WO2022097289A1 - Iq optical modulator - Google Patents

Iq optical modulator Download PDF

Info

Publication number
WO2022097289A1
WO2022097289A1 PCT/JP2020/041612 JP2020041612W WO2022097289A1 WO 2022097289 A1 WO2022097289 A1 WO 2022097289A1 JP 2020041612 W JP2020041612 W JP 2020041612W WO 2022097289 A1 WO2022097289 A1 WO 2022097289A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
modulator
light
optical modulator
input
Prior art date
Application number
PCT/JP2020/041612
Other languages
French (fr)
Japanese (ja)
Inventor
泰彰 橋詰
義弘 小木曽
常祐 尾崎
光映 石川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/041612 priority Critical patent/WO2022097289A1/en
Publication of WO2022097289A1 publication Critical patent/WO2022097289A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 

Definitions

  • the present invention relates to an IQ optical modulator capable of operating at high speed and in a wide wavelength band.
  • multi-valued light modulators using digital coherent technology play a major role in realizing large-capacity transceivers exceeding 100 Gbps.
  • the multi-valued light modulator is capable of zero-charp drive, which is composed of a Mach-Zender interference type optical waveguide (MZ optical waveguide) that splits the optical input into two arms, combines them after phase shift, and outputs interference.
  • Optical modulators (MZM) are built in parallel and multi-stage. With such a configuration, independent signals can be added to the amplitude and phase of light.
  • a typical polarization-multiplexed IQ optical modulator which is currently becoming widespread in communication networks, has a so-called nested structure in which each arm of the parent MZM is composed of child MZMs.
  • Two child MZMs are provided in parallel corresponding to each of the X and Y polarization channels, and an MZM (Quad-pallell MZM) having a total of four child MZMs is configured.
  • the two arms of each child MZM are provided with a traveling wave type electrode to which an RF modulated electric signal for performing a modulation operation is input to the optical signal propagating in the optical waveguide.
  • one of the two such paired child MZMs is the I channel and the other is the Q channel.
  • an RF-modulated electric signal is input to one end of a modulation electrode provided along the arm optical waveguide of the child MZM to generate an electro-optical effect, and the optical waveguide of the child MZM is generated.
  • Phase modulation is applied to the two optical signals propagating within (Patent Document 1).
  • FIG. 1 shows an example of a conventional polarization multiplex IQ optical modulator.
  • MZM101X for an X polarization channel and MZM101Y for a Y polarization channel are formed on a semiconductor chip, and MZM101XI and 101YI for the I channel and MZM101YI for the Q channel, respectively. It has a nested structure including MZM101XQ and 101YQ.
  • the input optical waveguide 102 formed from the center of one side of the semiconductor chip passes between MZM101X and 101Y and is connected to the light demultiplexer 103.
  • the light demultiplexers 104X and 104Y are connected to the output of the light demultiplexer 103, and MZM101XI, 101XQ and MZM101YI, 101YQ are connected to the output, respectively.
  • the MZM101X for the X polarization channel is provided with the MZM101XI and the phase adjuster 106XI for the I channel and the MZM101XQ and the phase adjuster 106XQ for the Q channel between the light demultiplexer 104X and the optical combiner 105X. ing. Further, in the MZM101XI for the I channel, an MZ optical waveguide 109XIa, 109XIb and a phase adjuster 110XIa, 110XIb are provided between the optical demultiplexer 107XI and the optical combiner 108XI.
  • the traveling wave electrode formed on the MZ optical waveguide 109XIa, 109XIb is connected to the RF signal line 111XIa, 111XIb formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. Further, since the MZM101Y for the Y polarization channel has the same structure as the MZM101X for the X polarization channel, the description thereof will be omitted.
  • the input light 121 is branched by the optical demultiplexer 103 via the input optical waveguide 102, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM101X and MZM101Y, and one side of the semiconductor chip. Is output as modulated output light 122X, 122Y.
  • the waveguide structure is symmetric between the IQ channels, so that the characteristic error between the channels is small with respect to the temperature fluctuation and temperature distribution in the chip.
  • the line length L1 of the RF signal lines 111XIa and 111XIb for inputting the RF modulated signal becomes long, there is a concern that the high frequency characteristics may be deteriorated.
  • FIG. 2 shows another example of a conventional polarization-multiplexed IQ optical modulator.
  • MZM201X for an X polarization channel and MZM201Y for a Y polarization channel are formed on a semiconductor chip, and MZM201XI and 201YI for the I channel and MZM201YI for the Q channel are formed, respectively. It has a nested structure including MZM201XQ and 201YQ.
  • the input optical waveguide 202 formed from the center of one side of the semiconductor chip passes between MZM201X and 201Y and is connected to the light demultiplexer 203.
  • the optical demultiplexers 204X and 204Y are connected to the output of the light demultiplexer 203, and the optical waveguide on the output side thereof is folded back 180 ° and connected to each of the MZM201XI and 201XQ and the MZM201YI and 201YQ.
  • MZM201X and MZM201Y are the same as that of MZM101X and MZM101Y except for the folded structure, so the description thereof will be omitted.
  • the input light 221 is branched by the optical demultiplexer 203 via the input optical waveguide 202, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM201X and MZM201Y, and one side of the semiconductor chip. Is output as modulated output light 222X, 222Y.
  • the line length L2 of the RF signal lines 211XIa and 211XIb for inputting the RF modulation signal can be shortened, and deterioration of high frequency characteristics can be suppressed.
  • the waveguide structure between the IQ channels in the MZM201X and the MZM201Y becomes asymmetric, the characteristic error between the IQ channels becomes large with respect to the temperature fluctuation / temperature distribution in the semiconductor chip.
  • the phase adjuster in the above-mentioned example is a phase adjuster utilizing a thermo-optical effect, and heats an optical waveguide by energizing a metal material (heater) loaded above the optical waveguide and propagates in the optical waveguide.
  • the phase of the optical signal is changed.
  • the electric power (P ⁇ ) required to change the phase by ⁇ is required to be about 30 mW, and further reduction in power consumption is required for miniaturization.
  • An object of the present invention is to provide an IQ optical modulator capable of suppressing deterioration of high frequency characteristics, improving resistance to temperature fluctuations and temperature distribution, and achieving miniaturization and low power consumption.
  • the present invention is an IQ optical modulator having a first optical modulator for an I channel and a second optical modulator for a Q channel, wherein the present invention is a semiconductor.
  • a second optical waveguide connected to an input optical waveguide formed from one side of the chip, provided between the first and second light modulators, and demultiplexing the input light to the first and second light modulators.
  • a first optical modulator that combines the output light from the first and second light modulators and outputs the light from one side of the semiconductor chip, and the first optical modulator. It is a first phase adjuster inserted between the output of the above and the first optical modulator, and is an optical waveguide from the first optical demultiplexer to the first optical modulator and the first optical modulator.
  • the optical waveguide from the first light modulator to the first optical modulator was inserted between the first phase adjuster in which the optical waveguide was arranged below the same electrode, the output of the second light modulator, and the first optical modulator.
  • FIG. 1 It is a figure which shows an example of the conventional IQ optical modulator of a polarization multiplex type. It is a figure which shows the other example of the conventional polarization multiplex type IQ light modulator. It is a figure which shows the IQ light modulator which concerns on Example 1 of this invention. It is sectional drawing which shows the structure of the phase adjuster of the IQ light modulator which concerns on Example 1.
  • FIG. It is a figure which shows the IQ light modulator which concerns on Example 2 of this invention.
  • FIG. 3 shows the IQ optical modulator according to the first embodiment of the present invention.
  • the IQ optical modulator 300 is a single-polarized IQ optical modulator, which comprises an I-channel optical modulator (MZM) 301I and a Q-channel optical modulator (MZM) 301Q on a semiconductor chip. It has a nested structure.
  • the input optical waveguide 302 formed from one side of the semiconductor chip is connected to the optical demultiplexer 304 (first optical demultiplexer) provided between the MZM 301I and 301Q via the optical cross waveguide 312. ..
  • the IQ optical modulator 300 is provided with an MZM301I and a phase adjuster 306I for the I channel and an MZM301Q and the phase adjuster 306Q for the Q channel between the light demultiplexer 304 and the optical duplexer 305. .. Further, the MZM301I for the I channel is provided with a Mach-Zehnder interference type arm waveguide (MZ optical waveguide) 309Ia, 309Ib and a phase adjuster 310Ia, 310Ib between the optical demultiplexer 307I and the optical combiner 308I. Has been done.
  • MZ optical waveguide Mach-Zehnder interference type arm waveguide
  • the traveling wave electrode formed on the MZ optical waveguides 309Ia and 309Ib is connected to the RF signal lines 311Ia and 311Ib formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted.
  • the input light 321 is photomodulated by an RF modulation signal in MZM301I and MZM301Q via an input optical waveguide 302, is coupled by an optical combiner 305 (first optical combiner), and is modulated and output from one side of a semiconductor chip. It is output as light 322.
  • the waveguide structure is symmetric between IQ channels, the characteristic error between channels is small with respect to the temperature fluctuation and temperature distribution in the chip.
  • the phase adjuster 306I has two parallel optical waveguides, that is, an optical waveguide on the input side from the optical waveguide 304 to the optical waveguide 307I, and an output side from the optical waveguide 308I to the optical waveguide 305.
  • the optical waveguide of the above is arranged under the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
  • the optical waveguide 312 is composed of two 1 ⁇ 1 MMI couplers in which the intersections of the two optical waveguides are arranged in a cross shape in which the light propagation directions are orthogonal to each other.
  • the two 1 ⁇ 1 MMI couplers have a cross-shaped planar shape and are formed of the same core-clad structure, and have a structure in which two lights having orthogonal propagation directions intersect in the same plane.
  • a 1x1 MMI coupler many modes propagate independently, but each mode has a different propagation velocity, so at a certain propagation length, the light is focused as a result of the interference of those modes. Have. By setting the center of the intersection of the two MMI couplers as this condensing point, it can function as a low-loss optical cross-guided path.
  • FIG. 4 shows the structure of the phase adjuster of the IQ optical modulator according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the line IV-IV'shown in FIG.
  • the n-InP layer 402, the lower semiconductor clad layer 403, the semiconductor core layer 404, and the upper semiconductor clad layer 405 are laminated in this order on the SI-InP layer 401, which is a substrate.
  • a desired mesa structure is formed from the lower semiconductor clad layer 403 to the upper semiconductor clad layer 405 by dry etching, and functions as two optical waveguides.
  • the two optical waveguides are covered with an organic material 406 and flattened, and a metal electrode serving as a heater 407 is formed on the organic material 406.
  • the width of the optical waveguide is 2 ⁇ m, the distance between the centers of the optical waveguide is 4 ⁇ m, and the width of the heater is 10 ⁇ m, so that two optical waveguides can be heated by the same heater. Since light propagates in the heated region, a phase change is applied to the optical waveguide. Therefore, by propagating twice in the same heated region, it is possible to obtain twice the phase change as compared with the conventional single propagation. can.
  • the electric power (P ⁇ ) required to change the phase by ⁇ is 30 mW, but in the first embodiment, it can be reduced to about half.
  • FIG. 5 shows the IQ optical modulator according to the second embodiment of the present invention.
  • the IQ optical modulator 500 is a single-polarized IQ optical modulator, which has a nested structure of MZM501I for I-channel and MZM501Q for Q-channel on a semiconductor chip.
  • the input optical waveguide 502 formed from one side of the semiconductor chip is connected to the optical demultiplexer 504 (first optical demultiplexer) provided between the MZM501I and 501Q via the optical cross waveguide 512. ..
  • the IQ optical modulator 500 is provided with an MZM501I and a phase adjuster 506I for an I channel and an MZM501Q and a phase adjuster 506Q for a Q channel between the light demultiplexer 504 and the optical combiner 505. .
  • the MZM501I for the I channel is provided with an optical demultiplexer 507I (second optical demultiplexer) and phase adjusters 510Ia and 510Ib between the MZM501I and 501Q, and the optical waveguide on the output side is folded back by 180 °. It is connected to the Mach-Zehnder interference type arm waveguide (MZ optical waveguide) 509Ia, 509Ib.
  • MZ optical waveguide Mach-Zehnder interference type arm waveguide
  • the light propagation direction of the light demultiplexer 507I and the light propagation direction of the MZ optical waveguides 509Ia and 509Ib are opposite to each other.
  • the optical waveguide inside the folded portion is provided with a bent portion so that the lengths of the optical waveguides from the phase adjusters 510Ia and 510Ib to the MZ optical waveguides 509Ia and 509Ib are equal.
  • the outputs of the MZ optical waveguides 509Ia and 509Ib are combined by the optical combiner 508I and input to the phase adjuster 506I.
  • the traveling wave electrode formed on the MZ optical waveguide 509Ia, 509Ib is connected to the RF signal line 511Ia, 511Ib formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted.
  • the input light 521 is photomodulated by the RF modulation signal in the MZM501I and MZM501Q via the input optical waveguide 502, combined by the optical combiner 505 (first optical combiner), and modulated and output from one side of the semiconductor chip. It is output as light 522.
  • the phase adjusters 510Ia and 510Ib are provided between the MZM501I and 501Q, the line lengths of the RF signal lines 511Ia and 511Ib can be shortened as compared with the first embodiment, and the semiconductor chip can be shortened. Can also be shortened.
  • the phase adjuster 506I has two parallel optical waveguides, that is, an optical waveguide on the input side from the optical waveguide 504 to the optical waveguide 507I, and an output side from the optical waveguide 508I to the optical waveguide 505.
  • the optical waveguide of the above is arranged under the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
  • FIG. 6 shows a polarization-multiplexed IQ optical modulator according to the third embodiment of the present invention.
  • the polarization multiplexing type IQ optical modulator 600 two IQ optical modulators 500 of Example 2 shown in FIG. 5 are integrated in parallel on a semiconductor chip, one for the X polarization channel and the other for the Y polarization channel. It has a nested structure.
  • the input optical waveguide 602 formed from the center of one side of the semiconductor chip is connected to the light demultiplexer 603, and its output is input to the MZM601X for the X polarization channel and the MZM601Y for the Y polarization channel.
  • optical demultiplexers 604X and 604Y are connected to the output of the optical demultiplexer 603 via optical cross-guide paths 612X and 612Y, and MZM601XI, 601XQ and MZM601YI, 601YQ are connected to the outputs, respectively. To.
  • the MZM601X for the X polarization channel is provided with the MZM601XI and the phase adjuster 606XI for the I channel and the MZM601XQ and the phase adjuster 606XQ for the Q channel between the light demultiplexer 604X and the optical combiner 605X. ing. Further, the MZM601XI for the I channel is provided with an optical demultiplexer 607XI and a phase adjuster 610XIa, 610XIb between the MZM601XI and 601XIb, and the optical waveguide on the output side thereof is folded back 180 ° to form the MZ optical waveguide 609XIa, 609XIb. Is connected to.
  • the optical waveguide inside the folded portion is provided with a bent portion so that the lengths of the optical waveguides from the phase adjusters 610XIa and 610XIb to the MZ optical waveguide 609XIa and 609XIb are equal.
  • the outputs of the MZ optical waveguides 609XIa and 609XIb are combined by the optical combiner 608XI and input to the phase adjuster 606XI.
  • the outputs of the phase adjusters 606XI and 606XQ are combined by the optical combiner 605X and output as the modulated output light 622X.
  • the traveling wave electrode formed on the MZ optical waveguide 609XIa, 609XIb is connected to the RF signal line 611XIa, 611XIb formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. Further, since the MZM601Y for the Y polarization channel has the same structure as the MZM601X for the X polarization channel, the description thereof will be omitted.
  • the input light 621 is branched by the optical demultiplexer 603 via the input optical waveguide 602, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM601X and MZM601Y, and one side of the semiconductor chip. Is output as modulated output light 622X, 622Y.
  • phase adjusters 610XIa and 610XIb are provided between the MZM601XI and 601XQ, the line length of the RF signal lines 611XIa and 611XIb can be shortened and the semiconductor chip can be shortened. can.
  • phase adjusters 606XI and 606XQ have two parallel optical waveguides, that is, an optical waveguide on the input side from the optical demultiplexer 604X to the optical demultiplexer 607XI and 607XQ, and the optical waveguide from the optical combiner 608XI and 608XQ.
  • the output-side optical waveguide leading to the device 605X is located below the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
  • FIG. 7 shows a polarization-multiplexed IQ optical modulator according to the fourth embodiment of the present invention.
  • the polarization multiplexing type IQ optical modulator 700 two IQ optical modulators 500 of Example 2 shown in FIG. 5 are integrated in parallel on a semiconductor chip, one for the X polarization channel and the other for the Y polarization channel. It has a nested structure.
  • the input optical waveguide 702 formed from the center of one side of the semiconductor chip is connected to the light demultiplexer 703, and its output is input to the MZM701X for the X polarization channel and the MZM701Y for the Y polarization channel.
  • An optical demultiplexer 704X, 704Y is connected to the output of the optical demultiplexer 703 via an optical cross-guided waveguide 712X, 712Y, and further, MZM701XI, 701XQ and MZM701YI, 701YQ are connected to the output, respectively.
  • the output of the MZM701XI, 701XQ is combined by the optical combiner 705X via the phase adjuster 706XI, 706XQ, and is output as the modulated output light 722X. Since the configurations of the MZM701XI and 701XQ are the same as those of the MZM601YI and 601YQ of the third embodiment shown in FIG. 6, the description thereof will be omitted.
  • the difference from the third embodiment is that a dummy optical cross-guided waveguide 713X is inserted between the phase adjuster 706XI and the optical combiner 705X. According to this configuration, since the number of intersections of the optical waveguide is equal between the XY channel and the IQ channel, it is possible to suppress the characteristic difference between the channels of the optical characteristics.
  • FIG. 8 shows a polarization-multiplexed IQ optical modulator according to the fifth embodiment of the present invention.
  • the polarization multiplex IQ optical modulator 800 is the MZM801X for the X polarization channel and the MZM801Y for the Y polarization channel on the semiconductor chip, and the MZM601X for the X polarization channel and the MZM601X for the X polarization channel shown in FIG. It has a nested structure including MZM601Y for the Y polarization channel, or MZM701X for the X polarization channel of Example 4 shown in FIG. 7 and MZM701Y for the Y polarization channel.
  • the difference between the third embodiment and the fourth embodiment is that a variable branch circuit is provided in the input section.
  • the variable branch circuit has a configuration in which a 1-input 2-output optical demultiplexer 831, a DC phase adjuster 832a, 832b, and a 2-input 2-output optical combine demultiplexer 833 are connected in order to the input optical waveguide 802. ing.
  • the specification of the difference in optical insertion loss between X-polarized and Y-polarized channels is determined as PDL (polarization dependent loss).
  • PDL polarization dependent loss
  • VOA variable optical attenuator
  • the optical intensity of the channel having the larger optical power intensity is attenuated and adjusted, so that excessive optical loss occurs in principle.
  • variable branch circuit of the fifth embodiment functions as an optical power trimming mechanism capable of arbitrarily adjusting the branch ratio. As a result, PDL compensation can be performed while maintaining the light intensity without excessive loss.

Abstract

The present invention provides an IQ optical modulator capable of suppressing the deterioration of high frequency characteristic, improving resistance to temperature fluctuation and temperature distribution, and achieving reductions in size and power consumption. An embodiment relates to an IQ optical modulator (300) having a first optical modulator (301I) for an I channel and a second optical modulator (301Q) for a Q channel, and provided with: a first optical demultiplexer (304) that is connected to an input optical waveguide (302) formed from one side of a semiconductor chip, is provided between the first and second optical modulators, and demultiplexes input light into the first and second optical modulators; a first optical multiplexer (305) that multiplexes output light from the first and second optical modulators, and outputs the multiplexed output light from the one side of the semiconductor chip; and first and second phase regulators (306I, 306Q) that are inserted between the output of the first optical modulator and the first optical multiplexer. In each of the phase regulators, an optical waveguide from the first optical demultiplexer to the first or the second optical modulator and an optical waveguide from the first or the second optical modulator to the first optical multiplexer are disposed in the lower part of the same electrode.

Description

IQ光変調器IQ light modulator
 本発明は、高速かつ広波長帯域動作可能なIQ光変調器に関する。 The present invention relates to an IQ optical modulator capable of operating at high speed and in a wide wavelength band.
 光通信システムの大容量化に伴い、高度な光変調方式に対応した高速光変調器が求められている。特にデジタルコヒーレント技術を用いた多値光変調器は、100Gbpsを超える大容量トランシーバ実現に大きな役割を果たしている。多値光変調器は、光入力を2つのアームに分波し、移相後に合波して干渉出力するマッハ・ツェンダー干渉型の光導波路(MZ光導波路)で構成された、ゼロチャープ駆動が可能な光変調器(MZM)が並列多段に内蔵されている。このような構成により、光の振幅及び位相に、それぞれ独立の信号を付加させることができる。 With the increase in capacity of optical communication systems, there is a demand for high-speed optical modulators that support advanced optical modulation methods. In particular, multi-valued light modulators using digital coherent technology play a major role in realizing large-capacity transceivers exceeding 100 Gbps. The multi-valued light modulator is capable of zero-charp drive, which is composed of a Mach-Zender interference type optical waveguide (MZ optical waveguide) that splits the optical input into two arms, combines them after phase shift, and outputs interference. Optical modulators (MZM) are built in parallel and multi-stage. With such a configuration, independent signals can be added to the amplitude and phase of light.
 現在、通信網への普及が進んでいる代表的な偏波多重型のIQ光変調器は、親MZMの各アームのそれぞれが子MZMで構成された、いわゆる入れ子構造を有する。X、Yの偏波チャネルのそれぞれに対応して子MZMが2つ並列に設けられ、計4つの子MZMを有するMZM(Quad-parallel MZM)が構成される。各々の子MZMの2つのアームには、光導波路内を伝搬する光信号に変調動作を行うためのRF変調電気信号が入力される進行波型電極が設けられている。各偏波チャネルにおいて、このような対をなす2つの子MZMの一方がIチャネル、他方がQチャネルにあたる。 A typical polarization-multiplexed IQ optical modulator, which is currently becoming widespread in communication networks, has a so-called nested structure in which each arm of the parent MZM is composed of child MZMs. Two child MZMs are provided in parallel corresponding to each of the X and Y polarization channels, and an MZM (Quad-pallell MZM) having a total of four child MZMs is configured. The two arms of each child MZM are provided with a traveling wave type electrode to which an RF modulated electric signal for performing a modulation operation is input to the optical signal propagating in the optical waveguide. In each polarization channel, one of the two such paired child MZMs is the I channel and the other is the Q channel.
 かかる偏波多重型のIQ光変調器は、子MZMのアーム光導波路に沿って設けられた変調電極の一端にRF変調電気信号を入力することにより、電気光学効果を生じさせて子MZMの光導波路内を伝搬する2つの光信号に位相変調を施している(特許文献1)。 In such a polarization-multiplexed IQ optical modulator, an RF-modulated electric signal is input to one end of a modulation electrode provided along the arm optical waveguide of the child MZM to generate an electro-optical effect, and the optical waveguide of the child MZM is generated. Phase modulation is applied to the two optical signals propagating within (Patent Document 1).
 図1に、従来の偏波多重型のIQ光変調器の一例を示す。偏波多重型のIQ光変調器100は、半導体チップ上に、X偏波チャネル用のMZM101XとY偏波チャネル用のMZM101Yとが形成され、それぞれにIチャネル用のMZM101XI,101YIとQチャネル用のMZM101XQ,101YQとを含む入れ子構造を有する。半導体チップの一方の辺の中央から形成された入力光導波路102は、MZM101X、101Yの間を通り、光分波器103に接続される。光分波器103の出力に、光分波器104X,104Yが接続され、さらに、その出力にはMZM101XI,101XQとMZM101YI,101YQのそれぞれが接続される。 FIG. 1 shows an example of a conventional polarization multiplex IQ optical modulator. In the polarization multiplex IQ optical modulator 100, MZM101X for an X polarization channel and MZM101Y for a Y polarization channel are formed on a semiconductor chip, and MZM101XI and 101YI for the I channel and MZM101YI for the Q channel, respectively. It has a nested structure including MZM101XQ and 101YQ. The input optical waveguide 102 formed from the center of one side of the semiconductor chip passes between MZM101X and 101Y and is connected to the light demultiplexer 103. The light demultiplexers 104X and 104Y are connected to the output of the light demultiplexer 103, and MZM101XI, 101XQ and MZM101YI, 101YQ are connected to the output, respectively.
 X偏波チャネル用のMZM101Xは、光分波器104Xと光合波器105Xとの間に、Iチャネル用のMZM101XIおよび位相調整器106XIと、Qチャネル用のMZM101XQおよび位相調整器106XQとが設けられている。さらに、Iチャネル用のMZM101XIは、光分波器107XIと光合波器108XIとの間に、MZ光導波路109XIa,109XIbおよび位相調整器110XIa,110XIbが設けられている。MZ光導波路109XIa,109XIbに形成された進行波電極は、半導体チップの他方の辺から形成されたRF信号線111XIa,111XIbに接続され、RF変調信号が供給される。Qチャネル用の構成も同じであるので説明は省略する。また、Y偏波チャネル用のMZM101YもX偏波チャネル用のMZM101Xと同じ構造を有するので説明は省略する。 The MZM101X for the X polarization channel is provided with the MZM101XI and the phase adjuster 106XI for the I channel and the MZM101XQ and the phase adjuster 106XQ for the Q channel between the light demultiplexer 104X and the optical combiner 105X. ing. Further, in the MZM101XI for the I channel, an MZ optical waveguide 109XIa, 109XIb and a phase adjuster 110XIa, 110XIb are provided between the optical demultiplexer 107XI and the optical combiner 108XI. The traveling wave electrode formed on the MZ optical waveguide 109XIa, 109XIb is connected to the RF signal line 111XIa, 111XIb formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. Further, since the MZM101Y for the Y polarization channel has the same structure as the MZM101X for the X polarization channel, the description thereof will be omitted.
 入力光121は、入力光導波路102を経て光分波器103で分岐され、X,Y偏波の各チャネル光は、MZM101XとMZM101Yにおいて、RF変調信号によって光変調され、半導体チップの一方の辺から変調出力光122X、122Yとして出力される。 The input light 121 is branched by the optical demultiplexer 103 via the input optical waveguide 102, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM101X and MZM101Y, and one side of the semiconductor chip. Is output as modulated output light 122X, 122Y.
 この構成によれば、MZM101X、101Yのそれぞれにおいて、IQチャネル間で導波路構造が対称であるため、チップ内の温度変動・温度分布に対してチャネル間の特性誤差は小さい。一方、RF変調信号を入力するRF信号線111XIa,111XIbの線路長L1が長くなるため、高周波特性の劣化が懸念される。 According to this configuration, in each of the MZM101X and 101Y, the waveguide structure is symmetric between the IQ channels, so that the characteristic error between the channels is small with respect to the temperature fluctuation and temperature distribution in the chip. On the other hand, since the line length L1 of the RF signal lines 111XIa and 111XIb for inputting the RF modulated signal becomes long, there is a concern that the high frequency characteristics may be deteriorated.
 図2に、従来の偏波多重型のIQ光変調器の他の例を示す。偏波多重型のIQ光変調器200は、半導体チップ上に、X偏波チャネル用のMZM201XとY偏波チャネル用のMZM201Yとが形成され、それぞれにIチャネル用のMZM201XI,201YIとQチャネル用のMZM201XQ,201YQとを含む入れ子構造を有する。半導体チップの一方の辺の中央から形成された入力光導波路202は、MZM201X、201Yの間を通り、光分波器203に接続される。光分波器203の出力に、光分波器204X,204Yが接続され、さらに、その出力側の光導波路を180°折り返して、MZM201XI,201XQとMZM201YI,201YQのそれぞれに接続している。 FIG. 2 shows another example of a conventional polarization-multiplexed IQ optical modulator. In the polarization multiplex IQ optical modulator 200, MZM201X for an X polarization channel and MZM201Y for a Y polarization channel are formed on a semiconductor chip, and MZM201XI and 201YI for the I channel and MZM201YI for the Q channel are formed, respectively. It has a nested structure including MZM201XQ and 201YQ. The input optical waveguide 202 formed from the center of one side of the semiconductor chip passes between MZM201X and 201Y and is connected to the light demultiplexer 203. The optical demultiplexers 204X and 204Y are connected to the output of the light demultiplexer 203, and the optical waveguide on the output side thereof is folded back 180 ° and connected to each of the MZM201XI and 201XQ and the MZM201YI and 201YQ.
 MZM201XとMZM201Yの構成は、折り返し構造を除いて、MZM101XとMZM101Yと同じなので説明は省略する。 The configuration of MZM201X and MZM201Y is the same as that of MZM101X and MZM101Y except for the folded structure, so the description thereof will be omitted.
 入力光221は、入力光導波路202を経て光分波器203で分岐され、X,Y偏波の各チャネル光は、MZM201XとMZM201Yにおいて、RF変調信号によって光変調され、半導体チップの一方の辺から変調出力光222X、222Yとして出力される。 The input light 221 is branched by the optical demultiplexer 203 via the input optical waveguide 202, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM201X and MZM201Y, and one side of the semiconductor chip. Is output as modulated output light 222X, 222Y.
 この構成によれば、RF変調信号を入力するRF信号線211XIa,211XIbの線路長L2を短尺化することができ、高周波特性の劣化を抑制することができる。一方、MZM201XとMZM201YとにおけるIQチャネル間の導波路構造が非対称性になるので、半導体チップ内の温度変動・温度分布に対して、IQチャネル間の特性誤差が大きくなってしまう。 According to this configuration, the line length L2 of the RF signal lines 211XIa and 211XIb for inputting the RF modulation signal can be shortened, and deterioration of high frequency characteristics can be suppressed. On the other hand, since the waveguide structure between the IQ channels in the MZM201X and the MZM201Y becomes asymmetric, the characteristic error between the IQ channels becomes large with respect to the temperature fluctuation / temperature distribution in the semiconductor chip.
 上述した例における位相調整器は、熱光学効果を利用した位相調整器であり、光導波路の上方に装荷された金属材料(ヒータ)に通電することにより光導波路を加熱し、光導波路内を伝搬する光信号の位相を変化させている。一例では、位相をπ変化させるのに必要な電力(Pπ)は30mW程度必要であり、小型化する上でさらなる低消費電力化が求められている。 The phase adjuster in the above-mentioned example is a phase adjuster utilizing a thermo-optical effect, and heats an optical waveguide by energizing a metal material (heater) loaded above the optical waveguide and propagates in the optical waveguide. The phase of the optical signal is changed. In one example, the electric power (Pπ) required to change the phase by π is required to be about 30 mW, and further reduction in power consumption is required for miniaturization.
国際公開WO/2018/174083号公報International Publication WO / 2018/174083
 本発明の目的は、高周波特性の劣化を抑制するとともに、温度変動・温度分布に対する耐性を向上させ、かつ小型化、低消費電力化を図ることができるIQ光変調器を提供することにある。 An object of the present invention is to provide an IQ optical modulator capable of suppressing deterioration of high frequency characteristics, improving resistance to temperature fluctuations and temperature distribution, and achieving miniaturization and low power consumption.
 本発明は、このような目的を達成するために、一実施態様は、Iチャネル用の第1光変調器とQチャネル用の第2光変調器とを有するIQ光変調器であって、半導体チップの一方の辺から形成された入力光導波路に接続され、前記第1および前記第2光変調器の間に設けられ、前記第1および前記第2光変調器に入力光を分波する第1光分波器と、前記第1および前記第2光変調器からの出力光を合波し、前記半導体チップの前記一方の辺から出力する第1光合波器と、前記第1光変調器の出力と前記第1光合波器との間に挿入された第1位相調整器であって、前記第1光分波器から前記第1光変調器までの光導波路および前記第1光変調器から前記第1光合波器までの光導波路が同一の電極の下部に配置された第1位相調整器と、前記第2光変調器の出力と前記第1光合波器との間に挿入された第2位相調整器であって、前記第1光分波器から前記第2光変調器までの光導波路および前記第2光変調器から前記第1光合波器までの光導波路が同一の電極の下部に配置された第2位相調整器とを備えたことを特徴とする。 In order to achieve such an object, the present invention is an IQ optical modulator having a first optical modulator for an I channel and a second optical modulator for a Q channel, wherein the present invention is a semiconductor. A second optical waveguide connected to an input optical waveguide formed from one side of the chip, provided between the first and second light modulators, and demultiplexing the input light to the first and second light modulators. A first optical modulator that combines the output light from the first and second light modulators and outputs the light from one side of the semiconductor chip, and the first optical modulator. It is a first phase adjuster inserted between the output of the above and the first optical modulator, and is an optical waveguide from the first optical demultiplexer to the first optical modulator and the first optical modulator. The optical waveguide from the first light modulator to the first optical modulator was inserted between the first phase adjuster in which the optical waveguide was arranged below the same electrode, the output of the second light modulator, and the first optical modulator. A second phase adjuster in which the optical waveguide from the first light duplexer to the second light modulator and the optical waveguide from the second light modulator to the first light modulator have the same electrode. It is characterized by having a second phase adjuster arranged at the bottom.
従来の偏波多重型のIQ光変調器の一例を示す図である。It is a figure which shows an example of the conventional IQ optical modulator of a polarization multiplex type. 従来の偏波多重型のIQ光変調器の他の例を示す図である。It is a figure which shows the other example of the conventional polarization multiplex type IQ light modulator. 本発明の実施例1にかかるIQ光変調器を示す図である。It is a figure which shows the IQ light modulator which concerns on Example 1 of this invention. 実施例1にかかるIQ光変調器の位相調整器の構造を示す断面図である。It is sectional drawing which shows the structure of the phase adjuster of the IQ light modulator which concerns on Example 1. FIG. 本発明の実施例2にかかるIQ光変調器を示す図である。It is a figure which shows the IQ light modulator which concerns on Example 2 of this invention. 本発明の実施例3にかかる偏波多重型のIQ光変調器を示す図である。It is a figure which shows the IQ optical modulator of the polarization multiplex type which concerns on Example 3 of this invention. 本発明の実施例4にかかる偏波多重型のIQ光変調器を示す図である。It is a figure which shows the IQ optical modulator of the polarization multiplex type which concerns on Example 4 of this invention. 本発明の実施例5にかかる偏波多重型のIQ光変調器を示す図である。It is a figure which shows the IQ optical modulator of the polarization multiplex type which concerns on Example 5 of this invention.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図3に、本発明の実施例1にかかるIQ光変調器を示す。IQ光変調器300は、単一偏波のIQ光変調器であって、半導体チップ上にIチャネル用の光変調器(MZM)301IとQチャネル用の光変調器(MZM)301Qとからなる入れ子構造を有する。半導体チップの一方の辺から形成された入力光導波路302は、光交差導波路312を介してMZM301I、301Qの間に設けられた光分波器304(第1光分波器)に接続される。 FIG. 3 shows the IQ optical modulator according to the first embodiment of the present invention. The IQ optical modulator 300 is a single-polarized IQ optical modulator, which comprises an I-channel optical modulator (MZM) 301I and a Q-channel optical modulator (MZM) 301Q on a semiconductor chip. It has a nested structure. The input optical waveguide 302 formed from one side of the semiconductor chip is connected to the optical demultiplexer 304 (first optical demultiplexer) provided between the MZM 301I and 301Q via the optical cross waveguide 312. ..
 IQ光変調器300は、光分波器304と光合波器305との間に、Iチャネル用のMZM301Iおよび位相調整器306Iと、Qチャネル用のMZM301Qおよび位相調整器306Qとが設けられている。さらに、Iチャネル用のMZM301Iは、光分波器307Iと光合波器308Iとの間に、マッハ・ツェンダー干渉型のアーム導波路(MZ光導波路)309Ia,309Ibおよび位相調整器310Ia,310Ibが設けられている。MZ光導波路309Ia,309Ibに形成された進行波電極は、半導体チップの他方の辺から形成されたRF信号線311Ia,311Ibに接続され、RF変調信号が供給される。Qチャネル用の構成も同じであるので説明は省略する。入力光321は、入力光導波路302を経てMZM301IとMZM301Qにおいて、RF変調信号によって光変調され、光合波器305(第1光合波器)で合波されて、半導体チップの一方の辺から変調出力光322として出力される。 The IQ optical modulator 300 is provided with an MZM301I and a phase adjuster 306I for the I channel and an MZM301Q and the phase adjuster 306Q for the Q channel between the light demultiplexer 304 and the optical duplexer 305. .. Further, the MZM301I for the I channel is provided with a Mach-Zehnder interference type arm waveguide (MZ optical waveguide) 309Ia, 309Ib and a phase adjuster 310Ia, 310Ib between the optical demultiplexer 307I and the optical combiner 308I. Has been done. The traveling wave electrode formed on the MZ optical waveguides 309Ia and 309Ib is connected to the RF signal lines 311Ia and 311Ib formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. The input light 321 is photomodulated by an RF modulation signal in MZM301I and MZM301Q via an input optical waveguide 302, is coupled by an optical combiner 305 (first optical combiner), and is modulated and output from one side of a semiconductor chip. It is output as light 322.
 この構成によれば、IQチャネル間で導波路構造が対称であるため、チップ内の温度変動・温度分布に対してチャネル間の特性誤差は小さい。 According to this configuration, since the waveguide structure is symmetric between IQ channels, the characteristic error between channels is small with respect to the temperature fluctuation and temperature distribution in the chip.
 また、位相調整器306Iには、平行する2つの光導波路、すなわち光分波器304から光分波器307Iに至る入力側の光導波路と、光合波器308Iから光合波器305に至る出力側の光導波路とが、同一の電極の下部に配置されている。同じヒータの加熱領域を2回往復するため、ヒータの長さは、従来と比較して1/2にすることができ、ヒータの信頼性を低下させることなく、ヒータを短尺化することができ、IQ光変調器の小型化にも寄与することができる。 Further, the phase adjuster 306I has two parallel optical waveguides, that is, an optical waveguide on the input side from the optical waveguide 304 to the optical waveguide 307I, and an output side from the optical waveguide 308I to the optical waveguide 305. The optical waveguide of the above is arranged under the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
 光交差導波路312は、2つの光導波路の交差部が、光の伝搬方向が直交する十字型に配置された2つの1×1MMIカプラから構成されている。2つの1×1MMIカプラは、十字型の平面形状をなし、同一のコア・クラッド構造で形成されており、伝搬方向が直交する2つの光が同一平面で交差する構造になっている。1×1MMIカプラでは、多数のモードが独立して伝搬するが、それぞれのモードは異なる伝搬速度を有しているため、ある伝搬長において、それらのモードの干渉結果として光が集光する機能を有する。2つのMMIカプラの交差部の中心を、この集光点とすることにより、低損失な光交差導波路として機能させることができる。 The optical waveguide 312 is composed of two 1 × 1 MMI couplers in which the intersections of the two optical waveguides are arranged in a cross shape in which the light propagation directions are orthogonal to each other. The two 1 × 1 MMI couplers have a cross-shaped planar shape and are formed of the same core-clad structure, and have a structure in which two lights having orthogonal propagation directions intersect in the same plane. In a 1x1 MMI coupler, many modes propagate independently, but each mode has a different propagation velocity, so at a certain propagation length, the light is focused as a result of the interference of those modes. Have. By setting the center of the intersection of the two MMI couplers as this condensing point, it can function as a low-loss optical cross-guided path.
 図4に、実施例1にかかるIQ光変調器の位相調整器の構造を示す。図3に示したIV-IV’における断面図である。位相調整器306Iは、基板であるSI-InP層401上に、n-InP層402、下部半導体クラッド層403、半導体コア層404、上部半導体クラッド層405が順に積層されている。下部半導体クラッド層403から上部半導体クラッド層405までは、ドライエッチングによって所望のメサ構造が形成され、2つの光導波路として機能する。2つの光導波路は、有機材料406で覆われて平たん化されており、有機材料406の上にヒータ407となる金属電極が形成されている。 FIG. 4 shows the structure of the phase adjuster of the IQ optical modulator according to the first embodiment. FIG. 3 is a cross-sectional view taken along the line IV-IV'shown in FIG. In the phase adjuster 306I, the n-InP layer 402, the lower semiconductor clad layer 403, the semiconductor core layer 404, and the upper semiconductor clad layer 405 are laminated in this order on the SI-InP layer 401, which is a substrate. A desired mesa structure is formed from the lower semiconductor clad layer 403 to the upper semiconductor clad layer 405 by dry etching, and functions as two optical waveguides. The two optical waveguides are covered with an organic material 406 and flattened, and a metal electrode serving as a heater 407 is formed on the organic material 406.
 光導波路幅は2μm、光導波路の中心間隔は4μm、ヒータの幅は10μmであり、同一のヒータで2つの光導波路を加熱することができる。加熱領域を光が伝搬することにより、光導波路に位相変化が加わるため、同じ加熱領域を2回伝搬することによって、従来の1回伝搬するのに比較して2倍の位相変化を得ることができる。従来の例では、位相をπ変化させるのに必要な電力(Pπ)は30mWであったのに対して、実施例1では約半分にまで削減することができる。 The width of the optical waveguide is 2 μm, the distance between the centers of the optical waveguide is 4 μm, and the width of the heater is 10 μm, so that two optical waveguides can be heated by the same heater. Since light propagates in the heated region, a phase change is applied to the optical waveguide. Therefore, by propagating twice in the same heated region, it is possible to obtain twice the phase change as compared with the conventional single propagation. can. In the conventional example, the electric power (Pπ) required to change the phase by π is 30 mW, but in the first embodiment, it can be reduced to about half.
 図5に、本発明の実施例2にかかるIQ光変調器を示す。IQ光変調器500は、単一偏波のIQ光変調器であって、半導体チップ上にIチャネル用のMZM501IとQチャネル用のMZM501Qとからなる入れ子構造を有する。半導体チップの一方の辺から形成された入力光導波路502は、光交差導波路512を介してMZM501I、501Qの間に設けられた光分波器504(第1光分波器)に接続される。 FIG. 5 shows the IQ optical modulator according to the second embodiment of the present invention. The IQ optical modulator 500 is a single-polarized IQ optical modulator, which has a nested structure of MZM501I for I-channel and MZM501Q for Q-channel on a semiconductor chip. The input optical waveguide 502 formed from one side of the semiconductor chip is connected to the optical demultiplexer 504 (first optical demultiplexer) provided between the MZM501I and 501Q via the optical cross waveguide 512. ..
 IQ光変調器500は、光分波器504と光合波器505との間に、Iチャネル用のMZM501Iおよび位相調整器506Iと、Qチャネル用のMZM501Qおよび位相調整器506Qとが設けられている。さらに、Iチャネル用のMZM501Iには、MZM501I,501Qの間に光分波器507I(第2光分波器)および位相調整器510Ia,510Ibが設けられ、その出力側の光導波路を180°折り返して、マッハ・ツェンダー干渉型のアーム導波路(MZ光導波路)509Ia,509Ibに接続している。すなわち、光分波器507Iの光伝搬方向とMZ光導波路509Ia,509Ibの光伝搬方向が反対方向である。なお、位相調整器510Ia,510IbからMZ光導波路509Ia,509Ibまでの光導波路の長さが等しくなるように、折り返し部分の内側の光導波路には、折り曲げ部を設けている。MZ光導波路509Ia,509Ibの出力は、光合波器508Iで合波され、位相調整器506Iに入力される。 The IQ optical modulator 500 is provided with an MZM501I and a phase adjuster 506I for an I channel and an MZM501Q and a phase adjuster 506Q for a Q channel between the light demultiplexer 504 and the optical combiner 505. .. Further, the MZM501I for the I channel is provided with an optical demultiplexer 507I (second optical demultiplexer) and phase adjusters 510Ia and 510Ib between the MZM501I and 501Q, and the optical waveguide on the output side is folded back by 180 °. It is connected to the Mach-Zehnder interference type arm waveguide (MZ optical waveguide) 509Ia, 509Ib. That is, the light propagation direction of the light demultiplexer 507I and the light propagation direction of the MZ optical waveguides 509Ia and 509Ib are opposite to each other. The optical waveguide inside the folded portion is provided with a bent portion so that the lengths of the optical waveguides from the phase adjusters 510Ia and 510Ib to the MZ optical waveguides 509Ia and 509Ib are equal. The outputs of the MZ optical waveguides 509Ia and 509Ib are combined by the optical combiner 508I and input to the phase adjuster 506I.
 MZ光導波路509Ia,509Ibに形成された進行波電極は、半導体チップの他方の辺から形成されたRF信号線511Ia,511Ibに接続され、RF変調信号が供給される。Qチャネル用の構成も同じであるので説明は省略する。入力光521は、入力光導波路502を経てMZM501IとMZM501Qにおいて、RF変調信号によって光変調され、光合波器505(第1光合波器)で合波されて、半導体チップの一方の辺から変調出力光522として出力される。 The traveling wave electrode formed on the MZ optical waveguide 509Ia, 509Ib is connected to the RF signal line 511Ia, 511Ib formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. The input light 521 is photomodulated by the RF modulation signal in the MZM501I and MZM501Q via the input optical waveguide 502, combined by the optical combiner 505 (first optical combiner), and modulated and output from one side of the semiconductor chip. It is output as light 522.
 この構成によれば、位相調整器510Ia,510IbをMZM501I,501Qの間に設けたので、実施例1と比較すると、RF信号線511Ia,511Ibの線路長を短尺化することができるとともに、半導体チップの短尺化も図ることができる。 According to this configuration, since the phase adjusters 510Ia and 510Ib are provided between the MZM501I and 501Q, the line lengths of the RF signal lines 511Ia and 511Ib can be shortened as compared with the first embodiment, and the semiconductor chip can be shortened. Can also be shortened.
 さらに、位相調整器506Iには、平行する2つの光導波路、すなわち光分波器504から光分波器507Iに至る入力側の光導波路と、光合波器508Iから光合波器505に至る出力側の光導波路とが、同一の電極の下部に配置されている。同じヒータの加熱領域を2回往復するため、ヒータの長さは、従来と比較して1/2にすることができ、ヒータの信頼性を低下させることなく、ヒータを短尺化することができ、IQ光変調器の小型化にも寄与することができる。 Further, the phase adjuster 506I has two parallel optical waveguides, that is, an optical waveguide on the input side from the optical waveguide 504 to the optical waveguide 507I, and an output side from the optical waveguide 508I to the optical waveguide 505. The optical waveguide of the above is arranged under the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
 図6に、本発明の実施例3にかかる偏波多重型のIQ光変調器を示す。偏波多重型のIQ光変調器600は、半導体チップ上に、図5に示した実施例2のIQ光変調器500を、X偏波チャネル用およびY偏波チャネル用に2つ並列に集積して、入れ子構造にしている。半導体チップの一方の辺の中央から形成された入力光導波路602は、光分波器603に接続され、その出力はX偏波チャネル用のMZM601XとY偏波チャネル用のMZM601Yに入力される。 FIG. 6 shows a polarization-multiplexed IQ optical modulator according to the third embodiment of the present invention. In the polarization multiplexing type IQ optical modulator 600, two IQ optical modulators 500 of Example 2 shown in FIG. 5 are integrated in parallel on a semiconductor chip, one for the X polarization channel and the other for the Y polarization channel. It has a nested structure. The input optical waveguide 602 formed from the center of one side of the semiconductor chip is connected to the light demultiplexer 603, and its output is input to the MZM601X for the X polarization channel and the MZM601Y for the Y polarization channel.
 光分波器603の出力には、光交差導波路612X,612Yを介して、光分波器604X,604Yが接続され、さらに、その出力にはMZM601XI,601XQとMZM601YI,601YQのそれぞれが接続される。 The optical demultiplexers 604X and 604Y are connected to the output of the optical demultiplexer 603 via optical cross-guide paths 612X and 612Y, and MZM601XI, 601XQ and MZM601YI, 601YQ are connected to the outputs, respectively. To.
 X偏波チャネル用のMZM601Xは、光分波器604Xと光合波器605Xとの間に、Iチャネル用のMZM601XIおよび位相調整器606XIと、Qチャネル用のMZM601XQおよび位相調整器606XQとが設けられている。さらに、Iチャネル用のMZM601XIには、MZM601XI,601XQの間に光分波器607XIおよび位相調整器610XIa,610XIbが設けられ、その出力側の光導波路を180°折り返して、MZ光導波路609XIa,609XIbに接続している。なお、位相調整器610XIa,610XIbからMZ光導波路609XIa,609XIbまでの光導波路の長さが等しくなるように、折り返し部分の内側の光導波路には、折り曲げ部を設けている。MZ光導波路609XIa,609XIbの出力は、光合波器608XIで合波され、位相調整器606XIに入力される。位相調整器606XI,606XQの出力が、光合波器605Xにて合波されて変調出力光622Xとして出力される。 The MZM601X for the X polarization channel is provided with the MZM601XI and the phase adjuster 606XI for the I channel and the MZM601XQ and the phase adjuster 606XQ for the Q channel between the light demultiplexer 604X and the optical combiner 605X. ing. Further, the MZM601XI for the I channel is provided with an optical demultiplexer 607XI and a phase adjuster 610XIa, 610XIb between the MZM601XI and 601XIb, and the optical waveguide on the output side thereof is folded back 180 ° to form the MZ optical waveguide 609XIa, 609XIb. Is connected to. The optical waveguide inside the folded portion is provided with a bent portion so that the lengths of the optical waveguides from the phase adjusters 610XIa and 610XIb to the MZ optical waveguide 609XIa and 609XIb are equal. The outputs of the MZ optical waveguides 609XIa and 609XIb are combined by the optical combiner 608XI and input to the phase adjuster 606XI. The outputs of the phase adjusters 606XI and 606XQ are combined by the optical combiner 605X and output as the modulated output light 622X.
 MZ光導波路609XIa,609XIbに形成された進行波電極は、半導体チップの他方の辺から形成されたRF信号線611XIa,611XIbに接続され、RF変調信号が供給される。Qチャネル用の構成も同じであるので説明は省略する。また、Y偏波チャネル用のMZM601YもX偏波チャネル用のMZM601Xと同じ構造を有するので説明は省略する。 The traveling wave electrode formed on the MZ optical waveguide 609XIa, 609XIb is connected to the RF signal line 611XIa, 611XIb formed from the other side of the semiconductor chip, and the RF modulation signal is supplied. Since the configuration for the Q channel is the same, the description thereof will be omitted. Further, since the MZM601Y for the Y polarization channel has the same structure as the MZM601X for the X polarization channel, the description thereof will be omitted.
 入力光621は、入力光導波路602を経て光分波器603で分岐され、X,Y偏波の各チャネル光は、MZM601XとMZM601Yにおいて、RF変調信号によって光変調され、半導体チップの一方の辺から変調出力光622X、622Yとして出力される。 The input light 621 is branched by the optical demultiplexer 603 via the input optical waveguide 602, and each channel light of X and Y polarization is photomodulated by an RF modulation signal in MZM601X and MZM601Y, and one side of the semiconductor chip. Is output as modulated output light 622X, 622Y.
 この構成によれば、位相調整器610XIa,610XIbをMZM601XI,601XQの間に設けたので、RF信号線611XIa,611XIbの線路長を短尺化することができるとともに、半導体チップの短尺化も図ることができる。 According to this configuration, since the phase adjusters 610XIa and 610XIb are provided between the MZM601XI and 601XQ, the line length of the RF signal lines 611XIa and 611XIb can be shortened and the semiconductor chip can be shortened. can.
 さらに、位相調整器606XI,606XQには、平行する2つの光導波路、すなわち光分波器604Xから光分波器607XI,607XQに至る入力側の光導波路と、光合波器608XI,608XQから光合波器605Xに至る出力側の光導波路とが、同一の電極の下部に配置されている。同じヒータの加熱領域を2回往復するため、ヒータの長さは、従来と比較して1/2にすることができ、ヒータの信頼性を低下させることなく、ヒータを短尺化することができ、IQ光変調器の小型化にも寄与することができる。 Further, the phase adjusters 606XI and 606XQ have two parallel optical waveguides, that is, an optical waveguide on the input side from the optical demultiplexer 604X to the optical demultiplexer 607XI and 607XQ, and the optical waveguide from the optical combiner 608XI and 608XQ. The output-side optical waveguide leading to the device 605X is located below the same electrode. Since the heating area of the same heater is reciprocated twice, the length of the heater can be halved as compared with the conventional one, and the heater can be shortened without deteriorating the reliability of the heater. , It can also contribute to the miniaturization of the IQ optical modulator.
 図7に、本発明の実施例4にかかる偏波多重型のIQ光変調器を示す。偏波多重型のIQ光変調器700は、半導体チップ上に、図5に示した実施例2のIQ光変調器500を、X偏波チャネル用およびY偏波チャネル用に2つ並列に集積して、入れ子構造にしている。半導体チップの一方の辺の中央から形成された入力光導波路702は、光分波器703に接続され、その出力はX偏波チャネル用のMZM701XとY偏波チャネル用のMZM701Yに入力される。 FIG. 7 shows a polarization-multiplexed IQ optical modulator according to the fourth embodiment of the present invention. In the polarization multiplexing type IQ optical modulator 700, two IQ optical modulators 500 of Example 2 shown in FIG. 5 are integrated in parallel on a semiconductor chip, one for the X polarization channel and the other for the Y polarization channel. It has a nested structure. The input optical waveguide 702 formed from the center of one side of the semiconductor chip is connected to the light demultiplexer 703, and its output is input to the MZM701X for the X polarization channel and the MZM701Y for the Y polarization channel.
 光分波器703の出力には、光交差導波路712X,712Yを介して、光分波器704X,704Yが接続され、さらに、その出力にはMZM701XI,701XQとMZM701YI,701YQのそれぞれが接続される。MZM701XI,701XQの出力は、位相調整器706XI,706XQを介して光合波器705Xにて合波され、変調出力光722Xとして出力される。MZM701XI,701XQの構成は、図6に示した実施例3のMZM601YI,601YQと同じであるので説明は省略する。 An optical demultiplexer 704X, 704Y is connected to the output of the optical demultiplexer 703 via an optical cross-guided waveguide 712X, 712Y, and further, MZM701XI, 701XQ and MZM701YI, 701YQ are connected to the output, respectively. To. The output of the MZM701XI, 701XQ is combined by the optical combiner 705X via the phase adjuster 706XI, 706XQ, and is output as the modulated output light 722X. Since the configurations of the MZM701XI and 701XQ are the same as those of the MZM601YI and 601YQ of the third embodiment shown in FIG. 6, the description thereof will be omitted.
 実施例3との相違点は、位相調整器706XIと光合波器705Xとの間に、ダミー光交差導波路713Xが挿入されていることである。この構成によれば、XYチャネルおよびIQチャネル間で、光導波路の交差数が等しくなるため、光学特性のチャネル間における特性差を抑制することができる。 The difference from the third embodiment is that a dummy optical cross-guided waveguide 713X is inserted between the phase adjuster 706XI and the optical combiner 705X. According to this configuration, since the number of intersections of the optical waveguide is equal between the XY channel and the IQ channel, it is possible to suppress the characteristic difference between the channels of the optical characteristics.
 図8に、本発明の実施例5にかかる偏波多重型のIQ光変調器を示す。偏波多重型のIQ光変調器800は、半導体チップ上に、X偏波チャネル用のMZM801XおよびY偏波チャネル用のMZM801Yとして、図6に示した実施例3のX偏波チャネル用のMZM601XおよびY偏波チャネル用のMZM601Y、または図7に示した実施例4のX偏波チャネル用のMZM701XおよびY偏波チャネル用のMZM701Yを備えた入れ子構造にしている。実施例3および実施例4との相違点は、入力部に可変分岐回路を設けたことにある。 FIG. 8 shows a polarization-multiplexed IQ optical modulator according to the fifth embodiment of the present invention. The polarization multiplex IQ optical modulator 800 is the MZM801X for the X polarization channel and the MZM801Y for the Y polarization channel on the semiconductor chip, and the MZM601X for the X polarization channel and the MZM601X for the X polarization channel shown in FIG. It has a nested structure including MZM601Y for the Y polarization channel, or MZM701X for the X polarization channel of Example 4 shown in FIG. 7 and MZM701Y for the Y polarization channel. The difference between the third embodiment and the fourth embodiment is that a variable branch circuit is provided in the input section.
 可変分岐回路は、入力光導波路802に、1入力2出力型光分波器831、DC位相調整器832a,832b、および2入力2出力型光合分波器833が順に接続された構成を有している。 The variable branch circuit has a configuration in which a 1-input 2-output optical demultiplexer 831, a DC phase adjuster 832a, 832b, and a 2-input 2-output optical combine demultiplexer 833 are connected in order to the input optical waveguide 802. ing.
 従来、X偏波、Y偏波のチャネル間の光挿入損失差は、PDL(polarization dependent loss:偏波依存損失)として仕様が決められている。しかし、加工プロセス等に起因した不均一化によって、偏波多重型のIQ光変調器においては、PDLが増大することが課題として挙げられていた。PDLの補償機構としては、従来、偏波チャネルごとにVOA(可変光減衰器)を用いて損失差を補償していた。しかしながら、VOAによる補償機構では、光パワー強度の大きい方のチャネルの光強度を減衰させて調整するので、原理的に過剰な光損失が生じていた。 Conventionally, the specification of the difference in optical insertion loss between X-polarized and Y-polarized channels is determined as PDL (polarization dependent loss). However, it has been mentioned as a problem that the PDL increases in the polarization multiplex IQ optical modulator due to the non-uniformity caused by the processing process or the like. As a PDL compensation mechanism, conventionally, a VOA (variable optical attenuator) has been used for each polarization channel to compensate for the loss difference. However, in the compensation mechanism by VOA, the optical intensity of the channel having the larger optical power intensity is attenuated and adjusted, so that excessive optical loss occurs in principle.
 実施例5の可変分岐回路は、分岐比を任意に調整することができる、光パワートリミング機構として機能する。これにより、過剰な損失が無く光強度を維持したままPDL補償を行うことができる。 The variable branch circuit of the fifth embodiment functions as an optical power trimming mechanism capable of arbitrarily adjusting the branch ratio. As a result, PDL compensation can be performed while maintaining the light intensity without excessive loss.

Claims (6)

  1.  Iチャネル用の第1光変調器とQチャネル用の第2光変調器とを有するIQ光変調器であって、
     半導体チップの一方の辺から形成された入力光導波路に接続され、前記第1および前記第2光変調器の間に設けられ、前記第1および前記第2光変調器に入力光を分波する第1光分波器と、
     前記第1および前記第2光変調器からの出力光を合波し、前記半導体チップの前記一方の辺から出力する第1光合波器と、
     前記第1光変調器の出力と前記第1光合波器との間に挿入された第1位相調整器であって、前記第1光分波器から前記第1光変調器までの光導波路および前記第1光変調器から前記第1光合波器までの光導波路が同一の電極の下部に配置された第1位相調整器と、
     前記第2光変調器の出力と前記第1光合波器との間に挿入された第2位相調整器であって、前記第1光分波器から前記第2光変調器までの光導波路および前記第2光変調器から前記第1光合波器までの光導波路が同一の電極の下部に配置された第2位相調整器と
     を備えたことを特徴とするIQ光変調器。
    An IQ optical modulator having a first optical modulator for the I channel and a second optical modulator for the Q channel.
    It is connected to an input optical waveguide formed from one side of a semiconductor chip, is provided between the first and second light modulators, and demultiplexes the input light to the first and second light modulators. The first optical waveguide and
    A first optical combiner that combines the output light from the first and second light modulators and outputs it from one side of the semiconductor chip.
    A first phase adjuster inserted between the output of the first optical modulator and the first optical modulator, which is an optical waveguide from the first optical duplexer to the first optical modulator. A first phase adjuster in which an optical waveguide from the first light modulator to the first optical modulator is arranged under the same electrode, and
    A second phase adjuster inserted between the output of the second light modulator and the first light modulator, which is an optical waveguide from the first light duplexer to the second light modulator. An IQ optical modulator characterized in that an optical waveguide from the second optical modulator to the first optical modulator is provided with a second phase adjuster arranged under the same electrode.
  2.  前記入力光導波路は、前記第1または前記第2位相調整器のいずれか一方と前記第1光合波器との間の光導波路と交差し、2つの光導波路の交差部が、光の伝搬方向が直交する十字型に配置された2つの1×1MMIカプラから構成されていることを特徴とする請求項1に記載のIQ光変調器。 The input optical waveguide intersects the optical waveguide between either one of the first or the second phase adjuster and the first optical waveguide, and the intersection of the two optical waveguides is the light propagation direction. The IQ optical modulator according to claim 1, wherein the IQ optical modulators are composed of two 1 × 1 MMI couplers arranged in an orthogonal cross shape.
  3.  前記第1および前記第2光変調器のそれぞれは、前記第1光分波器で分波された光を2つのアーム光導波路に分岐する第2光分波器を、前記第1および前記第2光変調器の間に有し、前記第2光分波器の光伝搬方向と前記第1および前記第2光変調器の光伝搬方向が反対方向であることを特徴とする請求項1または2に記載のIQ光変調器。 Each of the first and second optical modulators has a second optical duplexer that splits the light demultiplexed by the first optical duplexer into two arm optical waveguides. 1. 2. The IQ optical modulator according to 2.
  4.  前記第1または前記第2位相調整器の他方と前記第1光合波器との間の光導波路に、光の伝搬方向が直交する十字型に配置された2つの1×1MMIカプラが構成されていることを特徴とする請求項2または3に記載のIQ光変調器。 Two 1 × 1 MMI couplers arranged in a cross shape in which the light propagation directions are orthogonal to each other are configured in the optical waveguide between the other of the first or second phase adjuster and the first optical modulator. The IQ optical modulator according to claim 2 or 3, wherein the IQ optical modulator is provided.
  5.  偏波多重型のIQ光変調器であって、
     前記半導体チップ上に並列に集積され、X偏波チャネル用のIQ光変調器およびY偏波チャネル用のIQ光変調器として、請求項1ないし4のいずれか1項に記載の2つのIQ光変調器と、
     前記半導体チップの一方の辺から形成された入力光導波路に接続され、前記2つのIQ光変調器のそれぞれの第1光分波器に入力光を分波する第3光分波器と
     を備えたことを特徴とするIQ光変調器。
    It is a polarization-multiplexed IQ optical modulator,
    The two IQ light according to any one of claims 1 to 4 as an IQ optical modulator for an X-polarized channel and an IQ optical modulator for a Y-polarized channel, which are integrated in parallel on the semiconductor chip. Modulator and
    A third optical demultiplexer connected to an input optical waveguide formed from one side of the semiconductor chip and demultiplexing the input light into the first optical demultiplexer of each of the two IQ light modulators is provided. An IQ optical modulator characterized by the fact that.
  6.  偏波多重型のIQ光変調器であって、
     前記半導体チップ上に並列に集積され、X偏波チャネル用のIQ光変調器およびY偏波チャネル用のIQ光変調器として、請求項1ないし4のいずれか1項に記載の2つのIQ光変調器と、
     前記半導体チップの一方の辺から形成された入力光導波路に接続された可変分岐回路とを備え、
     前記可変分岐回路は、前記入力光導波路に接続された1入力2出力型光分波器、2つのDC位相調整器、および前記2つのIQ光変調器のそれぞれの第1光分波器に入力光を分波する2入力2出力型光合分波器が順に接続されていることを特徴とするIQ光変調器。
    It is a polarization-multiplexed IQ optical modulator,
    The two IQ light according to any one of claims 1 to 4 as an IQ optical modulator for an X-polarized channel and an IQ optical modulator for a Y-polarized channel, which are integrated in parallel on the semiconductor chip. Modulator and
    A variable branch circuit connected to an input optical waveguide formed from one side of the semiconductor chip is provided.
    The variable branch circuit is input to the first optical demultiplexer of each of the 1-input 2-output optical duplexer connected to the input optical waveguide, the two DC phase adjusters, and the two IQ optical modulators. An IQ optical modulator characterized in that two-input, two-output optical waveguides that demultiplex light are connected in order.
PCT/JP2020/041612 2020-11-06 2020-11-06 Iq optical modulator WO2022097289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041612 WO2022097289A1 (en) 2020-11-06 2020-11-06 Iq optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041612 WO2022097289A1 (en) 2020-11-06 2020-11-06 Iq optical modulator

Publications (1)

Publication Number Publication Date
WO2022097289A1 true WO2022097289A1 (en) 2022-05-12

Family

ID=81457661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041612 WO2022097289A1 (en) 2020-11-06 2020-11-06 Iq optical modulator

Country Status (1)

Country Link
WO (1) WO2022097289A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180267340A1 (en) * 2017-03-15 2018-09-20 Elenion Technologies, Llc Bias control of optical modulators
WO2018174083A1 (en) * 2017-03-22 2018-09-27 日本電信電話株式会社 Iq optical modulator
JP2018534627A (en) * 2015-11-20 2018-11-22 オクラロ テクノロジー リミテッド Optical modulation device
JP2019152732A (en) * 2018-03-02 2019-09-12 富士通オプティカルコンポーネンツ株式会社 Light modulator and optical transceiver module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534627A (en) * 2015-11-20 2018-11-22 オクラロ テクノロジー リミテッド Optical modulation device
US20180267340A1 (en) * 2017-03-15 2018-09-20 Elenion Technologies, Llc Bias control of optical modulators
WO2018174083A1 (en) * 2017-03-22 2018-09-27 日本電信電話株式会社 Iq optical modulator
JP2019152732A (en) * 2018-03-02 2019-09-12 富士通オプティカルコンポーネンツ株式会社 Light modulator and optical transceiver module using the same

Similar Documents

Publication Publication Date Title
US8149492B2 (en) Optical modulator
US8705900B2 (en) Optical modulator
US9829640B2 (en) Temperature insensitive DEMUX/MUX in silicon photonics
US20130322809A1 (en) Optical modulator
US8374467B2 (en) Optical device having a plurality of Mach-Zehnder modulators
WO2011004615A1 (en) Optical modulator
JP3800594B2 (en) Light modulator
WO2009103041A1 (en) High capacity transmitter implemented on a photonic integrated circuit
JP4558814B2 (en) Delay demodulation device
WO2007023857A1 (en) Light fsk/ssb modulator having intensity balance function
JP5868341B2 (en) Optical multiplexer / demultiplexer
JP2002006152A (en) Array waveguide diffraction grating type optical multiplexing-branching filter
JP3567901B2 (en) Waveguide type optical control device and method of manufacturing the same
JP5729075B2 (en) Optical waveguide device
JP2018186414A (en) Optical transmission and reception circuit
WO2022097289A1 (en) Iq optical modulator
US8606053B2 (en) Optical modulator
JP6570418B2 (en) Multi-wavelength modulator
JP7099642B2 (en) IQ light modulator
JP2004233619A (en) Optical switch and optical wavelength router
WO2023214469A1 (en) Iq optical modulator
WO2022259431A1 (en) Variable wavelength filter and method for controlling same
WO2021234911A1 (en) Optical phase modulator
JP4875297B2 (en) Variable dispersion compensator, variable dispersion compensation device
JP2023037926A (en) Optical device and optical communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP