows the interference spectrum change measurement result between phase shifters PS-4 and PS-5 with respect to the energization amount of phase shifter PS-4 in a 1st Example. 第一実施例での位相シフタPS−4の通電量に対する位相シフタPS−4、PS−5間の干渉スペクトルピーク波長変化の測定結果を示す特性図。The characteristic view which shows the measurement result of the interference spectrum peak wavelength change between phase shifter PS-4 and PS-5 with respect to the energization amount of phase shifter PS-4 in a 1st Example. 第一実施例での無通電時における各隣接位相シフタ間の干渉スペクトルを示す特性図。The characteristic view which shows the interference spectrum between each adjacent phase shifter at the time of the no electricity supply in a 1st Example. 第一実施例での誤差補正後の各隣接位相シフタ間の干渉スペクトルを示す特性図。The characteristic view which shows the interference spectrum between each adjacent phase shifter after the error correction in a 1st Example. 第一実施例での可変分散補償器の群遅延スペクトル測定結果を示す特性図。The characteristic view which shows the group delay spectrum measurement result of the variable dispersion compensator in a 1st Example. 第一実施例での可変分散補償器の損失スペクトル測定結果を示す特性図。The characteristic view which shows the loss spectrum measurement result of the variable dispersion compensator in a 1st Example. 第一実施例での係数εに対する波長分散変化特性を示す特性図。The characteristic view which shows the chromatic dispersion change characteristic with respect to the coefficient (epsilon) in a 1st Example. 第一実施例による可変分散補償器の偏波ダイバーシティを用いたシステム適用例を示す模式図。The schematic diagram which shows the system application example using the polarization diversity of the variable dispersion compensator by a 1st Example. 第二実施例による可変分散補償器の回路構成を示す模式図。The schematic diagram which shows the circuit structure of the variable dispersion compensator by a 2nd Example. 第二実施例による可変分散補償器の交差部分を示す模式図。The schematic diagram which shows the cross | intersection part of the variable dispersion compensator by a 2nd Example. 接続導波路中心からモニタ用導波路の不連続部分端面までのギャップGに対する交差損失変化特性を示す特性図。The characteristic view which shows the cross loss change characteristic with respect to the gap G from the connection waveguide center to the discontinuous part end surface of the waveguide for monitoring. 第二実施例での可変分散補償器の群遅延スペクトル測定結果を示す特性図。The characteristic view which shows the group delay spectrum measurement result of the variable dispersion compensator in a 2nd Example. 第二実施例での可変分散補償器の損失スペクトル測定結果を示す特性図。The characteristic view which shows the loss spectrum measurement result of the variable dispersion compensator in a 2nd Example. 第二実施例での係数εに対する波長分散変化を示す特性図。The characteristic view which shows the chromatic dispersion change with respect to the coefficient (epsilon) in a 2nd Example. モニタ用導波路の不連続部分形状の他の変形例を示す模式図。The schematic diagram which shows the other modification of the discontinuous part shape of the waveguide for a monitor. 従来のラティスフィルタを用いた可変分散補償器の一例を示す模式図。The schematic diagram which shows an example of the variable dispersion compensator using the conventional lattice filter. 従来のトランスバーサルフィルタの一例を示す構成図。The block diagram which shows an example of the conventional transversal filter.

符号の説明Explanation of symbols

11 光導波路
12 光導波路
11'・12' 接続導波路
13・14 方向性結合器
15 薄膜ヒータ
16 断熱溝
21 サーキュレータ
22 偏波スプリッタ/コンバイナ
23 偏波保持ファイバ
24 可変分散補償器
31 導波路型偏波スプリッタ/コンバイナ
32 半波長板
41 接続導波路
42 モニタ用導波路
43 不連続部分
104 光入力ポート
109 入出力ポート
204 光出力ポート
n タップ係数
G ギャップ
PS 位相シフタ
VCx-x 光分岐カプラ
VCy-y 光合波カプラ
d 光遅延線
k 光合波器
ε 係数
ψ1-ψn 位相シフタ
DESCRIPTION OF SYMBOLS 11 Optical waveguide 12 Optical waveguide 11 '* 12' Connection waveguide 13 * 14 Directional coupler 15 Thin film heater 16 Heat insulation groove | channel 21 Circulator 22 Polarization splitter / combiner 23 Polarization holding fiber 24 Variable dispersion compensator 31 Waveguide type polarization Wave splitter / combiner 32 Half-wave plate 41 Connecting waveguide 42 Monitoring waveguide 43 Discontinuous portion 104 Optical input port 109 Input / output port 204 Optical output port g n Tap coefficient G Gap PS Phase shifter VCx-x Optical branching coupler VCy- y optical multiplexing coupler d optical delay line k optical multiplexer ε coefficient ψ1-ψn phase shifter

Claims (7)

基板上に形成された光導波路の回路を有し、
該光導波路の回路は、
光分岐カプラを各ノードに配置したツリー構造を備える多段光分岐カプラであって、当該ツリー構造は、ルートノードに該当する一の光分岐カプラを初段とし、当該一の光分岐カプラに入力された光が分岐されて出力され、当該分岐されて出力された光のそれぞれが次段の別個の光分岐カプラに入力され、段が進むにつれて分岐数が増加する構造である多段光分岐カプラと、
前記多段分光岐カプラの最終段から出力された光をそれぞれ入力し、伝搬光の伝搬時間を設定時間遅延させてそれぞれ出力する複数の光遅延線と、
光合波カプラが前記光遅延線を挟んで前記光分岐カプラと対称な位置に配置された逆ツリー構造を備える多段光合波カプラであって、当該逆ツリー構造は、それぞれが有する光入力端が前記光遅延線と一対一に接続された複数の光合波カプラを初段とし、前記初段の光合波カプラに入力された光がそれぞれ合波されて出力され、当該合波されて出力された光のそれぞれが次段の別個の光合波カプラに入力され、段が進むにつれて分岐数が減少し、最終段の一の光合波カプラから光を出力する構造である多段光合波カプラと、
前記光遅延線は互いに間隔を介して並設されて該並設方向の一端側から他端側に向けて順に長さが設定量ずつ長くなるように形成されて光トランスバーサルフィルタ回路を構成し、一個以上の前記光分岐カプラには光分岐比を可変可能な光分岐比調節手段を設け、一個以上の前記光合波カプラには光合波比を可変可能な光合波比調節手段を設け、一本以上の前記光遅延線には伝搬光の位相を可変可能な光位相調節手段を設け、前記光遅延線を挟んで対称な位置に配置される前記光分岐カプラおよび前記光合波カプラのそれぞれの分岐光の強度比および合波光の強度比を互いに等しい設定値に調節し、かつ、前記初段の前記光分岐カプラの光入力端(光入力ポート)から入力されて前記最終段の前記光合波カプラの光出力端(光出力ポート)から出力される光の通過波長特性が所定の通過波長帯域内において所望の群遅延特性を有するように調節し
前記基板上には、共通ポートから入力される光を直交する2つの偏波モード光に分離して第一および第二の偏波ポートから出力し、更にこの第一および第二の偏波ポートから入力される互いに直交する2つの偏波モード光を合成して前記共通ポートから出力する導波路型偏波スプリッタ/コンバイナが集積され、前記第一または第二の偏波ポートには半波長板が挿入され、前記第一の偏波ポートは前記初段の前記光分岐カプラの前記光入力端に接続され、前記第二の偏波ポートは前記最終段の前記光合波カプラの前記光出力端に接続されていることを特徴とする可変分散補償器。
An optical waveguide circuit formed on the substrate;
The optical waveguide circuit is:
A multi-stage optical branching coupler having a tree structure in which an optical branching coupler is arranged at each node. The tree structure has one optical branching coupler corresponding to the root node as the first stage and is input to the one optical branching coupler. A multi-stage optical branch coupler having a structure in which light is branched and output, each of the branched and output lights is input to a separate optical branch coupler of the next stage, and the number of branches increases as the stage progresses;
A plurality of optical delay lines that respectively input the light output from the final stage of the multistage spectral coupler, and output the propagation light by delaying the propagation time by a set time,
An optical multiplexing coupler is a multi-stage optical multiplexing coupler having an inverted tree structure arranged at a position symmetrical to the optical branching coupler with the optical delay line in between, and the inverted tree structure has an optical input end included in each of the optical input couplers. A plurality of optical multiplexing couplers connected to the optical delay line in a one-to-one relationship are used as the first stage, and the light input to the first stage optical multiplexing coupler is combined and output, and each of the combined output lights is output. Is input to a separate optical multiplexing coupler in the next stage, the number of branches decreases as the stage progresses, and a multistage optical multiplexing coupler that outputs light from one optical multiplexing coupler in the final stage;
The optical delay lines are arranged in parallel with each other at an interval, and are formed so that the length increases in order from one end side to the other end side in the juxtaposed direction, thereby constituting an optical transversal filter circuit. One or more optical branching couplers are provided with optical branching ratio adjusting means capable of changing the optical branching ratio, and one or more optical multiplexing couplers are provided with optical multiplexing ratio adjusting means capable of changing the optical multiplexing ratio, Each of the optical delay lines of the number or more is provided with an optical phase adjusting means capable of changing the phase of propagating light, and each of the optical branching coupler and the optical multiplexing coupler arranged at symmetrical positions with the optical delay line interposed therebetween . The intensity ratio of the branched light and the intensity ratio of the multiplexed light are adjusted to be equal to each other , and input from the optical input terminal (optical input port) of the first-stage optical branching coupler and the final-stage optical multiplexing coupler Optical output end (optical output port) Pass wavelength characteristic of the light output is adjusted to have a desired group delay characteristic in a predetermined wavelength passband,
On the substrate, the light input from the common port is separated into two orthogonal polarization mode lights and output from the first and second polarization ports, and the first and second polarization ports Is integrated with a waveguide-type polarization splitter / combiner that synthesizes two orthogonally polarized light beams input from each other and outputs them from the common port, and the first or second polarization port has a half-wave plate Is inserted, and the first polarization port is connected to the optical input terminal of the first-stage optical branching coupler, and the second polarization port is connected to the optical output terminal of the final-stage optical multiplexing coupler. A variable dispersion compensator characterized by being connected.
多段光分岐カプラ乃至多段光合波カプラには各段の光分岐カプラ乃至光合波カプラの分岐比をモニタするためのモニタ用導波路が少なくとも1本接続されていることを特徴とする請求項1に記載の可変分散補償器。   2. The multistage optical branching coupler or multistage optical multiplexing coupler is connected to at least one monitoring waveguide for monitoring the branching ratio of each stage of optical branching coupler or optical multiplexing coupler. The variable dispersion compensator as described. 各段の光分岐カプラは2入力型の光カプラで構成され、該光カプラの2本の光入力端のうち、可変分散補償器の光入力端または他の光分岐カプラの光出力端との接続に供しない光入力端が前記モニタ用導波路に接続されていることを特徴とする請求項2に記載の可変分散補償器。   Each stage of the optical branching coupler is composed of a two-input type optical coupler. Of the two optical input terminals of the optical coupler, the optical input terminal of the tunable dispersion compensator or the optical output terminal of another optical branching coupler. The variable dispersion compensator according to claim 2, wherein an optical input terminal not used for connection is connected to the monitoring waveguide. 各段の光合波カプラは2出力型の光カプラで構成され、該光カプラの2本の光出力端のうち、可変分散補償器の光出力端または他の光合波カプラの光入力端との接続に供しない光出力端が前記モニタ用導波路に接続されていることを特徴とする請求項2または請求項3に記載の可変分散補償器。   The optical multiplexing coupler at each stage is composed of a two-output type optical coupler. Of the two optical output terminals of the optical coupler, the optical output terminal of the tunable dispersion compensator or the optical input terminal of another optical multiplexing coupler. 4. The tunable dispersion compensator according to claim 2, wherein an optical output end not to be connected is connected to the monitoring waveguide. 一本以上のモニタ用導波路は各光分岐カプラ間または各光合波カプラ間を接続する接続導波路乃至偏波スプリッタ/コンバイナと光トランスバーサルフィルタ回路間を接続する接続導波路と交差し、その交差部においてモニタ用導波路に不連続部分が設けられていることを特徴とする請求項2ないし請求項4のいずれか1に記載の可変分散補償器。   One or more monitoring waveguides intersect the connecting waveguide connecting each optical branching coupler or each optical multiplexing coupler or the connecting waveguide connecting the polarization splitter / combiner and the optical transversal filter circuit. 5. The variable dispersion compensator according to claim 2, wherein a discontinuous portion is provided in the monitoring waveguide at the intersection. 不連続部分に接するモニタ用導波路の端面は接続導波路に平行であることを特徴とする請求項5に記載の可変分散補償器。   6. The tunable dispersion compensator according to claim 5, wherein an end face of the monitoring waveguide in contact with the discontinuous portion is parallel to the connecting waveguide. 光遅延線の配列番号を、最短の長さの光遅延線から順に、0、1、2として最長の長さの光遅延線の番号をN−1(Nは3以上の整数)としたとき、光遅延線の配列番号とそれぞれの光遅延線内を通る光強度および位相との関係が、Nが偶数の時にはN/2の光遅延線番号を中心とし、Nが奇数の時には(N−1)/2の光遅延線配列番号を中心として対称に形成されていることを特徴とする請求項1ないし請求項6のいずれか1に記載の可変分散補償器。   When the optical delay line array number is 0, 1 and 2 in order from the shortest optical delay line number, and the longest optical delay line number is N-1 (N is an integer of 3 or more). The relationship between the array number of the optical delay line and the light intensity and phase passing through each optical delay line is centered on the optical delay line number of N / 2 when N is an even number, and (N− 7. The variable dispersion compensator according to claim 1, wherein the tunable dispersion compensator is formed symmetrically about an optical delay line array number of 1) / 2.
JP2005068548A 2005-03-11 2005-03-11 Variable dispersion compensator Expired - Fee Related JP4550630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068548A JP4550630B2 (en) 2005-03-11 2005-03-11 Variable dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068548A JP4550630B2 (en) 2005-03-11 2005-03-11 Variable dispersion compensator

Publications (2)

Publication Number Publication Date
JP2006251429A JP2006251429A (en) 2006-09-21
JP4550630B2 true JP4550630B2 (en) 2010-09-22

Family

ID=37091995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068548A Expired - Fee Related JP4550630B2 (en) 2005-03-11 2005-03-11 Variable dispersion compensator

Country Status (1)

Country Link
JP (1) JP4550630B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013928A1 (en) * 2004-08-04 2006-02-09 The Furukawa Electric Co., Ltd. Optical circuit device
JP4902447B2 (en) * 2007-07-06 2012-03-21 日本電信電話株式会社 Chromatic dispersion compensation circuit
JP4991596B2 (en) * 2008-02-26 2012-08-01 株式会社東芝 Optical waveguide circuit and multi-core central processing unit using the same
US20140334769A1 (en) * 2011-05-10 2014-11-13 Nec Corporation Optical circuit
EP2597792B1 (en) * 2011-11-28 2016-04-20 Alcatel Lucent Optical MIMO processing
JP6384860B2 (en) 2014-07-31 2018-09-05 日東電工株式会社 Optical waveguide and position sensor using the same
JP7425535B2 (en) * 2018-12-28 2024-01-31 ウニヴェルシダッド ポリテクニカ デ バレンシア Photonic chips, field programmable photonic arrays and photonic integrated circuits
WO2020213067A1 (en) * 2019-04-16 2020-10-22 日本電信電話株式会社 Optical multiplexing circuit and light source
JP2023115662A (en) * 2022-02-08 2023-08-21 古河電気工業株式会社 Optical coherence tomographic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287206A (en) * 1990-04-03 1991-12-17 Furukawa Electric Co Ltd:The Crossing type optical waveguide
JPH0511226A (en) * 1991-07-01 1993-01-19 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor
JP2003057457A (en) * 2001-08-08 2003-02-26 Nippon Telegr & Teleph Corp <Ntt> Optical filter
JP2003121806A (en) * 2001-10-12 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2004038493A1 (en) * 2002-10-25 2004-05-06 The Furukawa Electric Co., Ltd. Dynamic gain equalizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287206A (en) * 1990-04-03 1991-12-17 Furukawa Electric Co Ltd:The Crossing type optical waveguide
JPH0511226A (en) * 1991-07-01 1993-01-19 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor
JP2003057457A (en) * 2001-08-08 2003-02-26 Nippon Telegr & Teleph Corp <Ntt> Optical filter
JP2003121806A (en) * 2001-10-12 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2004038493A1 (en) * 2002-10-25 2004-05-06 The Furukawa Electric Co., Ltd. Dynamic gain equalizer

Also Published As

Publication number Publication date
JP2006251429A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4550630B2 (en) Variable dispersion compensator
JP5261542B2 (en) Optical circuit device
Jinguji et al. Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations
EP0629896B1 (en) Optical signal processor, method of its control, method of its designing, and method of its production
US7590312B2 (en) Interferometer optical switch and variable optical attenuator
US8923660B2 (en) System and method for an optical phase shifter
JP3415267B2 (en) Design method and manufacturing method of optical signal processor
EP1279999A1 (en) Polarization-insensitive variable optical attenuator
JP2005092217A (en) Tunable dispersion compensator
US6724957B2 (en) Optical filter
EP3876006A1 (en) Directional photonic coupler with independent tuning of coupling factor and phase difference
Samadi et al. RF arbitrary waveform generation using tunable planar lightwave circuits
Kishioka A design method to achieve wide wavelength-flattened responses in the directional coupler-type optical power splitters
JP2006515435A (en) Optical element for heating
US20040207902A1 (en) Method for polarization mode dispersion compensation
CN117434652A (en) Coarse wavelength division multiplexer with low crosstalk and low temperature drift
EP0720042A1 (en) Optical filter using electro-optic material
JPH05313109A (en) Waveguide type polarization controller
Zhang et al. Design analysis of flattop all-fiber asymmetric interleaver
Chen et al. Ultra-broadband low-loss 2× 2 MZI (Mach-Zehnder interferometer)-based thermo-optic switch with bent directional couplers on silicon
JP2004233619A (en) Optical switch and optical wavelength router
JP4902447B2 (en) Chromatic dispersion compensation circuit
Nejadriahi et al. Integrated all-optical fast Fourier transform: Design and sensitivity analysis
KR100400756B1 (en) Tunable optic power splitter and manufacturing method for using same
Al Ayyubi et al. Comparison of characteristic of two and three couplers Mach-Zehnder interferometers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091124

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees