JPH05303052A - Forming method for annular light and detecting method for internal defect of glass - Google Patents
Forming method for annular light and detecting method for internal defect of glassInfo
- Publication number
- JPH05303052A JPH05303052A JP13415892A JP13415892A JPH05303052A JP H05303052 A JPH05303052 A JP H05303052A JP 13415892 A JP13415892 A JP 13415892A JP 13415892 A JP13415892 A JP 13415892A JP H05303052 A JPH05303052 A JP H05303052A
- Authority
- JP
- Japan
- Prior art keywords
- light
- annular
- fluorescence
- optical axis
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は円環状光の形成方法およ
びガラスの内部欠点検出方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming annular light and a method for detecting internal defects in glass.
【0002】[0002]
【従来の技術】紫外線照射により蛍光を発生するガラス
被検査体の内部欠点を検出する方法として該ガラス被検
査体に紫外光を照射し、それにより被検査体内部に生じ
る蛍光を照明光源として用いることによりガラスの内部
欠点を検出する方法が提案されている(特願平3−19
5847号)。この方法において、ガラス被検査体の検
査位置を囲んで円環状の紫外光を照射し、それによって
ガラス被検査体の検査位置を囲んで円環状の蛍光を発生
させ該蛍光を照明光源として特に前記検査位置の検査を
行うことが好適である。この場合、照射紫外光から光軸
に垂直な平面上で円環状の強度分布を有する照射紫外光
を得る手段として光軸上に円形の遮光板を設ける方法が
考えられる。2. Description of the Related Art As a method for detecting an internal defect of a glass inspection object that emits fluorescence upon irradiation with ultraviolet rays, the glass inspection object is irradiated with ultraviolet light and the fluorescence generated inside the inspection object is used as an illumination light source. Therefore, a method of detecting an internal defect of glass has been proposed (Japanese Patent Application No. 3-19).
No. 5847). In this method, an annular ultraviolet light is irradiated to surround the inspection position of the glass inspected object, thereby generating an annular fluorescence around the inspection position of the glass inspected object, and the fluorescence is particularly used as an illumination light source. It is preferable to inspect the inspection position. In this case, a method of providing a circular light shield plate on the optical axis is conceivable as a means for obtaining the irradiated ultraviolet light having an annular intensity distribution on a plane perpendicular to the optical axis from the irradiated ultraviolet light.
【0003】[0003]
【発明が解決しようとする課題】上記の遮光板による方
法では照射紫外光の光束の中央部分を遮光するので照射
光の利用効率が低くなるため充分な検出感度が得られな
い。通常照射紫外光は光軸上に最大強度を有するので、
この検出感度の低下は著しい。一方、検出感度を高めよ
うとすると、大出力の照射紫外光源を必要とするという
問題があった。In the method using the above-mentioned light shielding plate, since the central portion of the luminous flux of the irradiation ultraviolet light is shielded, the utilization efficiency of the irradiation light is lowered and sufficient detection sensitivity cannot be obtained. Since normally irradiated ultraviolet light has the maximum intensity on the optical axis,
This decrease in detection sensitivity is remarkable. On the other hand, there has been a problem that a high output irradiation ultraviolet light source is required to increase the detection sensitivity.
【0004】[0004]
【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、蛍光性を有する透光性
ガラス被検査体に励起光を照射し、それにより該被検査
体内部に生じる蛍光を照明光源として用いることにより
前記ガラス被検査体の内部欠点を検出する方法におい
て、前記励起光が、平行光を該平行光の光軸を円錐の対
称軸とする1個以上の円錐状光学素子を用いて該光軸に
垂直な断面が円環状に変換されてなる励起光であること
を特徴とするガラス内部欠点検出方法を提供するもので
ある。特に上記励起光として紫外光を用いることができ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and irradiates a translucent glass inspected object having fluorescence with excitation light, whereby the inspected object is exposed. In the method of detecting an internal defect of the glass inspection object by using internally generated fluorescence as an illumination light source, the excitation light is one or more in which the parallel light is parallel light having an optical axis of the conical light as an axis of symmetry of a cone. It is intended to provide a method of detecting defects inside a glass, which is excitation light obtained by converting a cross section perpendicular to the optical axis into an annular shape by using a conical optical element. In particular, ultraviolet light can be used as the excitation light.
【0005】また本発明は、平行光を、該平行光の光軸
を円錐の対称軸とする1個以上の円錐状光学素子を用い
て、該光軸に垂直な断面が円環状である光に変換させる
ことを特徴とする円環状断面を有する光の形成方法を提
供するものである。特に該平行光が紫外光であるとき、
変換されて得られた円環状断面を有する紫外光を励起光
として透光性ガラス被検査体に照射し、生じる円環状断
面の蛍光をガラスの内部欠点検出に用いることができ
る。Further, according to the present invention, the parallel light is generated by using one or more conical optical elements in which the optical axis of the parallel light is the axis of symmetry of the cone, and the cross section perpendicular to the optical axis is annular. To provide a method of forming light having an annular cross section. Especially when the parallel light is ultraviolet light,
Ultraviolet light having an annular cross section obtained by the conversion can be used as excitation light to irradiate a translucent glass test object, and the resulting fluorescence of the annular cross section can be used for detecting internal defects of glass.
【0006】本発明の欠点検出方法の実施例を図1に示
す。A−A’は励起光としての照射紫外光Bの光軸であ
り、照射紫外光線Bはガス放電管と放物面鏡あるいはコ
ンデンサーレンズにより得られる平行光、あるいはTE
M00モードで発振する光源、例えばアルゴンイオンレー
ザー等を光源とする平行光を用いることができる。これ
らはいずれも光軸A−A’上で最大の強度分布を有する
紫外光であり、TEM00モードのガスレーザーによる図
1の入射仮想面Y−Y’上の強度分布は図2に示す如く
ガウス分布を呈する。本発明の欠点検出方法における励
起光の光源としては特に限定はないが、上述のものが入
手し易く、かつ本発明の目的を達成することができる。An embodiment of the defect detection method of the present invention is shown in FIG. AA ′ is the optical axis of the irradiation ultraviolet light B as excitation light, and the irradiation ultraviolet light B is parallel light obtained by a gas discharge tube and a parabolic mirror or a condenser lens, or TE.
A light source that oscillates in the M 00 mode, for example, collimated light using an argon ion laser or the like as a light source can be used. These are all ultraviolet rays having the maximum intensity distribution on the optical axis AA ', and the intensity distribution on the incident virtual plane YY' of FIG. 1 by the TEM 00 mode gas laser is as shown in FIG. It exhibits a Gaussian distribution. The excitation light source in the defect detection method of the present invention is not particularly limited, but the above-mentioned ones are easily available and the object of the present invention can be achieved.
【0007】上記光源からの紫外光線BはBの光軸A−
A’を円錐の対称軸とする2個の円錐状光学素子を透過
した後、光軸に垂直な断面が円環状の紫外光となる。即
ち、該紫外光は図1における前記光軸に垂直な仮想X−
X’面上で円環状の断面を示す。図3にこのときの強度
分布を示す。かかる円環状断面の紫外光を蛍光性を有す
る被検査体に照射することにより、該被検査体に円環状
断面の蛍光を発生させることができる。The ultraviolet ray B from the light source is the optical axis A- of B.
After passing through the two conical optical elements having A ′ as the axis of symmetry of the cone, the cross section perpendicular to the optical axis becomes circular ultraviolet light. That is, the ultraviolet light is a virtual X- that is perpendicular to the optical axis in FIG.
An annular cross section is shown on the X ′ plane. FIG. 3 shows the intensity distribution at this time. By irradiating the inspected object having fluorescence with the ultraviolet light of such an annular cross section, it is possible to generate fluorescence of the annular cross section in the inspected object.
【0008】本発明の円環状断面を有する光または光束
の形成方法とその結果を図1〜図3により説明する。X
0 は被検査体の検査対象位置である。光学素子1は光軸
上に頂点を有し光源からの平行光の光軸を円錐の対称軸
とする円錐形状面と該光軸に垂直な平面とで構成される
研磨面からなる光学素子(円錐状軸対称プリズム)であ
り、同図において左側から入射する平行光Bは光学素子
1によって軸対称的に屈折される。さらに光軸上に頂点
を有し該光軸と対称軸を共有する円錐形状を有する光学
素子(円錐状軸対称プリズム)2により屈折された入射
光Bは、被検査体の検査対象位置X0 を中心とする円環
状の光あるいはX0 を囲む円環状の光となる。光源から
の入射平行光として紫外光を選べば、被検査体に円環状
の紫外光を照射することができる。そのとき発生する蛍
光もまたX0 を囲む円環状を呈する。A method of forming light or a light flux having an annular cross section according to the present invention and its result will be described with reference to FIGS. X
0 is the inspection target position of the inspection object. The optical element 1 has an apex on the optical axis and is composed of a polishing surface composed of a conical surface having the optical axis of parallel light from a light source as the axis of symmetry of a cone and a plane perpendicular to the optical axis ( A conical axisymmetric prism), and the parallel light B incident from the left side in the figure is refracted by the optical element 1 in an axially symmetrical manner. Further, the incident light B refracted by the optical element (conical axisymmetric prism) 2 having a conical shape having an apex on the optical axis and sharing the axis of symmetry with the optical axis, is the inspection target position X 0 of the inspection object. The light becomes an annular light centered at or an annular light surrounding X 0 . If ultraviolet light is selected as the incident parallel light from the light source, the object to be inspected can be irradiated with annular ultraviolet light. The fluorescence generated at that time also exhibits an annular shape surrounding X 0 .
【0009】光学素子1,2の頂点と光源からの光との
配置関係は図1に示した配置に限定されない。また光学
素子1,2は図1に示す如き単純な円錐形でなく、2つ
の円錐を底面を対面一体化した軸対称性のものであって
もよいが、図1に示すものが単純な形状で作製し易い。The arrangement relationship between the vertices of the optical elements 1 and 2 and the light from the light source is not limited to the arrangement shown in FIG. Further, the optical elements 1 and 2 may not have a simple conical shape as shown in FIG. 1, but may have an axial symmetry in which two cones have their bottom surfaces integrated face-to-face, but the one shown in FIG. 1 has a simple shape. It is easy to make.
【0010】光学素子2は被検査体の位置が限定されて
いる場合には一般の凸レンズで代用することも可能であ
る。また、光学素子1と2の距離を変化させることによ
って、X0 を中心とする円環の径が変化する。したがっ
て所望の円環径が得られるよう上記距離を決めればよ
い。The optical element 2 may be replaced by a general convex lens when the position of the object to be inspected is limited. Further, by changing the distance between the optical elements 1 and 2, the diameter of the ring centered at X 0 changes. Therefore, the distance may be determined so that a desired annular diameter can be obtained.
【0011】本発明において蛍光性を有する透光性ガラ
ス被検査体に照射された、光軸に垂直な断面形状が円環
状である紫外光は励起光として該被検査体中で円環状の
蛍光を発生させる。該円環状蛍光によって囲まれる領域
は、蛍光によって効率よく照射され欠点検出に供され
る。検査対象部位の走査にあたってこの円環状蛍光を利
用することができるが、光軸上に円形の遮光板を用いる
方法に比べ、本発明の方法は同一出力の光源を用いても
光量を無駄に削減しないので照明として明るく効率のよ
い欠点検出検査ができる。In the present invention, the ultraviolet light having a circular cross-sectional shape perpendicular to the optical axis, which is irradiated to the translucent glass inspection object having fluorescence, is an annular fluorescence in the inspection object as excitation light. Generate. The area surrounded by the annular fluorescent light is efficiently irradiated with the fluorescent light and is used for defect detection. This annular fluorescence can be used for scanning the inspection target part, but the method of the present invention wastefully reduces the amount of light even when using a light source with the same output, as compared with the method of using a circular light shield plate on the optical axis. Since it does not, bright and efficient defect detection inspection can be performed as illumination.
【0012】図4は光軸上に円形の遮光板を用いた場合
の円環状断面の光の強度分布であり、図2および図3と
縦軸(強度)を同じスケールで示したものである。図4
に比べて本発明による図3の場合は、強度は高く、その
積分値は著しく大きい。FIG. 4 is an intensity distribution of light in an annular cross section when a circular light shield plate is used on the optical axis, and the vertical axis (intensity) is the same as that in FIGS. 2 and 3 on the same scale. .. Figure 4
In contrast, in the case of FIG. 3 according to the present invention, the intensity is high and the integrated value is remarkably large.
【0013】紫外光により蛍光を発生するガラス被検査
体に、本発明の方法で得られる円環状の紫外光を照射す
ることにより生じた円環状の蛍光により該円環状の蛍光
で囲まれる領域は従来の方法によるよりも明るく照射さ
れる。照射する紫外光を走査することにより被検査体を
前記蛍光により走査し検査をすることができる。The area surrounded by the annular fluorescence is formed by the annular fluorescence generated by irradiating the glass test object which emits the fluorescence by the ultraviolet light with the annular ultraviolet light obtained by the method of the present invention. Illuminates brighter than with conventional methods. By scanning the irradiated ultraviolet light, the inspection object can be scanned with the fluorescence for inspection.
【0014】本発明の内部欠点検出方法は、その対象を
ガラスに必ずしも限定されることなく、励起光により被
検査体内部に蛍光が発生する材料からなる透光性の被検
査体に適用できる。また、上述の説明から明らかな如
く、本発明の円環状断面を有する光の形成方法は、平行
光を紫外光に限定するものではない。本発明の方法によ
れば、一般に平行光を該平行光の光軸を円錐の対称軸と
する1個以上の円錐状光学素子を用いて、該光軸に垂直
な断面が円環状である光に変換させることができる。The internal defect detection method of the present invention is not necessarily limited to glass, but can be applied to a translucent inspection object made of a material that emits fluorescence inside the inspection object by excitation light. Further, as is apparent from the above description, the method of forming light having an annular cross section of the present invention does not limit parallel light to ultraviolet light. According to the method of the present invention, in general, parallel light is generated by using one or more conical optical elements in which the optical axis of the parallel light is the axis of symmetry of the cone, and the cross section perpendicular to the optical axis is annular. Can be converted to.
【0015】[0015]
【実施例】図1において合成石英ガラスの1面を頂角1
50度の円錐面、他面を平面に光学研磨した厚さ5mm
(円錐の高さ)、直径30mm(円錐の底面の直径)の
光学素子2個を96mmの距離をおいて円錐の対称軸を
共有するよう配置し、これに波長400nm、直径10
mmの紫外線平行光を光軸が前記対称軸と重なるよう入
射させることにより、内径15mm、外径25mmの円
環状の強度分布を有する照射光が得られた。EXAMPLE In FIG. 1, one side of synthetic quartz glass has an apex angle of 1
5mm thickness with 50 degree conical surface and other surface optically polished to flat surface
Two optical elements having a cone height and a diameter of 30 mm (bottom diameter of the cone) are arranged at a distance of 96 mm so as to share the axis of symmetry of the cone.
By irradiating the ultraviolet parallel light of mm with the optical axis overlapping the symmetry axis, irradiation light having an annular intensity distribution with an inner diameter of 15 mm and an outer diameter of 25 mm was obtained.
【0016】[0016]
【発明の効果】本発明により、平行光を遮光による損失
無く光軸に垂直な断面形状が円環状の光に変換すること
ができる。また、紫外光を励起光として蛍光が発生する
材料からなる被検査体を照射する平行光として紫外光を
用いることにより、被検査体表面および内部を本発明の
方法により上記円環状断面をもつ紫外線で照射すること
ができる。このとき発生する蛍光も円環状となるので、
該円環で囲まれる領域は該蛍光によって効率よく照射さ
れるため、被検査体内部欠点の検査にあたり、従来技術
では検出不可能な微細あるいは識別困難な欠点を検出す
ることができ、検査の信頼性が向上する。また従来技術
より小出力の光源が用い得るので検査装置のコストダウ
ンが得られる。According to the present invention, it is possible to convert parallel light into light having a circular sectional shape perpendicular to the optical axis without loss due to light shielding. Further, by using ultraviolet light as parallel light for irradiating an object to be inspected made of a material in which fluorescence is generated by using ultraviolet light as excitation light, the surface and the inside of the object to be inspected are ultraviolet rays having the annular cross section according to the method of the present invention. Can be irradiated with. Since the fluorescent light generated at this time also has an annular shape,
Since the area surrounded by the ring is efficiently illuminated by the fluorescence, it is possible to detect minute defects or indistinct defects that cannot be detected by the conventional technique when inspecting internal defects of the object to be inspected. The property is improved. Further, since a light source having a smaller output than that of the prior art can be used, the cost of the inspection device can be reduced.
【図1】本発明の実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】光源からの平行光の光学素子に入射する前の光
軸に垂直な強度分布例のグラフ。FIG. 2 is a graph of an example of intensity distribution of parallel light from a light source, which is perpendicular to an optical axis before being incident on an optical element.
【図3】2個の光学素子を透過後の光軸に垂直な断面形
状が円環状の光の強度分布例のグラフ。FIG. 3 is a graph showing an example of the intensity distribution of light having a ring-shaped cross section perpendicular to the optical axis after passing through two optical elements.
【図4】従来技術における照射光の強度分布例のグラ
フ。FIG. 4 is a graph showing an example of intensity distribution of irradiation light in the related art.
1、2:円錐状光学素子 X0 :検査対象箇所1, 2: Conical optical element X 0 : Inspection target location
Claims (5)
とする1個以上の円錐状光学素子を用いて、該光軸に垂
直な断面が円環状である光に変換させることを特徴とす
る円環状断面を有する光の形成方法。1. Converting parallel light into light having a toroidal cross section perpendicular to the optical axis by using one or more conical optical elements having the optical axis of the parallel light as the symmetry axis of the cone. A method of forming light having an annular cross-section.
る請求項1記載の円環状断面を有する光の形成方法。2. The method of forming light having an annular cross section according to claim 1, wherein the parallel light is ultraviolet light.
起光を照射し、それにより該被検査体内部に生じる蛍光
を照明光源として用いることにより前記ガラス被検査体
の内部欠点を検出する方法において、前記励起光が、平
行光を該平行光の光軸を円錐の対称軸とする1個以上の
円錐状光学素子を用いて該光軸に垂直な断面が円環状に
変換されてなる励起光であることを特徴とするガラスの
内部欠点検出方法。3. An internal defect of the glass inspected object is detected by irradiating a translucent glass inspected object having fluorescence with excitation light and using fluorescence generated inside the inspected object as an illumination light source. In the method described above, the excitation light is converted into an annular cross section perpendicular to the optical axis by using one or more conical optical elements in which the parallel light has an optical axis of the parallel light as a symmetry axis of a cone. A method for detecting internal defects in glass, characterized in that
とを特徴とするガラスの内部欠点検出方法。4. The method for detecting internal defects in glass according to claim 3, wherein the excitation light is ultraviolet light.
するレーザー光源であることを特徴とする請求項4記載
のガラスの内部欠点検出方法。5. The method for detecting internal defects in glass according to claim 4, wherein the ultraviolet light source is a laser light source that oscillates in a TEM 00 mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13415892A JPH05303052A (en) | 1992-04-27 | 1992-04-27 | Forming method for annular light and detecting method for internal defect of glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13415892A JPH05303052A (en) | 1992-04-27 | 1992-04-27 | Forming method for annular light and detecting method for internal defect of glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05303052A true JPH05303052A (en) | 1993-11-16 |
Family
ID=15121823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13415892A Withdrawn JPH05303052A (en) | 1992-04-27 | 1992-04-27 | Forming method for annular light and detecting method for internal defect of glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05303052A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008134468A (en) * | 2006-11-28 | 2008-06-12 | Ricoh Opt Ind Co Ltd | Condensing optical system and optical processing device |
WO2009031605A1 (en) * | 2007-09-07 | 2009-03-12 | Nikon Corporation | Work defect inspecting apparatus and optical member manufacturing method using the same |
US10352545B2 (en) | 2016-03-04 | 2019-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion device and lighting apparatus |
-
1992
- 1992-04-27 JP JP13415892A patent/JPH05303052A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008134468A (en) * | 2006-11-28 | 2008-06-12 | Ricoh Opt Ind Co Ltd | Condensing optical system and optical processing device |
WO2009031605A1 (en) * | 2007-09-07 | 2009-03-12 | Nikon Corporation | Work defect inspecting apparatus and optical member manufacturing method using the same |
US10352545B2 (en) | 2016-03-04 | 2019-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion device and lighting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4655592A (en) | Particle detection method and apparatus | |
US6621571B1 (en) | Method and apparatus for inspecting defects in a patterned specimen | |
US20190302025A1 (en) | Defect investigation device simultaneously detecting photoluminescence and scattered light | |
JP2006329630A (en) | Flaw inspection device and flaw inspection method | |
JPS63261144A (en) | Optical web monitor | |
JPS6036013B2 (en) | Metal surface defect inspection method | |
JPH03503454A (en) | Optical reader for immunoassays | |
US3656832A (en) | Micro-optical imaging apparatus | |
JP2019109302A (en) | Illumination optical system, optical inspection device, and optical microscope | |
JPH04122839A (en) | Inspecting method of surface | |
JPH05303052A (en) | Forming method for annular light and detecting method for internal defect of glass | |
JPS6168543A (en) | Optical inspection and apparatus for defect in sample | |
JPH01291130A (en) | Measuring head for photographic data measuring apparatus | |
JP5255763B2 (en) | Optical inspection method and apparatus | |
JP2003107006A (en) | Method and apparatus for illumination | |
JP2004257776A (en) | Inspection device for light transmission body | |
JPH07181145A (en) | Method, device and optical element for optically inspecting irradiated-ray transmitting object and bottling line using device thereof | |
JPS55101002A (en) | Inspecting method for mirror face body | |
JP2005331302A (en) | Outside surface inspection method and outside surface inspection device | |
JP3146629B2 (en) | Emitter and receiver for pearl color selection | |
JPS6211135A (en) | Apparatus for inspecting surface of transparent specimen plate | |
JPH1183465A (en) | Surface inspecting method and device therefor | |
JPH05215688A (en) | Method and apparatus for detecting scatterer in light pervious body | |
JPH09288063A (en) | Apparatus for inspecting damage of transparent board | |
JPS61148308A (en) | Visual inspection of metallic surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990706 |