JPWO2009031605A1 - Workpiece defect inspection apparatus and optical member manufacturing method using the same - Google Patents

Workpiece defect inspection apparatus and optical member manufacturing method using the same Download PDF

Info

Publication number
JPWO2009031605A1
JPWO2009031605A1 JP2009531267A JP2009531267A JPWO2009031605A1 JP WO2009031605 A1 JPWO2009031605 A1 JP WO2009031605A1 JP 2009531267 A JP2009531267 A JP 2009531267A JP 2009531267 A JP2009531267 A JP 2009531267A JP WO2009031605 A1 JPWO2009031605 A1 JP WO2009031605A1
Authority
JP
Japan
Prior art keywords
workpiece
optical member
work
ultraviolet light
defect inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009531267A
Other languages
Japanese (ja)
Other versions
JP5359876B2 (en
Inventor
正樹 落合
正樹 落合
祐平 新田
祐平 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009531267A priority Critical patent/JP5359876B2/en
Publication of JPWO2009031605A1 publication Critical patent/JPWO2009031605A1/en
Application granted granted Critical
Publication of JP5359876B2 publication Critical patent/JP5359876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9511Optical elements other than lenses, e.g. mirrors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

ガラスレンズなどの光学部材に適用されるワーク欠陥検査装置において、光学部材に含まれる不可視の欠陥を検査できるようにする。ワーク欠陥検査装置1は、120〜380nmの範囲内に属する任意の波長を測定波長とする光源5と、この光源5から出射された光を拡散させる拡散光学系9とを備えている。また、この拡散光学系9によって拡散した光を平行光束にするコリメータ12と、光源5から出射された光の光軸上でワーク19を保持するワーク保持装置20とを備えている。さらに、ワーク保持装置20に保持されたワーク19を透過した光のうち紫外光を紫外光用CCDカメラ16に導く紫外光結像系15と、紫外光以外の光を蛍光用CCDカメラ18に導く蛍光結像系17とを備えている。これにより、ワーク19中の不可視の欠陥を検出することができる。In a work defect inspection apparatus applied to an optical member such as a glass lens, an invisible defect included in the optical member can be inspected. The workpiece defect inspection apparatus 1 includes a light source 5 having an arbitrary wavelength within a range of 120 to 380 nm as a measurement wavelength and a diffusion optical system 9 that diffuses light emitted from the light source 5. Further, a collimator 12 that converts the light diffused by the diffusion optical system 9 into a parallel light flux and a work holding device 20 that holds the work 19 on the optical axis of the light emitted from the light source 5 are provided. Further, the ultraviolet light imaging system 15 that guides ultraviolet light to the ultraviolet light CCD camera 16 out of the light transmitted through the work 19 held by the work holding device 20 and light other than ultraviolet light to the fluorescent CCD camera 18. And a fluorescence imaging system 17. Thereby, an invisible defect in the workpiece 19 can be detected.

Description

本発明は、ガラスレンズなどの光学部材を製造するためのワーク(加工前の光学材料)の光学的な欠陥の存在を検査するワーク欠陥検査装置およびそれを用いた光学部材の製造方法に関する。   The present invention relates to a workpiece defect inspection apparatus for inspecting the presence of an optical defect in a workpiece (an optical material before processing) for manufacturing an optical member such as a glass lens, and an optical member manufacturing method using the workpiece defect inspection apparatus.

光学部材を製造するための光学材料には、その製造過程において銅、ナトリウム、塩素などの不純物(異物)が混入または残留し、この不純物に起因して欠陥が生じる場合がある。光学部材の長寿命化や透過率(入射光量に対する出射光量の割合)の改善するためにはそのような欠陥を除去する必要がある。従来、そのような光学材料中の欠陥を目視で検査していた(例えば、特許文献1参照)。
特開2004−54285号公報
In an optical material for manufacturing an optical member, impurities (foreign matter) such as copper, sodium, and chlorine are mixed or remain in the manufacturing process, and defects may be caused due to the impurities. In order to extend the lifetime of the optical member and improve the transmittance (ratio of the amount of emitted light to the amount of incident light), it is necessary to remove such defects. Conventionally, defects in such optical materials have been visually inspected (see, for example, Patent Document 1).
JP 2004-54285 A

しかしながら、目視の検査では、可視の欠陥は検査できても、不可視の欠陥を検査することはできない。したがって、光学部材の用途によっては、こうした不可視の欠陥に起因して製品上の欠点が顕在化する場合が考えられる。例えば、半導体露光装置のような紫外光を光学部材に照射する装置では、光学部材中に欠陥が存在すると、この欠陥部分で局所的に紫外光が吸収されて光学部材が機能不全となり、その結果、均一な露光が損なわれる恐れがある。   However, with visual inspection, visible defects can be inspected, but invisible defects cannot be inspected. Therefore, depending on the use of the optical member, there may be a case where a defect on the product becomes obvious due to such an invisible defect. For example, in an apparatus that irradiates an optical member with ultraviolet light, such as a semiconductor exposure apparatus, if there is a defect in the optical member, the ultraviolet light is locally absorbed by the defective portion, causing the optical member to malfunction. Uniform exposure may be impaired.

本発明は、このような事情に鑑み、紫外光が照射される用途に対しても光学部材としての機能を十全に発現しうるように、光学部材に含まれる不可視の欠陥を検査することが可能なワーク欠陥検査装置及び、このワーク欠陥検査装置を用いた光学部材の製造方法を提供することを目的とする。   In view of such circumstances, the present invention is capable of inspecting invisible defects contained in an optical member so that the function as an optical member can be fully exhibited even for applications irradiated with ultraviolet light. An object of the present invention is to provide a possible workpiece defect inspection apparatus and a method for manufacturing an optical member using the workpiece defect inspection apparatus.

本発明の第1の態様に従えば、120〜380nmの範囲内の波長の光を出射する光源(5)と、前記光源から出射された光を拡散させる拡散光学系(9)と、前記拡散光学系によって拡散した光を平行光束にするコリメータ(12)と、前記光源から出射された光の光軸(光路)上でワーク(19)を保持するワーク保持具(20)と、このワーク保持具に保持されたワークを透過した紫外光を検出する紫外光検出器(16)と、ワークを透過した紫外光を紫外光検出器に導く紫外光結像系(15)とを備えているワーク欠陥検査装置(1)が提供される。   According to the first aspect of the present invention, the light source (5) that emits light having a wavelength in the range of 120 to 380 nm, the diffusion optical system (9) that diffuses the light emitted from the light source, and the diffusion A collimator (12) for converting the light diffused by the optical system into a parallel light beam, a work holder (20) for holding the work (19) on the optical axis (optical path) of the light emitted from the light source, and the work holding Workpiece provided with an ultraviolet light detector (16) for detecting ultraviolet light transmitted through the work held by the tool and an ultraviolet light imaging system (15) for guiding the ultraviolet light transmitted through the work to the ultraviolet light detector A defect inspection apparatus (1) is provided.

本発明の第2の態様に従えば、紫外光を出射する光源(5)と、前記紫外光に対してワークを移動可能に保持する保持具(20)と、前記ワーク保持具に保持されたワークを透過した前記紫外光を検出する検出器(16)とを備え、前記保持具(20)によりワークを紫外光に対して移動させながらワーク内に存在する欠陥を検出することで、ワーク内の欠陥の3次元的な分布を求める欠陥検査装置(1)が提供される。   According to the second aspect of the present invention, the light source (5) that emits ultraviolet light, the holder (20) that holds the workpiece movably with respect to the ultraviolet light, and the workpiece holder held by the workpiece. A detector (16) for detecting the ultraviolet light transmitted through the workpiece, and detecting defects in the workpiece while moving the workpiece with respect to the ultraviolet light by the holder (20). A defect inspection apparatus (1) for obtaining a three-dimensional distribution of defects is provided.

本発明の第3の態様に従えば、ワーク(19)を加工して光学部材を製造する方法であって、前記ワークを準備するワーク準備工程(S1)と、前記ワークを所望の形状に切断するワーク切断工程(S2)と、前記ワークを所定の透過率になるように研磨するワーク研磨工程(S3)と、本発明に従うワーク欠陥検査装置(1)を用いて前記ワークの欠陥を検査する欠陥検査工程(S4)とを含む光学部材の製造方法が提供される。   According to a third aspect of the present invention, there is provided a method for manufacturing an optical member by processing a workpiece (19), the workpiece preparing step (S1) for preparing the workpiece, and cutting the workpiece into a desired shape. The workpiece cutting step (S2), the workpiece polishing step (S3) for polishing the workpiece to have a predetermined transmittance, and the workpiece defect inspection apparatus (1) according to the present invention are used to inspect defects of the workpiece. An optical member manufacturing method including a defect inspection step (S4) is provided.

本発明の第4の態様に従えば、ワーク(19)を加工して光学部材を製造する方法であって、前記ワークを準備するワーク準備工程(S1)と、前記ワークを所望の形状に切断するワーク切断工程(S2)と、前記ワークを所定の透過率になるように研磨するワーク研磨工程(S3)と、本発明に従うワーク欠陥検査装置(1)を用いて前記ワークの欠陥を検査して3次元分布を測定する欠陥検査工程(S4)とを含む光学部材の製造方法が提供される。   According to a fourth aspect of the present invention, there is provided a method for manufacturing an optical member by processing a workpiece (19), the workpiece preparing step (S1) for preparing the workpiece, and cutting the workpiece into a desired shape. A workpiece cutting step (S2), a workpiece polishing step (S3) for polishing the workpiece to have a predetermined transmittance, and a workpiece defect inspection apparatus (1) according to the present invention to inspect defects in the workpiece. And a defect inspection step (S4) for measuring a three-dimensional distribution.

本発明の第5の態様に従えば、ワーク(19)を加工して光学部材を製造する方法であって、予め板状に切り出されたワークを準備するワーク準備工程(S1)と、前記ワークを所定の透過率になるように研磨するワーク研磨工程(S3)と、本発明に従うワーク欠陥検査装置(1)を用いて前記ワークの欠陥を検査する欠陥検査工程(S4)とを含む光学部材の製造方法が提供される。   According to a fifth aspect of the present invention, there is provided a method for manufacturing an optical member by processing a workpiece (19), wherein a workpiece preparing step (S1) for preparing a workpiece cut in a plate shape in advance, and the workpiece An optical member comprising: a workpiece polishing step (S3) for polishing the workpiece so as to have a predetermined transmittance; and a defect inspection step (S4) for inspecting a defect of the workpiece using the workpiece defect inspection apparatus (1) according to the present invention. A manufacturing method is provided.

本発明の第5の態様に従えば、ワーク(19)を加工して光学部材を製造する方法であって、予め板状に切り出されたワークを準備するワーク準備工程(S1)と、前記ワークを所定の透過率になるように研磨するワーク研磨工程(S3)と、本発明に従うワーク欠陥検査装置(1)を用いて前記ワークの欠陥を検査して3次元分布を測定する欠陥検査工程(S4)とを含む光学部材の製造方法が提供される。   According to a fifth aspect of the present invention, there is provided a method for manufacturing an optical member by processing a workpiece (19), wherein a workpiece preparing step (S1) for preparing a workpiece cut in a plate shape in advance, and the workpiece A workpiece polishing step (S3) for polishing the workpiece so as to have a predetermined transmittance, and a defect inspection step for measuring a three-dimensional distribution by inspecting a defect of the workpiece using the workpiece defect inspection apparatus (1) according to the present invention ( A method for manufacturing an optical member including S4) is provided.

上記説明において、本発明をわかりやすく説明するため、実施例を表す図面の符号に対応づけて説明したが、本発明が実施例に限定されるものでない。   In the above description, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings representing the embodiments. However, the present invention is not limited to the embodiments.

本発明によれば、ワーク中の不可視の欠陥を検出することができるため、紫外光が照射される用途に対しても光学部材としての機能を十全に発現しうる。特に、ワーク中の不可視の欠陥の位置を3次元的に正確に特定することができるために、そのような欠陥を確実に除去して紫外光が照射される用途で使用される高品質の光学部材を提供することができる。   According to the present invention, since an invisible defect in a workpiece can be detected, the function as an optical member can be fully exhibited even for applications where ultraviolet light is irradiated. In particular, since the position of an invisible defect in a workpiece can be accurately identified three-dimensionally, high-quality optics used in an application in which such a defect is reliably removed and ultraviolet light is irradiated. A member can be provided.

本発明の実施の形態1に係るワーク欠陥検査装置を示す水平断面図である。It is a horizontal sectional view which shows the workpiece | work defect inspection apparatus which concerns on Embodiment 1 of this invention. 同実施の形態1に係るワークの斜視図である。It is a perspective view of the workpiece | work which concerns on the same Embodiment 1. 同実施の形態1に係るワークの撮像状態を示す模式図であって、(a)はワークの表面に焦点が合っている場合の図、(b)はワークの内部に焦点が合っている場合の図である。2A and 2B are schematic diagrams illustrating an imaging state of a workpiece according to the first embodiment, where FIG. 3A is a diagram in the case where the surface of the workpiece is focused, and FIG. FIG. 本発明のワーク欠陥検査装置のワーク保持装置の一例を示す斜視図である。It is a perspective view which shows an example of the workpiece holding apparatus of the workpiece | work defect inspection apparatus of this invention. 本発明のワーク欠陥検査装置を用いた光学部材の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the optical member using the workpiece | work defect inspection apparatus of this invention.

符号の説明Explanation of symbols

1……ワーク欠陥検査装置、 2……機体、 3……ランプボックス、 4……開口部、 5……光源、 6……リフレクタ、 7……筐体、 9……拡散光学系、 9a……凹レンズ、 10……ライトガイド、 12……コリメータ、 13……分光ミラー、 15……紫外光結像系、 15a……反射ミラー、 15b……反射ミラー、 16……紫外光用CCDカメラ(紫外光検出器)、 17……蛍光結像系、 17a……反射ミラー、 17b、17c……反射ミラー、 18……蛍光用CCDカメラ(蛍光検出器)、 19……ワーク、 19a、19b……表面、 19c……内部、 20……ワーク保持装置(ワーク保持具)、 31……把持アーム、37……Xステージ、35……Yステージ、33……Zステージ、F1、F2、F3……欠陥、 M1、M2、M3、N1、N2、N3……欠陥の像、 T1……ワークの厚さ   DESCRIPTION OF SYMBOLS 1 ... Work defect inspection apparatus, 2 ... Airframe, 3 ... Lamp box, 4 ... Aperture, 5 ... Light source, 6 ... Reflector, 7 ... Housing, 9 ... Diffuse optical system, 9a ... ... concave lens, 10 ... light guide, 12 ... collimator, 13 ... spectroscopic mirror, 15 ... ultraviolet light imaging system, 15a ... reflection mirror, 15b ... reflection mirror, 16 ... CCD camera for ultraviolet light ( Ultraviolet light detector), 17 …… Fluorescence imaging system, 17a …… Reflection mirror, 17b, 17c …… Reflection mirror, 18 …… CCD camera for fluorescence (fluorescence detector), 19 …… Work, 19a, 19b… ... surface, 19c ... inside, 20 ... work holding device (work holder), 31 ... grip arm, 37 ... X stage, 35 ... Y stage, 33 ... Z stage, F1, F2, F3 ... Defects, M1, M2, M3, N1, N2, N3 ...... defect image of the thickness of T1 ...... workpiece

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

図1乃至図3に示した本発明のワーク欠陥検査装置1の実施の形態1を説明する。ワーク欠陥検査装置1は、図1に示すように、光源5を収容するランプボックス3と光学系及び検出器を収容する筐体7とを備える機体2を有している。機体2上にはランプボックス3が設置されており、ランプボックス3には放熱用の開口部4が2箇所に形成されている。また、ランプボックス3内には光源5が載置されており、光源5の後方にはリフレクタ(反射板)6が設置されている。ここで、光源5から出射される光の波長は、検出したい欠陥の吸収帯に応じて、120〜220nmの範囲内に属する任意の波長を選択可能である。この光源5の具体例としては、中心波長172nmのXeエキシマランプ、ArFエキシマレーザ、水銀ランプ、D2ランプを使用することができる。水銀ランプやD2ランプのような連続波長の光を発生する光源を用いる場合には、適宜フィルターを用いて検査に必要な波長を選別してもよい。あるいは、異なる波長の光を生じる光源を収容するランプボックス3を用意しておき、検査する光学部材に応じてランプボックス3を付け替えてもよい。光源5には円筒状のライトガイド10が、ランプボックス3と筐体7とに水平に架け渡された形で取り付けられている。   A first embodiment of the workpiece defect inspection apparatus 1 of the present invention shown in FIGS. 1 to 3 will be described. As shown in FIG. 1, the workpiece defect inspection apparatus 1 includes a machine body 2 including a lamp box 3 that houses a light source 5 and a housing 7 that houses an optical system and a detector. A lamp box 3 is installed on the airframe 2, and heat radiation openings 4 are formed in the lamp box 3 at two locations. A light source 5 is placed in the lamp box 3, and a reflector (reflecting plate) 6 is installed behind the light source 5. Here, as the wavelength of the light emitted from the light source 5, any wavelength belonging to the range of 120 to 220 nm can be selected according to the absorption band of the defect to be detected. As a specific example of the light source 5, an Xe excimer lamp, an ArF excimer laser, a mercury lamp, or a D2 lamp having a center wavelength of 172 nm can be used. When a light source that generates light having a continuous wavelength, such as a mercury lamp or a D2 lamp, is used, the wavelength necessary for the inspection may be selected appropriately using a filter. Or the lamp box 3 which accommodates the light source which produces the light of a different wavelength may be prepared, and the lamp box 3 may be replaced according to the optical member to test | inspect. A cylindrical light guide 10 is attached to the light source 5 in such a manner as to extend horizontally between the lamp box 3 and the housing 7.

機体2上には、図1に示すように、筐体7が設置されており、筐体7内には、図1に示すように、拡散光学系9、コリメータ12、分光ミラー13、紫外光結像系15、紫外光用CCD(電荷結合素子)カメラ(紫外光検出器)16、蛍光結像系17および蛍光用CCDカメラ(蛍光検出器)18並びにワーク保持装置20が載置されている。   As shown in FIG. 1, a housing 7 is installed on the body 2, and in the housing 7, as shown in FIG. 1, a diffusion optical system 9, a collimator 12, a spectroscopic mirror 13, an ultraviolet light are provided. An imaging system 15, an ultraviolet light CCD (charge coupled device) camera (ultraviolet light detector) 16, a fluorescent imaging system 17, a fluorescent CCD camera (fluorescence detector) 18, and a work holding device 20 are mounted. .

拡散光学系9は、筐体7に嵌着された凹レンズ9aを備え、ライトガイド10を通過した紫外光50を拡散させる。紫外光結像系15は、分光ミラー13、凹レンズ状の反射ミラー15aおよび平板状の反射ミラー15bを備え、ワーク19を透過した紫外光をCCDカメラ16に結像させる。蛍光結像系17は、凹レンズ状の反射ミラー17aおよび平板状の2枚の反射ミラー17b、17cを備え、ワーク19から発生した蛍光をCCDカメラ18に結像させる。分光ミラー13は、波長165〜185nmの光(深紫外光)を90%以上反射するとともに、それ以外の波長領域(165nm未満または185nm超)の光を95〜99%透過する波長分離特性を具備している。   The diffusing optical system 9 includes a concave lens 9 a fitted to the housing 7, and diffuses the ultraviolet light 50 that has passed through the light guide 10. The ultraviolet light imaging system 15 includes a spectroscopic mirror 13, a concave lens-like reflection mirror 15 a, and a plate-like reflection mirror 15 b, and causes the CCD camera 16 to form an image of the ultraviolet light transmitted through the work 19. The fluorescence imaging system 17 includes a concave lens-shaped reflection mirror 17 a and two flat reflection mirrors 17 b and 17 c, and causes the CCD camera 18 to image the fluorescence generated from the work 19. The spectroscopic mirror 13 reflects light having a wavelength of 165 to 185 nm (deep ultraviolet light) by 90% or more and has a wavelength separation characteristic of transmitting 95 to 99% of light in other wavelength regions (less than 165 nm or more than 185 nm). is doing.

また、コリメータ12と分光ミラー13との間の所定位置には、図1に示すように、ワーク保持装置(ワーク保持具)20が設けられている。ここで、所定位置とは、ワーク保持装置20にワーク19が保持された状態で、紫外光用CCDカメラ16の受光面と共役になる位置がこのワーク19内に収まるような位置である。ワーク保持装置20は、図2に示すように、厚さT1(例えば、T1=150mm)の直方体状のワーク19を着脱自在に保持することができる。ワーク保持装置20は、図4に示すように、ワーク19の両側部を把持するU字状アーム31と、アーム31に設けられた係合部(不図示)と係合し且つX方向に延在するガイド溝37aが形成されたXステージ37と、Xステージ37の背部に設けられた係合部(不図示)と係合し且つZ方向に延在するガイド溝33aが形成されたZステージ33と、Zステージ33の底部に設けられた係合部(不図示)と係合し且つY方向に延在するガイド溝35aがそれぞれ形成された一対のYステージ35とを備える。ガイド溝33a、35a、37aには、それぞれ、Xステージ37、Zステージ33及びアーム31にそれぞれ設けられた係合部の螺子孔(不図示)と螺合するボール螺子(不図示)が収容されている。これらのボール螺子を駆動装置(不図示)により駆動させることにより、把持アーム31を、Xステージ37、Yステージ35及びZステージ33上で移動させて、それにより、ワーク19を紫外光50に対してX、Y及びZ方向に移動させることができる。ボール螺子に代えてリニアモータを用いることができる。Zステージ33によりワーク19を、光軸(紫外光の光路)方向(Z方向)に第1ストローク(例えば、200mm)だけ移動することができ、Xステージ37及びYステージ33により、ワーク19を光軸と直交する方向(X方向およびY方向)にそれぞれ第2ストローク(例えば、250mm)だけ移動することができる。また、第1ストロークとは、紫外光用CCDカメラ16の受光面と共役になる位置がワーク19の一方の表面19aから内部19cを通って他方の表面19bへ至る範囲を含むストロークである。一方、第2ストロークとは、後述する欠陥検査工程において、コリメータ12によって平行光束にされた光の断面がワーク19の断面より小さい場合に、ワーク19をX方向およびY方向に移動させることにより、この光をワーク19の全面に照射させるのに必要なストロークである。   Further, as shown in FIG. 1, a work holding device (work holding tool) 20 is provided at a predetermined position between the collimator 12 and the spectroscopic mirror 13. Here, the predetermined position is a position where a position conjugate with the light receiving surface of the ultraviolet CCD camera 16 is within the work 19 in a state where the work 19 is held by the work holding device 20. As shown in FIG. 2, the work holding device 20 can detachably hold a rectangular parallelepiped work 19 having a thickness T1 (for example, T1 = 150 mm). As shown in FIG. 4, the work holding device 20 is engaged with a U-shaped arm 31 that holds both sides of the work 19 and an engaging portion (not shown) provided on the arm 31 and extends in the X direction. An X stage 37 formed with an existing guide groove 37a, and a Z stage formed with a guide groove 33a that engages with an engaging portion (not shown) provided on the back of the X stage 37 and extends in the Z direction. 33 and a pair of Y stages 35 each formed with a guide groove 35a that engages with an engaging portion (not shown) provided at the bottom of the Z stage 33 and extends in the Y direction. The guide grooves 33a, 35a, and 37a accommodate ball screws (not shown) that are engaged with screw holes (not shown) of engaging portions provided in the X stage 37, the Z stage 33, and the arm 31, respectively. ing. By driving these ball screws by a driving device (not shown), the gripping arm 31 is moved on the X stage 37, the Y stage 35, and the Z stage 33, whereby the workpiece 19 is moved with respect to the ultraviolet light 50. Can be moved in the X, Y and Z directions. A linear motor can be used in place of the ball screw. The Z stage 33 can move the work 19 in the optical axis (optical path of ultraviolet light) direction (Z direction) by a first stroke (for example, 200 mm). The X stage 37 and the Y stage 33 light the work 19 Each can move by a second stroke (for example, 250 mm) in a direction (X direction and Y direction) orthogonal to the axis. The first stroke is a stroke including a range in which the position conjugate with the light receiving surface of the ultraviolet CCD camera 16 extends from one surface 19a of the work 19 to the other surface 19b through the interior 19c. On the other hand, the second stroke refers to the movement of the work 19 in the X direction and the Y direction when the cross section of the light that has been converted into a parallel light beam by the collimator 12 is smaller than the cross section of the work 19 in the defect inspection process described later This stroke is necessary to irradiate the entire surface of the work 19 with this light.

筐体7は封止され、その内部は紫外光により生じた異物がワークに付着するのを防止するために窒素パージによって酸素濃度が極めて低い状態となっている。   The casing 7 is sealed, and the inside thereof is in a state where the oxygen concentration is extremely low by nitrogen purge in order to prevent foreign matters generated by ultraviolet light from adhering to the workpiece.

以上のような構成を有するワーク欠陥検査装置1を用いてワーク19の欠陥を検査する動作及びそれを用いた合成石英ガラス(SiO)製の光学部材を製造する手順を、図5を参照しながら、以下に説明する。The operation of inspecting the defect of the workpiece 19 using the workpiece defect inspection apparatus 1 having the above-described configuration and the procedure of manufacturing an optical member made of synthetic quartz glass (SiO 2 ) using the operation will be described with reference to FIG. However, it will be described below.

まず、ワーク準備工程(S1)で、公知の手法により、石英ガラスのインゴットを合成する。それには、例えば、多重管バーナから、四塩化ケイ素や有機ケイ素化合物などのケイ素化合物の原料ガス、酸素等の支燃性ガス、水素等の燃焼ガスを含むガスを噴出させ、火炎中で反応を行い、回転させているターゲット上にガラス微粒子を堆積かつ溶融させる。すると、インゴットとして、円柱状の石英ガラスのインゴットが得られる。この他に、特開平10−279319号公報や特開平11−292551号公報に開示された合成方法を採用することも可能である。   First, in a work preparation step (S1), a quartz glass ingot is synthesized by a known method. For example, a gas containing a silicon compound raw material gas such as silicon tetrachloride or an organosilicon compound, a combustion-supporting gas such as oxygen, or a combustion gas such as hydrogen is ejected from a multi-tube burner, and the reaction is performed in a flame. And deposit and melt glass particles on the rotating target. Then, a cylindrical quartz glass ingot is obtained as the ingot. In addition, it is also possible to employ the synthesis method disclosed in JP-A-10-279319 and JP-A-11-292551.

次に、ワーク切断工程に移行し、バンドソーまたはブレードなどを用いて、この石英ガラスを所望の形状(例えば、直方体状、円柱状など)およびサイズに切断する(S2)。   Next, the process proceeds to a workpiece cutting step, and this quartz glass is cut into a desired shape (for example, a rectangular parallelepiped shape, a cylindrical shape, etc.) and size using a band saw or a blade (S2).

その後、ワーク研磨工程に移行し、この石英ガラスの表面を研磨する。このとき、石英ガラスが所定の透過率(例えば、50%以上)になるような表面粗さにする(S3)。   Thereafter, the process proceeds to a workpiece polishing step, and the surface of the quartz glass is polished. At this time, the surface roughness is set such that the quartz glass has a predetermined transmittance (for example, 50% or more) (S3).

次いで、欠陥検査工程に移行し、ワーク欠陥検査装置1を用いて、以下に述べるとおり、この石英ガラス中の欠陥を検査する(S4)。この石英ガラスをワーク保持装置20の把持アーム31にワーク19として取り付け、光源5から中心波長172nmの深紫外光(DUV)を出射させる。この深紫外光は、図1に示すように、ランプボックス3からライトガイド10を経て筐体7に至り、拡散光学系9の凹レンズ9aによって照度均一性を損なうことなく拡散し、コリメータ12によって所定の断面直径(例えば、140mm)の平行光束になった後、ワーク19を透過して分光ミラー13に至る。そして、この深紫外光の大部分は、分光ミラー13で反射し、紫外光結像系15の反射ミラー15aで反射して収束し、反射ミラー15bで反射してから、紫外光用CCDカメラ16に至って結像する。ワーク保持装置20のXステージ37及びYステージ35を駆動させることにより、例えば、100mm×100mmの範囲での2次元の画像が取得できる。したがって、図2に示すように、ワーク19の表面19a、19bや内部19cに欠陥F1、F2、F3がある場合、紫外光用CCDカメラ16の像では、欠陥F1、F2、F3に対応した部位が暗い影となって現れる。その結果、欠陥F1、F2、F3について、ワーク19のXY座標における位置が判明し、欠陥の2次元分布を測定することができる。   Next, the process proceeds to a defect inspection process, and a defect in the quartz glass is inspected using the workpiece defect inspection apparatus 1 as described below (S4). This quartz glass is attached to the grip arm 31 of the work holding device 20 as a work 19, and deep ultraviolet light (DUV) having a center wavelength of 172 nm is emitted from the light source 5. As shown in FIG. 1, this deep ultraviolet light reaches the housing 7 from the lamp box 3 through the light guide 10, diffuses without impairing the illuminance uniformity by the concave lens 9 a of the diffusion optical system 9, and is predetermined by the collimator 12. Then, the light beam passes through the work 19 and reaches the spectroscopic mirror 13. Then, most of the deep ultraviolet light is reflected by the spectroscopic mirror 13, reflected by the reflecting mirror 15a of the ultraviolet light imaging system 15, converged, reflected by the reflecting mirror 15b, and then the CCD camera 16 for ultraviolet light. To form an image. By driving the X stage 37 and the Y stage 35 of the work holding device 20, for example, a two-dimensional image in a range of 100 mm × 100 mm can be acquired. Therefore, as shown in FIG. 2, when there are defects F1, F2, and F3 on the surfaces 19a and 19b and the interior 19c of the workpiece 19, the portions corresponding to the defects F1, F2, and F3 in the image of the CCD camera 16 for ultraviolet light. Appears as a dark shadow. As a result, for the defects F1, F2, and F3, the position of the workpiece 19 in the XY coordinates is found, and the two-dimensional distribution of the defects can be measured.

ところが、これでは、欠陥F1、F2、F3のXY座標における2次元分布は測定できても、欠陥F1、F2、F3の深さ(Z方向における位置)が不明であるため、欠陥F1、F2、F3の3次元分布を測定することはできない。そこで、Zステージ33によりワーク19を、光軸方向(Z方向)にスキャンさせて、図3に示すように、欠陥F1、F2、F3の像M1、M2、M3、N1、N2、N3についてコントラストの良否の変化をチェックすることにより、欠陥F1、F2、F3について、その深さを判断し、3次元分布を測定することができる。   However, in this case, even though the two-dimensional distribution in the XY coordinates of the defects F1, F2, and F3 can be measured, the depths (positions in the Z direction) of the defects F1, F2, and F3 are unknown, so the defects F1, F2, The three-dimensional distribution of F3 cannot be measured. Therefore, the workpiece 19 is scanned in the optical axis direction (Z direction) by the Z stage 33, and as shown in FIG. 3, the contrasts for the images M1, M2, M3, N1, N2, and N3 of the defects F1, F2, and F3 are obtained. By checking the change in quality, it is possible to determine the depth of the defects F1, F2, and F3 and measure the three-dimensional distribution.

すなわち、欠陥F1、F2、F3の深さを判断するには、ワーク保持装置20によりワーク19を光軸方向(Z方向)に第1位置に移動させる。ワーク19の表面19aに焦点が合ったとき、図3(a)に示すように、ワーク19の表面19aにある2つの欠陥F1、F2の像M1、M2についてはコントラストが良くなるとともに、ワーク19の内部19cにある欠陥F3の像M3についてはコントラストが悪くなる。ワーク保持装置20によりワーク19を光軸方向(Z方向)の第1位置から第2位置に移動させると、ワーク19の内部19cに焦点が合ったとき、図3(b)に示すように、ワーク19の表面19aにある2つの欠陥F1、F2の像N1、N2についてはコントラストが悪くなるとともに、ワーク19の内部19cにある欠陥F3の像N3についてはコントラストが良くなる。したがって、このようなコントラストの良否の変化から、欠陥F1、F2、F3の深さをそれぞれ判断し、ワーク19の表面19aの欠陥F1、F2と、ワーク19の内部19cの欠陥F3とを区別することができる。その結果、欠陥F1、F2、F3のXY座標における位置と併せて、欠陥F1、F2、F3の3次元分布を測定することが可能となる。   That is, in order to determine the depths of the defects F1, F2, and F3, the work 19 is moved to the first position in the optical axis direction (Z direction) by the work holding device 20. When the surface 19a of the work 19 is in focus, as shown in FIG. 3A, the contrast of the images M1 and M2 of the two defects F1 and F2 on the surface 19a of the work 19 is improved, and the work 19 As for the image M3 of the defect F3 in the inside 19c, the contrast is deteriorated. When the work holding device 20 moves the work 19 from the first position in the optical axis direction (Z direction) to the second position, when the inside 19c of the work 19 is in focus, as shown in FIG. The contrasts of the images N1 and N2 of the two defects F1 and F2 on the surface 19a of the work 19 are deteriorated, and the contrast of the image N3 of the defect F3 in the interior 19c of the work 19 is improved. Therefore, the depths of the defects F1, F2, and F3 are determined based on the change in the quality of the contrast, and the defects F1 and F2 on the surface 19a of the work 19 and the defect F3 on the inside 19c of the work 19 are distinguished. be able to. As a result, the three-dimensional distribution of the defects F1, F2, and F3 can be measured together with the positions of the defects F1, F2, and F3 in the XY coordinates.

なお、ワーク19は所定の透過率となっているので、ワーク19の欠陥検査を円滑に行うことができる。また、筐体7内は、上述したように、酸素濃度が極めて低い状態となっているため、酸素による深紫外光の吸収を大幅に抑制し、深紫外光を筐体7内で効率よく照射することができる。   In addition, since the workpiece | work 19 has predetermined | prescribed transmittance | permeability, the defect inspection of the workpiece | work 19 can be performed smoothly. In addition, since the inside of the housing 7 is in a state where the oxygen concentration is extremely low as described above, the absorption of deep ultraviolet light by oxygen is greatly suppressed, and the deep ultraviolet light is efficiently irradiated inside the housing 7. can do.

さらに、ワーク19中の欠陥には、ワーク19に深紫外光が照射されたときに、この深紫外光を吸収するだけであって蛍光を出さないもの(無蛍光性の欠陥)のほか、深紫外光を吸収すると同時に蛍光を出すもの(蛍光性の欠陥)が想定されるが、蛍光性の欠陥については、蛍光が、分光ミラー13を透過した後、蛍光結像系17の反射ミラー17aで反射して収束し、2枚の反射ミラー17b、17cで順に反射してから、蛍光用CCDカメラ18に至って結像する。したがって、図2に示すように、ワーク19の表面19a、19bや内部19cに欠陥F1、F2、F3がある場合、蛍光用CCDカメラ18の像では、欠陥F1、F2、F3に対応した部位が明るく光る。その結果、この蛍光用CCDカメラ18で撮影された画像によっても、ワーク19中の欠陥の原因成分を推定することが可能となる。そのため、紫外光用CCDカメラ16で撮影された画像に加えて、蛍光用CCDカメラ18で撮影された画像をも参照して組み合わせることにより、ワーク19中の欠陥を総合的に分析・判断することが容易となる。   Further, the defects in the work 19 include not only those that absorb only the deep ultraviolet light but do not emit fluorescence when the work 19 is irradiated with deep ultraviolet light (non-fluorescent defects). One that absorbs ultraviolet light and emits fluorescence at the same time (fluorescent defect) is assumed. With regard to the fluorescent defect, after the fluorescence passes through the spectroscopic mirror 13, it is reflected by the reflection mirror 17a of the fluorescence imaging system 17. The light is reflected and converged, sequentially reflected by the two reflecting mirrors 17b and 17c, and then reaches the fluorescent CCD camera 18 to form an image. Therefore, as shown in FIG. 2, when there are defects F1, F2, and F3 on the surfaces 19a and 19b and the interior 19c of the work 19, the image corresponding to the defects F1, F2, and F3 is present in the image of the fluorescent CCD camera 18. Shines brightly. As a result, it is possible to estimate the causal component of the defect in the work 19 also from the image taken by the fluorescent CCD camera 18. Therefore, it is possible to comprehensively analyze and judge defects in the work 19 by combining with reference to an image taken by the fluorescent CCD camera 18 in addition to an image taken by the ultraviolet CCD camera 16. Becomes easy.

そして、欠陥検査工程でワーク19に欠陥F1、F2、F3が見つかった場合には、欠陥除去工程に移行し、この欠陥F1、F2、F3を適宜除去して光学部材を完成させる(S5)。すなわち、図2に示すように、ワーク19の表面19aに欠陥F1、F2がある場合は、例えば、ワーク19の表面19a、19bを研磨することにより、この欠陥F1、F2を除去する。また、ワーク19の内部19cに欠陥F3がある場合は、例えば、この欠陥F3を含む部位をワーク19から切除することにより、この欠陥F3を除去する。すると、欠陥F1、F2、F3を含まない高品質な光学部材が得られる。ここで、合成石英ガラス製の光学部材の製造が完了する。   When defects F1, F2, and F3 are found in the workpiece 19 in the defect inspection process, the process proceeds to a defect removal process, and the defects F1, F2, and F3 are appropriately removed to complete the optical member (S5). That is, as shown in FIG. 2, when there are defects F1 and F2 on the surface 19a of the work 19, the defects F1 and F2 are removed by polishing the surfaces 19a and 19b of the work 19, for example. Further, when there is a defect F3 in the inside 19c of the work 19, for example, the defect F3 is removed by excising a part including the defect F3 from the work 19. Then, a high-quality optical member that does not include the defects F1, F2, and F3 is obtained. Here, the production of the optical member made of synthetic quartz glass is completed.

以上のように、この実施の形態1によれば、光学部材に含まれる不可視の欠陥F1、F2、F3を検査して除去することが可能となる。こうして欠陥が除去された光学部材は、紫外光を光学部材に照射する装置(半導体露光装置など)においてもその機能を十全に発現することができる。   As described above, according to the first embodiment, invisible defects F1, F2, and F3 included in the optical member can be inspected and removed. The optical member from which defects have been removed in this manner can fully exhibit its function even in an apparatus (such as a semiconductor exposure apparatus) that irradiates the optical member with ultraviolet light.

また、ワーク保持装置20は、光軸と直交する方向にそれぞれ所定の第2ストロークだけワーク19を移動することができるので、ワーク19の全面を検査することができる。   In addition, since the work holding device 20 can move the work 19 by a predetermined second stroke in a direction orthogonal to the optical axis, the entire surface of the work 19 can be inspected.

なお、上述した実施の形態1では、光学部材の製造に際して、欠陥検査工程から欠陥除去工程に移行する場合について説明した。しかし、ワーク19をフォトマスク等の光学部材として使用する場合には、ワーク19の表面19a、19bの平面度をさらに向上させるべく、欠陥検査工程の後(欠陥除去工程の前後を問わない。)に研削・研磨工程に移行し、ワーク19の表面19a、19bに研削・研磨加工を施す。この研削・研磨加工の手法としては、公知の手法(例えば、特開2007−98542号公報や特開2007−98543号公報に開示された研磨装置による加工方法など)を用いることができる。   In the first embodiment described above, the case where the optical member is manufactured is shifted from the defect inspection process to the defect removal process. However, in the case where the workpiece 19 is used as an optical member such as a photomask, after the defect inspection process (before or after the defect removal process) in order to further improve the flatness of the surfaces 19a and 19b of the workpiece 19. Then, the process proceeds to a grinding / polishing process, and the surfaces 19a and 19b of the workpiece 19 are ground and polished. As the grinding / polishing method, a known method (for example, a processing method using a polishing apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-98542 or Japanese Patent Application Laid-Open No. 2007-98543) can be used.

[発明の実施の形態2]
以下に、液晶パターン形成用フォトマクスの製造例を説明する。最初に、光学面が研磨され、所定の平面度となった石英ガラス基板(光学部材)を用意する。石英ガラス基板を純水で洗浄した後、実施形態1で説明したワーク欠陥検査装置1のワーク保持装置20で保持し、実施形態1と同様にして欠陥を検査する。次いで、欠陥が石英ガラス基板に存在していたならば、実施形態1で説明したような方法で除去する。次いで、石英ガラス基板を洗浄した後、石英ガラス基板の一方の面にスパッタリングによりクロム(Cr)膜を成膜する。石英ガラス基板を保持する部材により遮蔽されてクロム膜が成膜されない部分があるが、この遮蔽された部分以外はクロム膜が形成されて良い。
[Embodiment 2 of the Invention]
Below, the manufacture example of the photomax for liquid crystal pattern formation is demonstrated. First, a quartz glass substrate (optical member) having an optical surface polished to a predetermined flatness is prepared. After washing the quartz glass substrate with pure water, the quartz glass substrate is held by the work holding device 20 of the work defect inspection apparatus 1 described in the first embodiment, and defects are inspected in the same manner as in the first embodiment. Next, if a defect exists in the quartz glass substrate, it is removed by the method described in the first embodiment. Next, after the quartz glass substrate is washed, a chromium (Cr) film is formed on one surface of the quartz glass substrate by sputtering. Although there is a portion that is shielded by the member that holds the quartz glass substrate and the chromium film is not formed, a chromium film may be formed at portions other than the shielded portion.

クロム膜が形成された面にレジスト(液体)を塗布する。レジストとしては、例えば、ポジ型レジストとしてノボラック系樹脂(AZ社のAZ1500、AZP1500)などを使用することが出来る。形成すべきパターンに従い、レジストにレーザ光を走査させながら部分的に照射する。レーザ光照射後に、基板上のレジストにアルカリ性溶液を接触させることにより、レジストとクロム膜とを除去しパターンを形成する。ポジ型レジストの場合、レーザ光に感光したところがアルカリ性溶液によりエッチングされ除去される。照射するレーザ光の波長としては413nmのレーザ等を使用できる。このレジスト塗布及びエッチングを、形成すべきパターンに応じて繰り返し、石英ガラス基板の一方の面にクロムの所定パターンを形成する。パターン形成後に基板を純水で洗浄して、形成されたパターンの検査を行っても良い。検査でパターンに欠陥が検出された場合にはレーザリペアを行うことにより、パターンの不要な部分の除去あるいは遮光部材を追加させることにより、パターンを完成させ、フォトマスクが完成される。   A resist (liquid) is applied to the surface on which the chromium film is formed. As the resist, for example, a novolac resin (AZ 1500, AZP 1500 from AZ) or the like can be used as a positive resist. According to the pattern to be formed, the resist is partially irradiated while scanning the laser beam. After the laser light irradiation, an alkaline solution is brought into contact with the resist on the substrate to remove the resist and the chromium film and form a pattern. In the case of a positive resist, the portion exposed to laser light is etched away with an alkaline solution. As the wavelength of the laser beam to be irradiated, a 413 nm laser or the like can be used. This resist coating and etching are repeated according to the pattern to be formed, and a predetermined pattern of chromium is formed on one surface of the quartz glass substrate. After the pattern formation, the substrate may be washed with pure water to inspect the formed pattern. When a defect is detected in the pattern by inspection, laser repair is performed to remove an unnecessary portion of the pattern or add a light shielding member, thereby completing the pattern and completing the photomask.

上記フォトマスクの製造例において、クロム膜上にさらに酸化クロム(CrO)のような酸化防止膜や反射防止膜を設けてもよい。また、上記製造例では液晶用のフォトマスクを製造したが、本発明を用いて半導体用フォトマスクを製造してもよい。この場合、クロム膜を製膜した後に、レーザー照射の代わりに電子線を用いてパターンを形成してもよい。例えば、ハーフトーンのパターンを形成する場合には、遮光膜としてMoSiを使用することも可能である。   In the photomask manufacturing example, an antioxidant film such as chromium oxide (CrO) or an antireflection film may be further provided on the chromium film. Moreover, although the photomask for liquid crystals was manufactured in the said manufacture example, you may manufacture the photomask for semiconductors using this invention. In this case, after forming a chromium film, a pattern may be formed using an electron beam instead of laser irradiation. For example, when forming a halftone pattern, it is possible to use MoSi as the light shielding film.

上述した実施の形態1及び2では、紫外光検出器として紫外光用CCDカメラ16を用いる場合について説明したが、紫外光用CCDカメラ16以外の紫外光検出器(例えば、ラインセンサ、その他のイメージセンサ)を代用することもできる。   In the first and second embodiments described above, the case where the ultraviolet CCD camera 16 is used as the ultraviolet detector has been described. However, an ultraviolet detector other than the ultraviolet CCD camera 16 (for example, a line sensor or other image). Sensor) can be substituted.

また、上述した実施の形態1及び2では、凹レンズ9aを備えた拡散光学系9について説明したが、凹レンズ9aに代えて、回折格子や光ファイバー、拡散フィルム、拡散板などを使用することもできる。   In the first and second embodiments described above, the diffusing optical system 9 including the concave lens 9a has been described. However, a diffraction grating, an optical fiber, a diffusing film, a diffusing plate, or the like may be used instead of the concave lens 9a.

さらに、上述した実施の形態1及び2では、ワーク19の欠陥の深さ(光軸方向の位置)を明確化するべく深紫外光の焦点を移動させる際に、ワーク19を光軸方向に移動させる方式を採用する場合について説明したが、ワーク19を固定したまま紫外光用CCDカメラ16を進退させる方式を代用することも可能である。また、ワーク保持装置20を図4に例示したが、ワーク19を保持及び移動させる機構はそれらの例示に限定されず、任意の機構を採用しうる。ワーク保持装置20は、Xステージ33及びYステージ35により光軸と直交する方向にワーク19を移動することができるので、ワーク19の全面を紫外光で走査することができる。また、所定の広がりを持つ平行光の光束(例えば、面光源からの平行光)をワークに入射してもよい。こうすることで、拡散光学系9及びコリメータ12を使用せずに、図1に示した装置と同様の機能を果たすことができる。   Further, in the first and second embodiments described above, when moving the focal point of the deep ultraviolet light to clarify the defect depth (position in the optical axis direction) of the work 19, the work 19 is moved in the optical axis direction. However, it is also possible to substitute a method in which the ultraviolet light CCD camera 16 is advanced and retracted while the work 19 is fixed. Moreover, although the workpiece | work holding | maintenance apparatus 20 was illustrated in FIG. 4, the mechanism which hold | maintains and moves the workpiece | work 19 is not limited to those illustrations, Arbitrary mechanisms can be employ | adopted. Since the work holding device 20 can move the work 19 in a direction orthogonal to the optical axis by the X stage 33 and the Y stage 35, the entire surface of the work 19 can be scanned with ultraviolet light. Further, a parallel light beam having a predetermined spread (for example, parallel light from a surface light source) may be incident on the workpiece. By doing so, the same function as that of the apparatus shown in FIG. 1 can be achieved without using the diffusion optical system 9 and the collimator 12.

また、上述した実施の形態1及び2では、合成石英ガラス製の光学部材を製造する場合について説明した。しかし、光学部材の材質は、合成石英ガラスに限るわけではなく、溶融石英ガラス(酸水素炎熔融石英ガラス、電融石英ガラス)であってもよい。さらに、200nm以下のリソグラフィで使用されるルビジウム・アルミニウム・ガーネット(LuAG)やフッ化物(例えば、CaF(フッ化カルシウム、蛍石)、BaLiF)などの結晶であっても構わない。Moreover, in Embodiment 1 and 2 mentioned above, the case where the synthetic quartz glass-made optical member was manufactured was demonstrated. However, the material of the optical member is not limited to synthetic quartz glass, but may be fused quartz glass (oxyhydrogen flame fused quartz glass, electrofused quartz glass). Further, it may be a crystal such as rubidium aluminum garnet (LuAG) or fluoride (for example, CaF 2 (calcium fluoride, fluorite), BaLiF 3 ) used in lithography of 200 nm or less.

また、上述した実施の形態1及び2では、120〜220nmの範囲内に属する任意の波長を測定波長とする光源5を用いる場合について説明したが、光源5の測定波長を長波長側に広げて、120〜380nmの範囲内に属する任意の波長を測定波長とする光源5を代用することもできる。   Moreover, although Embodiment 1 and 2 mentioned above demonstrated the case where the light source 5 which makes the arbitrary wavelength which belongs in the range of 120-220 nm the measurement wavelength was used, the measurement wavelength of the light source 5 was extended to the long wavelength side. The light source 5 having an arbitrary wavelength within the range of 120 to 380 nm as a measurement wavelength can be substituted.

また、上述した実施の形態1では、石英ガラスのインゴットの合成から始まる製造方法について説明したが、合成石英ガラスのインゴットが予め板状(すなわち、被検査面が平面状)に切り出された状態のワーク19を準備する工程から始めることもできる。   In the first embodiment described above, the manufacturing method starting from the synthesis of the quartz glass ingot has been described. However, the synthetic quartz glass ingot is previously cut into a plate shape (that is, the surface to be inspected is planar). It is also possible to start from the process of preparing the workpiece 19.

また、上述した実施の形態1及び2では、欠陥検査工程でワーク19に欠陥F1、F2、F3が見つかった場合に欠陥除去工程に移行する製造方法について説明したが、この欠陥除去工程を省くことも可能である。   In the first and second embodiments described above, the manufacturing method has been described in which the defect removal process is performed when defects F1, F2, and F3 are found in the workpiece 19 in the defect inspection process. However, the defect removal process is omitted. Is also possible.

本発明は、発振波長193nmのArFエキシマレーザなどの紫外光が照射される光学部材の欠陥の検査にきわめて有用である。   The present invention is extremely useful for inspecting defects in optical members irradiated with ultraviolet light such as an ArF excimer laser having an oscillation wavelength of 193 nm.

Claims (20)

120〜380nmの範囲内の波長の光を出射する光源と、
前記光源から出射された光を拡散させる拡散光学系と、
前記拡散光学系によって拡散した光を平行光束にするコリメータと、
前記光源から出射された光の光軸上で光学部材用ワークを保持するワーク保持具と、
前記ワーク保持具に保持されたワークを透過した紫外光を検出する紫外光検出器と、
前記ワークを透過した紫外光を紫外光検出器に導く紫外光結像系とを備えているワーク欠陥検査装置。
A light source that emits light having a wavelength in the range of 120 to 380 nm;
A diffusion optical system for diffusing the light emitted from the light source;
A collimator that collimates the light diffused by the diffusion optical system;
A workpiece holder for holding a workpiece for an optical member on the optical axis of the light emitted from the light source;
An ultraviolet light detector for detecting ultraviolet light transmitted through the workpiece held by the workpiece holder;
A work defect inspection apparatus comprising: an ultraviolet light imaging system that guides ultraviolet light transmitted through the work to an ultraviolet light detector.
前記ワーク保持具は、前記紫外光検出器と共役になる位置が当該ワーク保持具に保持されたワーク内に収まるように、光軸方向に移動自在に設けられている請求項1に記載のワーク欠陥検査装置。   The workpiece according to claim 1, wherein the workpiece holder is provided so as to be movable in an optical axis direction so that a position conjugate with the ultraviolet light detector is within the workpiece held by the workpiece holder. Defect inspection equipment. 前記紫外光検出器は、前記ワーク中の欠陥の2次元分布を測定する請求項1または2に記載のワーク欠陥検査装置。   The workpiece defect inspection apparatus according to claim 1, wherein the ultraviolet light detector measures a two-dimensional distribution of defects in the workpiece. さらに、蛍光検出器と、前記ワーク保持具に保持されたワークを透過した光の一部を蛍光検出器に導く蛍光結像系が設けられている1〜3のいずれか一項に記載のワーク欠陥検査装置。   The workpiece according to any one of 1 to 3, further comprising a fluorescence detector and a fluorescence imaging system that guides a part of the light transmitted through the workpiece held by the workpiece holder to the fluorescence detector. Defect inspection equipment. 前記光源は、120〜220nmの範囲内の光を出射する請求項1〜4のいずれか一項に記載のワーク欠陥検査装置。   The said light source is a workpiece | work defect inspection apparatus as described in any one of Claims 1-4 which radiate | emits the light within the range of 120-220 nm. 前記ワーク保持具は、光軸と交差する方向に移動自在に設けられていることを特徴とする請求項1〜5のいずれか一項に記載のワーク欠陥検査装置。   The work defect inspection apparatus according to claim 1, wherein the work holder is provided so as to be movable in a direction intersecting the optical axis. 紫外光を出射する光源と、
前記紫外光に対してワークを移動可能に保持するワーク保持具と、
前記ワーク保持具に保持されたワークを透過した前記紫外光を検出する検出器とを備え、前記ワーク保持具によりワークを紫外光に対して移動させながらワーク内に存在する欠陥を検出することで、ワーク内の欠陥の3次元的な分布を求める欠陥検査装置。
A light source that emits ultraviolet light;
A workpiece holder for holding the workpiece movably with respect to the ultraviolet light;
A detector for detecting the ultraviolet light transmitted through the workpiece held by the workpiece holder, and detecting defects present in the workpiece while moving the workpiece with respect to the ultraviolet light by the workpiece holder. A defect inspection apparatus for obtaining a three-dimensional distribution of defects in a workpiece.
さらに、紫外光がワークを通過することによって発生した蛍光を検出する蛍光検出器を備える請求項7に記載の欠陥検査装置。   Furthermore, the defect inspection apparatus of Claim 7 provided with the fluorescence detector which detects the fluorescence which generate | occur | produced when ultraviolet light passes a workpiece | work. 前記ワークを紫外光に対して紫外光の光路に沿って移動させながら欠陥の像のコントラストを観察することでワーク内の欠陥の深さを求める請求項7に記載の欠陥検査装置。   The defect inspection apparatus according to claim 7, wherein the depth of the defect in the workpiece is obtained by observing the contrast of the defect image while moving the workpiece along the optical path of the ultraviolet light with respect to the ultraviolet light. 前記ワークを紫外光に対して紫外光の光路に垂直に移動させながら欠陥の像を観察することでワーク内の欠陥の2次元分布を求める請求項7に記載の欠陥検査装置。   The defect inspection apparatus according to claim 7, wherein a two-dimensional distribution of defects in the workpiece is obtained by observing an image of the defect while moving the workpiece perpendicularly to an optical path of ultraviolet light with respect to ultraviolet light. ワークを加工して光学部材を製造する方法であって、
前記ワークを準備するワーク準備工程と、
前記ワークを所望の形状に切断するワーク切断工程と、
前記ワークを所定の透過率になるように研磨するワーク研磨工程と、
請求項1〜10のいずれか一項に記載のワーク欠陥検査装置を用いて前記ワークの欠陥を検査する欠陥検査工程とを含む光学部材の製造方法。
A method of manufacturing an optical member by processing a workpiece,
A workpiece preparation step of preparing the workpiece;
A workpiece cutting step of cutting the workpiece into a desired shape;
A workpiece polishing step of polishing the workpiece to have a predetermined transmittance;
The manufacturing method of an optical member including the defect inspection process of inspecting the defect of the said workpiece | work using the workpiece | work defect inspection apparatus as described in any one of Claims 1-10.
ワークを加工して光学部材を製造する方法であって、
前記ワークを準備するワーク準備工程と、
前記ワークを所望の形状に切断するワーク切断工程と、
前記ワークを所定の透過率になるように研磨するワーク研磨工程と、
請求項6または7に記載のワーク欠陥検査装置を用いて前記ワークの欠陥を検査して3次元分布を測定する欠陥検査工程とを含む光学部材の製造方法。
A method of manufacturing an optical member by processing a workpiece,
A workpiece preparation step of preparing the workpiece;
A workpiece cutting step of cutting the workpiece into a desired shape;
A workpiece polishing step of polishing the workpiece to have a predetermined transmittance;
A method for manufacturing an optical member, comprising: a defect inspection step of measuring a three-dimensional distribution by inspecting a defect of the workpiece using the workpiece defect inspection apparatus according to claim 6.
ワークを加工して光学部材を製造する方法であって、
予め板状に切り出されたワークを準備するワーク準備工程と、
前記ワークを所定の透過率になるように研磨するワーク研磨工程と、
請求項1〜10のいずれか一項に記載のワーク欠陥検査装置を用いて前記ワークの欠陥を検査する欠陥検査工程とを含む光学部材の製造方法。
A method of manufacturing an optical member by processing a workpiece,
A workpiece preparation step of preparing a workpiece cut in advance in a plate shape;
A workpiece polishing step of polishing the workpiece to have a predetermined transmittance;
The manufacturing method of an optical member including the defect inspection process of inspecting the defect of the said workpiece | work using the workpiece | work defect inspection apparatus as described in any one of Claims 1-10.
ワークを加工して光学部材を製造する方法であって、
予め板状に切り出されたワークを準備するワーク準備工程と、
前記ワークを所定の透過率になるように研磨するワーク研磨工程と、
請求項6または7に記載のワーク欠陥検査装置を用いて前記ワークの欠陥を検査して3次元分布を測定する欠陥検査工程とを含む光学部材の製造方法。
A method of manufacturing an optical member by processing a workpiece,
A workpiece preparation step of preparing a workpiece cut in advance in a plate shape;
A workpiece polishing step of polishing the workpiece to have a predetermined transmittance;
A method for manufacturing an optical member, comprising: a defect inspection step of measuring a three-dimensional distribution by inspecting a defect of the workpiece using the workpiece defect inspection apparatus according to claim 6.
さらに、前記ワークに欠陥が見つかった場合に当該欠陥を除去する欠陥除去工程を含む請求項11〜14のいずれか一項に記載の光学部材の製造方法。   Furthermore, the manufacturing method of the optical member as described in any one of Claims 11-14 including the defect removal process of removing the said defect, when a defect is found in the said workpiece | work. 前記光学部材がフォトマスクであり、ワークの一方の面に金属膜を設ける工程と、金属膜の一部を除去して金属膜のパターンを形成する工程とをさらに含む請求項11〜15のいずれか一項に記載の光学部材の製造方法。   The optical member is a photomask, and further includes a step of providing a metal film on one surface of the work and a step of forming a metal film pattern by removing a part of the metal film. A method for producing an optical member according to claim 1. 前記透過率は、50%以上である請求項11〜16のいずれか一項に記載の光学部材の製造方法。   The said transmittance | permeability is 50% or more, The manufacturing method of the optical member as described in any one of Claims 11-16. 前記光学部材の材質は、合成石英ガラスである請求項11〜17のいずれか一項に記載の光学部材の製造方法。   The method of manufacturing an optical member according to any one of claims 11 to 17, wherein a material of the optical member is synthetic quartz glass. 前記光学部材の材質は、フッ化カルシウムである請求項11〜17のいずれか一項に記載の光学部材の製造方法。   The method for producing an optical member according to claim 11, wherein a material of the optical member is calcium fluoride. 前記光学部材の材質は、深紫外光を透過可能なフッ化物結晶である請求項11〜17のいずれか一項に記載の光学部材の製造方法。   The method of manufacturing an optical member according to any one of claims 11 to 17, wherein a material of the optical member is a fluoride crystal that can transmit deep ultraviolet light.
JP2009531267A 2007-09-07 2008-09-04 Workpiece defect inspection apparatus and optical member manufacturing method using the same Expired - Fee Related JP5359876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009531267A JP5359876B2 (en) 2007-09-07 2008-09-04 Workpiece defect inspection apparatus and optical member manufacturing method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007232219 2007-09-07
JP2007232219 2007-09-07
JP2009531267A JP5359876B2 (en) 2007-09-07 2008-09-04 Workpiece defect inspection apparatus and optical member manufacturing method using the same
PCT/JP2008/065942 WO2009031605A1 (en) 2007-09-07 2008-09-04 Work defect inspecting apparatus and optical member manufacturing method using the same

Publications (2)

Publication Number Publication Date
JPWO2009031605A1 true JPWO2009031605A1 (en) 2010-12-16
JP5359876B2 JP5359876B2 (en) 2013-12-04

Family

ID=40428918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009531267A Expired - Fee Related JP5359876B2 (en) 2007-09-07 2008-09-04 Workpiece defect inspection apparatus and optical member manufacturing method using the same

Country Status (2)

Country Link
JP (1) JP5359876B2 (en)
WO (1) WO2009031605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051182A (en) * 2017-11-07 2018-05-18 扬州莱达光电技术有限公司 A kind of laser subsystem integral test system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199549A1 (en) * 2022-04-13 2023-10-19 日本製鉄株式会社 Surface inspection device and surface inspection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270963A (en) * 1991-02-27 1992-09-28 Toa Medical Electronics Co Ltd Flow image sight sensor
JPH11503232A (en) * 1995-03-30 1999-03-23 ウェズリー ジェッセン コーポレイション Inspection of optical components
JP2004309138A (en) * 2003-04-01 2004-11-04 Tosoh Corp Method and apparatus for inspecting defect inside quartz glass
JP2005518536A (en) * 2002-02-21 2005-06-23 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Double inspection of ophthalmic lenses
JP2006058427A (en) * 2004-08-18 2006-03-02 Mitsubishi Gas Chem Co Inc Resist composition
JP2007086050A (en) * 2005-02-18 2007-04-05 Hoya Corp Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
WO2007060834A1 (en) * 2005-11-24 2007-05-31 Nikon Corporation Optical integrator, illumination optical device, exposure device, and device manufacturing method
WO2008072709A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359106A (en) * 1991-06-06 1992-12-11 Hitachi Ltd Device for detecting foam in transparent article
JPH05303052A (en) * 1992-04-27 1993-11-16 Asahi Glass Co Ltd Forming method for annular light and detecting method for internal defect of glass
JP4609840B2 (en) * 2004-08-23 2011-01-12 株式会社ニデック Eyeglass lens measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270963A (en) * 1991-02-27 1992-09-28 Toa Medical Electronics Co Ltd Flow image sight sensor
JPH11503232A (en) * 1995-03-30 1999-03-23 ウェズリー ジェッセン コーポレイション Inspection of optical components
JP2005518536A (en) * 2002-02-21 2005-06-23 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Double inspection of ophthalmic lenses
JP2004309138A (en) * 2003-04-01 2004-11-04 Tosoh Corp Method and apparatus for inspecting defect inside quartz glass
JP2006058427A (en) * 2004-08-18 2006-03-02 Mitsubishi Gas Chem Co Inc Resist composition
JP2007086050A (en) * 2005-02-18 2007-04-05 Hoya Corp Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
WO2007060834A1 (en) * 2005-11-24 2007-05-31 Nikon Corporation Optical integrator, illumination optical device, exposure device, and device manufacturing method
WO2008072709A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051182A (en) * 2017-11-07 2018-05-18 扬州莱达光电技术有限公司 A kind of laser subsystem integral test system

Also Published As

Publication number Publication date
WO2009031605A1 (en) 2009-03-12
JP5359876B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101117826B1 (en) Light-transmitting object examining method, manufacturing method for light-transmitting substrate of mask blank, manufacturing method for mask blank, manufacturing method for light-expososure mask, manufacturing method for semiconductor device and manufacturing method for phase shift mask
KR101286374B1 (en) Transmittance measurement apparatus, transmittance inspecting apparatus of photomask, transmittance inspecting method, photomask manufacturing method, pattern transfer method, and photomask product
US20150226539A1 (en) System and method for determining the position of defects on objects, coordinate measuring unit and computer program for coordinate measuring unit
US11255797B2 (en) Strontium tetraborate as optical glass material
JP7489404B2 (en) Strontium tetraborate as an optical coating material.
JP2005527833A (en) Elemental X-ray fluorescence microscope and method of operation
JP2001116900A (en) Reflecting soft x-ray microscope
JP7053683B2 (en) Polarization reticle inspection method and equipment
JP2007086050A (en) Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
US10156664B2 (en) Mask inspection apparatus and mask inspection method
JP2007071831A (en) Method and device for evaluating optical material
JP5359876B2 (en) Workpiece defect inspection apparatus and optical member manufacturing method using the same
JP4666157B2 (en) Artificial quartz member, exposure apparatus, and method of manufacturing exposure apparatus
US20210256686A1 (en) Reticle backside inspection method
JP2011085569A (en) Pattern inspection apparatus and method
JP6530747B2 (en) Method of manufacturing a mirror substrate blank of titanium-doped silica glass for EUV lithography and system for determining the location of defects in the blank
JP4761360B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
JP6084507B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2014524019A (en) Apparatus and method for determining blank absorption
JP2017142445A (en) Mask inspection device and mask inspection method
JP2017187547A (en) EUV mask inspection apparatus and focus adjustment method
JP2010282007A (en) Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask for exposure
JP2004271220A (en) Evaluation apparatus and method of fused quartz
JP6083772B1 (en) Mask inspection apparatus and mask inspection method
JP6375696B2 (en) Photomask inspection method and photomask manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees