JP2004309138A - Method and apparatus for inspecting defect inside quartz glass - Google Patents

Method and apparatus for inspecting defect inside quartz glass Download PDF

Info

Publication number
JP2004309138A
JP2004309138A JP2003098533A JP2003098533A JP2004309138A JP 2004309138 A JP2004309138 A JP 2004309138A JP 2003098533 A JP2003098533 A JP 2003098533A JP 2003098533 A JP2003098533 A JP 2003098533A JP 2004309138 A JP2004309138 A JP 2004309138A
Authority
JP
Japan
Prior art keywords
glass material
quartz glass
light
defect
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098533A
Other languages
Japanese (ja)
Inventor
Takashi Taniguchi
隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003098533A priority Critical patent/JP2004309138A/en
Publication of JP2004309138A publication Critical patent/JP2004309138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method and a defect inspecting apparatus for easily, accurately, and quickly detecting defects contained in a quartz glass material, especially minute defects, such as bubbles, and foreign objects. <P>SOLUTION: In the method for inspecting defects inside the quartz glass material using a schlieren method, the quartz glass material to be inspected is irradiated with a plurality of parallel light having different irradiation directions, and only abnormal light caused by reflection and/or bending by defects inside the quartz glass material is detected from light applied to the quartz glass material. The defect inspecting apparatus by the method for detecting defects inside the quartz glass material is included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石英ガラス材内部に含まれる欠陥を検査する方法および検査装置に関する。
【0002】
【従来の技術】
半導体製造におけるフォトリソグラフィ工程において、紫外光等による回路パターン転写時に使用されるフォトマスク、レンズ等の用途に用いられるガラス材には、高い光線透過性および光線透過の均一性が必要とされる。このため、紫外域の光線透過性に優れた石英ガラス材が使用されており、また、ガラス材の内部には微小なものも含め、泡、異物、脈理等の欠陥がないことが望ましい。
【0003】
従来、石英ガラス材内部に含まれる泡、異物等の微小な欠陥は、ガラス材に投光器や蛍光灯からの強い光を照射し、欠陥による反射光又は屈折光等の異常光を目視などで確認するという方法により検査していた(例えば、非特許文献1を参照)。
【0004】
【非特許文献1】
葛生伸、Kブックス111「石英ガラスの世界」、77〜101頁、工業調査会発行、1999年4月5日
【0005】
【発明が解決しようとする課題】
しかしながら、ガラス内部の欠陥を目視検査する場合、微小な欠陥による反射光又は屈折光等の異常光は非常に小さいため、欠陥を見逃す可能性が高い。また、検査には熟練が必要であり、さらに検査に時間を要するという問題もあった。
【0006】
本発明の目的は、特に石英ガラス材の内部に含まれる欠陥、特に泡、異物等の微小な欠陥を容易に、正確に、短時間で検出できる検査方法および検査装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は上述のような現状に鑑み、鋭意検討を重ねた結果、シュリーレン法を用いた石英ガラス材内部の欠陥を検査する場合に、検査対象の石英ガラス材に、照射方向の異なる複数の平行光を照射し、石英ガラス材に照射した光の中から、石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光のみを検出することにより、石英ガラス材内部に含まれる欠陥、特に泡、異物等の微小な欠陥や、場合によっては脈理を、容易に、正確に、短時間で検出できることを見出し、本発明を完成するに至った。
【0008】
すなわち本発明は、シュリーレン法を用いた石英ガラス材内部の欠陥検査方法であって、検査対象の石英ガラス材に、照射方向の異なる複数の平行光を照射し、当該石英ガラス材に照射した光の中から、石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光のみを検出する石英ガラス材内部の欠陥検査方法であり、さらに、検査対象の石英ガラス材に照射方向の異なる複数の平行光を照射するための照明系と、石英ガラス材を積載するための試料台と、石英ガラス材に照射した光の中から石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光のみを抽出するための集光系及び遮光系と、抽出された異常光を検出するための検出系と、からなる石英ガラス材内部の欠陥検査装置に関する。
【0009】
以下、本発明を詳細に説明する。
【0010】
石英ガラス材内部の脈理等、屈折率の不均一性を可視化する方法としてシュリーレン法がある。このシュリーレン法は、ガラス材に平行光線を透過させ、透過後の光をレンズまたは凹面鏡で集光し、その焦点付近にナイフエッジを置き、集光後、広がった光をスクリーンに投影するなどして像を観察するものである。ガラス材を透過した平行光はレンズまたは凹面鏡の焦点を通るが、ガラス材内部に存在する脈理により屈折した光は平行光と進行方向が異なるため、焦点を通らない。ナイフエッジにより、脈理により屈折した光、あるいはガラス材をそのまま透過した平行光のいずれかをカットすることにより、通常の目視観察よりも脈理等、屈折率不均一部のコントラストを強調して観察することが可能である。
【0011】
本発明の石英ガラス材内部の欠陥検査方法(以下「本発明方法」という。)は、検査対象の石英ガラス材に、照射方向の異なる複数の平行光を照射し、この石英ガラス材に照射した光の中から、石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光(以下、単に「異常光」ということがある。)のみを検出するものであり、上記したように、シュリーレン法の特徴を利用して、石英ガラス材内部に含まれる欠陥、特に泡、異物等の微小な欠陥や、場合によっては石英ガラス材内部の脈理を検査できるものである。
【0012】
本発明方法においては、石英ガラス材内部の欠陥による異常光が方向性を持っていた場合においても、照射方向の異なる複数の平行光を照射することにより、単に1つの平行光を照射する場合に比べ、さらに異常光を広い角度範囲で発生させることができ、正確に石英ガラス材内部の欠陥による異常光のみを検出することができる。
【0013】
本発明方法において検査対象となる石英ガラス材とは、主として石英(二酸化珪素:SiO)のみからなるガラスを意味し、シュリーレン法の特徴を利用するという観点から平行光を透過できる透明性を有した石英ガラス材であれば、二酸化珪素以外の成分を含んでいても差し支えない。
【0014】
石英ガラス材の内部に含まれる欠陥、特に泡、異物等の微小な欠陥についても、平行光線を透過させた場合、その界面で反射や屈折が起こり、光線方向や偏光状態が異なる異常光が発生する。光線方向が平行光と異なるため、シュリーレン法により原理的には観察することが可能である。しかしながら、微小な欠陥による異常光は微弱であるため、その判別は容易でない。このため、本発明方法では、石英ガラス材を透過した照射方向の異なる複数の平行光を集光レンズや凹面鏡により焦点に集光後、集光された光をナイフエッジ等により遮光して全てカットし、実質的に石英ガラス材内部の欠陥による異常光のみを抽出し観察することにより、欠陥の判別が容易になる。
【0015】
本発明では照射方向の異なる複数の平行光を照射するが、石英ガラス材を透過後、それぞれの平行光について全て集光および遮光を行う必要がある。集光および遮光には単一の集光レンズや凹面鏡、およびナイフエッジを用いても良いし、それぞれの平行光に別々の集光レンズや凹面鏡、およびナイフエッジを用いても構わない。
【0016】
また、本発明方法では、石英ガラス材を透過した光をレンズ又は凹面鏡で集光するが、石英ガラス材内部の欠陥による異常光はレンズ又は凹面鏡の焦点を通らず分散する。ここで集光レンズ又は凹面鏡の焦点距離が短くなる程、欠陥による異常光の分散は小さくなるため、石英ガラス材内部の欠陥の大きさとして、その最大径が1000μm以下という微小な欠陥による異常光を検出するには、集光レンズ又は凹面鏡の焦点距離は500mm以下、さらに300mm以下が好ましい。
【0017】
また、偏光子及び検光子を使用し、石英ガラス材に直線偏光の平行光を照射し、石英ガラス材を透過した光を、直接あるいは上記のように集光し、遮光して抽出されたガラス材内部の欠陥による異常光の偏光状態変化を検出しても良い。
【0018】
本発明の石英ガラス材内部の欠陥検査装置(以下「本発明装置」という。)は、検査対象の石英ガラス材に照射方向の異なる複数の平行光を照射するための照明系と、石英ガラス材を積載するための試料台と、石英ガラス材に照射した光の中から石英ガラス材内部の欠陥による異常光のみを抽出するための集光系及び遮光系と、抽出された異常光を検出するための検出系と、からなる。
【0019】
ここで、照明系としては、ハロゲンランプ等の光源より発せられる光をコリメータレンズ等により平行光とする機能を有しており、目的に応じて、偏光子を使用して直線偏光の平行光を生じさせてもよい。照射方向の異なる複数の平行光を得るため、複数の光源を利用しても良いし、光学系を利用しても構わない。また、石英ガラス材へ照射する平行光の照射方向の調整を容易にするため、おのおのの平行光の照射角度は可変可能であることが好ましい。
【0020】
検査対象の石英ガラス材の形状としては特に制限はないが、石英ガラスの外部形状に多少凹凸があって平行光が屈折するような外部形状となっている場合には同程度の屈折率を有した液体等に浸漬させるとよい。
【0021】
石英ガラス材を積載するための試料台としては、移動可能となっているとよく、その方向としても平行光の方向に対して垂直な各方向及び平行な方向のいずれにも移動できればよいが、特に垂直な2方向に移動可能とすることで、ガラス材における平行光の照射部位を移動させることができ、平行光の照射範囲よりも大きいガラス材の内部全域が検査可能となる。また、平行光の方向に対して平行な方向に移動可能とすることで、異常光の検出の際に像をより鮮明にすることができ、作業がより容易かつ正確となる。
【0022】
石英ガラス材を透過した光の中から石英ガラス材内部の欠陥による異常光を抽出するための集光系としては、レンズ又は凹面鏡を用いればよく、その焦点距離も上記したように500mm以下、さらに300mm以下が好ましい。
【0023】
石英ガラス材を透過した光の中から石英ガラス材内部の欠陥による異常光のみを抽出するための遮光系としては、上記したように集光された光を遮光できる機能を有しておれば特に制限はなく、例えばナイフエッジが用いられる。
【0024】
抽出された異常光を検出するための検出系としては特に制限はないが、上記した直線偏光の平行光を使用する場合には、偏光状態変化を検出するための検出系を用いるとよく、欠陥による異常光をより正確に検出できる。
【0025】
また、本発明では目視により欠陥による異常光を捉えることができるが、例えばCCDカメラを用いて異常光を捉え、目的に応じて画像処理を施すことで石英ガラス材内部の欠陥をより的確に捉えることもできる。集光および遮光に単一の集光レンズや凹面鏡、およびナイフエッジを用いる場合は検出系は単一で良いが、それぞれの平行光に別々の集光レンズや凹面鏡、およびナイフエッジを用いる場合にはその数に応じた複数の検出系が必要である。
【0026】
図1に本発明の一実施態様の検査装置の概略構成を示す。ハロゲンランプ11、12、13からの拡散光は、おのおのピンホール14、15、16を通過後、コリメータレンズ17、18、19により平行光化され、検査対象であるガラス材21に照射される。平行光線の入射面、出射面は鏡面状態に研磨し、ガラス材21を設置する。ガラス材21はXYZ方向に移動可能な試料台2の上に設置されており、ガラス材21を移動することにより、ガラス材全域に平行光を照射可能としている。ガラス材21のコリメータレンズ17、18、19とは反対側には、ガラス材を透過した3つの平行光を集光する集光レンズ31を設置し、このレンズにより3つの平行光が集光する位置にナイフエッジ32を設置する。コリメータレンズおよび集光レンズは、色収差、球面収差の観点から、アクロマティックレンズを使用することが望ましく、また、集光レンズには焦点距離500mm以下のレンズを使用する。ナイフエッジ32は集光した3つの平行光それぞれを遮断可能な形状であり、ガラス内部の欠陥22による異常光だけが入射する様にカメラレンズ41及びCCDカメラ42を設置する。ガラス材21をXYZ方向に移動しながら、CCDカメラ42からの映像をモニターすることにより、内部欠陥とその存在位置について容易に検査することができる。
【0027】
上記においては平行光の遮光にナイフエッジを用いたが、この代わりに一部に不透明処理を施したガラス板等を用いてもよい。
【0028】
また、コリメータレンズ17、18、19とガラス材21の間に偏光子、及びガラス材21と集光レンズ31の間に検光子を挿入し、ガラス内部の欠陥22による異常光の偏光状態変化を検出しても構わない。
【0029】
以上、本発明の石英ガラス材内部の欠陥検査方法および検査装置を実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。
【0030】
【実施例】
以下に図面を参照して本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。
【0031】
実施例1
図1に示すような構成の欠陥検査装置を用意した。即ち、ハロゲンランプ11、12、13それぞれの手前に、口径1.0mmのピンホール14、15、16を設置し、ピンホール14、15、16からそれぞれ200mm離れた位置に、レンズ径50mm、焦点距離200mmであるアクロマティックレンズ17、18、19を設置した。アクロマティックレンズ18の正面、500mm離れた位置にレンズ径50mm、焦点距離200mmであるアクロマティックレンズ31を設置し、アクロマティックレンズ31から200mm離れた位置にスリットが2つある形状のナイフエッジ32を設置した。ナイフエッジ32の直後に焦点距離28〜70mmのズームレンズ41を取り付けた画素数41万画素の白黒CCDカメラ42を設置し、モニターに接続した。アクロマティックレンズ31を通過したハロゲンランプ11、12、13の光は、それぞれナイフエッジ32上の3点に集光することにより遮光され、ズームレンズ41を通してCCDカメラ42に入らないよう調整した。その後、アクロマティックレンズ18とアクロマティックレンズ31の光軸に対し垂直な2方向に移動可能な試料台2を設置し、欠陥検査装置を完成させた。
【0032】
以上のようにして用意した装置を使用し、幅と奥行きが154mm、高さが300mmの表面を鏡面状態に研磨してある石英ガラスブロックの内部に存在する泡および異物の検査を行った。ハロゲンランプの電源の電圧は12v(ボルト)に調整し、ブロックは試料台上に側面がアクロマティックレンズ18とアクロマティックレンズ31の光軸に対し垂直になるように設置し、ガラスブロックに3つの平行光を照射しながら、CCDカメラからの映像をモニターすることにより、内部欠陥による異常光の有無を確認した。試料台を操作しガラスブロックを移動させることにより、ガラスブロックの内部全域の検査を行った。
【0033】
この検査の結果、ガラスブロック内部から異物9個が検出された。ガラスブロックを回転させ、アクロマティックレンズ18に対向するブロックの側面を変更して検査を行ったいずれの場合にも、検査結果は同じであった。検出された異物について、その大きさを長作動距離型顕微鏡を使用し測定したところ、最も大きな異物の大きさは880μmであり、最も小さな異物の大きさは90μmであった。
【0034】
比較例1
実施例1で使用した装置からハロゲンランプ11、13、ピンホール14、16、アクロマティックレンズ17、19を取り外し、実施例1で検査した石英ガラスブロックの内部に存在する泡および異物の検査を行った。この検査でも、ガラスブロック内部から異物9個が検出されたが、ガラスブロックを回転させ、アクロマティックレンズ18に対向するブロックの側面を変更して検査を行うと、異物が8個しか検出されない面が2面あった。検出性が変化した異物は大きさ130μmの偏平形状で不透明なものであった。
【0035】
【発明の効果】
本発明においては、シュリーレン法を用い、検査対象の石英ガラス材に照射方向の異なる複数の平行光を照射し、石英ガラス材を透過した平行光を、それぞれ焦点距離500mm以下のレンズ又は凹面鏡により集光後、遮光することにより、
(1)欠陥の形状が歪んでいて屈折光に方向性があった場合でも検出方向に関係なく検出しやすいこと、
(2)欠陥が不透明な場合でも屈折、反射光を検出しやすいこと、
(3)屈折光量が増えるので、よりはっきり検出しやすいこと、
という特有の効果を奏することができる。このため、ガラス材内部の欠陥による異常光のみを検出することにより、石英ガラス材内部に含まれる欠陥、特に泡、異物等の、1000μm以下の微小な欠陥を容易に、正確に、短時間で検出でき、石英ガラス材の品質管理に極めて有用である。
【図面の簡単な説明】
【図1】レンズを用いた本発明の欠陥検査装置の一実施態様の概略構成(側面図)
【符号の説明】
1:照明系
11、12、13:ハロゲンランプ
14、15、16:ピンホール
17、18、19:コリメータレンズ
2:試料台
21:被検査物(ガラス材)
22:ガラス材内部の欠陥
3:光学系
31:集光レンズ
32:ナイフエッジ
4:検出系
41:カメラレンズ
42:CCDカメラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an inspection apparatus for inspecting a defect contained in a quartz glass material.
[0002]
[Prior art]
In a photolithography process in semiconductor manufacturing, a glass material used for a photomask, a lens, or the like used when transferring a circuit pattern by ultraviolet light or the like needs to have high light transmittance and uniform light transmittance. For this reason, a quartz glass material having excellent light transmittance in the ultraviolet region is used, and it is desirable that the inside of the glass material is free from defects such as bubbles, foreign matter, and striae including minute ones.
[0003]
Conventionally, minute defects such as bubbles and foreign substances contained in quartz glass material are illuminated with strong light from a projector or fluorescent lamp, and abnormal light such as reflected light or refracted light due to the defect is visually observed. (For example, see Non-Patent Document 1).
[0004]
[Non-patent document 1]
Shin Kuzuu, K Books 111 “The World of Quartz Glass”, pp. 77-101, published by the Industrial Research Institute, April 5, 1999 [0005]
[Problems to be solved by the invention]
However, when a defect inside the glass is visually inspected, an abnormal light such as a reflected light or a refracted light due to a minute defect is very small, and therefore, the defect is likely to be missed. In addition, there is a problem that the inspection requires skill and furthermore, the inspection requires time.
[0006]
An object of the present invention is to provide an inspection method and an inspection apparatus that can easily, accurately, and in a short time detect a defect included in a quartz glass material, in particular, a minute defect such as a bubble or a foreign substance.
[0007]
[Means for Solving the Problems]
In view of the above-mentioned current situation, the present inventors have conducted intensive studies and as a result, when inspecting for defects inside the quartz glass material using the schlieren method, the quartz glass material to be inspected has a plurality of irradiation directions different from each other. Of the quartz glass material by detecting only the extraordinary light caused by the reflection and / or refraction due to the defect inside the quartz glass material from the light irradiated on the quartz glass material. The present inventors have found that minute defects such as bubbles and foreign matters, and, in some cases, striae can be detected easily, accurately, and in a short time, and have completed the present invention.
[0008]
That is, the present invention is a defect inspection method inside a quartz glass material using the Schlieren method, and irradiates a quartz glass material to be inspected with a plurality of parallel lights having different irradiation directions, and irradiates the quartz glass material. Is a defect inspection method for detecting only abnormal light caused by reflection and / or refraction due to a defect inside the quartz glass material, and further includes a plurality of quartz glass materials to be inspected having different irradiation directions. Illumination system for irradiating parallel light, sample stage for loading quartz glass material, and abnormality caused by reflection and / or refraction due to defects inside quartz glass material from light irradiated to quartz glass material The present invention relates to a defect inspection apparatus inside a quartz glass material, which includes a light focusing system and a light shielding system for extracting only light, and a detection system for detecting extracted extraordinary light.
[0009]
Hereinafter, the present invention will be described in detail.
[0010]
The Schlieren method is a method for visualizing non-uniformity of the refractive index such as striae inside a quartz glass material. The Schlieren method transmits parallel light through a glass material, focuses the transmitted light with a lens or concave mirror, places a knife edge near the focal point, projects the spread light on the screen after focusing, etc. To observe the image. The parallel light transmitted through the glass material passes through the focal point of the lens or the concave mirror, but the light refracted by striae existing inside the glass material does not pass through the focal point because the traveling direction is different from that of the parallel light. The knife edge cuts either the light refracted by the striae or the parallel light transmitted through the glass material as it is, thereby enhancing the contrast of non-uniform refractive index areas such as striae compared to normal visual observation. It is possible to observe.
[0011]
In the defect inspection method inside the quartz glass material of the present invention (hereinafter referred to as “the present invention method”), the quartz glass material to be inspected is irradiated with a plurality of parallel lights having different irradiation directions, and the quartz glass material is irradiated. It detects only extraordinary light (hereinafter, sometimes simply referred to as “extraordinary light”) due to reflection and / or refraction due to defects inside the quartz glass material from the light, and as described above, Schlieren By utilizing the features of the method, it is possible to inspect defects contained in the quartz glass material, particularly minute defects such as bubbles and foreign substances, and, in some cases, striae inside the quartz glass material.
[0012]
In the method of the present invention, even when the extraordinary light due to the defect inside the quartz glass material has directionality, by irradiating a plurality of parallel lights having different irradiation directions, only one parallel light is irradiated. In comparison, extraordinary light can be generated in a wider angle range, and only extraordinary light due to a defect inside the quartz glass material can be accurately detected.
[0013]
The quartz glass material to be inspected in the method of the present invention means a glass mainly composed of only quartz (silicon dioxide: SiO 2 ), and has a transparency capable of transmitting parallel light from the viewpoint of utilizing the feature of the Schlieren method. The quartz glass material described above may contain components other than silicon dioxide.
[0014]
Defects contained in the quartz glass material, especially minute defects such as bubbles and foreign matter, are reflected and refracted at the interface when parallel light is transmitted, and abnormal light with different light direction and polarization state is generated. I do. Since the direction of the light beam is different from that of the parallel light, it can be observed in principle by the Schlieren method. However, since the extraordinary light due to the minute defect is weak, it is not easy to determine the abnormal light. For this reason, in the method of the present invention, after a plurality of parallel lights having different irradiation directions transmitted through the quartz glass material are condensed to a focal point by a condensing lens or a concave mirror, the condensed light is shielded by a knife edge or the like and all cut off. However, by extracting and observing substantially only the extraordinary light due to the defect inside the quartz glass material, the defect can be easily identified.
[0015]
In the present invention, a plurality of parallel lights having different irradiation directions are irradiated. However, after passing through the quartz glass material, it is necessary to collect and shield all the parallel lights. A single condenser lens, a concave mirror, and a knife edge may be used for condensing and shielding, or separate condenser lenses, a concave mirror, and a knife edge may be used for each parallel light.
[0016]
In the method of the present invention, the light transmitted through the quartz glass material is condensed by a lens or a concave mirror, but extraordinary light due to a defect inside the quartz glass material is dispersed without passing through the focus of the lens or the concave mirror. Here, as the focal length of the condenser lens or the concave mirror becomes shorter, the dispersion of the extraordinary light due to the defect becomes smaller. Therefore, as the size of the defect inside the quartz glass material, the extraordinary light due to a minute defect having a maximum diameter of 1000 μm or less. Is detected, the focal length of the condenser lens or the concave mirror is preferably 500 mm or less, more preferably 300 mm or less.
[0017]
In addition, using a polarizer and an analyzer, the quartz glass material is irradiated with parallel light of linearly polarized light, and the light transmitted through the quartz glass material is collected directly or as described above, and the glass extracted by shading. A change in the polarization state of the extraordinary light due to a defect inside the material may be detected.
[0018]
The defect inspection apparatus inside the quartz glass material of the present invention (hereinafter, referred to as “the present invention apparatus”) includes an illumination system for irradiating a plurality of parallel lights having different irradiation directions to the quartz glass material to be inspected, and a quartz glass material. A sample stage for loading the sample, a condensing system and a shading system for extracting only the extraordinary light due to the defect inside the quartz glass material from the light irradiated on the quartz glass material, and detecting the extracted extraordinary light And a detection system.
[0019]
Here, the illumination system has a function of converting light emitted from a light source such as a halogen lamp into parallel light by a collimator lens or the like, and converts a parallel light of linearly polarized light using a polarizer according to the purpose. It may be caused. In order to obtain a plurality of parallel lights having different irradiation directions, a plurality of light sources may be used, or an optical system may be used. In addition, in order to easily adjust the irradiation direction of the parallel light irradiating the quartz glass material, it is preferable that the irradiation angle of each parallel light can be changed.
[0020]
There is no particular limitation on the shape of the quartz glass material to be inspected, but when the quartz glass has an external shape that is slightly uneven and has an external shape such that parallel light is refracted, the quartz glass has a similar refractive index. It is good to be immersed in a liquid or the like.
[0021]
As a sample stage for loading a quartz glass material, it is preferable that the sample stage can be moved, and as long as it can be moved in each direction perpendicular to the direction of the parallel light and in the direction parallel thereto, In particular, by being movable in two perpendicular directions, the irradiation area of the parallel light on the glass material can be moved, and the entire inside of the glass material larger than the irradiation area of the parallel light can be inspected. In addition, by enabling movement in a direction parallel to the direction of the parallel light, an image can be made clearer at the time of detecting abnormal light, and the work becomes easier and more accurate.
[0022]
A lens or a concave mirror may be used as a light focusing system for extracting extraordinary light due to a defect inside the quartz glass material from light transmitted through the quartz glass material, and the focal length thereof is 500 mm or less as described above, and furthermore, It is preferably 300 mm or less.
[0023]
As a light-shielding system for extracting only the extraordinary light due to the defect inside the quartz glass material from the light transmitted through the quartz glass material, if the light-shielding system has the function of shielding the condensed light as described above, There is no limitation, for example, a knife edge is used.
[0024]
There is no particular limitation on the detection system for detecting the extracted extraordinary light, but when using the parallel light of the above-described linearly polarized light, it is preferable to use a detection system for detecting a change in the polarization state. Extraordinary light can be detected more accurately.
[0025]
In the present invention, the abnormal light due to the defect can be visually observed. For example, the abnormal light due to the defect is captured using a CCD camera, and the image processing is performed according to the purpose to more accurately capture the defect inside the quartz glass material. You can also. When a single condenser lens, concave mirror, and knife edge are used for condensing and shielding, a single detection system may be used.However, when a separate condenser lens, concave mirror, and knife edge are used for each parallel light, Requires a plurality of detection systems corresponding to the number.
[0026]
FIG. 1 shows a schematic configuration of an inspection apparatus according to one embodiment of the present invention. The diffused lights from the halogen lamps 11, 12, and 13 pass through the pinholes 14, 15, and 16 respectively, are collimated by collimator lenses 17, 18, and 19, and irradiate a glass material 21 to be inspected. The incident surface and the outgoing surface of the parallel light beam are polished to mirror surfaces, and a glass material 21 is provided. The glass material 21 is installed on the sample stage 2 that can move in the XYZ directions, and by moving the glass material 21, parallel light can be applied to the entire glass material. On the opposite side of the glass member 21 from the collimator lenses 17, 18, and 19, a condenser lens 31 that collects three parallel lights transmitted through the glass member is provided, and the lens collects three parallel lights. The knife edge 32 is set at the position. From the viewpoint of chromatic aberration and spherical aberration, it is desirable to use an achromatic lens for the collimator lens and the condensing lens, and a lens having a focal length of 500 mm or less is used as the condensing lens. The knife edge 32 has a shape capable of blocking each of the three condensed parallel lights, and is provided with a camera lens 41 and a CCD camera 42 so that only the extraordinary light due to the defect 22 inside the glass is incident. By monitoring the image from the CCD camera 42 while moving the glass material 21 in the XYZ directions, it is possible to easily inspect the internal defect and its existing position.
[0027]
In the above description, the knife edge is used to shield the parallel light, but instead, a glass plate or the like partially opaque-treated may be used.
[0028]
In addition, a polarizer is inserted between the collimator lenses 17, 18, and 19 and the glass material 21, and an analyzer is inserted between the glass material 21 and the condenser lens 31, so that the polarization state change of the extraordinary light due to the defect 22 inside the glass is prevented. It may be detected.
[0029]
Although the method and apparatus for inspecting a defect inside a quartz glass material of the present invention have been described based on the embodiments, the present invention is not limited to these embodiments, and various modifications are possible.
[0030]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.
[0031]
Example 1
A defect inspection apparatus having a configuration as shown in FIG. 1 was prepared. That is, pinholes 14, 15, and 16 having a diameter of 1.0 mm are installed in front of the halogen lamps 11, 12, and 13 respectively. Achromatic lenses 17, 18, and 19 having a distance of 200 mm were installed. An achromatic lens 31 having a lens diameter of 50 mm and a focal length of 200 mm is installed at a position 500 mm away from the front of the achromatic lens 18, and a knife edge 32 having two slits 200 mm away from the achromatic lens 31 is formed. installed. Immediately after the knife edge 32, a monochrome CCD camera 42 having 410,000 pixels with a zoom lens 41 having a focal length of 28 to 70 mm was installed and connected to a monitor. The lights of the halogen lamps 11, 12, and 13 having passed through the achromatic lens 31 were shielded by being condensed at three points on the knife edge 32, respectively, and adjusted so as not to enter the CCD camera 42 through the zoom lens 41. Thereafter, the sample stage 2 movable in two directions perpendicular to the optical axes of the achromatic lens 18 and the achromatic lens 31 was installed, and the defect inspection device was completed.
[0032]
Using the apparatus prepared as described above, an inspection was performed for bubbles and foreign substances present inside the quartz glass block whose surface having a width and depth of 154 mm and a height of 300 mm was polished to a mirror surface. The voltage of the power supply of the halogen lamp was adjusted to 12 V (volt), and the block was set on the sample table so that the side surface was perpendicular to the optical axes of the achromatic lens 18 and the achromatic lens 31. By monitoring the image from the CCD camera while irradiating the parallel light, the presence or absence of abnormal light due to an internal defect was confirmed. By operating the sample stage and moving the glass block, the entire inside of the glass block was inspected.
[0033]
As a result of this inspection, nine foreign substances were detected from inside the glass block. In each case where the inspection was performed by rotating the glass block and changing the side surface of the block facing the achromatic lens 18, the inspection results were the same. When the size of the detected foreign matter was measured using a long working distance microscope, the size of the largest foreign matter was 880 μm, and the size of the smallest foreign matter was 90 μm.
[0034]
Comparative Example 1
The halogen lamps 11 and 13, the pinholes 14 and 16, and the achromatic lenses 17 and 19 were removed from the apparatus used in the first embodiment, and the bubbles and foreign substances present inside the quartz glass block inspected in the first embodiment were inspected. Was. In this inspection, nine foreign substances were detected from inside the glass block. However, when the glass block is rotated and the side of the block facing the achromatic lens 18 is changed and the inspection is performed, only eight foreign substances are detected. There were two sides. The foreign matter whose detectability changed had a flat shape of 130 μm in size and was opaque.
[0035]
【The invention's effect】
In the present invention, a quartz glass material to be inspected is irradiated with a plurality of parallel lights having different irradiation directions using a Schlieren method, and the parallel lights transmitted through the quartz glass material are collected by a lens or a concave mirror having a focal length of 500 mm or less. After light, by shading,
(1) Even if the shape of the defect is distorted and the refracted light has directionality, it can be easily detected regardless of the detection direction;
(2) easy to detect refraction and reflected light even if the defect is opaque;
(3) Since the amount of refraction increases, it is easier to detect clearly.
It is possible to achieve a unique effect. For this reason, by detecting only the abnormal light due to the defect inside the glass material, it is possible to easily, accurately, and in a short time to detect a defect contained in the quartz glass material, particularly a fine defect of 1000 μm or less, such as a bubble or a foreign substance. It can be detected and is extremely useful for quality control of quartz glass materials.
[Brief description of the drawings]
FIG. 1 is a schematic configuration (side view) of an embodiment of a defect inspection apparatus of the present invention using a lens.
[Explanation of symbols]
1: Illumination systems 11, 12, 13: Halogen lamps 14, 15, 16: Pinholes 17, 18, 19: Collimator lens 2: Sample table 21: Inspection object (glass material)
22: Defect inside glass material 3: Optical system 31: Condensing lens 32: Knife edge 4: Detection system 41: Camera lens 42: CCD camera

Claims (8)

シュリーレン法を用いた石英ガラス材内部の欠陥検査方法であって、検査対象の石英ガラス材に、照射方向の異なる複数の平行光を照射し、当該石英ガラス材に照射した光の中から、石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光のみを検出することを特徴とする石英ガラス材内部の欠陥検査方法。A defect inspection method inside a quartz glass material using the Schlieren method, wherein a quartz glass material to be inspected is irradiated with a plurality of parallel lights having different irradiation directions, and quartz light is irradiated from the light irradiated on the quartz glass material. A method for inspecting a defect inside a quartz glass material, wherein the method detects only abnormal light caused by reflection and / or refraction due to a defect inside the glass material. 石英ガラス材に照射した照射方向の異なる複数の平行光をそれぞれ、焦点距離500mm以下のレンズ又は凹面鏡により集光後、集光された光を遮光することを特徴とする請求項1記載の石英ガラス材内部の欠陥検査方法。2. The quartz glass according to claim 1, wherein the plurality of parallel lights having different irradiation directions applied to the quartz glass material are respectively condensed by a lens or a concave mirror having a focal length of 500 mm or less, and then the condensed light is shielded. Inspection method for defects inside materials. 石英ガラス材に直線偏光の照射方向の異なる複数の平行光を照射し、前記直線偏光の光の偏光状態変化を検出することを特徴とする請求項1又は請求項2記載の石英ガラス材内部の欠陥検査方法。The quartz glass material according to claim 1 or 2, wherein the quartz glass material is irradiated with a plurality of parallel lights having different irradiation directions of linearly polarized light, and a change in the polarization state of the linearly polarized light is detected. Defect inspection method. 石英ガラス材内部の欠陥の最大径が1000μm以下であることを特徴とする請求項1〜3のいずれかに記載の石英ガラス材内部の欠陥検査方法。4. The defect inspection method according to claim 1, wherein the maximum diameter of the defect inside the quartz glass material is 1000 μm or less. 検査対象の石英ガラス材に照射方向の異なる複数の平行光を照射するための照明系と、石英ガラス材を積載するための試料台と、石英ガラス材に照射した光の中から石英ガラス材内部の欠陥による反射及び/又は屈折に起因する異常光のみを抽出するための集光系及び遮光系と、抽出された異常光を検出するための検出系と、からなる石英ガラス材内部の欠陥検査装置。An illumination system for irradiating a plurality of parallel lights with different irradiation directions to the quartz glass material to be inspected, a sample table for loading the quartz glass material, and the inside of the quartz glass material from the light irradiated on the quartz glass material Defect inspection inside a quartz glass material, comprising: a light collecting system and a light shielding system for extracting only extraordinary light caused by reflection and / or refraction due to a defect of the object; and a detection system for detecting the extracted extraordinary light. apparatus. 集光系として焦点距離500mm以下の集光レンズ又は凹面鏡を使用することを特徴とする請求項5記載の石英ガラス材内部の欠陥検査装置。6. The defect inspection apparatus according to claim 5, wherein a condenser lens having a focal length of 500 mm or less or a concave mirror is used as the condenser system. 石英ガラス材に照射方向の異なる複数の直線偏光の平行光を照射するための照明系、前記直線偏光の光の偏光状態変化を検出するための検出系を有することを特徴とする請求項5又は請求項6記載の石英ガラス材内部の欠陥検査装置。6. An illumination system for irradiating the quartz glass material with a plurality of linearly-polarized parallel lights having different irradiation directions, and a detection system for detecting a change in the polarization state of the linearly-polarized light. A defect inspection apparatus inside a quartz glass material according to claim 6. 試料台が移動可能であり、検出系としてCCDカメラを使用することを特徴とする請求項5〜7のいずれかに記載の石英ガラス材内部の欠陥検査装置。The defect inspection apparatus according to any one of claims 5 to 7, wherein the sample stage is movable and a CCD camera is used as a detection system.
JP2003098533A 2003-04-01 2003-04-01 Method and apparatus for inspecting defect inside quartz glass Pending JP2004309138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098533A JP2004309138A (en) 2003-04-01 2003-04-01 Method and apparatus for inspecting defect inside quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098533A JP2004309138A (en) 2003-04-01 2003-04-01 Method and apparatus for inspecting defect inside quartz glass

Publications (1)

Publication Number Publication Date
JP2004309138A true JP2004309138A (en) 2004-11-04

Family

ID=33463283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098533A Pending JP2004309138A (en) 2003-04-01 2003-04-01 Method and apparatus for inspecting defect inside quartz glass

Country Status (1)

Country Link
JP (1) JP2004309138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031605A1 (en) * 2007-09-07 2009-03-12 Nikon Corporation Work defect inspecting apparatus and optical member manufacturing method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031605A1 (en) * 2007-09-07 2009-03-12 Nikon Corporation Work defect inspecting apparatus and optical member manufacturing method using the same
JPWO2009031605A1 (en) * 2007-09-07 2010-12-16 株式会社ニコン Workpiece defect inspection apparatus and optical member manufacturing method using the same
JP5359876B2 (en) * 2007-09-07 2013-12-04 株式会社ニコン Workpiece defect inspection apparatus and optical member manufacturing method using the same

Similar Documents

Publication Publication Date Title
US7173694B2 (en) Method and system for detecting defects
US6882417B2 (en) Method and system for detecting defects
CN108717062A (en) A kind of the details in a play not acted out on stage, but told through dialogues defect detecting device and its measurement method of heavy caliber ultra-precision surface
WO2010044351A1 (en) Supersensitization of defect inspection method
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
KR20170091706A (en) Inspection systems and techniques with enhanced detection
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
WO2014073532A1 (en) Method and device for detecting defects and method and device for observing defects
JPH09269298A (en) Method and device for examining end part defect
JP2017166903A (en) Defect inspection device and defect inspection method
KR100532238B1 (en) Thin film inspection method, apparatus and inspection system used therein
JP5007470B2 (en) Transparency inspection device
JP2004309137A (en) Method and apparatus for inspecting defect inside quartz glass
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2003121385A (en) Method and device for inspecting inside of vitreous silica material for defect
KR102129239B1 (en) Multifocal optical inspection device
JP2004309138A (en) Method and apparatus for inspecting defect inside quartz glass
JP5255763B2 (en) Optical inspection method and apparatus
JP2005233695A (en) Flaw inspection device for transparent panel
CN208672536U (en) A kind of dark field defect detecting device of heavy caliber ultra-precision surface
JP2821460B2 (en) Inspection device for transparent substrate
JP2005308725A (en) Device for inspecting defect in transparent plate
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP2000097867A (en) Defect detecting device and method for translucent substrate
JP3095856B2 (en) Light inspection device for visual inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104