JPH0511226A - Optical signal processor - Google Patents

Optical signal processor

Info

Publication number
JPH0511226A
JPH0511226A JP3160669A JP16066991A JPH0511226A JP H0511226 A JPH0511226 A JP H0511226A JP 3160669 A JP3160669 A JP 3160669A JP 16066991 A JP16066991 A JP 16066991A JP H0511226 A JPH0511226 A JP H0511226A
Authority
JP
Japan
Prior art keywords
optical
optical signal
ratio
coupler
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3160669A
Other languages
Japanese (ja)
Other versions
JP3131926B2 (en
Inventor
Kaname Jinguji
要 神宮寺
Masao Kawachi
正夫 河内
Masayuki Okuno
将之 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03160669A priority Critical patent/JP3131926B2/en
Publication of JPH0511226A publication Critical patent/JPH0511226A/en
Application granted granted Critical
Publication of JP3131926B2 publication Critical patent/JP3131926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To realize the optical signal processor which has a high transmittivity characteristic even when the number of branch optical waveguides increases. CONSTITUTION:The optical signal processor is provided with an optical branching device 10 which inputs a light signal and has a specific branching ratio, an optical coupling device 12 which has a specific coupling ratio, plural optical waveguides 5-1-5-M which connect respective output terminals of the device 10 and respective input terminals of the device 12, and phase controllers 11-1-11-M which are arranged in the respective optical waveguides 5-1-5-M and shift the phases of light phases of light propagated in the optical waveguides by specific quantities, and the light intensity branching ratio of the device 10 is equalized to the light intensity coupling ratio of the device 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路を用いた光信
号のコヒ−レントな信号処理器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal coherent signal processor using an optical waveguide.

【0002】[0002]

【従来の技術】図2は、光信号処理器の第1の従来例を
示す構成図である(IEEE Transactions on Microwave T
heory and Techniques MTT33巻、30号に掲載され
た"Optical fiber delay-line signal processing" 参
照)。
2. Description of the Related Art FIG. 2 is a block diagram showing a first conventional example of an optical signal processor (IEEE Transactions on Microwave T).
heory and Techniques MTT, Vol. 33, No. 30, "Optical fiber delay-line signal processing").

【0003】図2において、1は光源、2は光強度変調
器、3は光信号を等パワ−に分岐する光分岐器、4は光
信号を等結合比で結合する光結合器、5は光分岐器3と
光結合器4とを接続する複数本(M本)の光導波路5−
1〜5−Mからなる光導波路群、6(6−1〜6−M)
は光導波路群5の各光導波路5−1〜5−Mに配置され
光分岐器3により各光導波路5−1〜5−M上に分岐さ
れた光信号の強度を制御するための光強度可変減衰器
(以下、光減衰器という)、7は光結合器4の出射光を
検知する光検知器、8は光分岐器3の光信号入射点、9
は光結合器4の光信号出射点である。なお、この例では
光導波路として光ファイバを用いており、また、この光
信号処理器は、光減衰器の減衰率を変えることにより、
各種の光信号処理を行うものである。
In FIG. 2, 1 is a light source, 2 is a light intensity modulator, 3 is an optical splitter for splitting an optical signal into equal power, 4 is an optical coupler for coupling optical signals with an equal coupling ratio, and 5 is an optical coupler. A plurality of (M) optical waveguides 5 for connecting the optical branching device 3 and the optical coupler 4
Optical waveguide group consisting of 1 to 5-M, 6 (6-1 to 6-M)
Is an optical intensity for controlling the intensity of an optical signal which is arranged in each of the optical waveguides 5-1 to 5-M of the optical waveguide group 5 and branched onto each of the optical waveguides 5-1 to 5-M by the optical branching device 3. Variable attenuator (hereinafter referred to as "optical attenuator"), 7 is a photodetector for detecting light emitted from the optical coupler 4, 8 is an optical signal incident point of the optical branching device 3, and 9
Is an optical signal emitting point of the optical coupler 4. In this example, an optical fiber is used as the optical waveguide, and this optical signal processor changes the attenuation factor of the optical attenuator to
It performs various optical signal processing.

【0004】このような構成において、光源1より出射
され光強度変調器2により光強度変調された光信号は、
光分岐器3に入射され、ここで等しい分岐比で各光導波
路5−1〜5−Mに等強度に分岐される。各分岐された
光信号は、光減衰器6により任意の光強度に減衰された
後、等しい結合比を有する光結合器4を通して結合さ
れ、光検知器7により電気信号の形で検出される。
In such a configuration, the optical signal emitted from the light source 1 and modulated by the light intensity modulator 2 is
The light is incident on the optical branching device 3 and is branched to each of the optical waveguides 5-1 to 5-M with an equal branching ratio. Each branched optical signal is attenuated to an arbitrary optical intensity by an optical attenuator 6, then combined through an optical combiner 4 having an equal coupling ratio, and detected by an optical detector 7 in the form of an electric signal.

【0005】しかしながら、ここで使用されている光源
のコヒ−レント長は、各光路の光路長より非常に小さい
ために、各光導波路上の光信号は位相情報が不確定であ
り、光結合器4による結合はインコヒ−レントな結合で
あった。このため、図2の光信号処理器は位相情報を扱
うことができず、信号処理の面で制約があった。例え
ば、周波数特性において高域濾過特性を得られず、ま
た、時間軸上で微分演算を行うことができなかった。
However, since the coherence length of the light source used here is much smaller than the optical path length of each optical path, the phase information of the optical signal on each optical waveguide is uncertain, and the optical coupler. The binding by 4 was incoherent. Therefore, the optical signal processor of FIG. 2 cannot handle the phase information, and there is a limitation in terms of signal processing. For example, it was not possible to obtain high-pass filtering characteristics in frequency characteristics, and it was not possible to perform differential calculation on the time axis.

【0006】この問題点を改善するために、コヒ−レン
トに光を結合する技術が提案された。図3は、光信号処
理器の第2の従来例を示す構成図で、このコヒ−レント
に光を結合する技術を適用した構成を示している(Elec
tronics Letters に提出された"Coherent optical tran
sversal filter using silica-based single-mode wave
guides" 参照)。
To solve this problem, a technique of coherently coupling light has been proposed. FIG. 3 is a configuration diagram showing a second conventional example of the optical signal processor, and shows a configuration to which the technique of coherently coupling light is applied (Elec.
"Coherent optical tran submitted in tronics Letters
sversal filter using silica-based single-mode wave
See guides ").

【0007】第2の従来例が上記した第1の従来例と異
なる点は、光源1としてコヒ−レント長が各光導波路の
光路長より長い光源を用いるとともに、等分岐比を有す
る光分岐器の代わりに入力光信号を任意分岐比に分岐す
るための光分岐器(以下、可変光分岐器という)10を
配置し、かつ、光減衰器6の代わりに各光導波路5−1
〜5−M上に分岐された光信号の位相を制御するための
位相制御器11−1〜11−Mを配置して、光信号の位
相情報を確定した形で扱うことができるようにしたこと
にある。なお、この例では、光導波路として光ファイバ
ではなく平面光導波路回路を用いている。
The second conventional example is different from the above-mentioned first conventional example in that a light source having a coherent length longer than the optical path length of each optical waveguide is used as the light source 1 and an optical branching device having an equal branching ratio. , An optical branching device (hereinafter referred to as a variable optical branching device) 10 for branching the input optical signal to an arbitrary branching ratio is arranged, and each optical waveguide 5-1 is used instead of the optical attenuator 6.
˜5-M are provided with phase controllers 11-1 to 11-M for controlling the phase of the branched optical signal so that the phase information of the optical signal can be handled in a fixed form. Especially. In this example, a planar optical waveguide circuit is used instead of an optical fiber as the optical waveguide.

【0008】この光信号処理器では、可変光分岐器10
の分岐比により各光導波路5−1〜5−M上に分岐され
た光信号の光強度を制御し、各光導波路5−1〜5−M
上に設けられた位相制御器11−1〜11−Mにより分
岐された光信号の位相情報を制御することにより位相情
報が確定された形で光結合器4により一つの光信号とし
てまとめられる。
In this optical signal processor, the variable optical splitter 10 is used.
The optical intensity of the optical signal branched on each of the optical waveguides 5-1 to 5-M is controlled by the branching ratio of
By controlling the phase information of the optical signals branched by the phase controllers 11-1 to 11-M provided above, the optical coupler 4 collects the phase information in a fixed form.

【0009】従って、この光信号処理器では、位相情報
を含んだ光信号の処理が可能である。このため、第2の
従来例においては、第1の従来例では実現できなかった
微分演算器、高域濾過特性を有する光周波数フィルタが
実現可能となった。
Therefore, this optical signal processor can process an optical signal containing phase information. Therefore, in the second conventional example, it is possible to realize a differentiating unit and an optical frequency filter having a high-pass filtering characteristic, which could not be realized in the first conventional example.

【0010】[0010]

【発明が解決しようとする課題】光信号処理の分野で
は、光信号を表現するために複素振幅と呼ばれる複素数
の物理量が使用される。複素振幅はその絶対値により振
幅を、その位相角により位相情報を表現している。
In the field of optical signal processing, a physical quantity of a complex number called complex amplitude is used to represent an optical signal. The complex amplitude expresses amplitude by its absolute value and phase information by its phase angle.

【0011】一般に、光信号処理において、エネルギ保
存則のために、複素振幅に関する単純な加算器というも
のは存在しない。つまり、M本の光導波路上の光信号を
一本の光導波路に結合する際、結合された光信号の複素
振幅は各光導波路上の光信号の複素振幅の単純加算には
ならない。
Generally, in optical signal processing, there is no simple adder related to complex amplitude due to the law of conservation of energy. That is, when the optical signals on the M optical waveguides are combined into one optical waveguide, the complex amplitude of the combined optical signals is not a simple addition of the complex amplitudes of the optical signals on the respective optical waveguides.

【0012】上記第2の従来例においては、光結合器と
して等結合比を有する光結合器4を用いていた。この等
結合比を有する光結合器4では、分岐されたM本の各光
導波路上での光信号の複素振幅の(1/M)1/2 ずつを
取り出し、1つの光信号としてまとめられ、残りの光信
号は外部に放出される。
In the second conventional example, the optical coupler 4 having an equal coupling ratio is used as the optical coupler. In the optical coupler 4 having this equal coupling ratio, (1 / M) 1/2 of the complex amplitude of the optical signal on each of the M branched optical waveguides is taken out and combined as one optical signal. The remaining optical signal is emitted to the outside.

【0013】このため、等結合比を有する光結合器4で
は、分岐光導波路の導波路本数Mが大きくなるにつれ
て、各光導波路上の光信号の内の僅かしか結合できず、
大部分の光信号は外部に放出されてしまうという欠点が
あった。すなわち、従来の光信号処理器では、等分岐比
の光結合器を用いているために、高透過率特性が得られ
ないという問題があった。
Therefore, in the optical coupler 4 having the equal coupling ratio, as the number of waveguides M of the branched optical waveguides increases, only a small amount of the optical signals on each optical waveguide can be coupled,
Most of the optical signals have a drawback that they are emitted to the outside. That is, the conventional optical signal processor has a problem that high transmittance characteristics cannot be obtained because an optical coupler having an equal branching ratio is used.

【0014】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、分岐光導波路の導波路本数が増
大しても高透過率特性が得られる光信号処理器を提供す
ることにある。
The present invention has been made in view of such circumstances, and an object thereof is to provide an optical signal processor capable of obtaining a high transmittance characteristic even if the number of waveguides of a branch optical waveguide is increased. is there.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、請求項1では、光信号を所定の分岐比で分岐する光
分岐器と、光信号を所定の結合比で結合する光結合器
と、前記光分岐器の各出力端と前記光結合器の各入力端
とを接続する複数の光導波路と、これら複数の光導波路
の各々に配置され光導波路を伝搬する光の位相を所定量
シフトさせる位相制御器とを備え、前記光分岐器の光強
度分岐比と前記光結合器の光強度結合比とを一致させ
た。
In order to achieve the above object, in claim 1, an optical splitter for splitting an optical signal at a predetermined splitting ratio and an optical coupler for coupling an optical signal at a predetermined splitting ratio. A plurality of optical waveguides that connect each output end of the optical branching device and each input end of the optical coupler, and a predetermined amount of phase of light propagating through the optical waveguides arranged in each of the plurality of optical waveguides. A phase controller for shifting is provided, and the light intensity splitting ratio of the optical splitter and the light intensity splitting ratio of the optical coupler are matched.

【0016】また、請求項2では、前記光分岐器の光信
号入射点より当該光分岐器、各光導波路にを経て、さら
に前記光結合器の光信号出射点に至る光路群において、
各光路間の光路長差が隣同士等しく、全体として各光路
間の光路長差が1:2:…:M−1(Mは光導波路の本
数)の比率の関係にあるように設定した。
According to a second aspect, in the optical path group from the optical signal incident point of the optical branching device to the optical branching device and each optical waveguide, and further to the optical signal emitting point of the optical coupler,
The optical path length differences between the optical paths are equal to each other, and the optical path length differences between the optical paths are set to have a ratio of 1: 2: ...: M-1 (M is the number of optical waveguides) as a whole.

【0017】また、請求項3では、前記光分岐器および
前記光結合器のうちいずれか一方に、光信号の一部を放
出するための光信号放出口を設けた。
Further, in claim 3, an optical signal emitting port for emitting a part of an optical signal is provided in either one of the optical branching device and the optical coupler.

【0018】[0018]

【作用】請求項1によれば、光信号は、光分岐器に入射
され、複数本の光導波路に分岐される。各分岐された光
信号は、光分岐器の分岐比により光強度が制御されてお
り、さらに、各光導波路上に設けられた位相制御器によ
り所定量の位相シフト作用を受けた後、所定の結合比を
有する光結合器に入射される。光結合器では、複数の光
信号が一つにまとめられ出力される。
According to the first aspect, the optical signal is incident on the optical branching device and is branched into a plurality of optical waveguides. The optical intensity of each branched optical signal is controlled by the branching ratio of the optical branching device, and a predetermined amount of phase shift action is performed by the phase controller provided on each optical waveguide. It is incident on an optical coupler having a coupling ratio. In the optical coupler, a plurality of optical signals are combined and output.

【0019】また、請求項2によれば、所望関数が周期
関数である場合、より所望関数に良く近似した光振幅透
過特性が得られる。
According to the second aspect, when the desired function is a periodic function, a light amplitude transmission characteristic that is more closely approximated to the desired function can be obtained.

【0020】また、請求項3によれば、光信号放出口よ
り光信号の一部が放出され、これにより、ある所望関数
形に関して、所望関数に良く近似した光振幅透過特性が
得られる。
Further, according to the third aspect, a part of the optical signal is emitted from the optical signal emitting port, whereby the optical amplitude transmission characteristic which is well approximated to the desired function can be obtained for a certain desired function form.

【0021】[0021]

【実施例1】図1は、本発明に係る光信号処理器の第1
の実施例を示す構成図であって、従来例を示す図3と同
一構成部分は同一符号をもって表す。
[Embodiment 1] FIG. 1 shows a first embodiment of an optical signal processor according to the present invention.
FIG. 4 is a configuration diagram showing the embodiment of FIG. 3, and the same components as those in FIG.

【0022】すなわち、1はコヒ−レント長の長い光
源、2は光源1の出射光に対して強度変調を行う光強度
変調器、5はM本の光導波路5−1〜5−Mからなる光
導波路群、7は光検知器、8は光信号入射点、9は光信
号出射点、10は1個の入力ポ−ト(光信号入射点8)
から入射した光信号を任意の分岐比をもって分岐し複数
(M個)の出力ポ−トに出射する可変光分岐器、11−
1〜11−Mは光導波路を伝搬する光信号に対して1波
長程度の位相シフトを行う位相制御器、12は複数(M
個)の入力ポ−トから入射した光信号を任意の結合比を
もって結合し1個の出力ポ−ト(光信号出射点9)に出
射する可変光結合器である。
That is, 1 is a light source having a long coherence length, 2 is a light intensity modulator for performing intensity modulation on the light emitted from the light source 1, and 5 is M optical waveguides 5-1 to 5-M. Optical waveguide group, 7 photodetector, 8 optical signal incident point, 9 optical signal emitting point, 10 one input port (optical signal incident point 8)
A variable optical branching device for branching an optical signal incident from a plurality of (M) output ports by branching it with an arbitrary branching ratio, 11-
1 to 11-M are phase controllers for performing a phase shift of about 1 wavelength on an optical signal propagating through an optical waveguide, and 12 are a plurality of (M
This is a variable optical coupler that combines optical signals incident from (individual) input ports with an arbitrary coupling ratio and outputs the combined signals to one output port (optical signal emission point 9).

【0023】この光信号処理器では、可変光分岐器10
の分岐比並びに可変光結合器12の結合比は任意に変更
可能なものであり、かつ、光分岐器10の光強度分岐比
と光結合器12の光強度結合比とが等しくなるように設
定されている。具体的には、光信号入射点8より入射さ
れ可変光分岐器10により複数の光導波路5−1〜5−
Mに分岐された光信号の光強度と、光信号出射点9より
逆に入射し可変光結合器12を逆に通過して各光導波路
5−1〜5−Mに分岐されるときの光強度が一致するよ
うに、可変光分岐器10の光強度分岐比と可変光結合器
12の光強度結合比とが設定されている。
In this optical signal processor, the variable optical splitter 10 is used.
And the coupling ratio of the variable optical coupler 12 can be arbitrarily changed, and the light intensity branching ratio of the optical splitter 10 and the light intensity coupling ratio of the optical coupler 12 are set to be equal to each other. Has been done. Specifically, the plurality of optical waveguides 5-1 to 5-are made incident by the optical signal incident point 8 by the variable optical branching device 10.
The light intensity of the optical signal branched to M and the light when it is incident from the optical signal emitting point 9 in the opposite direction, passes through the variable optical coupler 12 in the opposite direction, and is branched to the optical waveguides 5-1 to 5-M. The light intensity splitting ratio of the variable optical splitter 10 and the light intensity splitting ratio of the variable optical coupler 12 are set so that the intensities match.

【0024】次に、上記構成による動作並びにその原理
について説明する。
Next, the operation and the principle of the above configuration will be described.

【0025】光源1より出射され光強度変調器2により
光強度変調された光信号は、可変光分岐器10に入射さ
れ、M本の光導波路5−1〜5−Mに分岐される。各分
岐された光信号は、可変光分岐器10の分岐比により光
強度が制御されており、さらに、各光導波路5−1〜5
−M上に設けられた位相制御器11−1〜11−Mによ
り所定量の位相シフト作用を受けた後、任意の結合比を
有する可変光結合器12に入射される。可変光結合器1
2では、複数の光信号が一つにまとめられる。そして、
まとめられた光信号は光検知器7により電気信号の形で
検出される。
An optical signal emitted from the light source 1 and modulated in intensity by the optical intensity modulator 2 is incident on the variable optical branching device 10 and branched into M optical waveguides 5-1 to 5-M. The optical intensity of each branched optical signal is controlled by the branching ratio of the variable optical branching device 10, and further, each optical waveguide 5-1 to 5
After being subjected to a predetermined amount of phase shift action by the phase controllers 11-1 to 11-M provided on the -M, the light is incident on the variable optical coupler 12 having an arbitrary coupling ratio. Variable optical coupler 1
In 2, a plurality of optical signals are combined into one. And
The combined optical signal is detected by the photodetector 7 in the form of an electrical signal.

【0026】ここで、光源1としては、第2の従来例と
同様に、コヒ−レント長の長い光源を用いている。ま
た、可変光分岐器10は、上記したように分岐比を自由
に変更可能であり、分岐比を変えることにより、各光導
波路5−1〜5−M上に分岐された光信号の光強度の比
率を制御している。
Here, as the light source 1, a light source having a long coherence length is used as in the second conventional example. Further, the variable optical branching device 10 can freely change the branching ratio as described above, and by changing the branching ratio, the optical intensity of the optical signal branched on each of the optical waveguides 5-1 to 5-M. Control the ratio of.

【0027】各光導波路5−1〜5−M上の光信号の光
強度をP1 ,P2 ,…,PM とし、可変光結合器12の
直前の各光信号の複素振幅をA1 ,A2 ,…AM とする
と、各複素振幅は次式のように表される。
Let P 1 , P 2 , ..., P M be the optical intensities of the optical signals on the respective optical waveguides 5-1 to 5-M, and let A 1 be the complex amplitude of each optical signal immediately before the variable optical coupler 12. , A 2 , ... A M , each complex amplitude is expressed by the following equation.

【0028】 A1 =(P1 1/2 exp(−jθ1 )exp(−jβΔL1 ) A2 =(P2 1/2 exp(−jθ2 )exp(−jβΔL2 ) : AM =(PM 1/2 exp(−jθM )exp(−jβΔLM ) ここで、光信号の位相は、各導波路間の光路長差ΔLK
で決まるexp(−jβΔLK )の項と、位相制御器1
1による位相シフト量θK で決まるexp(−jθK
の項の積の形で表わされる。前者は数万波長程度の大き
さであり、後者は1波長程度の大きさである。各光信号
の振幅P1 1/2 ,P2 1/2 ,…PM 1/2 は、光分岐器の
分岐比を変更することにより任意に制御可能である。
A 1 = (P 1 ) 1/2 exp (−jθ 1 ) exp (−jβΔL 1 ) A 2 = (P 2 ) 1/2 exp (−jθ 2 ) exp (−jβΔL 2 ): A M = (P M), where 1/2 exp (-jθ M) exp ( -jβΔL M), the optical signal phase, the optical path length difference [Delta] L K between the waveguides
Of the exp (-jβΔL K ) determined by the phase controller 1
Exp (-jθ K ) determined by the phase shift amount θ K due to 1
It is expressed in the form of the product of terms. The former is about tens of thousands of wavelengths, and the latter is about one wavelength. The amplitudes P 1 1/2 , P 2 1/2 , ... P M 1/2 of each optical signal can be arbitrarily controlled by changing the branching ratio of the optical branching device.

【0029】また、各光信号の位相は、大きくは各光路
間の光路長差により、1波長程度の微調は各光導波路5
−1〜5−M上に設けられた位相制御器11−1〜11
−Mにより制御可能である。
The phase of each optical signal is largely dependent on the optical path length difference between the optical paths, and fine adjustment of about one wavelength is required for each optical waveguide 5.
Phase controllers 11-1 to 11 provided on -1 to 5-M
It can be controlled by -M.

【0030】次に、可変光結合器12の光強度結合比を
1 ´,P2 ´,…,PM ´とすると、可変光結合器1
2により、各光導波路5−1〜5−M上を伝搬してきた
各光信号の複素振幅のうち、(P1 ´)1/2 ,(P
2 ´)1/2 ,…,(PM ´)1/2 ずつが取り出され、1
つの信号にまとめられる。すなわち、まとめられた光信
号の複素振幅は、 となる。
Next, assuming that the light intensity coupling ratio of the variable optical coupler 12 is P 1 ′, P 2 ′, ..., P M ′, the variable optical coupler 1
2 of the complex amplitude of each optical signal propagating on each of the optical waveguides 5-1 to 5-M, (P 1 ′) 1/2 , (P
2 ') 1/2, ..., ( P M' is taken out by 1/2), 1
Are combined into one signal. That is, the complex amplitude of the combined optical signal is Becomes

【0031】この式から分かるように、結合された光信
号の複素振幅は、光導波路の本数Mを増やしたとしても
零に近付く傾向にはなく、高透過率特性を得ることがで
きる。
As can be seen from this equation, the complex amplitude of the combined optical signal does not tend to approach zero even if the number M of optical waveguides is increased, and high transmittance characteristics can be obtained.

【0032】これに対して、図3に示す第2の従来例で
は本実施例と異なり、光結合器として任意の結合比を有
する光結合器ではなく等分岐比を有する光結合器を用い
ていた。これは、光強度結合比が PK ´=1/M(k=1,…,M) と一定値であることに相当し、結合された光信号の複素
振幅は と表される。このとき、結合された光信号の複素振幅
は、光導波路の本数Mを増やすにつれて、1/Mの項の
ために、零に近づく傾向にある。従って、図3の光信号
処理器は高度透過率特性を得ることができない。
On the other hand, in the second conventional example shown in FIG. 3, unlike the present embodiment, an optical coupler having an equal branching ratio is used as the optical coupler instead of an optical coupler having an arbitrary coupling ratio. It was This corresponds to a constant light intensity coupling ratio of P K ′ = 1 / M (k = 1, ..., M), and the complex amplitude of the coupled optical signal is Is expressed as At this time, the complex amplitude of the combined optical signal tends to approach zero as the number of optical waveguides M increases, because of the term of 1 / M. Therefore, the optical signal processor of FIG. 3 cannot obtain a high transmittance characteristic.

【0033】以上説明したように、本実施例によれば、
等結合比の光結合器ではなく、結合比が可変な可変光結
合器12を用い、光分岐器の光強度分岐比だけでなく、
光結合器の光強度結合比も併せて変化させ、かつ、光分
岐器の光強度分岐比と光結合器の光強度結合比がそれぞ
れ独立ではなく、それらが等しい関係にあること、すな
わちPK =PK ´(k=1,…M)の関係にあるように
構成したので、任意の複素振幅透過率を有する高透過率
の光信号処理器を実現できる。
As described above, according to this embodiment,
A variable optical coupler 12 having a variable coupling ratio is used instead of an optical coupler having an equal coupling ratio.
The light intensity coupling ratio of the optical coupler is also changed, and the light intensity branching ratio of the optical branching device and the light intensity coupling ratio of the optical coupler are not independent of each other, but they have the same relationship, that is, P K = P K ′ (k = 1, ... M), it is possible to realize a high transmittance optical signal processor having an arbitrary complex amplitude transmittance.

【0034】[0034]

【実施例2】図4は、本発明に係る光信号処理器の第2
の実施例を示す構成図である。
Second Embodiment FIG. 4 shows a second embodiment of the optical signal processor according to the present invention.
It is a block diagram which shows the Example of.

【0035】本実施例が前記実施例1と異なる点は、可
変光分岐器10の光信号入射点8より可変光分岐器1
0、各光導波路5−1〜5−Mを経て、さらに可変光結
合器12の光信号出射点9に至る光路群において、各光
路間の光路長差が隣同士等しく、全体として各光路間の
光路長差が1:2:…:M−1の比率の関係にあるよう
に設定したことにある。
The present embodiment is different from the first embodiment in that the variable optical branching device 1 is provided from the optical signal incident point 8 of the variable optical branching device 10.
0, through the optical waveguides 5-1 to 5-M, and further in the optical path group reaching the optical signal emission point 9 of the variable optical coupler 12, the optical path length differences between the optical paths are equal to each other, and as a whole, between the optical paths. The optical path length difference is set to have a ratio of 1: 2: ...: M-1.

【0036】前述したように、光信号入射点8から光信
号出射点9に至る各光路の光路長差が1:2:…:M−
1の関係にある場合、可変光結合器12により結合され
た光信号の複素振幅は と表される。この式では、複素振幅透過率は各光路に対
応する展開項の和の形で表現されている。ここで、展開
係数を(PK ・PK ´)1/2 exp(−jθK )とし、
展開関数をexp(−jkβΔL)と考える。この展開
関数は、周期的な直交関数系をなしていることがわか
る。
As described above, the optical path length difference between the optical signal entrance points 8 and the optical signal exit points 9 is 1: 2: ...: M-.
When there is a relationship of 1, the complex amplitude of the optical signal combined by the variable optical coupler 12 is Is expressed as In this equation, the complex amplitude transmittance is expressed in the form of the sum of expansion terms corresponding to each optical path. Here, the expansion coefficient is (P K · P K ′) 1/2 exp (−jθ K ),
Consider the expansion function as exp (-jkβΔL). It can be seen that this expansion function forms a periodic orthogonal function system.

【0037】一般に、周期的な所望関数をある周期的な
関数系で展開した場合、それが直交関数系である場合、
最も所望関数に対する近似度がよいことが知られてい
る。このため、各光路間の光路長差が不規則な場合に比
べ、各光路の光路長差が1:2:…:M−1の関係にあ
る方が、所望関数が周期関数である場合、より所望関数
に良く近似した光振幅透過特性を得ることが可能とな
る。
In general, when a periodic desired function is expanded by a certain periodic functional system and it is an orthogonal functional system,
It is known that the degree of approximation to the desired function is the best. For this reason, when the desired function is a periodic function when the optical path length difference between the optical paths is 1: 2: ...: M−1, as compared with the case where the optical path length difference between the optical paths is irregular, It is possible to obtain a light amplitude transmission characteristic that closely approximates the desired function.

【0038】従って、本実施例の光信号処理器では、複
素振幅透過率特性の所望関数形に対する近似度を上げる
ために光導波路の本数を多く取ったときにも、第2の従
来例に見られるような振幅透過特性が零に近付くという
現象は見られず、得られる複素振幅特性が所望関数に近
似可能である。このことは、本実施例の光信号処理器に
おいては、高機能性と高透過率が矛盾なく同時に実現可
能であることを意味している。
Therefore, in the optical signal processor according to the present embodiment, even when a large number of optical waveguides are used in order to increase the degree of approximation of the complex amplitude transmittance characteristic to the desired function form, it can be seen from the second conventional example. Such a phenomenon that the amplitude transmission characteristic approaches zero is not seen, and the obtained complex amplitude characteristic can be approximated to the desired function. This means that in the optical signal processor of this embodiment, high functionality and high transmittance can be simultaneously realized without contradiction.

【0039】図5は、各光路間の光路長差が1:2:
…:M−1の関係にある、光周波数多重通信で用いられ
る矩形形状の周期的透過特性を有する光周波数フィルタ
の具体的な回路例を示している。この例では、Si基板
上の石英系光導波路により本回路を実現しており、等間
隔にブリッジを架けたいわゆる梯子形構造をしている。
各ブリッジ(光導波路5−1〜5−M)間は、ΔL/2
で等間隔に隔てられている。また、可変光分岐器10お
よび可変光結合器12は、結合率を自由に設定可能な可
変方向性結合器101と呼ばれる光部品により構成され
ている。
In FIG. 5, the optical path length difference between the optical paths is 1: 2 :.
...: shows a specific circuit example of an optical frequency filter having a rectangular periodic transmission characteristic used in optical frequency multiplex communication, which has a relationship of M-1. In this example, this circuit is realized by a silica-based optical waveguide on a Si substrate, and has a so-called ladder structure in which bridges are bridged at equal intervals.
ΔL / 2 between each bridge (optical waveguides 5-1 to 5-M)
Are evenly spaced. Further, the variable optical branching device 10 and the variable optical coupler 12 are composed of an optical component called a variable directional coupler 101 whose coupling rate can be freely set.

【0040】導波路長差ΔLの値は、光周波数の周期f
cより求められる。本例では光周波数の周期を10GH
z とし、ブリッジ間の距離ΔL/2を1.0372cmとし
た。また、ブリッジ数は17とした。さらに本例では、
可変光分岐器10を構成する可変方向性結合器101の
結合率Cm と可変光結合器12を構成する可変方向性結
合器101の結合率Cm ´を等しく、つまり、Cm =C
m ´(m=1,…,M−1)に設定している。
The value of the waveguide length difference ΔL is the period f of the optical frequency.
It is obtained from c. In this example, the cycle of the optical frequency is 10 GH
z and the distance ΔL / 2 between the bridges was 1.0372 cm. The number of bridges was 17. Furthermore, in this example,
The coupling ratio Cm of the variable directional coupler 101 forming the variable optical branching device 10 and the coupling ratio Cm 'of the variable directional coupler 101 forming the variable optical coupler 12 are equal, that is, Cm = C.
It is set to m '(m = 1, ..., M-1).

【0041】図6は、所望関数の最大光強度値が0.5 の
場合の光フィルタの光強度透過特性を測定した例を示
し、図中、横軸は相対周波数を、縦軸は透過率をそれぞ
れ表している。また、実線で示す曲線は本実施例に係る
光周波数フィルタ(本発明品)の光強度透過率の測定値
を、破線で示す曲線は参考のために描いた所望の光強度
透過率の関数形を、一点鎖線で示す曲線は図3に示す第
2の従来例で述べられた光信号処理器の構成で実施例と
同一特性を持つように作製された光周波数フィルタの光
強度透過率の測定結果をそれぞれ示している。
FIG. 6 shows an example of measuring the light intensity transmission characteristics of the optical filter when the maximum light intensity value of the desired function is 0.5. In the figure, the horizontal axis represents the relative frequency and the vertical axis represents the transmittance. It represents. The curve indicated by the solid line is the measured value of the light intensity transmittance of the optical frequency filter (product of the present invention) according to this example, and the curve indicated by the broken line is the functional form of the desired light intensity transmittance drawn for reference. The curve indicated by the alternate long and short dash line is the measurement of the light intensity transmittance of the optical frequency filter manufactured so as to have the same characteristics as the embodiment with the configuration of the optical signal processor described in the second conventional example shown in FIG. The results are shown respectively.

【0042】図6に示すように、従来例の光フィルタで
は、光強度透過率が所望の光強度透過率とは大きく掛け
離れて、透過率が0.07程度しかとれないことが分かる。
これに対して、本実施例の光フィルタの光強度透過率
は、所望関数とかなりよく近似している。
As shown in FIG. 6, in the conventional optical filter, the light intensity transmissivity is far from the desired light intensity transmissivity, and the transmissivity is only about 0.07.
On the other hand, the light intensity transmittance of the optical filter of this embodiment is quite close to the desired function.

【0043】以上説明したように、本実施例によれば、
各光路の光路長差が1:2:…:M−1の関係にあるよ
うに構成したので、前記実施例1の効果に加えて、所望
関数が周期関数である場合、所望関数に良く近似した光
振幅透過特性を得ることに効果がある。
As described above, according to this embodiment,
Since the optical path length differences of the respective optical paths are configured to have a relationship of 1: 2: ...: M-1, in addition to the effect of the first embodiment, when the desired function is a periodic function, it is well approximated to the desired function. It is effective in obtaining the above-mentioned optical amplitude transmission characteristics.

【0044】[0044]

【実施例3】図7は、本発明に係る光信号処理器の第3
の実施例を示す構成図である。
[Third Embodiment] FIG. 7 shows a third embodiment of the optical signal processor according to the present invention.
It is a block diagram which shows the Example of.

【0045】本実施例が前記実施例2と異なる点は、光
信号入射点8より入射され可変光分岐器10により各光
導波路5−1〜5−Mに分岐される光信号のうち、その
一部を外部に放出するための光信号放出口(以下、放出
口という)13を可変光分岐器10に設けるとともに、
可変光結合器12にも光信号の一部を放出するための放
出口14を設け、所望関数に良く近似した光振幅透過特
性を得られるようにしたことにある。
The present embodiment is different from the second embodiment in that among the optical signals which are incident from the optical signal incident point 8 and are branched by the variable optical branching device 10 into the respective optical waveguides 5-1 to 5-M. An optical signal emission port (hereinafter referred to as emission port) 13 for emitting a part to the outside is provided in the variable optical branching device 10, and
The variable optical coupler 12 is also provided with an emission port 14 for emitting a part of an optical signal so that an optical amplitude transmission characteristic that closely approximates a desired function can be obtained.

【0046】図8は、放出口13,14を設け、所望関
数の最大値を0.1 として設計した光周波数フィルタの具
体的な回路例を示している。本例では、実施例2の場合
と同様に、可変光分岐器10を構成する可変方向性結合
器101の結合率Cm と可変光結合器12を構成する可
変方向性結合器101の結合率Cm'を等しく、つまり、
Cm =Cm'(m=1,……,M)とおいている。また、
可変光分岐器10に設けられた放出口13の放出割合C
M と可変光結合器12に設けられた放出口14の放出割
合CM'を等しく置いている。ブリッジ数は、実施例2の
場合と同じく17本とした。
FIG. 8 shows a concrete circuit example of an optical frequency filter designed with the emission ports 13 and 14 and the maximum value of the desired function set to 0.1. In this example, as in the case of the second embodiment, the coupling ratio Cm of the variable directional coupler 101 that constitutes the variable optical branching device 10 and the coupling ratio Cm of the variable directional coupler 101 that constitutes the variable optical coupler 12 are described. 'Is equal, that is,
Cm = Cm '(m = 1, ..., M). Also,
Emission ratio C of the emission port 13 provided in the variable optical branching device 10
M and the emission ratio CM 'of the emission port 14 provided in the variable optical coupler 12 are set equal. The number of bridges was 17 as in the case of Example 2.

【0047】図9は、作製した光フィルタの光強度透過
率の測定結果を示している。図中、実線で示す曲線は本
実施例に係る光周波数フィルタの光強度透過率を、破線
で示す曲線は所望の光強度透過率の関数形を、一点鎖線
で示す曲線は光信号放出口13,14を設けていない実
施例2に係る光周波数フィルタの光強度透過率の測定結
果をそれぞれ示している。
FIG. 9 shows the measurement results of the light intensity transmittance of the manufactured optical filter. In the figure, the curve indicated by the solid line is the light intensity transmittance of the optical frequency filter according to this embodiment, the curve indicated by the broken line is the functional form of the desired light intensity transmittance, and the curve indicated by the alternate long and short dash line is the optical signal emitting port 13. , 14 are not provided, the measurement results of the light intensity transmittance of the optical frequency filter according to Example 2 are shown.

【0048】図9から分かるように、光信号放出口が無
い場合、透過率の最大は0.43となり、所望関数とは大幅
に異なる透過特性になる。これに対して、光信号放出口
13,14を設けた本実施例の構成では、所望関数に良
く近似した光振幅透過特性を得ることができる。
As can be seen from FIG. 9, in the case where there is no optical signal emission port, the maximum transmittance is 0.43, which is a transmission characteristic significantly different from the desired function. On the other hand, in the configuration of the present embodiment in which the optical signal emission ports 13 and 14 are provided, it is possible to obtain the optical amplitude transmission characteristic that is close to the desired function.

【0049】この結果で明らかなように、ある所望関数
形においては、光強度透過率の所望関数形に対する近似
度を向上させることに関し、光信号の一部を逃がす効果
は極めて大きい。
As is clear from this result, in a certain desired function form, the effect of letting a part of the optical signal escape is extremely large in terms of improving the degree of approximation of the light intensity transmittance to the desired function form.

【0050】特に、本実施例では、可変光分岐器10に
設けられた放出口13の放出割合と可変光結合器12に
設けられた放出口14の放出割合を等しく置いている
が、放出割合を等しくおくことは、等しく置かない場合
に比べて、複素振幅透過率の所望関数に対する関数近似
度を上げることに効果がある。
In particular, in this embodiment, the emission rate of the emission port 13 provided in the variable optical branching device 10 and the emission rate of the emission port 14 provided in the variable optical coupler 12 are set equal. Setting them equal to each other is effective in increasing the function approximation degree of the complex amplitude transmittance to the desired function, as compared with the case where they are not set equal to each other.

【0051】また、本実施例では、可変光分岐器10お
よび可変光結合器12は、可変方向性結合器101を用
いて構成されているが、Y分岐等の別の分岐部品で置き
換えることも可能である。また、光信号放出口を光分岐
器、あるいは光結合器のどちらか一方に設けることも可
能である。この場合、両方に放出口を設ける場合に比
べ、特性は若干悪くなるが、部品数を減らせるという利
点がある。
Further, in the present embodiment, the variable optical branching device 10 and the variable optical coupler 12 are constituted by using the variable directional coupler 101, but they may be replaced with another branching component such as Y branching. It is possible. It is also possible to provide the optical signal emission port on either the optical branching device or the optical coupler. In this case, the characteristics are slightly worse than in the case where the emission ports are provided on both sides, but there is an advantage that the number of parts can be reduced.

【0052】さらに、本実施例では、光回路の構成が複
数光導波路に対し対称な構成となっているが、このこと
は本発明においては重要なことではない。重要なこと
は、本光信号が光信号入射点8から可変光分岐器10を
経て光導波路5−1〜5−Mに分岐される際の光信号分
岐比と、光信号出射点9から逆に光信号を入射させ可変
光結合器12を経て光導波路5−1〜5−Mへ分岐され
る光信号分岐比が、等しい関係にあることである。つま
り、光信号分岐比に関する対称性が重要である。
Further, in the present embodiment, the structure of the optical circuit is symmetrical with respect to the plurality of optical waveguides, but this is not important in the present invention. What is important is that the optical signal branching ratio when this optical signal is branched from the optical signal incident point 8 to the optical waveguides 5-1 to 5-M via the variable optical branching device 10 and the reverse from the optical signal emitting point 9. That is, the optical signal branching ratios in which the optical signal is made incident on the optical signal are branched to the optical waveguides 5-1 to 5-M via the variable optical coupler 12 in the same relationship. That is, the symmetry regarding the optical signal branching ratio is important.

【0053】[0053]

【発明の効果】以上説明したように、請求項1によれ
ば、従来では実現できなかった任意の複素振幅透過率を
有する高透過率の光信号処理器を実現可能にした。特
に、本発明の光信号処理器では、その複素振幅透過率の
所望関数に対する近似度を上げるために光導波路の本数
を増やしても、透過率が悪くなることはない。すなわ
ち、関数の近似度を上げることと高透過率を維持するこ
ととは、矛盾せず同時に実現可能であり、これにより、
高機能で高透過率の光信号処理器を実現できる。
As described above, according to the first aspect of the present invention, it is possible to realize an optical signal processor having a high transmittance having an arbitrary complex amplitude transmittance which could not be realized conventionally. In particular, in the optical signal processor of the present invention, the transmittance does not deteriorate even if the number of optical waveguides is increased in order to increase the degree of approximation of the complex amplitude transmittance to the desired function. That is, increasing the degree of approximation of the function and maintaining high transmittance can be realized simultaneously without any contradiction.
An optical signal processor with high functionality and high transmittance can be realized.

【0054】また、本発明により実現される光信号処理
器では、複素振幅透過特性を自由に設計できることか
ら、光強度特性だけでなく位相特性も同時に設計可能で
あり、その用途は多様であり、光周波数多重通信におけ
るハイパス光フィルタ、ロウパス光フィルタ等の各種光
周波数フィルタとして、あるいは、光ディジタル通信に
おける光信号微分器等の各種信号処理器として利用可能
である。
Further, in the optical signal processor realized according to the present invention, since the complex amplitude transmission characteristic can be freely designed, not only the light intensity characteristic but also the phase characteristic can be designed at the same time, and its use is various. It can be used as various optical frequency filters such as a high-pass optical filter and a low-pass optical filter in optical frequency multiplex communication, or as various signal processors such as an optical signal differentiator in optical digital communication.

【0055】また、請求項2では、所望関数が周期関数
である場合、所望関数に良く近似した光振幅透過特性を
得ることができる。
Further, in the second aspect, when the desired function is a periodic function, it is possible to obtain a light amplitude transmission characteristic which is well approximated to the desired function.

【0056】また、請求項3では、ある所望関数形に関
して、所望関数に良く近似した光振幅透過特性を得るこ
とができる。
Further, according to the third aspect, it is possible to obtain the light amplitude transmission characteristic that is close to the desired function with respect to a certain desired function form.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光信号処理器の第1の実施例を示
す構成図
FIG. 1 is a configuration diagram showing a first embodiment of an optical signal processor according to the present invention.

【図2】光信号処理器の第1の従来例を示す構成図FIG. 2 is a configuration diagram showing a first conventional example of an optical signal processor.

【図3】光信号処理器の第2の従来例を示す構成図FIG. 3 is a configuration diagram showing a second conventional example of an optical signal processor.

【図4】本発明に係る光信号処理器の第2の実施例を示
す構成図
FIG. 4 is a configuration diagram showing a second embodiment of the optical signal processor according to the present invention.

【図5】実施例2に係る梯子形回路を用いた矩形形状の
周期的透過特性を有する光周波数フィルタの具体的な回
路例を示す図(光信号放出口の無い場合)
FIG. 5 is a diagram showing a specific circuit example of an optical frequency filter having a rectangular periodic transmission characteristic using a ladder circuit according to the second embodiment (when there is no optical signal emission port).

【図6】図5の光周波数フィルタの光強度透過度の測定
結果を示す図
6 is a diagram showing a measurement result of light intensity transmittance of the optical frequency filter of FIG.

【図7】本発明に係る光信号処理器の第3の実施例を示
す構成図
FIG. 7 is a block diagram showing a third embodiment of the optical signal processor according to the present invention.

【図8】実施例3に係る梯子形回路を用いた矩形形状の
周期的透過特性を有する光周波数フィルタの具体的な回
路例を示す図(光信号放出口を設けた場合)
FIG. 8 is a diagram showing a specific circuit example of an optical frequency filter having a rectangular periodic transmission characteristic using a ladder circuit according to Example 3 (when an optical signal emission port is provided).

【図9】図8の光周波数フィルタの光強度透過度の測定
結果を示す図
9 is a diagram showing a measurement result of light intensity transmittance of the optical frequency filter of FIG.

【符号の説明】[Explanation of symbols]

1…光源、2…光強度変調器、5…光導波路群、7…光
検知器、8…光信号入射点、9…光信号出射点、10…
可変分岐比を有する光分岐器、11…位相制御器、12
…可変結合比を有する光結合器、13,14…光信号放
出口、101…結合率可変方向性結合器。
1 ... Light source, 2 ... Light intensity modulator, 5 ... Optical waveguide group, 7 ... Photodetector, 8 ... Optical signal incident point, 9 ... Optical signal emitting point, 10 ...
Optical branching device having variable branching ratio, 11 ... Phase controller, 12
... Optical couplers having variable coupling ratios, 13, 14 ... Optical signal emitting ports, 101 ... Variable coupling rate directional couplers.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光信号を所定の分岐比で分岐する光分岐
器と、 光信号を所定の結合比で結合する光結合器と、 前記光分岐器の各出力端と前記光結合器の各入力端とを
接続する複数の光導波路と、 これら複数の光導波路の各々に配置され光導波路を伝搬
する光の位相を所定量シフトさせる位相制御器とを備
え、 前記光分岐器の光強度分岐比と前記光結合器の光強度結
合比とを一致させたことを特徴とする光信号処理器。
1. An optical splitter for splitting an optical signal at a predetermined split ratio, an optical coupler for splitting an optical signal at a preset coupling ratio, each output end of the optical splitter and each of the optical couplers. A plurality of optical waveguides that connect the input end and a phase controller that is arranged in each of the plurality of optical waveguides and that shifts the phase of light propagating through the optical waveguides by a predetermined amount. An optical signal processor characterized in that the ratio and the light intensity coupling ratio of the optical coupler are matched.
【請求項2】 前記光分岐器の光信号入射点より当該光
分岐器、各光導波路にを経て、さらに前記光結合器の光
信号出射点に至る光路群において、各光路間の光路長差
が隣同士等しく、全体として各光路間の光路長差が1:
2:…:M−1(Mは光導波路の本数)の比率の関係に
ある請求項1記載の光信号処理器。
2. An optical path length difference between each optical path in an optical path group from the optical signal incident point of the optical branching device to the optical branching device and each optical waveguide, and further to the optical signal output point of the optical coupler. Are equal to each other, and the optical path length difference between the optical paths is 1: as a whole.
2. The optical signal processor according to claim 1, wherein the optical signal processor has a ratio of 2: ...: M-1 (M is the number of optical waveguides).
【請求項3】 前記光分岐器および前記光結合器のうち
いずれか一方に、光信号の一部を放出するための光信号
放出口を設けた請求項1または請求項2記載の光信号処
理器。
3. The optical signal processing according to claim 1 or 2, wherein one of the optical branching device and the optical coupler is provided with an optical signal emitting port for emitting a part of an optical signal. vessel.
JP03160669A 1991-07-01 1991-07-01 Optical signal processor Expired - Lifetime JP3131926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03160669A JP3131926B2 (en) 1991-07-01 1991-07-01 Optical signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03160669A JP3131926B2 (en) 1991-07-01 1991-07-01 Optical signal processor

Publications (2)

Publication Number Publication Date
JPH0511226A true JPH0511226A (en) 1993-01-19
JP3131926B2 JP3131926B2 (en) 2001-02-05

Family

ID=15719927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03160669A Expired - Lifetime JP3131926B2 (en) 1991-07-01 1991-07-01 Optical signal processor

Country Status (1)

Country Link
JP (1) JP3131926B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572611A (en) * 1993-06-21 1996-11-05 Nippon Telegraph And Telephone Corporation Optical signal processor, method of its control, method of its designing, and method of its production
US6912362B1 (en) 1999-10-19 2005-06-28 Nippon Telegraph And Telephone Corporation Dispersion slope equalizer
JP2005300679A (en) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength filter and wavelength variable filter
JP2006251429A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Variable dispersion compensator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572611A (en) * 1993-06-21 1996-11-05 Nippon Telegraph And Telephone Corporation Optical signal processor, method of its control, method of its designing, and method of its production
US6912362B1 (en) 1999-10-19 2005-06-28 Nippon Telegraph And Telephone Corporation Dispersion slope equalizer
US7020398B2 (en) 1999-10-19 2006-03-28 Nippon Telegraph And Telephone Corporation Dispersion slope equalizer
JP2005300679A (en) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength filter and wavelength variable filter
JP4634733B2 (en) * 2004-04-07 2011-02-16 日本電信電話株式会社 Wavelength filter and wavelength tunable filter
JP2006251429A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Variable dispersion compensator
JP4550630B2 (en) * 2005-03-11 2010-09-22 古河電気工業株式会社 Variable dispersion compensator

Also Published As

Publication number Publication date
JP3131926B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
Sasayama et al. Coherent optical transversal filter using silica-based waveguides for high-speed signal processing
Rasras et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators
US5896476A (en) Optical loop signal processing using reflection mechanisms
US6411417B1 (en) Optical equalizer
JPH08102709A (en) Polarization diversity part for coherent optical receiver
CN110319828A (en) A kind of the resonance type optical fiber gyro system and its signal detecting method of bicyclic cavity configuration
JP3415267B2 (en) Design method and manufacturing method of optical signal processor
Guo et al. Versatile silicon microwave photonic spectral shaper
US4976518A (en) Fiber optic transversal filter/variable delay line
Wang et al. Integrated optical delay line based on a loopback arrayed waveguide grating for radio-frequency filtering
WO2002091074A1 (en) Method and apparatus for modulating an optical signal
JP3131926B2 (en) Optical signal processor
US8699834B2 (en) Bandwidth adjustable bandpass filter
JPH0369927A (en) Polarization batch control method
FR2686163A1 (en) METHOD FOR LINEARIZING THE TRANSMISSION FUNCTION OF A MODULATOR
Zhuang et al. Single-chip optical beam forming network in LPCVD waveguide technology based on optical ring resonators
JPH05313109A (en) Waveguide type polarization controller
JP2001066560A (en) Optical wavelength variable filter
US20230163859A1 (en) Optical routing network-based quantum array control
EP1266471B1 (en) Device and method for optical add/drop multiplexing
JP2002511157A (en) Narrowband transmission filter using Bragg grating for mode conversion
JP2760856B2 (en) Phase shift keying method using Mach-Zehnder type optical modulator
JP3319681B2 (en) Optical transmission line simulator
JPH10319444A (en) Programmable optical signal processor and control method therefor and recording medium recording the control program
US20200025569A1 (en) Device comprising a ring optical resonator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11