JP2003121385A - Method and device for inspecting inside of vitreous silica material for defect - Google Patents

Method and device for inspecting inside of vitreous silica material for defect

Info

Publication number
JP2003121385A
JP2003121385A JP2001320462A JP2001320462A JP2003121385A JP 2003121385 A JP2003121385 A JP 2003121385A JP 2001320462 A JP2001320462 A JP 2001320462A JP 2001320462 A JP2001320462 A JP 2001320462A JP 2003121385 A JP2003121385 A JP 2003121385A
Authority
JP
Japan
Prior art keywords
glass material
quartz glass
light
defect
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001320462A
Other languages
Japanese (ja)
Inventor
Takashi Taniguchi
隆 谷口
Shuzo Mizutani
修三 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001320462A priority Critical patent/JP2003121385A/en
Publication of JP2003121385A publication Critical patent/JP2003121385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for inspecting inside of vitreous silica material for defect by which minute defects, particularly, bubbles, foreign matter, etc., contained in a vitreous silica material can be detected easily and accurately in a short time. SOLUTION: The method for inspecting inside of vitreous silica for defect uses the schlieren method. In the method, only abnormal light rays caused by defects contained in the vitreous silica material to be inspected are detected out of the light rays transmitted through the material by projecting parallel rays of light upon the material. The device for inspecting inside vitreous silica material for defect uses this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石英ガラス材内部
に含まれる欠陥を検査する方法および検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an inspection apparatus for inspecting defects contained in a quartz glass material.

【0002】[0002]

【従来の技術】半導体製造におけるフォトリソグラフィ
工程において、紫外光等による回路パターン転写時に使
用されるフォトマスク、レンズ等の用途に用いられるガ
ラス材には、高い光線透過性および光線透過の均一性が
必要とされる。このため、紫外域の光線透過性に優れた
石英ガラス材が使用されており、また、ガラス材の内部
には微小なものも含め、泡、異物、脈理等の欠陥がない
ことが望ましい。
2. Description of the Related Art In a photolithography process in semiconductor manufacturing, glass materials used for applications such as photomasks and lenses used for transferring circuit patterns by ultraviolet light have high light transmittance and uniform light transmittance. Needed. For this reason, a quartz glass material having excellent light transmittance in the ultraviolet region is used, and it is desirable that the inside of the glass material is free from defects such as bubbles, foreign matters, and striae, including minute ones.

【0003】従来、石英ガラス材内部に含まれる泡、異
物等の微小な欠陥は、ガラス材に投光器や蛍光灯からの
強い光を照射し、欠陥による反射光又は屈折光等の異常
光を目視で確認するという方法により検査していた。
Conventionally, for minute defects such as bubbles and foreign substances contained in the quartz glass material, the glass material is irradiated with strong light from a projector or a fluorescent lamp, and abnormal light such as reflected light or refracted light due to the defect is visually observed. It was inspected by the method of confirming with.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ガラス
内部の欠陥を目視検査する場合、微小な欠陥による反射
光又は屈折光等の異常光は非常に小さいため、欠陥を見
逃す可能性が高い。また、検査には熟練が必要であり、
さらに検査に時間を要するという問題もあった。
However, when visually inspecting defects inside the glass, abnormal light such as reflected light or refracted light due to minute defects is very small, and therefore defects are likely to be missed. Also, inspection requires skill,
Further, there is also a problem that the inspection takes time.

【0005】本発明の目的は、特に石英ガラス材の内部
に含まれる欠陥、特に泡、異物等の微小な欠陥を容易
に、正確に、短時間で検出できる検査方法および検査装
置を提供することにある。
An object of the present invention is to provide an inspection method and an inspection apparatus which can easily and accurately detect defects contained in the inside of a quartz glass material, in particular, minute defects such as bubbles and foreign matters. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者等は上述のよう
な現状に鑑み、鋭意検討を重ねた結果、シュリーレン法
を用い、検査対象の石英ガラス材に平行光を照射し、石
英ガラス材を透過した光の中から、石英ガラス材内部の
欠陥による異常光のみを検出することにより、石英ガラ
ス材内部に含まれる欠陥、特に泡、異物等の微小な欠陥
や、場合によっては脈理を、容易に、正確に、短時間で
検出できることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies in view of the above-mentioned situation, and as a result, by using the Schlieren method, a quartz glass material to be inspected is irradiated with parallel light to obtain a quartz glass material. By detecting only the extraordinary light due to the defects inside the quartz glass material from the light transmitted through, the defects contained in the quartz glass material, especially minute defects such as bubbles and foreign substances, and in some cases striae can be detected. Then, they have found that they can be detected easily, accurately and in a short time, and have completed the present invention.

【0007】すなわち本発明は、シュリーレン法を用い
た石英ガラス材内部の欠陥検査方法であって、検査対象
の石英ガラス材に平行光を照射し、当該石英ガラス材を
透過した光の中から、石英ガラス材内部の欠陥による異
常光のみを検出する石英ガラス材内部の欠陥検査方法で
あり、さらに、検査対象の石英ガラス材に平行光を照射
するための照明系と、石英ガラス材を積載するための試
料台と、石英ガラス材を透過した光の中から石英ガラス
材内部の欠陥による異常光のみを抽出するための集光系
及び遮光系と、抽出された異常光を検出するための検出
系と、からなる石英ガラス材内部の欠陥検査装置に関す
る。
That is, the present invention is a method for inspecting defects in a quartz glass material using the schlieren method, in which the quartz glass material to be inspected is irradiated with parallel light, and the light transmitted through the quartz glass material is This is a method for inspecting defects inside a quartz glass material that detects only abnormal light due to defects inside the quartz glass material. Furthermore, an illumination system for irradiating the quartz glass material to be inspected with parallel light and a quartz glass material are loaded. Sample stand, a condensing system and a light-shielding system for extracting only the extraordinary light due to defects inside the quartz glass material from the light transmitted through the quartz glass material, and the detection for detecting the extraordinary light extracted The present invention relates to a defect inspection device inside a quartz glass material including a system.

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】石英ガラス材内部の脈理等、屈折率の不均
一性を可視化する方法としてシュリーレン法がある。こ
のシュリーレン法は、ガラス材に平行光線を透過させ、
透過後の光をレンズまたは凹面鏡で集光し、その焦点付
近にナイフエッジを置き、集光後、広がった光をスクリ
ーンに投影するなどして像を観察するものである。ガラ
ス材を透過した平行光はレンズまたは凹面鏡の焦点を通
るが、ガラス材内部に存在する脈理により屈折した光は
平行光と進行方向が異なるため、焦点を通らない。ナイ
フエッジにより、脈理により屈折した光、あるいはガラ
ス材をそのまま透過した平行光のいずれかをカットする
ことにより、通常の目視観察よりも脈理等、屈折率不均
一部のコントラストを強調して観察することが可能であ
る。
The Schlieren method is a method for visualizing the nonuniformity of the refractive index such as striae inside the quartz glass material. This Schlieren method allows parallel rays to pass through the glass material,
The transmitted light is condensed by a lens or a concave mirror, a knife edge is placed in the vicinity of the focal point, and after the condensed light is projected on the screen, the image is observed. The parallel light transmitted through the glass material passes through the focal point of the lens or the concave mirror, but the light refracted by the striae present inside the glass material does not pass through the focal point because the traveling direction is different from the parallel light. By cutting either the light refracted by the striae or the parallel light transmitted through the glass material as it is with the knife edge, the contrast of the refractive index non-uniform part such as striae is emphasized compared to normal visual observation. It is possible to observe.

【0010】本発明の石英ガラス材内部の欠陥検査方法
(以下「本発明方法」という。)は、検査対象の石英ガ
ラス材に平行光を照射し、石英ガラス材を透過した光の
中から、石英ガラス材内部の欠陥による異常光のみを検
出するものであり、上記したように、シュリーレン法の
特徴を利用して、石英ガラス材内部に含まれる欠陥、特
に泡、異物等の微小な欠陥や、場合によっては石英ガラ
ス材内部の脈理を検査するものである。
The method of inspecting defects inside the quartz glass material of the present invention (hereinafter referred to as "the method of the present invention") is one in which the quartz glass material to be inspected is irradiated with parallel light and the light transmitted through the quartz glass material is It detects only extraordinary light due to defects inside the quartz glass material, and as described above, by utilizing the characteristics of the Schlieren method, defects contained inside the quartz glass material, in particular, minute defects such as bubbles and foreign matter, In some cases, the striae inside the quartz glass material are inspected.

【0011】本発明方法において検査対象となる石英ガ
ラス材とは、主として石英(二酸化珪素:SiO2)の
みからなるガラスのことであり、シュリーレン法の特徴
を利用するという観点から平行光を透過できる透明性を
有した石英ガラス材であれば、二酸化珪素以外の成分を
含んでいても差し支えない。
The quartz glass material to be inspected in the method of the present invention is a glass mainly made of quartz (silicon dioxide: SiO 2 ) and is capable of transmitting parallel light from the viewpoint of utilizing the characteristics of the Schlieren method. The transparent quartz glass material may contain components other than silicon dioxide.

【0012】石英ガラス材の内部に含まれる欠陥、特に
泡、異物等の微小な欠陥についても、平行光線を透過さ
せた場合、その界面で反射や屈折が起こり、光線方向や
偏光状態が異なる異常光が発生する。光線方向が平行光
と異なるため、シュリーレン法により原理的には観察す
ることが可能である。しかしながら、微小な欠陥による
異常光は微弱であるため、その判別は容易でない。この
ため、本発明方法では、石英ガラス材を透過した平行光
を集光レンズや凹面鏡により焦点に集光後、集光された
光をナイフエッジ等により遮光して全てカットし、実質
的に石英ガラス材内部の欠陥による異常光のみを抽出し
観察することにより、欠陥の判別が容易になる。
With respect to defects contained in the quartz glass material, particularly minute defects such as bubbles and foreign substances, when parallel rays are transmitted, reflection and refraction occur at the interface between them, resulting in abnormalities in which the ray directions and polarization states differ. Light is generated. Since the ray direction is different from parallel light, it can be observed in principle by the Schlieren method. However, since abnormal light due to a minute defect is weak, it is not easy to distinguish it. Therefore, in the method of the present invention, after collimating the parallel light transmitted through the quartz glass material to the focal point by a condenser lens or a concave mirror, the condensed light is shielded by a knife edge or the like to be cut off, and substantially The defect can be easily identified by extracting and observing only the abnormal light due to the defect inside the glass material.

【0013】また、本発明方法では、石英ガラス材を透
過した光をレンズ又は凹面鏡で集光するが、石英ガラス
材内部の欠陥による異常光はレンズ又は凹面鏡の焦点を
通らず分散する。ここで集光レンズ又は凹面鏡の焦点距
離が短くなる程、欠陥による異常光の分散は小さくなる
ため、石英ガラス材内部の欠陥の大きさとして、その最
大径が1000μm以下という微小な欠陥による異常光
を検出するには、集光レンズ又は凹面鏡の焦点距離は5
00mm以下、さらに300mm以下が好ましい。
Further, in the method of the present invention, the light transmitted through the quartz glass material is condensed by the lens or the concave mirror, but the abnormal light due to the defect inside the quartz glass material is dispersed without passing through the focus of the lens or the concave mirror. Here, the shorter the focal length of the condenser lens or the concave mirror, the smaller the dispersion of the abnormal light due to the defect. Therefore, the size of the defect inside the silica glass material is 1000 μm or less. In order to detect, the focal length of the condenser lens or concave mirror is 5
It is preferably 100 mm or less, more preferably 300 mm or less.

【0014】また、偏光子及び検光子を使用し、石英ガ
ラス材に直線偏光の平行光を照射し、石英ガラス材を透
過した光を、直接あるいは上記のように集光し、遮光し
て抽出されたガラス材内部の欠陥による異常光の偏光状
態変化を検出しても良い。
Further, by using a polarizer and an analyzer, the quartz glass material is irradiated with parallel polarized light, and the light transmitted through the quartz glass material is directly or as described above condensed and shielded for extraction. It is also possible to detect a change in polarization state of abnormal light due to a defect inside the glass material.

【0015】本発明の石英ガラス材内部の欠陥検査装置
(以下「本発明装置」という。)は、検査対象の石英ガ
ラス材に平行光を照射するための照明系と、石英ガラス
材を積載するための試料台と、石英ガラス材を透過した
光の中から石英ガラス材内部の欠陥による異常光を抽出
するための集光系及び遮光系と、抽出された異常光を検
出するための検出系と、からなる。
An apparatus for inspecting defects inside a quartz glass material of the present invention (hereinafter referred to as "invention apparatus") has an illumination system for irradiating a quartz glass material to be inspected with parallel light and a quartz glass material. Sample stage, a condensing system and a light-shielding system for extracting extraordinary light due to defects inside the quartz glass material from the light transmitted through the quartz glass material, and a detection system for detecting the extraordinary light extracted And consists of.

【0016】ここで、照明系としては、ハロゲンランプ
等の光源より発せられる光をコリメータレンズ等により
平行光とする機能を有しており、目的に応じて、偏光子
を使用して直線偏光の平行光を生じさせてもよい。
Here, the illumination system has a function of collimating light emitted from a light source such as a halogen lamp by a collimator lens or the like, and a linearly polarized light is used by using a polarizer depending on the purpose. Parallel light may be generated.

【0017】検査対象の石英ガラス材の形状としては特
に制限はないが、石英ガラスの外部形状に多少凹凸があ
って平行光が屈折するような外部形状となっている場合
には同程度の屈折率を有した液体等に浸漬させるとよ
い。
The shape of the quartz glass material to be inspected is not particularly limited, but when the external shape of the quartz glass is somewhat uneven and the parallel light is refracted, the same degree of refraction is possible. It is better to immerse it in a liquid having a certain rate.

【0018】石英ガラス材を積載するための試料台とし
ては、移動可能となっているとよく、その方向としても
平行光の方向に対して垂直な各方向及び平行な方向のい
ずれにも移動できればよいが、特に垂直な2方向に移動
可能とすることで、ガラス材における平行光の照射部位
を移動させることができ、平行光の照射範囲よりも大き
いガラス材の内部全域が検査可能となる。また、平行光
の方向に対して平行な方向に移動可能とすることで、異
常光の検出の際に像をより鮮明にすることができ、作業
がより容易かつ正確となる。
It is preferable that the sample table for loading the quartz glass material is movable. If the sample table can be moved in each of the directions perpendicular to the direction of the parallel light and the parallel directions. However, it is possible to move the parallel light irradiation site in the glass material particularly by allowing the movement in two vertical directions, and it is possible to inspect the entire inside of the glass material that is larger than the parallel light irradiation range. Further, by making it movable in the direction parallel to the direction of the parallel light, the image can be made clearer when the abnormal light is detected, and the work becomes easier and more accurate.

【0019】石英ガラス材を透過した光の中から石英ガ
ラス材内部の欠陥による異常光を抽出するための集光系
としては、レンズ又は凹面鏡を用いればよく、その焦点
距離も上記したように500mm以下、さらに300m
m以下が好ましい。
A lens or a concave mirror may be used as a condensing system for extracting extraordinary light due to defects inside the silica glass material from the light transmitted through the silica glass material, and its focal length is 500 mm as described above. Below 300m
m or less is preferable.

【0020】石英ガラス材を透過した光の中から石英ガ
ラス材内部の欠陥による異常光のみを抽出するための遮
光系としては、上記したように集光された光を遮光でき
る機能を有しておれば特に制限はなく、例えばナイフエ
ッジが用いられる。
The light-shielding system for extracting only the abnormal light due to the defects inside the quartz glass material from the light transmitted through the quartz glass material has a function of shielding the condensed light as described above. If it exists, there is no particular limitation, and for example, a knife edge is used.

【0021】抽出された異常光を検出するための検出系
としては特に制限はないが、上記した直線偏光の平行光
を使用する場合には、偏光状態変化を検出するための検
出系を用いるとよく、欠陥による異常光をより正確に検
出できる。また、本発明では目視により欠陥による異常
光を捉えることができるが、例えばCCDカメラを用い
て異常光を捉え、目的に応じて画像処理を施すことで石
英ガラス材内部の欠陥をより的確に捉えることもでき
る。
The detection system for detecting the extracted extraordinary light is not particularly limited, but when the above-mentioned linearly polarized parallel light is used, a detection system for detecting a change in polarization state is used. Well, abnormal light due to defects can be detected more accurately. Further, according to the present invention, the abnormal light due to the defect can be visually recognized, but the abnormal light inside the quartz glass material can be more accurately detected by capturing the abnormal light by using a CCD camera and performing image processing according to the purpose. You can also

【0022】図1に本発明の一実施態様の検査装置の概
略構成を示す。ハロゲンランプ11からの拡散光は、ピ
ンホール12通過後、コリメータレンズ13により平行
光化され、検査対象であるガラス材21に照射される。
平行光線の入射面、出射面は鏡面状態に研磨し、光軸方
向と垂直になる様にガラス材21を設置する。ガラス材
21はXYZ方向に移動可能な試料台2の上に設置され
ており、ガラス材21を移動することにより、ガラス材
全域に平行光を照射可能としている。ガラス材21のコ
リメータレンズ13とは反対側には、ガラス材を透過し
た平行光を集光する集光レンズ31を設置し、このレン
ズにより平行光が集光する位置にナイフエッジ32を設
置する。コリメータレンズおよび集光レンズは、色収
差、球面収差の観点から、アクロマティックレンズを使
用することが望ましく、また、集光レンズには焦点距離
500mm以下のレンズを使用する。ナイフエッジ32
は集光した平行光を遮断する位置に合わせ、ガラス内部
の欠陥22による異常光だけが入射する様にカメラレン
ズ41及びCCDカメラ42を設置する。ガラス材21
をXYZ方向に移動しながら、CCDカメラ42からの
映像をモニターすることにより、内部欠陥とその存在位
置について容易に検査することができる。
FIG. 1 shows a schematic configuration of an inspection apparatus according to an embodiment of the present invention. The diffused light from the halogen lamp 11 passes through the pinhole 12, is collimated by the collimator lens 13, and is irradiated onto the glass material 21 to be inspected.
The plane of incidence and the plane of emergence of the parallel rays are mirror-polished, and the glass material 21 is installed so as to be perpendicular to the optical axis direction. The glass material 21 is installed on the sample table 2 which is movable in the XYZ directions, and by moving the glass material 21, it is possible to irradiate the entire area of the glass material with parallel light. On the opposite side of the glass material 21 from the collimator lens 13, a condenser lens 31 for condensing the parallel light transmitted through the glass material is installed, and a knife edge 32 is disposed at a position where the parallel light is condensed by this lens. . As the collimator lens and the condenser lens, it is desirable to use an achromatic lens from the viewpoint of chromatic aberration and spherical aberration, and as the condenser lens, a lens having a focal length of 500 mm or less is used. Knife edge 32
The camera lens 41 and the CCD camera 42 are installed so that only the extraordinary light due to the defect 22 inside the glass is incident on the position where the condensed parallel light is blocked. Glass material 21
By monitoring the image from the CCD camera 42 while moving in the XYZ directions, it is possible to easily inspect the internal defect and its existing position.

【0023】上記においては平行光の遮光にナイフエッ
ジを用いたが、この代わりに一部に不透明処理を施した
ガラス板等を用いてもよい。
Although a knife edge is used for shielding parallel light in the above description, a glass plate partially opaque-treated may be used instead.

【0024】また、コリメータレンズ13とガラス材2
1の間に偏光子、及びガラス材21と集光レンズ31の
間に検光子を挿入し、ガラス内部の欠陥22による異常
光の偏光状態変化を検出しても構わない。
Further, the collimator lens 13 and the glass material 2
It is also possible to insert a polarizer between 1 and an analyzer between the glass material 21 and the condenser lens 31 to detect a change in the polarization state of the extraordinary light due to the defect 22 inside the glass.

【0025】図2に本発明の一実施態様の検査装置の概
略構成を示す。ハロゲンランプ11からの拡散光は、ピ
ンホール12通過後、凹面鏡13aにより平行光化さ
れ、検査対象であるガラス材21に照射される。平行光
線の入射面、出射面は鏡面状態に研磨し、光軸方向と垂
直になる様にガラス材21を設置する。ガラス材21は
XYZ方向に移動可能な試料台2の上に設置されてお
り、ガラス材21を移動することにより、ガラス材全域
に平行光を照射可能としている。ガラス材21の凹面鏡
13とは反対側には、ガラス材を透過した平行光を反
射、集光する凹面鏡31aを設置し、この凹面鏡により
平行光が集光する位置にナイフエッジ32を設置する。
凹面鏡には焦点距離500mm以下のものを使用する。
ナイフエッジ32は集光した平行光を遮断する位置に合
わせ、ガラス内部の欠陥22による異常光だけが入射す
る様にカメラレンズ41及びCCDカメラ42を設置す
る。ガラス材21をXYZ方向に移動しながら、CCD
カメラ42からの映像をモニターすることにより、内部
欠陥とその存在位置について容易に検査することができ
る。
FIG. 2 shows a schematic structure of an inspection apparatus according to one embodiment of the present invention. After passing through the pinhole 12, the diffused light from the halogen lamp 11 is collimated by the concave mirror 13a, and irradiates the glass material 21 to be inspected. The plane of incidence and the plane of emergence of the parallel rays are mirror-polished, and the glass material 21 is installed so as to be perpendicular to the optical axis direction. The glass material 21 is installed on the sample table 2 which is movable in the XYZ directions, and by moving the glass material 21, it is possible to irradiate the entire area of the glass material with parallel light. On the opposite side of the glass material 21 from the concave mirror 13, a concave mirror 31a for reflecting and condensing the parallel light transmitted through the glass material is installed, and a knife edge 32 is installed at a position where the parallel light is condensed by the concave mirror.
A concave mirror having a focal length of 500 mm or less is used.
The knife edge 32 is aligned with the position where the condensed parallel light is blocked, and the camera lens 41 and the CCD camera 42 are installed so that only the abnormal light due to the defect 22 inside the glass enters. While moving the glass material 21 in the XYZ directions, CCD
By monitoring the image from the camera 42, it is possible to easily inspect the internal defect and its existing position.

【0026】上記においては平行光の遮光にナイフエッ
ジを用いたが、この代わりに一部に不透明処理を施した
ガラス板等を用いてもよい。
Although a knife edge is used to shield parallel light in the above description, a glass plate partially opaque-treated may be used instead.

【0027】また、凹面鏡13とガラス材21の間に偏
光子、及びガラス材21と凹面鏡31の間に検光子を挿
入し、ガラス内部の欠陥22による異常光の偏光状態変
化を検出しても構わない。
Further, even if a polarizer is inserted between the concave mirror 13 and the glass material 21 and an analyzer is inserted between the glass material 21 and the concave mirror 31, a change in the polarization state of the extraordinary light due to the defect 22 inside the glass is detected. I do not care.

【0028】以上、本発明の石英ガラス材内部の欠陥検
査方法および検査装置を実施例に基づいて説明してきた
が、本発明はこれら実施例に限定されず種々の変形が可
能である。
Although the method and apparatus for inspecting defects in the quartz glass material of the present invention have been described above based on the embodiments, the present invention is not limited to these embodiments and various modifications can be made.

【0029】[0029]

【実施例】以下に図面を参照して本発明の実施例につい
て説明するが、本発明はこれら実施例に限定されるもの
ではない。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments.

【0030】実施例1 図1に示すような構成の欠陥検査装置を用意した。即
ち、ハロゲンランプ11の手前に、口径1.0mmのピ
ンホール12を設置し、ピンホール12から200mm
離れた位置に、レンズ径50mm、焦点距離200mm
であるアクロマティックレンズ13を設置した。このア
クロマティックレンズ13から300mm離れた位置に
レンズ径50mm、焦点距離200mmであるアクロマ
ティックレンズ31を設置し、アクロマティックレンズ
31から200mm離れた位置にナイフエッジ32を設
置した。ナイフエッジ32の直後に焦点距離28〜70
mmのズームレンズ41を取り付けた画素数41万画素
の白黒CCDカメラ42を設置し、モニターに接続し
た。各部品は光軸を合わせて設置し、アクロマティック
レンズ31を通過したハロゲンランプ11の光は、ナイ
フエッジ32上に集光することにより遮光され、ズーム
レンズ41を通してCCDカメラ42に入らないよう調
整した。その後、アクロマティックレンズ13とアクロ
マティックレンズ31の間に光軸に対し垂直な2方向に
移動可能な試料台2を設置し、欠陥検査装置を完成させ
た。
Example 1 A defect inspection apparatus having a structure as shown in FIG. 1 was prepared. That is, a pinhole 12 with a diameter of 1.0 mm is installed in front of the halogen lamp 11, and 200 mm from the pinhole 12
50mm lens diameter and 200mm focal length at remote positions
The achromatic lens 13 is installed. An achromatic lens 31 having a lens diameter of 50 mm and a focal length of 200 mm was installed at a position 300 mm away from the achromatic lens 13, and a knife edge 32 was installed at a position 200 mm apart from the achromatic lens 31. Immediately after the knife edge 32, the focal length is 28 to 70.
A black and white CCD camera 42 having 410,000 pixels with a mm lens 41 was installed and connected to a monitor. The components are installed with their optical axes aligned, and the light of the halogen lamp 11 that has passed through the achromatic lens 31 is blocked by being condensed on the knife edge 32 and adjusted so as not to enter the CCD camera 42 through the zoom lens 41. did. After that, the sample stage 2 movable in two directions perpendicular to the optical axis was installed between the achromatic lens 13 and the achromatic lens 31, and the defect inspection apparatus was completed.

【0031】以上のようにして用意した装置を使用し、
幅と奥行きが154mm、高さが300mmの表面を鏡
面状態に研磨してある石英ガラスブロックの内部に存在
する泡および異物の検査を行った。ハロゲンランプの電
源の電圧は12v(ボルト)に調整し、ブロックは試料
台上に側面が光軸に対し垂直になるように設置し、ガラ
スブロックに平行光を照射しながら、CCDカメラから
の映像をモニターすることにより、内部欠陥による異常
光の有無を確認した。試料台を操作しガラスブロックを
移動させることにより、ガラスブロックの内部全域の検
査を行った。
Using the device prepared as described above,
The surface of the quartz glass block having a width and depth of 154 mm and a height of 300 mm, which had been mirror-polished, was inspected for bubbles and foreign matters. The voltage of the halogen lamp power supply was adjusted to 12v (volts), the block was installed on the sample stand so that the side surface was perpendicular to the optical axis, and the image from the CCD camera was irradiated while the glass block was irradiated with parallel light. The presence or absence of abnormal light due to internal defects was confirmed by monitoring. The entire inside of the glass block was inspected by operating the sample table and moving the glass block.

【0032】この検査の結果、ガラスブロック内部から
異物8個が検出された。また、検査時間は15分であっ
た。検出された異物について、その大きさを長作動距離
型顕微鏡を使用し測定したところ、最も大きな異物の大
きさは880μmであり、最も小さな異物の大きさは9
0μmであった。
As a result of this inspection, eight foreign matters were detected from the inside of the glass block. The inspection time was 15 minutes. When the size of the detected foreign matter was measured using a long working distance microscope, the size of the largest foreign matter was 880 μm and the size of the smallest foreign matter was 9 μm.
It was 0 μm.

【0033】比較例1 実施例1で検査した石英ガラスブロックの内部に蛍光灯
の光を透過させながら、石英ガラスブロックの内部に存
在する泡および異物の目視検査を行った。この検査で
は、石英ガラスブロックの内部から異物が6個しか検出
されなかった。また、検査時間は45分であった。この
検査結果を実施例1における検査結果と照合したとこ
ろ、大きさ170μmの異物および大きさ90μmの異
物が検出されていないことがわかった。
Comparative Example 1 While allowing the light of a fluorescent lamp to pass through the inside of the quartz glass block inspected in Example 1, a visual inspection of bubbles and foreign matters existing inside the quartz glass block was performed. In this inspection, only 6 foreign matters were detected from the inside of the quartz glass block. The inspection time was 45 minutes. When this inspection result was collated with the inspection result in Example 1, it was found that a foreign matter having a size of 170 μm and a foreign matter having a size of 90 μm were not detected.

【0034】[0034]

【発明の効果】本発明においては、シュリーレン法を用
い、検査対象の石英ガラス材に平行光を照射し、石英ガ
ラス材を透過した平行光を焦点距離500mm以下のレ
ンズ又は凹面鏡により集光後、遮光することにより、ガ
ラス材内部の欠陥による異常光のみを検出することによ
り、石英ガラス材内部に含まれる欠陥、特に泡、異物等
の、1000μm以下の微小な欠陥を容易に、正確に、
短時間で検出でき、石英ガラス材の品質管理に極めて有
用である。
In the present invention, the schlieren method is used to irradiate the quartz glass material to be inspected with parallel light, and the parallel light transmitted through the quartz glass material is condensed by a lens or concave mirror having a focal length of 500 mm or less, By shielding only the abnormal light due to defects inside the glass material by blocking light, defects contained in the quartz glass material, particularly minute defects of 1000 μm or less such as bubbles and foreign substances, can be easily and accurately
It can be detected in a short time and is extremely useful for quality control of quartz glass materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】レンズを用いた本発明の欠陥検査装置の一実施
態様の概略構成(側面図)
FIG. 1 is a schematic configuration (side view) of an embodiment of a defect inspection apparatus of the present invention using a lens.

【図2】凹面鏡を用いた本発明の欠陥検査装置の一実施
態様の概略構成(側面図)
FIG. 2 is a schematic configuration (side view) of an embodiment of the defect inspection apparatus of the present invention using a concave mirror.

【符号の説明】[Explanation of symbols]

1:照明系 11:ハロゲンランプ 12:ピンホール 13:コリメータレンズ 13a:コリメータ用凹面鏡 2:試料台 21:被検査物(ガラス材) 22:ガラス材内部の欠陥 3:光学系 31:集光レンズ 31a:集光用凹面鏡 32:ナイフエッジ 4:検出系 41:カメラレンズ 42:CCDカメラ 1: Lighting system 11: Halogen lamp 12: Pinhole 13: Collimator lens 13a: concave mirror for collimator 2: Sample stand 21: Inspection object (glass material) 22: Defect inside glass material 3: Optical system 31: Condensing lens 31a: Concave concave mirror 32: knife edge 4: Detection system 41: Camera lens 42: CCD camera

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】シュリーレン法を用いた石英ガラス材内部
の欠陥検査方法であって、検査対象の石英ガラス材に平
行光を照射し、当該石英ガラス材を透過した光の中か
ら、石英ガラス材内部の欠陥による異常光のみを検出す
ることを特徴とする石英ガラス材内部の欠陥検査方法。
1. A method of inspecting an inside of a quartz glass material by using the schlieren method, wherein a quartz glass material to be inspected is irradiated with parallel light, and the quartz glass material is selected from the light transmitted through the quartz glass material. A method for inspecting defects inside a quartz glass material, which is characterized by detecting only abnormal light due to internal defects.
【請求項2】石英ガラス材を透過した平行光を焦点距離
500mm以下のレンズ又は凹面鏡により集光後、集光
された光を遮光することを特徴とする請求項1記載の石
英ガラス材内部の欠陥検査方法。
2. The inside of the quartz glass material according to claim 1, wherein parallel light transmitted through the quartz glass material is condensed by a lens or a concave mirror having a focal length of 500 mm or less, and then the condensed light is shielded. Defect inspection method.
【請求項3】石英ガラス材に直線偏光の平行光を照射
し、前記直線偏光の光の偏光状態変化を検出することを
特徴とする請求項1又は請求項2記載の石英ガラス材内
部の欠陥検査方法。
3. A defect in the quartz glass material according to claim 1 or 2, wherein the quartz glass material is irradiated with linearly polarized parallel light to detect a change in polarization state of the linearly polarized light. Inspection method.
【請求項4】石英ガラス材内部の欠陥の最大径が100
0μm以下であることを特徴とする請求項1〜3のいず
れかに記載の石英ガラス材内部の欠陥検査方法。
4. The maximum diameter of defects inside the quartz glass material is 100.
It is 0 micrometer or less, The defect inspection method inside the quartz glass material in any one of Claims 1-3 characterized by the above-mentioned.
【請求項5】検査対象の石英ガラス材に平行光を照射す
るための照明系と、石英ガラス材を積載するための試料
台と、石英ガラス材を透過した光の中から石英ガラス材
内部の欠陥による異常光のみを抽出するための集光系及
び遮光系と、抽出された異常光を検出するための検出系
と、からなる石英ガラス材内部の欠陥検査装置。
5. An illumination system for irradiating a quartz glass material to be inspected with parallel light, a sample stand for loading the quartz glass material, and a light from the light transmitted through the quartz glass material inside the quartz glass material. A defect inspection apparatus inside a quartz glass material, comprising: a light-collecting system and a light-shielding system for extracting only abnormal light due to a defect, and a detection system for detecting the extracted abnormal light.
【請求項6】集光系として焦点距離500mm以下の集
光レンズ又は凹面鏡を使用することを特徴とする請求項
5記載の石英ガラス材内部の欠陥検査装置。
6. A defect inspection apparatus inside a quartz glass material according to claim 5, wherein a condensing lens or a concave mirror having a focal length of 500 mm or less is used as a condensing system.
【請求項7】石英ガラス材に直線偏光の平行光を照射す
るための照明系、前記直線偏光の光の偏光状態変化を検
出するための検出系を有することを特徴とする請求項5
又は請求項6記載の石英ガラス材内部の欠陥検査装置。
7. A quartz glass material is provided with an illumination system for irradiating parallel light of linearly polarized light and a detection system for detecting a change in polarization state of the light of linearly polarized light.
Alternatively, the defect inspection device inside the quartz glass material according to claim 6.
【請求項8】試料台が移動可能であり、検出系としてC
CDカメラを使用することを特徴とする請求項5〜7の
いずれかに記載の石英ガラス材内部の欠陥検査装置。
8. The sample stage is movable, and C is used as a detection system.
A defect inspection apparatus for the inside of a quartz glass material according to any one of claims 5 to 7, wherein a CD camera is used.
JP2001320462A 2001-10-18 2001-10-18 Method and device for inspecting inside of vitreous silica material for defect Pending JP2003121385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320462A JP2003121385A (en) 2001-10-18 2001-10-18 Method and device for inspecting inside of vitreous silica material for defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320462A JP2003121385A (en) 2001-10-18 2001-10-18 Method and device for inspecting inside of vitreous silica material for defect

Publications (1)

Publication Number Publication Date
JP2003121385A true JP2003121385A (en) 2003-04-23

Family

ID=19137851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320462A Pending JP2003121385A (en) 2001-10-18 2001-10-18 Method and device for inspecting inside of vitreous silica material for defect

Country Status (1)

Country Link
JP (1) JP2003121385A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619747B2 (en) 2004-12-17 2009-11-17 Asml Netherlands B.V. Lithographic apparatus, analyzer plate, subassembly, method of measuring a parameter of a projection system and patterning device
CN101776569B (en) * 2009-12-30 2012-02-29 中国科学院上海光学精密机械研究所 Mechanical system of meter-scale optical glass stress detector
KR101860733B1 (en) * 2016-01-29 2018-05-24 가부시키가이샤 아야하 엔지니어링 Film inspection device and film inspection method
JP2020012765A (en) * 2018-07-19 2020-01-23 株式会社レクザム Lens checker
JP2021514055A (en) * 2018-09-28 2021-06-03 中国兵器工業標准化研究所China North Standardization Center Composite optical test system with projection and schlieren

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619747B2 (en) 2004-12-17 2009-11-17 Asml Netherlands B.V. Lithographic apparatus, analyzer plate, subassembly, method of measuring a parameter of a projection system and patterning device
CN101776569B (en) * 2009-12-30 2012-02-29 中国科学院上海光学精密机械研究所 Mechanical system of meter-scale optical glass stress detector
KR101860733B1 (en) * 2016-01-29 2018-05-24 가부시키가이샤 아야하 엔지니어링 Film inspection device and film inspection method
JP2020012765A (en) * 2018-07-19 2020-01-23 株式会社レクザム Lens checker
JP7060239B2 (en) 2018-07-19 2022-04-26 株式会社レクザム Lens checker
JP2021514055A (en) * 2018-09-28 2021-06-03 中国兵器工業標准化研究所China North Standardization Center Composite optical test system with projection and schlieren

Similar Documents

Publication Publication Date Title
US7173694B2 (en) Method and system for detecting defects
US7268343B2 (en) Method and system for detecting defects
CN108717062A (en) A kind of the details in a play not acted out on stage, but told through dialogues defect detecting device and its measurement method of heavy caliber ultra-precision surface
WO2010044351A1 (en) Supersensitization of defect inspection method
JPH11173946A (en) Optical characteristic measuring apparatus
JP2017166903A (en) Defect inspection device and defect inspection method
KR100532238B1 (en) Thin film inspection method, apparatus and inspection system used therein
JP2003121385A (en) Method and device for inspecting inside of vitreous silica material for defect
JP5007470B2 (en) Transparency inspection device
JP2004309137A (en) Method and apparatus for inspecting defect inside quartz glass
JP3095855B2 (en) Light inspection device for visual inspection
JP2005308725A (en) Device for inspecting defect in transparent plate
JP2005233695A (en) Flaw inspection device for transparent panel
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP3095856B2 (en) Light inspection device for visual inspection
CN208672536U (en) A kind of dark field defect detecting device of heavy caliber ultra-precision surface
JP2010271186A (en) Defect inspection apparatus
JP3325095B2 (en) Inspection device
JP2004309138A (en) Method and apparatus for inspecting defect inside quartz glass
JPH0536726B2 (en)
JP2000097867A (en) Defect detecting device and method for translucent substrate
JP3253942B2 (en) Light inspection device for visual inspection
JPH11190698A (en) Defect inspection device
JP3759363B2 (en) Inspection repair method and inspection repair device for reflective liquid crystal display device
JPH04344447A (en) Detecting device for defect in transparent glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219