JP3759363B2 - Inspection repair method and inspection repair device for reflective liquid crystal display device - Google Patents

Inspection repair method and inspection repair device for reflective liquid crystal display device Download PDF

Info

Publication number
JP3759363B2
JP3759363B2 JP2000040345A JP2000040345A JP3759363B2 JP 3759363 B2 JP3759363 B2 JP 3759363B2 JP 2000040345 A JP2000040345 A JP 2000040345A JP 2000040345 A JP2000040345 A JP 2000040345A JP 3759363 B2 JP3759363 B2 JP 3759363B2
Authority
JP
Japan
Prior art keywords
inspection
light
circuit board
light source
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040345A
Other languages
Japanese (ja)
Other versions
JP2001228471A (en
Inventor
祐三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2000040345A priority Critical patent/JP3759363B2/en
Publication of JP2001228471A publication Critical patent/JP2001228471A/en
Application granted granted Critical
Publication of JP3759363B2 publication Critical patent/JP3759363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、反射型液晶表示装置における回路基板上の透明回路要素を肉眼により検査する反射型液晶表示装置の検査方法、この検査方法により検出された前記透明回路要素の欠陥部をレーザ光線の照射により的確かつ効率的に補修する反射型液晶表示装置の補修方法、並びにこの補修に用いることができる反射型液晶表示装置の補修装置に関する。
【0002】
【従来の技術】
液晶表示装置には大別して透過型と反射型とがある。この内、反射型はその一例を図4に示すように、液晶層1を挟んで光反射性の反射側回路基板10と光透過性の表示側回路基板20とが対向配置されている。表示側回路基板20には表示面が形成され、反射側回路基板10には反射層12が形成されている。この液晶表示装置において、表示面から入射した外光は表示側回路基板20および液晶層1を透過して反射側回路基板10の反射層12によって反射され、その反射光が表示面から射出されるようになっている。
図4において前記反射側回路基板10は下層から順に、ガラス基板11、反射層12、介在層13、カラーフィルタ層14、平坦化層15、ITO(インジウムすずオキサイド)膜またはネサ膜などからなる透明電極16、および配向層17が積層され、また液晶層1を挟んで表示面側に対向配置される表示側回路基板20は、液晶層1の側から順に配向層21、絶縁層22、ITO膜またはネサ膜などからなる透明電極23、ガラス基板24、および偏光板(拡散シートを含む)25が積層されてなっている。
【0003】
この液晶表示装置において、反射側回路基板10のカラーフィルタ層14はストライプ状に形成されたR(赤)、G(緑)、B(青)の着色膜が交互に平行配列されてなり、この各着色膜に対応してストライプ状の透明電極16が平行配列されている。また表示側回路基板20において透明電極23は、前記反射側回路基板の透明電極16と直交するように平行配列され、この表示側透明電極23と反射側透明電極16とが交差する液晶層1の部分が各色に対応する画素を形成している。
【0004】
前記反射側回路基板10の反射層12は、大別して平滑反射型と拡散反射型とに分類できる。図5(a)に示す平滑反射型は、反射層12(a)の反射面が平滑に仕上げられていて、法線を挟む光の入射角度と射出角度とが等しくなっている。従ってこの表示面を観察するとき、光源と視点との位置関係から表示面の明るさにムラが生じる。この問題を解決するために、図5(b)に示す拡散反射型では、反射層12(b)の反射面が凹凸状に成形されている。このために拡散反射型では入射光が一定の範囲に拡散し、視点を変化させても明るさがあまり変わらない、いわゆる広視野角の反射型液晶表示装置が得られる。
【0005】
【発明が解決しようとする課題】
前記の反射型液晶表示装置を製造する過程で、透明電極16は、基板の全面にITOなどの透明導電膜を成膜し、この透明導電膜をフォトリソグラフィまたはレーザ光線照射などによりストライプ状に切断して形成される。このとき、切断が不完全で隣り合う透明電極どうしが短絡していたり、透明電極の輪郭線が乱れたり、切断くずが付着するなどの不具合が生じる場合がある。そこで、透明電極16の縁部を検査し、前記の不具合箇所があれば例えば加工用のレーザ光線を照射して短絡箇所を焼き切るなどの補修が行われる。
しかし、前記反射側回路基板10の検査では、透明電極16が薄い透明膜であることから、従来の光学顕微鏡でその輪郭線を観察することはきわめて困難であった。例えば可視光顕微鏡の明視野モード、暗視野モード、実体顕微鏡、偏光顕微鏡などを用いても、肉眼ではほとんど観察することができず、特にカラーフィルタ層14が重なって見える場合や拡散反射型の反射層12(b)が用いられている場合には、肉眼観察により輪郭線を検査することはほとんど不可能であった。このため反射側回路基板の透明電極16を検査する従来の方法は、検体に赤外線を照射し、反射光をCCDカメラに受けて得られるモニタ画像を観察するというものであった。
また前記の赤外線を照射する方法で透明電極の欠陥部が発見された場合には、その欠陥部に加工用のレーザ光線を照射し、透明電極の輪郭線を整える「トリミング」と呼ばれる補修作業が行われるが、前記の赤外線によるモニタ画像は白黒像であるので、カラーフィルタ層14などの映像ノイズが混在すると判別に格別な熟練が必要となり、レーザ光線による的確な補修とその完了形状の確認を困難としていた。
【0006】
本発明は前記の課題を解決するためになされたものであって、従ってその目的は、反射型液晶表示装置における透明回路要素を可視光により容易に検査することができる反射型液晶表示装置の検査方法、この検査方法により検出された前記透明回路要素の欠陥部をレーザ光線の照射により的確かつ容易に補修することができる反射型液晶表示装置の補修方法、並びにこの補修に用いることができる反射型液晶表示装置の補修装置を提供することにある。
【0007】
【課題を解決するための手段】
前記の課題を解決するために本発明は、反射層の上層に透明回路要素が形成された回路基板を有する反射型液晶表示装置における前記回路基板上の透明回路要素を検査し補修するに際して、加工用光源からの加工用レーザ光線と検査用光源からの直線偏光を光源切換ミラーとハーフミラー型の検査光切換ミラーとノマルスキープリズムと対物レンズを備える光路を介して前記回路基板に選択照射自在とし、前記回路基板からの反射光を前記検査光切換ミラーの作用によりアナライザとに入射自在とし、前記検査に際し、前記検査用光源からの可視波長の直線偏光を、ノマルスキープリズムを通して互いにコヒーレントでかつ偏光方向が直交する2光束に分岐しかつこの2光束を交差させ、この2光束の交点に、式NA=n sinθ (式中、nは屈折率、θは結像側焦点における光軸に対する見込み角)で表される開口数NA(numerical aperture)が0.24以下である対物レンズの結像側焦点を合致させ、この対物レンズを通して前記2光束を前記回路基板に照射し、その反射光を、前記対物レンズおよび前記ノマルスキープリズムを通して前記検査光切換ミラーの作用によりアナライザ上に結像させ、前記2光束の位相差に基づく干渉像を生成し、この干渉像を検査するとともに、前記検査結果に応じて前記透明回路要素を補修するに関し、前記ノマルスキープリズムを前記光路から退避させるとともに、前記検査により検知された前記透明回路要素の欠陥部に、前記光源切換ミラーと前記検査光切換ミラーの作用により加工用のレーザ光線を前記対物レンズを介して照射し、このレーザ光線により前記欠陥部を補修することを特徴とする。
【0008】
ノマルスキープリズムは、光源から偏光板を通して直線偏光とされた光を、一定距離を隔てて互いにコヒーレントでかつ偏光方向が直交する2つの光束の直線偏光に分岐しかつこの2光束の光軸を交差させる作用がある。この2光束の直線偏光は一般に、一方が「通常光」、他方が「異常光」と呼ばれている。また、このノマルスキープリズムから射出した2光束の光軸が交差する交点に対物レンズの後焦点を配置し、この対物レンズを通して検体を照射すると、前記2光束の反射光には検体表面の勾配または段差に基づく位相差が生じ、この光を前記のノマルスキープリズムに通すと前記2光束は合波して楕円偏光となるが、この光をアナライザ(偏光板)に結像すると、前記2光束の位相差に基づく干渉像が現れる。この検査法は一般に「微分干渉法」と呼ばれ、検体表面の微小な厚み傾斜または段差の測定などに従来から用いられている。しかしこの方法を反射型液晶表示装置における回路基板上の透明回路要素の検査に適用しても、一般的にはITOなどからなる透明回路要素の輪郭線を明確に視認することができなかった。本発明者はこの問題を解決すべく鋭意研究の結果、前記微分干渉法の検査システムと組み合わせて、開口数が0.24以下の対物レンズを選択することによって、反射型液晶表示装置における透明回路要素の輪郭線の視認性が著しく向上することを見いだし、本発明に到達した。比較例として、従来用いられている微分干渉法の検査システムにおける対物レンズの開口数は0.25以上であった。
【0009】
前記開口数について、図3を参照して以下に説明する。この開口数NAは、式
NA=n sinθ
(式中、nは屈折率、θは結像側焦点Fにおける光軸に対する見込み角)
で定義されるレンズ一般の特性値である。上式は、下記のように書き直すことができる。
NA=nd/√(d2+f2
(式中、dはレンズの有効半径、fは焦点距離)
すなわち、対物レンズの開口数NAを、従来から微分干渉法検査システムに用いられている値より小さくするということは、レンズの屈折率nおよび有効半径dを一定とすれば焦点距離fを長くすることに相当する。本発明において問題とする焦点Fは一般に後焦点(レトロフォーカス)と呼ばれる結像側焦点であるから、本発明の反射型液晶表示装置の検査方法では、この後焦点Fの焦点距離fが従来の微分干渉法検査システムに用いられていた対物レンズより長いものを選択することになる。
【0010】
対物レンズの後焦点距離fを従来のものより長くすることによって、検体回路基板から反射される前記通常光と異常光との干渉距離が延長され、この結果として干渉強度が増強され、アナライザ面に現れる干渉像の縁部のコントラストが向上し、透明回路要素の輪郭線の視認性が改善されると考えられる。この本発明の検査方法によって、反射型液晶表示装置における回路基板上の透明回路要素の輪郭線が、カラー画像として肉眼で明確に検査できるようになる。
この観点から対物レンズの開口数NAは小さいほうが望ましいが、結像側焦点距離fを過大に長くすると装置のサイズが大きくなり、また拡大倍率が低下するので実用性が低下する。実用的に好ましい開口数NAは従って0.19〜0.24の範囲内、さらに好ましくは0.21〜0.24の範囲内である。
【0011】
前記本発明の反射型液晶表示装置の検査方法において、干渉像は、緑色の視感度補正フィルタを通して検査することが好ましい。これによって、反射型液晶表示装置における回路基板上の透明回路要素の視認性がさらに向上する。
【0012】
本発明はまた、検査工程と補修工程において同じ位置にあるノマルスキープリズムと対物レンズを用いて検査用光源と加工用光源の切り替えにより検査工程と補修工程を行うことができるので、検査した回路基板を検査したそのままの位置で補修工程にかけることができる。
この検査補修方法によれば、検査工程と補修工程とで対物レンズと回路基板との相対位置が変わらないので、干渉像の検査によって補修箇所が確定した透明回路要素の欠陥部にレーザ光線を即時にかつ的確に照射することができ、補修精度と効率を従来より大幅に向上することができる。
【0013】
本発明はさらに、反射層の上層に透明回路要素が形成された回路基板を有する反射型液晶表示装置における前記回路基板上の透明回路要素を検査し、補修する検査補修装置であって、加工用レーザ光線を照射可能な加工用光源と、検査用の光を照射可能な検査用光源と、該検査用光源からの光を直線偏光に変換する偏光板と、前記加工用光源からの加工用レーザ光線と検査用光源からの直線偏光を切り替えるための光源切換ミラーと、該光源切換ミラーの後段側に設けられたハーフミラー型の検査光切換ミラーと、ノマルスキープリズムと、対物レンズと、アナライザを具備してなり、検査工程においては、検査光源と偏光板を介した直線偏光を前記検査光切換ミラーにより前記ノマルスキープリズムと前記対物レンズを介して回路基板に照射し、前記ノマルスキープリズムにて可視波長の直線偏光を互いにコヒーレントでかつ偏光方向が直交する2光束に分岐しかつこの2光束を交差させ、この2光束の交点に結像側焦点が合致するように前記対物レンズを配置し、かつ、該対物レンズにおける式NA=n sinθ(式中、nは屈折率、θは結像側焦点における光軸に対する見込み角)で表される開口数NA(numerical aperture)を0.24以下とし、前記回路基板からの反射光を前記対物レンズと前記ノマルスキープリズムを通し前記ハーフミラー型の検査光切換ミラーの作用により前記アナライザに入射させて前記2光束の位相差に基づく干渉像をアナライザにて生成し、この干渉像を監視して前記回路基板を検査できるとともに、補修工程においては、前記ノマルスキープリズムを前記対物レンズに至る光路から退避させるとともに、加工用光源からのレーザ光線を前記光源切換ミラーと前記検査光切換ミラーの作用により対物レンズを介して前記回路基板に照射し、前記検査工程の検査結果に応じて前記透明回路要素を補修できるように構成したことを特徴とする。
【0014】
この反射型液晶表示装置の検査補修装置によれば、透明回路要素の欠陥部を肉眼で精査できると共に、その検査系の光軸に加工用レーザ光線の光軸を一致させてレーザ光線を照射することができるので、透明回路要素の補修箇所を即時かつ的確に補修できる利点がある。
また、検査工程と補修工程とで対物レンズと回路基板との相対位置が変わらないので、干渉像の検査によって補修箇所が確定した透明回路要素の欠陥部にレーザ光線を即時にかつ的確に照射することができ、補修精度と効率を従来より大幅に向上することができる。
【0015】
前記において、干渉像を検査する光路には緑色の視感度補正フィルタが挿入されていることが好ましい。これによって透明回路要素の輪郭線がさらに明確に視認できるようになり、従って本補修装置の補修精度と作業効率とをさらに向上することができる。
【0016】
本発明の検査補修装置は、レーザ光線が前記透明回路要素に照射されている状態を映像化するモニタ手段が設けられていることが好ましい。検体回路基板にレーザ光線が照射されている間は、その反射光が直接に眼に入ることを回避し、しかもレーザ光線による補修の進行状態をリアルタイムに監視するために、例えばCCDカメラを用いたモニタ手段を本補修装置の光学系に付属させることが好ましい。レーザ光線としては一般に赤外線が用いられていて、しかも回路基板の透明回路要素は赤外線によって検知することができるので、赤外線感受性のモニタ手段を用いれば、レーザ光線による透明回路要素の補修の進行状態をリアルタイムに監視することができる。
【0017】
【発明の実施の形態】
次に本発明の実施の形態を図面を用いて具体的に説明する。ただし以下の実施形態は本発明を何ら制限するものではない。
図1に本発明の反射型液晶表示装置の補修装置(以下「本補修装置」という)の一具体例を示す。図1において本補修装置は、ノマルスキープリズム31、対物レンズ32、アナライザ33、視感度補正フィルタ34、接眼レンズ35、検査用光源36、偏光板37、加工用光源41、モニタカメラ42、モニタ制御装置43、モニタ44、光源切替えミラー51、検査光切替えミラー52、レーザ光線シャッタ53、および試料固定台61を有している。また本補修装置は、図1において▲1▼で示す検査モードと▲2▼で示す加工モードとを切替える手段を有していて、このモード切替えによって、ノマルスキープリズム31、光源切替えミラー51、検査光切替えミラー52、およびレーザ光線シャッタ53は、それぞれ実線で示す検査モード▲1▼と点線で示す加工モード▲2▼との間で配置が変化するようになっている。
【0018】
本補修装置で補修する対象物は、詳細を図5(b)に示す反射型液晶表示装置における反射側回路基板10であって、図1では詳細を省略したが、ITOからなる透明回路要素16と、その下層に配され拡散反射型の凹凸反射面を有する反射層12(b)を含んでいる。本補修装置で補修する対象箇所は前記透明回路要素16の縁部である。
【0019】
本補修装置においてノマルスキープリズム31は、水晶や方解石などの1軸性結晶を一定角度で切断し貼り合わせたプリズムであって、直線偏光を入射すると、この光を一定の距離だけ光軸を隔てて互いにコヒーレントでかつ偏光方向が直交する通常光と異常光とからなる2光束の直線偏光に分岐し、かつこの2光束の光軸を交差させる作用がある。
このノマルスキープリズム31は、検査モード▲1▼と加工モード▲2▼とで位置が移動するようになっていて、検査モード▲1▼では検査用光源36からの光を受光する位置に配置され、加工モード▲2▼では加工用光源41からの光の光路から外れた位置に移動する。
【0020】
対物レンズ32は、式
NA=n sinθ
(式中、nは屈折率、θは結像側焦点における光軸に対する見込み角)
で表される開口数NAが0.24以下とされている。この実施形態において開口数NAは0.22である。
この対物レンズ32は、検査モード▲1▼と加工モード▲2▼とで回路基板10に対する相対位置を変えず、検査モード▲1▼では検査光おびその反射光を、また加工モード▲2▼では加工光おびその反射光を通過する。
【0021】
アナライザ33は偏光板からなり、検査モード▲1▼において回路基板10によって反射され対物レンズ32およびノマルスキープリズム31を通過して楕円偏光とされた光を受けて干渉像を生成する。
視感度補正フィルタ34は緑色の光学フィルタであって、前記干渉像のカラーコントラストを高め、透明回路要素の縁部の視感度を向上する。
接眼レンズ35は、このレンズ35を通過した光像が観察者の目の網膜に結像するよう調整される。
【0022】
検査用光源36は白色灯、好ましくはハロゲン灯またはキセノン灯と集光レンズとの組み合わせからなる。
偏光板37は検査用光源36から射出される光を直線偏光に変換する。
加工用光源41はこの実施例ではネオンヘリウムレーザとコリメータレンズとの組み合わせからなり、近赤外線を平行光線として射出する。
モニタカメラ42は前記レーザ光線の波長に感度を有するCCDカメラであり、モニタ制御装置43はモニタカメラ42からもたらされた映像信号を処理してモニタ44に対物レンズ32の視野映像として映写する。
【0023】
光源切替えミラー51は、上辺を軸に検査モード▲1▼と加工モード▲2▼との間を揺動する鏡板であって、検査モード▲1▼では検査用光源36からの光を反射して回路基板10に向けて送る位置に配置され、加工モード▲2▼では加工用光源41の光路から外れた位置に移動する。
検査光切替えミラー52は、中央線を軸に検査モード▲1▼と加工モード▲2▼との間を回動するハーフミラーであって、検査モード▲1▼では検査用光源36からの光を通過して回路基板10に向けて送ると共に回路基板10からの反射光を反射してアナライザ33に向けて送る。加工モード▲2▼では加工用光源41からの光を通過して回路基板10に向けて送ると共に回路基板10からの反射光を反射してモニタカメラ42に向けて送る。
レーザ光線シャッタ53は、加工モード▲2▼においてのみ検査光切替えミラー52からアナライザ33に至る光路を遮断する。
【0024】
試料固定台61は、検体である回路基板10を吸引によりゆるみなくかつ着脱自由に固定すると共に、対物レンズ32の光軸に垂直な面内で直交するX軸、Y軸方向および対物レンズ32の光軸と平行なZ軸方向に移動自由とされている。
【0025】
本補修装置を用いて回路基板10を補修する作業は検査工程と補修工程とを含む。
(検査工程)
まず補修対象となる回路基板10を試料固定台61に吸引により固定すると共に、ノマルスキープリズム31、光源切替えミラー51、検査光切替えミラー52、およびレーザ光線シャッタ53を検査モード▲1▼の位置に設定する。次に検査用光源36を点灯すると、射出された白色光は偏光板37によって直線偏光に変換され、光源切替えミラー51によって反射され、検査光切替えミラー52を通過し、ノマルスキープリズム31に入射する。
【0026】
図2に示すように、ノマルスキープリズム31に入射した直線偏光Pは、このプリズムによって一定距離sだけ離れた、互いにコヒーレントでかつ偏光方向が直交する通常光Oと異常光Eとに分岐して射出し、射出後にこの通常光Oと異常光Eとは点Fにおいて交差する。
対物レンズ32はこの点Fを後焦点とするように配置されている。ノマルスキープリズム31を射出した通常光Oと異常光Eとは互いに交差した後対物レンズ32を通過し、それぞれ回路基板10を照射する。
【0027】
この状態で対物レンズ32の視野内で試料固定台61を適宜X、Y、Z方向に移動して透明回路要素16の縁部に合焦しかつ移動しながら欠陥部を探索する。この間、回路基板10からの反射光は対物レンズ32に入射し、ノマルスキープリズム31を通過して楕円偏光に変換され、その少なくとも一部は検査光切替えミラー52によって反射されてアナライザ33に到達し、アナライザ33によって通常光Oと異常光Eとの位相差に基づく干渉像が形成され、視感度補正フィルタ34を通してカラーコントラストが補強され、接眼レンズ35を通して透明回路要素16の縁部がカラー画像として視認できるようになる。
【0028】
(補修工程)
透明回路要素16の欠陥部が肉眼検査により検知されたとき、この欠陥部を視野の中心に置いて試料固定台61の移動を停止し、ノマルスキープリズム31、光源切替えミラー51、検査光切替えミラー52、およびレーザ光線シャッタ53を加工モード▲2▼に切替え、加工用光源41からレーザ光線を照射する。レーザ光線は検査光切替えミラー52および対物レンズ32を通過して透明回路要素16の欠陥部に合焦し、この部分を焼き切る。このときレーザ光線の反射光は対物レンズ32を通り、少なくとも一部は検査光切替えミラー52によって反射されてモニタカメラ42に入射する。モニタカメラ42からもたらされた映像信号はモニタ制御装置43によって画像処理され、モニタ44に対物レンズ32の視野映像として映写される。この間、レーザ光線シャッタ53は閉ざされていて、接眼レンズ35の視野にレーザ光線が侵入することが防止される。
またこの間に、モニタ44を監視しながら試料固定台61を透明回路要素16の縁部に沿って移動し、透明回路要素のトリミング(縁取り加工)を行うこともできる。
【0029】
本補修装置は、検査モードと加工モードとを切替えるだけで、反射型液晶表示装置の回路基板における透明回路要素の欠陥部を肉眼によって容易に検出できるばかりでなく、対物レンズと回路基板との相対位置を移動することなく、直ちにレーザ光線による欠陥部の補修を行うことができるので、補修作業の精度と効率が従来の方法より大幅に向上する。
【0030】
【発明の効果】
本発明の反射型液晶表示装置の検査補修方法は、直線偏光を、ノマルスキープリズムおよび開口数が0.24以下である対物レンズを通して検体となる回路基板に照射し、その反射光をアナライザ上に結像させ生成した干渉像を検査するものであるので、回路基板上の透明回路要素の視認性が高く、可視光による欠陥部検出が容易にできるようになる。更に検査に続けて前記対物レンズを通して前記回路基板に加工用のレーザ光線を照射し、このレーザ光線により前記回路基板の透明回路要素を補修する補修工程を行うので、反射型液晶表示装置の回路基板における透明回路要素の欠陥部を肉眼によって容易に検出できるばかりでなく、対物レンズと回路基板との相対位置を変えることなく、即時にレーザ光線による欠陥部の補修を行うことができるので、補修作業の精度と効率が従来の方法より大幅に向上する。
更に、本発明の検査補修方法によれば、検査工程と補修工程とで対物レンズと回路基板との相対位置が変わらないので、干渉像の検査によって補修箇所が確定した透明回路要素の欠陥部にレーザ光線を即時にかつ的確に照射することができ、補修精度と効率を従来より大幅に向上することができる。
本発明の検査補修装置によれば、透明回路要素の欠陥部を肉眼で精査できると共に、その検査系の光軸に加工用レーザ光線の光軸を一致させてレーザ光線を照射することができるので、透明回路要素の補修箇所を即時かつ的確に補修できる利点がある。
また、本発明の検査補修装置によれば、検査工程と補修工程とで対物レンズと回路基板との相対位置が変わらないので、干渉像の検査によって補修箇所が確定した透明回路要素の欠陥部にレーザ光線を即時にかつ的確に照射することができ、補修精度と効率を従来より大幅に向上することができる。
【図面の簡単な説明】
【図1】 本補修装置の一実施形態を示す構成図。
【図2】 前記補修装置の光学系の一部を示す光路図。
【図3】 対物レンズの開口数を説明するための光路図。
【図4】 反射型液晶表示装置の構成を示す断面図。
【図5】 (a)は平滑反射型、(b)は拡散反射型の回路基板の構成を示す断面図。
【符号の説明】
10…反射側回路基板
12,12(a),12(b)…反射層
16…透明回路要素
31…ノマルスキープリズム
32…対物レンズ
33…アナライザ
34…視感度補正フィルタ
35…接眼レンズ
36…検査用光源
37…偏光板
41…加工用光源
42…モニタカメラ
43…モニタ制御装置
44…モニタ
51…光源切替えミラー
52…検査光切替えミラー
53…レーザ光線シャッタ
61…試料固定台
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for inspecting a transparent liquid crystal display device in which a transparent circuit element on a circuit board in a reflective liquid crystal display device is inspected with the naked eye, and irradiating a defective portion of the transparent circuit element detected by this inspection method with a laser beam. The present invention relates to a method for repairing a reflective liquid crystal display device that is more accurately and efficiently repaired, and a repair device for a reflective liquid crystal display device that can be used for the repair.
[0002]
[Prior art]
Liquid crystal display devices are roughly classified into a transmission type and a reflection type. Among these, as shown in FIG. 4 for an example of the reflective type, a light-reflective reflective-side circuit board 10 and a light-transmissive display-side circuit board 20 are disposed opposite to each other with the liquid crystal layer 1 interposed therebetween. A display surface is formed on the display side circuit board 20, and a reflective layer 12 is formed on the reflection side circuit board 10. In this liquid crystal display device, external light incident from the display surface passes through the display side circuit board 20 and the liquid crystal layer 1 and is reflected by the reflection layer 12 of the reflection side circuit board 10, and the reflected light is emitted from the display surface. It is like that.
In FIG. 4, the reflective circuit board 10 is made of a glass substrate 11, a reflective layer 12, an intervening layer 13, a color filter layer 14, a planarizing layer 15, an ITO (indium tin oxide) film, a nesa film, or the like in order from the bottom. The display-side circuit board 20 in which the electrode 16 and the alignment layer 17 are laminated and opposed to the display surface side with the liquid crystal layer 1 interposed therebetween has an alignment layer 21, an insulating layer 22, an ITO film in order from the liquid crystal layer 1 side. Alternatively, a transparent electrode 23 made of a nesa film or the like, a glass substrate 24, and a polarizing plate (including a diffusion sheet) 25 are laminated.
[0003]
In this liquid crystal display device, the color filter layer 14 of the reflection-side circuit board 10 is formed by alternately arranging R (red), G (green), and B (blue) colored films formed in stripes. Striped transparent electrodes 16 are arranged in parallel corresponding to the respective colored films. Further, in the display side circuit board 20, the transparent electrode 23 is arranged in parallel so as to be orthogonal to the transparent electrode 16 of the reflection side circuit board, and the display side transparent electrode 23 and the reflection side transparent electrode 16 intersect the liquid crystal layer 1. The portion forms a pixel corresponding to each color.
[0004]
The reflection layer 12 of the reflection side circuit board 10 can be roughly classified into a smooth reflection type and a diffuse reflection type. In the smooth reflection type shown in FIG. 5 (a), the reflection surface of the reflection layer 12 (a) has a smooth finish, and the incident angle and the emission angle of light sandwiching the normal line are equal. Therefore, when the display surface is observed, the brightness of the display surface is uneven due to the positional relationship between the light source and the viewpoint. In order to solve this problem, in the diffuse reflection type shown in FIG. 5B, the reflective surface of the reflective layer 12 (b) is formed in an uneven shape. For this reason, in the diffuse reflection type, a so-called wide viewing angle reflection type liquid crystal display device can be obtained in which incident light diffuses in a certain range and the brightness does not change much even when the viewpoint is changed.
[0005]
[Problems to be solved by the invention]
In the process of manufacturing the reflection type liquid crystal display device, the transparent electrode 16 forms a transparent conductive film such as ITO on the entire surface of the substrate, and the transparent conductive film is cut into stripes by photolithography or laser beam irradiation. Formed. At this time, there are cases where the cutting is incomplete and adjacent transparent electrodes are short-circuited, the outline of the transparent electrode is disturbed, or cutting waste adheres. Therefore, the edge portion of the transparent electrode 16 is inspected, and if there is the above-described defect portion, for example, repair such as irradiating a processing laser beam to burn out the short-circuit portion is performed.
However, in the inspection of the reflection side circuit board 10, since the transparent electrode 16 is a thin transparent film, it is very difficult to observe the outline with a conventional optical microscope. For example, even when using a bright-field mode, a dark-field mode, a stereoscopic microscope, a polarizing microscope, or the like of a visible light microscope, it is hardly observable with the naked eye, and particularly when the color filter layers 14 appear to overlap each other or diffuse reflection type reflection. When layer 12 (b) was used, it was almost impossible to inspect the outline by visual observation. Therefore, the conventional method for inspecting the transparent electrode 16 on the reflection side circuit board is to irradiate the sample with infrared rays and observe the monitor image obtained by receiving the reflected light by the CCD camera.
In addition, when a defective portion of the transparent electrode is found by the method of irradiating the infrared ray, a repair work called “trimming” is performed to irradiate the laser beam for processing to the defective portion and to adjust the outline of the transparent electrode. However, since the monitor image by infrared rays is a black and white image, special skill is required for discrimination when image noise such as the color filter layer 14 is mixed, and accurate repair by laser beam and confirmation of the completed shape are required. It was difficult.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. Accordingly, the object of the present invention is to inspect a reflective liquid crystal display device that can easily inspect transparent circuit elements in the reflective liquid crystal display device with visible light. Method, a repair method of a reflective liquid crystal display device capable of accurately and easily repairing a defective portion of the transparent circuit element detected by the inspection method by irradiation of a laser beam, and a reflective type which can be used for the repair An object of the present invention is to provide a repair device for a liquid crystal display device.
[0007]
[Means for Solving the Problems]
  In order to solve the above-described problems, the present invention inspects a transparent circuit element on the circuit board in a reflective liquid crystal display device having a circuit board on which a transparent circuit element is formed on the reflective layer.RepairWhen doingA laser beam for processing from a processing light source and linearly polarized light from an inspection light source can be selectively irradiated to the circuit board via an optical path including a light source switching mirror, a half mirror type inspection light switching mirror, a Nomarski prism, and an objective lens. The reflected light from the circuit board can enter the analyzer freely by the action of the inspection light switching mirror, and from the inspection light source during the inspection,The linearly polarized light having a visible wavelength is split into two light beams that are coherent and orthogonal to each other through a Nomarski prism and intersect the two light beams. At the intersection of the two light beams, the formula NA = n sinθ (where n is The refractive index, θ is the focal angle with respect to the optical axis in the imaging side focal point), and the imaging side focal point of the objective lens having a numerical aperture NA (numerical aperture) of 0.24 or less is matched. Two luminous fluxes are irradiated onto the circuit board, and the reflected light passes through the objective lens and the Nomarski prism.Due to the action of the inspection light switching mirrorForm an image on the analyzer, generate an interference image based on the phase difference of the two light beams, and inspect the interference imageIn addition, with respect to repairing the transparent circuit element according to the inspection result, the Nomarski prism is retracted from the optical path, and the light source switching mirror and the inspection are provided in a defective portion of the transparent circuit element detected by the inspection. A laser beam for processing is irradiated through the objective lens by the action of the optical switching mirror, and the defect portion is repaired by the laser beam.It is characterized by that.
[0008]
The Nomarski prism splits light that has been linearly polarized from a light source through a polarizing plate into linearly polarized light of two light beams that are coherent and orthogonal to each other at a certain distance, and intersects the optical axes of the two light beams. There is an effect. In general, one of the two linearly polarized light beams is called “normal light” and the other is called “abnormal light”. Further, when the back focal point of the objective lens is arranged at the intersection where the optical axes of the two light beams emitted from the Nomarski prism intersect, and the sample is irradiated through the objective lens, the reflected light of the two light beams has a gradient or a step on the surface of the sample. When the light passes through the Nomarski prism, the two light beams are combined into elliptically polarized light. When this light is imaged on an analyzer (polarizing plate), the phase difference between the two light beams is An interference image based on This inspection method is generally called “differential interferometry” and has been conventionally used for measuring a minute thickness gradient or a step on the specimen surface. However, even if this method is applied to the inspection of the transparent circuit element on the circuit board in the reflection type liquid crystal display device, generally the outline of the transparent circuit element made of ITO or the like cannot be clearly seen. As a result of diligent research to solve this problem, the inventor selects an objective lens having a numerical aperture of 0.24 or less in combination with the differential interferometry inspection system, so that a transparent circuit in a reflective liquid crystal display device is obtained. It has been found that the visibility of the outline of the element is remarkably improved, and the present invention has been achieved. As a comparative example, the numerical aperture of an objective lens in a differential interference method inspection system that has been conventionally used is 0.25 or more.
[0009]
The numerical aperture will be described below with reference to FIG. The numerical aperture NA
NA = n sinθ
(Where n is the refractive index, θ is the expected angle with respect to the optical axis at the focal point F on the imaging side)
This is a general characteristic value of the lens defined by. The above equation can be rewritten as follows:
NA = nd / √ (d2+ F2)
(Where d is the effective radius of the lens and f is the focal length)
That is, making the numerical aperture NA of the objective lens smaller than the value conventionally used in the differential interference inspection system increases the focal length f if the refractive index n and effective radius d of the lens are constant. It corresponds to that. Since the focal point F which is a problem in the present invention is an imaging side focal point generally called a rear focal point (retro focus), in the inspection method of the reflection type liquid crystal display device of the present invention, the focal length f of the rear focal point F is the conventional focal length f. A lens longer than the objective lens used in the differential interferometry inspection system is selected.
[0010]
By making the rear focal length f of the objective lens longer than that of the conventional lens, the interference distance between the normal light and the extraordinary light reflected from the specimen circuit board is extended. As a result, the interference intensity is enhanced and the analyzer surface is increased. It is considered that the contrast of the edge of the appearing interference image is improved and the visibility of the outline of the transparent circuit element is improved. According to the inspection method of the present invention, the outline of the transparent circuit element on the circuit board in the reflective liquid crystal display device can be clearly inspected with the naked eye as a color image.
From this point of view, it is desirable that the numerical aperture NA of the objective lens is small. However, if the focal length f on the imaging side is excessively long, the size of the apparatus becomes large, and the magnification is reduced, so that the practicality is lowered. A practically preferred numerical aperture NA is therefore in the range of 0.19 to 0.24, more preferably in the range of 0.21 to 0.24.
[0011]
In the inspection method for the reflective liquid crystal display device of the present invention, it is preferable that the interference image is inspected through a green visibility correction filter. This further improves the visibility of the transparent circuit elements on the circuit board in the reflective liquid crystal display device.
[0012]
  The present invention also providesSince the inspection process and the repair process can be performed by switching between the inspection light source and the processing light source using the Nomarski prism and the objective lens at the same position in the inspection process and the repair process, the inspected circuit board is inspected as it is. Can be used in the repair process.
  thisInspectionAccording to the repair method, since the relative position of the objective lens and the circuit board does not change between the inspection process and the repair process, the laser beam is immediately applied to the defective portion of the transparent circuit element whose repair location is determined by inspection of the interference image. Irradiation can be performed accurately, and the repair accuracy and efficiency can be greatly improved.
[0013]
  The present invention further provides a transparent circuit element on the circuit board in a reflective liquid crystal display device having a circuit board on which a transparent circuit element is formed on the reflective layer.Inspect andRepairInspectionA repair device,A processing light source capable of irradiating a processing laser beam, an inspection light source capable of irradiating inspection light, a polarizing plate for converting light from the inspection light source into linearly polarized light, and processing from the processing light source Light source switching mirror for switching linearly polarized light from a laser beam for inspection and a light source for inspection, a half mirror type inspection light switching mirror provided on the rear side of the light source switching mirror, a Nomarski prism, an objective lens, and an analyzer In the inspection process, linearly polarized light via an inspection light source and a polarizing plate is irradiated to the circuit board through the Nomarski prism and the objective lens by the inspection light switching mirror, and the Nomarski prismThe linearly polarized light having a visible wavelength is branched into two light beams that are coherent with each other and whose polarization directions are orthogonal to each other, and the two light beams are crossed so that the focal point on the imaging side coincides with the intersection of the two light beams.Arranging the objective lens, and in the objective lensA numerical aperture NA (numerical aperture) represented by the formula NA = n sin θ (where n is the refractive index and θ is the expected angle with respect to the optical axis at the image-forming focal point) is 0.24 or less.And reflected light from the circuit board is incident on the analyzer through the objective lens and the Nomarski prism by the action of the half mirror type inspection light switching mirror.An interference image based on the phase difference between the two light beams is generated by an analyzer, and the circuit board is inspected by monitoring the interference image.it canWithIn the repairing process, the Nomarski prism is retracted from the optical path leading to the objective lens, and the laser beam from the processing light source is applied to the circuit board via the objective lens by the action of the light source switching mirror and the inspection light switching mirror. Irradiated and configured to repair the transparent circuit element according to the inspection result of the inspection processIt is characterized by that.
[0014]
  Of this reflective LCDInspectionAccording to the repair device, the defective part of the transparent circuit element can be examined with the naked eye, and the optical axis of the processing laser beam can be made to coincide with the optical axis of the inspection system so that the laser beam can be irradiated. There is an advantage that the repaired part can be repaired immediately and accurately.
  In addition, since the relative position between the objective lens and the circuit board does not change between the inspection process and the repair process, the laser beam is immediately and accurately applied to the defective portion of the transparent circuit element whose repair location is determined by inspection of the interference image. The repair accuracy and efficiency can be greatly improved as compared with the prior art.
[0015]
In the above, it is preferable that a green visibility correction filter is inserted in the optical path for inspecting the interference image. As a result, the contour line of the transparent circuit element can be clearly seen, so that the repair accuracy and work efficiency of the repair device can be further improved.
[0016]
  Of the present inventionInspectionThe repairing device is preferably provided with a monitor means for visualizing the state in which the transparent circuit element is irradiated with the laser beam. While the sample circuit board was irradiated with the laser beam, for example, a CCD camera was used to avoid the reflected light from directly entering the eye and to monitor the progress of the repair by the laser beam in real time. It is preferable to attach the monitor means to the optical system of the repair apparatus. Infrared rays are generally used as the laser beam, and the transparent circuit elements on the circuit board can be detected by infrared rays. Therefore, if an infrared sensitive monitor means is used, the progress of the repair of the transparent circuit elements by the laser beam is indicated. It can be monitored in real time.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to the drawings. However, the following embodiments do not limit the present invention.
FIG. 1 shows a specific example of a repair device for a reflection type liquid crystal display device of the present invention (hereinafter referred to as “the repair device”). In FIG. 1, the repair device includes a Nomarski prism 31, an objective lens 32, an analyzer 33, a visibility correction filter 34, an eyepiece lens 35, an inspection light source 36, a polarizing plate 37, a processing light source 41, a monitor camera 42, and a monitor control device. 43, a monitor 44, a light source switching mirror 51, an inspection light switching mirror 52, a laser beam shutter 53, and a sample fixing base 61. Further, this repairing apparatus has means for switching between the inspection mode indicated by (1) and the processing mode indicated by (2) in FIG. 1, and by this mode switching, the Nomarski prism 31, the light source switching mirror 51, the inspection light. The arrangement of the switching mirror 52 and the laser beam shutter 53 is changed between an inspection mode (1) indicated by a solid line and a processing mode (2) indicated by a dotted line.
[0018]
The object to be repaired by this repairing apparatus is the reflection side circuit board 10 in the reflection type liquid crystal display device shown in detail in FIG. 5B, and although the details are omitted in FIG. 1, the transparent circuit element 16 made of ITO. And a reflective layer 12 (b) having a diffuse reflection type uneven reflection surface disposed in the lower layer. A target portion to be repaired by the repair device is an edge portion of the transparent circuit element 16.
[0019]
In this repair device, the Nomarski prism 31 is a prism formed by cutting and bonding uniaxial crystals such as quartz and calcite at a fixed angle, and when linearly polarized light is incident, the light is separated by a fixed distance. There is an effect of branching into two linearly polarized light beams composed of normal light and extraordinary light that are coherent with each other and whose polarization directions are orthogonal to each other, and intersect the optical axes of the two light beams.
The Nomarski prism 31 moves in the inspection mode {circle around (1)} and the processing mode {circle around (2)}. In the inspection mode {circle around (1)}, the Nomarski prism 31 is arranged at a position for receiving light from the inspection light source 36. In the processing mode {circle around (2)}, the light beam moves from the processing light source 41 to a position outside the optical path.
[0020]
The objective lens 32 has a formula
NA = n sinθ
(Where n is the refractive index, θ is the expected angle with respect to the optical axis at the focal point on the imaging side)
The numerical aperture NA represented by is set to 0.24 or less. In this embodiment, the numerical aperture NA is 0.22.
The objective lens 32 does not change the relative position with respect to the circuit board 10 in the inspection mode (1) and the processing mode (2). In the inspection mode (1), the inspection light and its reflected light are used, and in the processing mode (2). It passes through the processed light and its reflected light.
[0021]
The analyzer 33 is composed of a polarizing plate, and receives the light reflected by the circuit board 10 and passed through the objective lens 32 and the Nomarski prism 31 in the inspection mode {circle around (1)} to be elliptically polarized, and generates an interference image.
The visibility correction filter 34 is a green optical filter that increases the color contrast of the interference image and improves the visibility of the edge of the transparent circuit element.
The eyepiece 35 is adjusted so that the light image that has passed through the lens 35 forms an image on the retina of the observer's eye.
[0022]
The inspection light source 36 comprises a combination of a white lamp, preferably a halogen lamp or xenon lamp, and a condenser lens.
The polarizing plate 37 converts light emitted from the inspection light source 36 into linearly polarized light.
In this embodiment, the processing light source 41 is a combination of a neon helium laser and a collimator lens, and emits near-infrared rays as parallel rays.
The monitor camera 42 is a CCD camera sensitive to the wavelength of the laser beam, and the monitor control device 43 processes the video signal provided from the monitor camera 42 and projects it on the monitor 44 as a field image of the objective lens 32.
[0023]
The light source switching mirror 51 is a mirror plate that swings between the inspection mode (1) and the processing mode (2) around the upper side, and reflects light from the inspection light source 36 in the inspection mode (1). It is arranged at a position to be sent toward the circuit board 10 and moves to a position off the optical path of the processing light source 41 in the processing mode (2).
The inspection light switching mirror 52 is a half mirror that rotates between the inspection mode (1) and the processing mode (2) about the center line. In the inspection mode (1), the light from the inspection light source 36 is emitted. The light passes through and is sent to the circuit board 10 and the reflected light from the circuit board 10 is reflected and sent to the analyzer 33. In the processing mode {circle around (2)}, the light from the processing light source 41 is transmitted toward the circuit board 10 and the reflected light from the circuit board 10 is reflected and transmitted toward the monitor camera 42.
The laser beam shutter 53 blocks the optical path from the inspection light switching mirror 52 to the analyzer 33 only in the processing mode (2).
[0024]
The sample fixing base 61 fixes the circuit board 10 as a specimen without loosening and can be freely attached and detached by suction, and in the X-axis and Y-axis directions perpendicular to the optical axis of the objective lens 32 and the objective lens 32. The movement is free in the Z-axis direction parallel to the optical axis.
[0025]
The work of repairing the circuit board 10 using the repair device includes an inspection process and a repair process.
(Inspection process)
First, the circuit board 10 to be repaired is fixed to the sample fixing base 61 by suction, and the Nomarski prism 31, the light source switching mirror 51, the inspection light switching mirror 52, and the laser beam shutter 53 are set to the position of the inspection mode (1). To do. Next, when the inspection light source 36 is turned on, the emitted white light is converted into linearly polarized light by the polarizing plate 37, reflected by the light source switching mirror 51, passes through the inspection light switching mirror 52, and enters the Nomarski prism 31.
[0026]
As shown in FIG. 2, the linearly polarized light P incident on the Nomarski prism 31 is split into a normal light O and an extraordinary light E which are separated by a certain distance s and are coherent and orthogonal in polarization direction. The normal light O and the extraordinary light E intersect at the point F after the emission.
The objective lens 32 is arranged so that this point F is the back focal point. The normal light O and the extraordinary light E emitted from the Nomarski prism 31 cross each other, pass through the objective lens 32, and irradiate the circuit board 10, respectively.
[0027]
In this state, the sample fixing base 61 is appropriately moved in the X, Y, and Z directions within the field of view of the objective lens 32 to focus on the edge of the transparent circuit element 16 and search for a defective portion while moving. During this time, the reflected light from the circuit board 10 enters the objective lens 32, passes through the Nomarski prism 31 and is converted into elliptically polarized light, at least a part of which is reflected by the inspection light switching mirror 52 and reaches the analyzer 33, The analyzer 33 forms an interference image based on the phase difference between the normal light O and the extraordinary light E, reinforces the color contrast through the visibility correction filter 34, and visually recognizes the edge of the transparent circuit element 16 through the eyepiece 35 as a color image. become able to.
[0028]
(Repair process)
When a defective portion of the transparent circuit element 16 is detected by visual inspection, the defect fixing portion 61 is placed at the center of the visual field and the movement of the sample fixing base 61 is stopped, and the Nomarski prism 31, the light source switching mirror 51, and the inspection light switching mirror 52 are stopped. , And the laser beam shutter 53 is switched to the processing mode (2), and the processing light source 41 emits the laser beam. The laser beam passes through the inspection light switching mirror 52 and the objective lens 32 and is focused on the defective portion of the transparent circuit element 16 to burn out this portion. At this time, the reflected light of the laser beam passes through the objective lens 32 and is at least partially reflected by the inspection light switching mirror 52 and enters the monitor camera 42. The video signal provided from the monitor camera 42 is subjected to image processing by the monitor control device 43 and projected on the monitor 44 as a visual field image of the objective lens 32. During this time, the laser beam shutter 53 is closed, and the laser beam is prevented from entering the visual field of the eyepiece lens 35.
During this time, the sample fixing base 61 can be moved along the edge of the transparent circuit element 16 while monitoring the monitor 44 to perform trimming (framing processing) of the transparent circuit element.
[0029]
This repair device can easily detect the defective portion of the transparent circuit element in the circuit board of the reflective liquid crystal display device by the naked eye only by switching between the inspection mode and the processing mode, and can also detect the relative relationship between the objective lens and the circuit board. Since the defective portion can be repaired immediately by the laser beam without moving the position, the accuracy and efficiency of the repair work is greatly improved over the conventional method.
[0030]
【The invention's effect】
  Inspection of the reflective liquid crystal display device of the present inventionrepairIn this method, linearly polarized light is irradiated onto a circuit board serving as a specimen through a Nomarski prism and an objective lens having a numerical aperture of 0.24 or less, and the reflected light is imaged on an analyzer to inspect the generated interference image. As a result, the visibility of the transparent circuit element on the circuit board is high, and the defect portion can be easily detected by visible light.Following further inspectionA repairing step of irradiating the circuit board with a processing laser beam through the objective lens and repairing the transparent circuit element of the circuit board with the laser beam.I doTherefore, not only the defective part of the transparent circuit element in the circuit board of the reflective liquid crystal display device can be easily detected with the naked eye, but also the defect part by the laser beam can be instantly detected without changing the relative position between the objective lens and the circuit board. Since repairs can be performed, the accuracy and efficiency of repair work is significantly improved over conventional methods.
  Furthermore, according to the inspection / repair method of the present invention, the relative position between the objective lens and the circuit board does not change between the inspection process and the repair process. The laser beam can be irradiated immediately and accurately, and the repair accuracy and efficiency can be greatly improved as compared with the prior art.
  According to the inspection and repair apparatus of the present invention, the defective portion of the transparent circuit element can be inspected with the naked eye, and the optical axis of the processing laser beam can be aligned with the optical axis of the inspection system so that the laser beam can be irradiated. There is an advantage that the repaired part of the transparent circuit element can be repaired immediately and accurately.
  Further, according to the inspection / repair device of the present invention, the relative position between the objective lens and the circuit board does not change between the inspection process and the repair process. The laser beam can be irradiated immediately and accurately, and the repair accuracy and efficiency can be greatly improved as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the repair device.
FIG. 2 is an optical path diagram showing a part of an optical system of the repair device.
FIG. 3 is an optical path diagram for explaining the numerical aperture of an objective lens.
FIG. 4 is a cross-sectional view illustrating a configuration of a reflective liquid crystal display device.
5A is a cross-sectional view showing a configuration of a smooth reflection type circuit board and FIG. 5B is a configuration of a diffuse reflection type circuit board.
[Explanation of symbols]
10 ... Reflection side circuit board
12, 12 (a), 12 (b) ... reflective layer
16 ... Transparent circuit element
31 ... Nomarski prism
32 ... Objective lens
33 ... Analyzer
34. Visibility correction filter
35 ... Eyepiece
36 ... Light source for inspection
37 ... Polarizing plate
41 ... Light source for processing
42. Monitor camera
43. Monitor control device
44 ... Monitor
51. Light source switching mirror
52 ... Inspection light switching mirror
53 ... Laser beam shutter
61 ... Sample fixing base

Claims (6)

反射層の上層に透明回路要素が形成された回路基板を有する反射型液晶表示装置における前記回路基板上の透明回路要素を検査し補修するに際して、加工用光源からの加工用レーザ光線と検査用光源からの直線偏光を光源切換ミラーとハーフミラー型の検査光切換ミラーとノマルスキープリズムと対物レンズを備える光路を介して前記回路基板に選択照射自在とし、前記回路基板からの反射光を前記検査光切換ミラーの作用により前記光路外のアナライザに入射自在とし、
前記検査に際し、前記検査用光源からの可視波長の直線偏光を、ノマルスキープリズムを通して互いにコヒーレントでかつ偏光方向が直交する2光束に分岐しかつこの2光束を交差させ、この2光束の交点に、式NA=n sinθ (式中、nは屈折率、θは結像側焦点における光軸に対する見込み角)で表される開口数NA(numerical aperture)が0.24以下である対物レンズの結像側焦点を合致させ、この対物レンズを通して前記2光束を前記回路基板に照射し、その反射光を、前記対物レンズおよび前記ノマルスキープリズムを通して前記検査光切換ミラーの作用によりアナライザ上に結像させ、前記2光束の位相差に基づく干渉像を生成し、この干渉像を検査するとともに、
前記検査結果に応じて前記透明回路要素を補修するに関し、前記ノマルスキープリズムを前記光路から退避させるとともに、前記検査により検知された前記透明回路要素の欠陥部に、前記光源切換ミラーと前記検査光切換ミラーの作用により加工用のレーザ光線を前記対物レンズを介して照射し、このレーザ光線により前記欠陥部を補修することを特徴とする反射型液晶表示装置の検査補修方法。
When inspecting and repairing a transparent circuit element on a circuit board in a reflective liquid crystal display device having a circuit board on which a transparent circuit element is formed on the reflective layer, a processing laser beam and an inspection light source from the processing light source The circuit board can be selectively irradiated with the linearly polarized light from the light path including a light source switching mirror, a half mirror type inspection light switching mirror, a Nomarski prism, and an objective lens, and reflected light from the circuit board is switched to the inspection light. By the action of the mirror, it can enter the analyzer outside the optical path,
In the inspection, the linearly polarized light having a visible wavelength from the inspection light source is split into two light beams that are coherent and orthogonal in the polarization direction through a Nomarski prism, and the two light beams are crossed. NA = n sinθ (where n is the refractive index, θ is the expected angle with respect to the optical axis at the focal point on the imaging side) and the imaging side of the objective lens having a numerical aperture NA (numerical aperture) of 0.24 or less The circuit board is irradiated with the two light fluxes through the objective lens through focusing, and the reflected light is imaged on the analyzer through the objective lens and the Nomarski prism by the action of the inspection light switching mirror. Generate an interference image based on the phase difference of the light beam, inspect the interference image ,
With respect to repairing the transparent circuit element according to the inspection result, the Nomarski prism is retracted from the optical path, and the light source switching mirror and the inspection light switching are provided in a defective portion of the transparent circuit element detected by the inspection. A method of inspecting and repairing a reflective liquid crystal display device, wherein a laser beam for processing is irradiated through the objective lens by the action of a mirror, and the defect portion is repaired by the laser beam .
前記アナライザを介して得られる干渉像を緑色の視感度補正フィルタを通して検査することを特徴とする請求項1に記載の反射型液晶表示装置の検査補修方法。 2. The inspection and repair method for a reflective liquid crystal display device according to claim 1, wherein an interference image obtained through the analyzer is inspected through a green visibility correction filter. モニタカメラとモニタ手段を利用し、前記補修中の回路基板からの反射光を前記検査光切換ミラーの作用により前記モニタカメラに入射して前記モニタ手段により監視することを特徴とする請求項1または2に記載の反射型液晶表示装置の検査補修方法。2. A monitor camera and monitor means, wherein reflected light from the circuit board under repair is incident on the monitor camera by the action of the inspection light switching mirror and is monitored by the monitor means. 2. A method for inspecting and repairing a reflective liquid crystal display device according to item 2. 反射層の上層に透明回路要素が形成された回路基板を有する反射型液晶表示装置における前記回路基板上の透明回路要素を検査し、補修する検査補修装置であって、加工用レーザ光線を照射可能な加工用光源と、検査用の光を照射可能な検査用光源と、該検査用光源からの光を直線偏光に変換する偏光板と、前記加工用光源からの加工用レーザ光線と検査用光源からの直線偏光を切り替えるための光源切換ミラーと、該光源切換ミラーの後段側に設けられたハーフミラー型の検査光切換ミラーと、ノマルスキープリズムと、対物レンズと、アナライザを具備してなり、
検査工程においては、検査光源と偏光板を介した直線偏光を前記検査光切換ミラーにより前記ノマルスキープリズムと前記対物レンズを介して回路基板に照射し、
前記ノマルスキープリズムにて可視波長の直線偏光を互いにコヒーレントでかつ偏光方向が直交する2光束に分岐しかつこの2光束を交差させ、この2光束の交点に結像側焦点が合致するように前記対物レンズを配置し、かつ、該対物レンズにおける式NA=n sinθ (式中、nは屈折率、θは結像側焦点における光軸に対する見込み角)で表される開口数NA(numerical aperture)を0.24以下とし、前記回路基板からの反射光を前記対物レンズと前記ノマルスキープリズムを通し前記ハーフミラー型の検査光切換ミラーの作用により前記アナライザに入射させて前記2光束の位相差に基づく干渉像をアナライザにて生成し、この干渉像を監視して前記回路基板を検査できるとともに、
補修工程においては、前記ノマルスキープリズムを前記対物レンズに至る光路から退避させるとともに、加工用光源からのレーザ光線を前記光源切換ミラーと前記検査光切換ミラーの作用により対物レンズを介して前記回路基板に照射し、前記検査工程の検査結果に応じて前記透明回路要素を補修できるように構成したことを特徴とする反射型液晶表示装置の検査補修装置。
The transparent circuit elements on the circuit board in the reflection type liquid crystal display device having a circuit board having a transparent circuit elements in the upper layer is formed of a reflective layer were examined, there is provided an inspection repair device for repairing, capable of irradiating the processing laser beam Light source for processing, inspection light source capable of irradiating inspection light, polarizing plate for converting light from the inspection light source into linearly polarized light, processing laser beam and inspection light source from the processing light source A light source switching mirror for switching the linearly polarized light from, a half mirror type inspection light switching mirror provided on the rear side of the light source switching mirror, a Nomarski prism, an objective lens, and an analyzer,
In the inspection step, the circuit board is irradiated with linearly polarized light via the inspection light source and the polarizing plate by the inspection light switching mirror through the Nomarski prism and the objective lens,
The Bruno at Mar Ski prism is split into two light beams that coherent a and polarization directions of the linearly polarized light in the visible wavelength perpendicular and intersects the two beams, the objective as imaged side focal point at the intersection of the two beams are matched A numerical aperture NA (numerical aperture) represented by the formula NA = n sinθ (where n is the refractive index and θ is the expected angle with respect to the optical axis at the image-forming focal point) of the objective lens. The reflected light from the circuit board passes through the objective lens and the Nomarski prism and is incident on the analyzer by the action of the half mirror type inspection light switching mirror so that the interference is based on the phase difference between the two light beams. to produce an image at analyzer, it is possible to inspect the circuit board monitors the interference image,
In the repairing process, the Nomarski prism is retracted from the optical path leading to the objective lens, and the laser beam from the processing light source is applied to the circuit board via the objective lens by the action of the light source switching mirror and the inspection light switching mirror. An inspection / repair apparatus for a reflective liquid crystal display device, characterized in that the transparent circuit element can be repaired according to an inspection result of the inspection process .
前記アナライザを介して得られる干渉像を検査する光路に緑色の視感度補正フィルタ挿入したことを特徴とする請求項4に記載の反射型液晶表示装置の検査補修装置。 5. The inspection and repair apparatus for a reflective liquid crystal display device according to claim 4, wherein a green visibility correction filter is inserted in an optical path for inspecting an interference image obtained through the analyzer . モニタカメラとモニタ手段を備え、前記補修中の回路基板からの反射光を前記検査光切換ミラーの作用により前記モニタカメラに入射して前記モニタ手段により、前記レーザ光線が前記回路基板に照射されている状態を映像化できるように構成したことを特徴とする請求項4または請求項5に記載の反射型液晶表示装置の検査補修装置。 A monitor camera and monitor means, and the reflected light from the circuit board under repair is incident on the monitor camera by the action of the inspection light switching mirror, and the laser light is irradiated to the circuit board by the monitor means; 6. The inspection and repair device for a reflective liquid crystal display device according to claim 4, wherein the inspection and repair device is configured to be capable of visualizing the current state.
JP2000040345A 2000-02-17 2000-02-17 Inspection repair method and inspection repair device for reflective liquid crystal display device Expired - Fee Related JP3759363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040345A JP3759363B2 (en) 2000-02-17 2000-02-17 Inspection repair method and inspection repair device for reflective liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040345A JP3759363B2 (en) 2000-02-17 2000-02-17 Inspection repair method and inspection repair device for reflective liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2001228471A JP2001228471A (en) 2001-08-24
JP3759363B2 true JP3759363B2 (en) 2006-03-22

Family

ID=18563737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040345A Expired - Fee Related JP3759363B2 (en) 2000-02-17 2000-02-17 Inspection repair method and inspection repair device for reflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3759363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194831B1 (en) * 2020-07-21 2020-12-23 주식회사 에이치비테크놀러지 Laser Repair Apparatus for Adjusting and Monitoring the Polarization of the Beam

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615415B2 (en) * 2005-09-30 2011-01-19 シャープ株式会社 Display element component correcting apparatus and display element component correcting method
JP2007316162A (en) * 2006-05-23 2007-12-06 Sharp Corp Display device component correcting apparatus and display device component correcting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194831B1 (en) * 2020-07-21 2020-12-23 주식회사 에이치비테크놀러지 Laser Repair Apparatus for Adjusting and Monitoring the Polarization of the Beam

Also Published As

Publication number Publication date
JP2001228471A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP3610837B2 (en) Sample surface observation method and apparatus, defect inspection method and apparatus
JPH06250092A (en) Equipment and method for optical inspection of material body
JP3762952B2 (en) Optical apparatus and image measuring apparatus and inspection apparatus using the same
CN110044931B (en) Detection apparatus for curved surface glass surface and internal defect
JP3507319B2 (en) Optical property measurement device
KR101211438B1 (en) Apparatus for inspecting defects
JP2012026733A (en) Optical defect detection device and method, and defect observation device provided with the same
JP2003090781A (en) Apparatus and method for inspecting optical element
JP3759363B2 (en) Inspection repair method and inspection repair device for reflective liquid crystal display device
JPH0674863A (en) Core eccentricity measuring method for optical connector and optical connector
KR20100058012A (en) Optical system for detecting defect
JP3768029B2 (en) Pattern defect repair device
JPH0961291A (en) Apparatus for testing optical parts
JP2000146537A5 (en)
KR20190059411A (en) a multi-functional optical inspecting device
JP3625953B2 (en) Projection device for visual inspection
JP2004535601A (en) Configuration of microscope objective lens
JP3325095B2 (en) Inspection device
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP4487042B2 (en) Optical apparatus, inspection apparatus, and inspection method
US6081335A (en) Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
KR980010522A (en) An alignment film inspection apparatus and an alignment film inspection method using the apparatus
JP2003121385A (en) Method and device for inspecting inside of vitreous silica material for defect
TWI814412B (en) Multi-directional inspection system for mura detection and the method thereof
JPH11118668A (en) Method and apparatus for inspecting defect of object

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees