JP2003119531A - Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof - Google Patents

Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof

Info

Publication number
JP2003119531A
JP2003119531A JP2001313867A JP2001313867A JP2003119531A JP 2003119531 A JP2003119531 A JP 2003119531A JP 2001313867 A JP2001313867 A JP 2001313867A JP 2001313867 A JP2001313867 A JP 2001313867A JP 2003119531 A JP2003119531 A JP 2003119531A
Authority
JP
Japan
Prior art keywords
aluminum alloy
thermal conductivity
wear
heat resistance
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001313867A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
鈴木  誠
Masahiro Takahashi
昌博 高橋
Akio Kikuchi
昭雄 菊地
Yoshimasa Okubo
喜正 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Suzuki Motor Corp
Original Assignee
Sumitomo Light Metal Industries Ltd
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Suzuki Motor Corp filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2001313867A priority Critical patent/JP2003119531A/en
Publication of JP2003119531A publication Critical patent/JP2003119531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy satisfactorily having characteristics such as abrasion resistance, high-temperature strength, and heat conductivity (a heat radiating property), which is preferably used for materials particularly for pistons of engines, and provide a manufacturing method therefor. SOLUTION: The aluminum alloy includes SiC particles and is made by means of molding rapidly solidified aluminum alloy powders, wherein the SiC particle is a β-type of the cubic system with a round form, has a content of 1-5%, and has a mean particle diameter of 2-10 μm, and the aluminum alloy comprises 2-6% Fe, 14% or more but less than 20% Si, 0.2-2% Mg, 0.5-3% Cu, 0.01-0.05% Ti, and the balance with unavoidable impurities. The method for manufacturing the aluminum alloy includes mixing the rapidly solidified powders having the above composition, with a β-type SiC particles, degassing the mixture powder, and solidifying it by adding plastic working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性、耐熱性
並びに熱伝導性に優れたアルミニウム合金及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy having excellent wear resistance, heat resistance and thermal conductivity, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、エンジンのピストン用材料として
は、軽量性、耐摩耗性、高温時の高強度、低熱膨張係数
等の諸特性が要求されることから、アルミニウム合金鋳
物が使用されているが、エンジンが高出力となり、ま
た、大気汚染防止の観点から、不完全燃焼物の低減を図
るため、高熱効率、高燃焼効率が要求されるようになっ
たため、例えば、JISAC8A(Si:11〜13
%、Cu:0.8〜1.3%、Mg:0.7〜1.3
%、Ni:0.8〜1.5%、残部Al)等の従来のア
ルミニウム合金鋳物では、その負荷に耐えられなくなっ
ている。
2. Description of the Related Art Conventionally, aluminum alloy castings have been used as materials for engine pistons because they are required to have various properties such as light weight, wear resistance, high strength at high temperature, and low coefficient of thermal expansion. However, the engine has a high output, and from the viewpoint of preventing air pollution, high thermal efficiency and high combustion efficiency are required in order to reduce incomplete combustibles. For example, JISAC8A (Si: 11 to 11) Thirteen
%, Cu: 0.8 to 1.3%, Mg: 0.7 to 1.3
%, Ni: 0.8 to 1.5%, balance Al) and other conventional aluminum alloy castings cannot withstand the load.

【0003】この問題を解決するために、急冷凝固アル
ミニウム合金が注目され、さらに、セラミックス系の分
散強化材を組合わせた複合材も検討されており、例え
ば、Si:14〜25%、Fe:3.5〜6.5%、C
u:0.4〜1.2%、Mg:0.2〜0.7%を含有
し、Zr、V、Moのうちの1種以上を合計量で0.6
〜2%含有し、さらに平均粒径が1〜10μmのSiC
粒子を0.5〜10%含み、残部Alおよび不純物より
なるピストン用急冷凝固アルミニウム合金が提案されて
いる(特願平10−20309号(特開平11−199
959号公報))が、実用化した場合に相手材を摩耗さ
せる(相手材攻撃性が高い)という難点があり、エンジ
ン用材料として十分に満足すべき特性をそなえていない
ことが認められた。
In order to solve this problem, a rapidly solidified aluminum alloy has been attracting attention, and a composite material in which a ceramics dispersion strengthening material is combined has also been studied. For example, Si: 14 to 25%, Fe: 3.5-6.5%, C
u: 0.4 to 1.2% and Mg: 0.2 to 0.7% are contained, and one or more of Zr, V and Mo are added in a total amount of 0.6.
SiC containing 2% to 2% and having an average particle size of 1 to 10 μm
A rapidly solidified aluminum alloy for pistons containing 0.5 to 10% of particles and the balance of Al and impurities has been proposed (Japanese Patent Application No. 10-20309 (Japanese Patent Application Laid-Open No. 11-199).
No. 959)) has a drawback of abrading the mating material when it is put into practical use (high mating material aggressiveness), and it has been confirmed that the material does not have sufficiently satisfactory properties as an engine material.

【0004】発明者らは、セラ.ックス系の分散強化材
を組合わせた急冷凝固アルミニウム合金材における上記
の問題点を解消するために、分散強化材の性状と相手材
攻撃性との関係について実験、検討を行った結果、相手
材攻撃性は、従来、強化材として適用されてきたSiC
の形態が大きく影響することを見出した。
The inventors have found that Sera. In order to solve the above-mentioned problems in the rapidly solidified aluminum alloy materials that combine the dispersion-type strengthening materials of the x-type, the relationship between the properties of the dispersion-strengthening material and the aggressiveness of the mating material was tested and examined. Aggressiveness has been conventionally applied to SiC as a reinforcing material.
It was found that the form of

【0005】従来、SiCとしては、製造工程が簡易
で、製造の際の温度管理も容易な六方晶系のα型SiC
が使用されている。α型SiCは、結晶の成長速度や温
度、不純物などの影響でc軸の格子定数が変化して20
0種以上の形態のものが存在するが、いずれも角部が鋭
利な形状となっており、相手材を摩耗させ易いことが認
められた。
Conventionally, as SiC, a hexagonal α-type SiC whose manufacturing process is simple and temperature control during manufacturing is easy
Is used. In α-type SiC, the c-axis lattice constant changes due to the influence of crystal growth rate, temperature, impurities, etc.
Although there are 0 or more types of morphologies, it was confirmed that each of them had sharp corners and was likely to wear the mating material.

【0006】SiCには立方晶系のβ型SiCも存在し
ているが、β型SiCは、極微細な黒鉛または炭素を用
い、これらを溶融珪素または一酸化珪素の蒸気と反応さ
せるなどの特殊な製造方法でしか製造できないものであ
り、2200℃以上の温度になるとα型SiCに転移し
易くなるため、厳密な温度管理が必要となる。また、そ
の形態も1種類しかない。しかしながら、β型SiCを
アルミニウム合金の分散強化材として使用した場合、そ
の形状は丸みを帯び、鋭利な角部を有しないため、相手
材攻撃性がなく、表面に階段状の段差があるため、マト
リックスとの接触面積が大きくなりマトリックスからの
脱落もなくなることが発明者らの実験により見出され
た。
Cubic β-type SiC is also present in SiC, but β-type SiC uses special graphite or carbon, which is special in that it is reacted with vapor of molten silicon or silicon monoxide. It can be manufactured only by a simple manufacturing method, and when it reaches a temperature of 2200 ° C. or higher, it easily transforms to α-type SiC, so strict temperature control is required. Also, there is only one form. However, when β-type SiC is used as a dispersion-strengthening material for an aluminum alloy, its shape is rounded and does not have sharp corners, so the mating material is not aggressive and there is a stepped step on the surface. It was found from the experiments by the inventors that the contact area with the matrix was large and the matrix did not fall off.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の知見
に基づいて、とくにエンジン用材料として満足すべき特
性を有するアルミニウム合金材を得るために、立方晶系
のβ型SiCを含有する急冷凝固アルミニウム合金につ
いて、検討を加えた結果としてなされたものであり、そ
の目的は、とくに、耐摩耗性、耐熱性、熱伝導性に優
れ、且つ相手材への攻撃性が少ないアルミニウム合金及
びその製造方法を提供することにある。当該アルミニウ
ム合金は、高出力エンジンのピストン用として好適に使
用される。
The present invention is based on the above findings, and in order to obtain an aluminum alloy material having particularly satisfactory properties as a material for an engine, a rapid cooling containing cubic β-type SiC. The solidified aluminum alloy has been made as a result of the examination, and its purpose is to provide an aluminum alloy having excellent wear resistance, heat resistance, and thermal conductivity, and having less aggressiveness to the mating material and its production. To provide a method. The aluminum alloy is preferably used for pistons of high power engines.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による耐摩耗性、耐熱性並びに熱
伝導性に優れたアルミニウム合金は、SiC粒子を含
み、急冷凝固アルミニウム合金粉末を成形してなるアル
ミニウム合金であって、前記SiC粒子は、丸みを帯び
た形状の立方晶系β型とし、含有量が1〜5%、平均粒
径が2〜10μmであり、前記アルミニウム合金は、F
e:2〜6%、Si:14%以上20%未満、Mg:
0.2〜2%、Cu:0.5〜3%及びTi:0.01
〜0.05%を含み、残部が不可避的不純物からなるこ
とを特徴とする。
The aluminum alloy excellent in wear resistance, heat resistance and thermal conductivity according to claim 1 of the present invention for achieving the above object contains SiC particles and is a rapidly solidified aluminum alloy. An aluminum alloy formed by molding powder, wherein the SiC particles are cubic β-type having a rounded shape, the content is 1 to 5%, the average particle size is 2 to 10 μm, and the aluminum is Alloy is F
e: 2 to 6%, Si: 14% or more and less than 20%, Mg:
0.2-2%, Cu: 0.5-3% and Ti: 0.01
.About.0.05% and the balance consists of unavoidable impurities.

【0009】また、本発明の請求項2による耐摩耗性、
耐熱性並びに熱伝導性に優れたアルミニウム合金の製造
方法は、請求項1記載のアルミニウム合金の急冷凝固粉
末と請求項1記載のSiC粒子とを混合し、該混合粉末
を300℃以上で脱ガス処理した後、固化することを特
徴とする。
The wear resistance according to claim 2 of the present invention,
A method for producing an aluminum alloy having excellent heat resistance and thermal conductivity comprises mixing a rapidly solidified powder of the aluminum alloy according to claim 1 with the SiC particles according to claim 1, and degassing the mixed powder at 300 ° C. or higher. It is characterized by solidifying after treatment.

【0010】[0010]

【発明の実施の形態】本発明のアルミニウム合金に含ま
れるβ型SiC粒子及び合金成分の意義並びにその限定
理由について説明すると、β型SiC粒子は従来のα型
SiC粒子と同様、アルミニウム合金中に分散し常温及
び高温時の耐摩耗性を向上させる機能を有すると共に、
相手材攻撃性を低減する機能を有する。アルミニウム合
金に対する好ましい含有範囲は1〜5%であり、1%未
満では耐摩耗性の効果が十分発揮出来ず、5%を越える
と加工性が低下し、耐摩耗性の向上効果が飽和状態とな
るから、それ以上の含有は経済的でない。また、SiC
粒子の好ましい平均粒径は2〜10μmの範囲であり、
2μm未満ではその効果が十分でなく、10μmを超え
ると加工性が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of the β-type SiC particles and alloy components contained in the aluminum alloy of the present invention and the reasons for limitation thereof will be explained. Β-type SiC particles are similar to conventional α-type SiC particles in aluminum alloy. With the function of dispersing and improving the wear resistance at room temperature and high temperature,
It has the function of reducing the aggressiveness of the opponent material. The preferred content range for the aluminum alloy is 1 to 5%. If it is less than 1%, the effect of wear resistance cannot be sufficiently exerted, and if it exceeds 5%, the workability is deteriorated and the effect of improving wear resistance is saturated. Therefore, the inclusion of more than that is not economical. In addition, SiC
The preferred average particle size of the particles is in the range of 2-10 μm,
If it is less than 2 μm, the effect is not sufficient, and if it exceeds 10 μm, the workability is deteriorated.

【0011】Feは、耐熱性及び高温強度を向上させ、
更に弾性係数を向上させると共に、熱膨張係数を低下さ
せる機能を有する。Feの好ましい含有範囲は2〜6%
であり、2%未満では十分な高温強度が得られず、6%
を超えると延性及び靭性が低下する。Feのより好まし
い含有範囲は4〜5%である。
Fe improves heat resistance and high temperature strength,
Further, it has the functions of improving the elastic coefficient and lowering the thermal expansion coefficient. The preferable content range of Fe is 2 to 6%
If it is less than 2%, sufficient high temperature strength cannot be obtained.
If it exceeds, the ductility and toughness decrease. A more preferable content range of Fe is 4 to 5%.

【0012】Siは、耐摩耗性、弾性係数及び熱膨張係
数を向上させ、更に密度を低下させる機能を有する。S
iの好ましい含有範囲は14〜20%未満であり、14
%未満では十分な効果が得られず、20%以上であると
脆性となる。Siのより好ましい含有範囲は16〜18
%である。
Si has the functions of improving wear resistance, elastic coefficient and thermal expansion coefficient, and further decreasing density. S
The preferable content range of i is 14 to less than 20%,
If it is less than%, a sufficient effect cannot be obtained, and if it is 20% or more, it becomes brittle. The more preferable content range of Si is 16-18.
%.

【0013】Mgは、マトリックスに固溶して、常温及
び高温の強度を向上させる機能を有する。Mgの好まし
い含有範囲は0.2%〜2%であり、0.2%未満では
十分な効果を得ることが出来ず、2%を超えると常温の
靭性が低下する。Mgのより好ましい含有範囲は0.8
〜2%、更に好ましい含有範囲は0.8〜1.5%であ
る。
Mg has the function of forming a solid solution in the matrix and improving the strength at normal and high temperatures. The preferable content range of Mg is 0.2% to 2%, and if it is less than 0.2%, a sufficient effect cannot be obtained, and if it exceeds 2%, the toughness at room temperature decreases. A more preferable content range of Mg is 0.8
˜2%, more preferably 0.8 to 1.5%.

【0014】Cuは、中温及び高温の強度を向上させ、
特に150℃前後の高温強度を向上させる機能を有す
る。Cuの好ましい含有範囲は0.5%〜3%であり、
0.5%未満では十分な効果が得られず、3%を超える
と延性及び靭性が低下する。Cuのより好ましい含有範
囲は1〜2%である。
Cu improves the strength at medium and high temperatures,
In particular, it has a function of improving high temperature strength around 150 ° C. The preferable content range of Cu is 0.5% to 3%,
If it is less than 0.5%, a sufficient effect cannot be obtained, and if it exceeds 3%, ductility and toughness deteriorate. The more preferable content range of Cu is 1-2%.

【0015】Tiは、微量で高温の強度を向上させる機
能を有する。Tiの好ましい含有範囲は0.01%〜
0.05%であり、0.01%未満では十分な効果が得
られず、0.05%を超えると熱伝導率を著しく低下さ
せる。また、Tiを添加した場合には、粉末作製時の溶
湯温度を高くする必要があるが、含有量が0.05%以
下であれば、830℃〜890℃の温度でアトマイズす
ることが出来、耐火物の低コスト化、寿命延長が可能と
なる。
Ti has the function of improving the strength at high temperatures even with a trace amount. The preferable content range of Ti is 0.01% to
If it is less than 0.01%, a sufficient effect cannot be obtained, and if it exceeds 0.05%, the thermal conductivity is remarkably reduced. Further, when Ti is added, it is necessary to raise the temperature of the molten metal during powder preparation, but if the content is 0.05% or less, atomization can be performed at a temperature of 830 ° C to 890 ° C. It is possible to reduce the cost and extend the life of refractory materials.

【0016】本発明のアルミニウム合金を製造するため
の好ましい態様について説明すると、前記の組成を有す
るアルミニウム合金を溶解し、例えば、エアアトマイズ
法によりアルミニウム合金粉末を作製する。この場合、
初晶SiやAl−Fe系化合物を微細にするために、エ
アアトマイズ法等によるアルミニウム合金粉末作製時の
冷却速度は100℃/秒以上とするのが望ましい。初晶
Siが微細化されると、材料の脆性が抑制され、微細S
i粒子の分散により高温強度が向上する。更に、微細化
されたAl−Fe系化合物の粒子分散により、高温強度
が顕著に向上する。
A preferred embodiment for producing the aluminum alloy of the present invention will be described. An aluminum alloy having the above composition is melted and, for example, an aluminum alloy powder is produced by an air atomizing method. in this case,
In order to make the primary crystal Si and the Al-Fe compound fine, it is desirable that the cooling rate at the time of producing the aluminum alloy powder by the air atomization method is 100 ° C / sec or more. When the primary crystal Si is refined, the brittleness of the material is suppressed and the fine S
The dispersion of i particles improves the high temperature strength. Furthermore, the high temperature strength is remarkably improved by the dispersion of the finely divided Al-Fe compound particles.

【0017】急冷凝固粉末冶金法により作製されたアル
ミニウム合金粉末に、所定量のβ型SiC粒子を混合
し、この混合粉末を缶に充填して、300℃以上で真空
ポンプ等により十分な脱ガス処理を行った後、缶を密封
して、ホットプレス、押出加工、鍛造加工などの塑性加
工を加える。
A predetermined amount of β-type SiC particles is mixed with an aluminum alloy powder produced by the rapid solidification powder metallurgy method, the mixed powder is filled in a can, and sufficient degassing is performed by a vacuum pump or the like at 300 ° C or higher. After the treatment, the can is sealed and subjected to plastic working such as hot pressing, extrusion and forging.

【0018】[0018]

【実施例】以下、分散強化材としての好ましいセラミッ
クスを選定するための予備試験を含め、本発明の効果を
確認するための実施例について説明する。なお、これら
の実施例は、本発明の一実施態様を示すものであって、
本発明はこれらに限定されるものではない。
EXAMPLES Examples for confirming the effects of the present invention will be described below, including a preliminary test for selecting preferable ceramics as a dispersion strengthening material. These examples show one embodiment of the present invention,
The present invention is not limited to these.

【0019】予備試験1 Si:17%、Fe:4%、Mg:1%、Cu:1%、
Ti:0.01%を含有し、残部Alおよび不純物から
なる組成を有するアルミニウム合金を溶解し、エアアト
マイズ法(アトマイズ温度:830〜890℃)により
急冷凝固アルミニウム合金粉末を作製し、297μm以
下に分級した。このアルミニウム合金粉末に、平均粒径
が5μmのα型SiC、β型SiC、Al2 3 、Al
4 3 、Si3 4 をそれぞれ5%添加、混合し、これ
らの混合粉末をアルミニウム缶に充填し、380℃〜4
95℃で真空脱ガスを行った。次いでアルミニウム缶を
密封して押出用ビレットとし、380℃〜400℃で押
出比20として熱間押出を行い、直径20mmの丸棒を
押し出した。
Preliminary test 1 Si: 17%, Fe: 4%, Mg: 1%, Cu: 1%,
Ti: 0.01% is contained, and an aluminum alloy having a composition consisting of balance Al and impurities is melted, and a rapidly solidified aluminum alloy powder is produced by an air atomizing method (atomizing temperature: 830 to 890 ° C.), and is reduced to 297 μm or less. Classified To this aluminum alloy powder, α-type SiC, β-type SiC, Al 2 O 3 , Al having an average particle size of 5 μm
5% each of 4 N 3 and Si 3 N 4 was added and mixed, and these mixed powders were filled in an aluminum can, and the temperature was 380 ° C to 4 ° C.
Vacuum degassing was performed at 95 ° C. Then, the aluminum can was sealed to form a billet for extrusion, hot extrusion was performed at an extrusion ratio of 20 at 380 ° C to 400 ° C, and a round bar having a diameter of 20 mm was extruded.

【0020】得られた丸棒を機械加工し、バイトの摩耗
量を測定した結果、SiC含有材のバイト摩耗量を10
0とすると、Al2 3 含有材は180、Al4 3
有材は170、Si3 4 含有材は170となり、Si
C含有材が他のセラミックスを含有する材料よりバイト
の摩耗が少なく加工性において優れていることが立証さ
れた。
The round bar thus obtained was machined and the wear amount of the bite was measured. As a result, the wear amount of the SiC-containing material was 10
If 0, the Al 2 O 3 -containing material is 180, the Al 4 N 3 -containing material is 170, and the Si 3 N 4 -containing material is 170.
It has been proved that the C-containing material has less wear of the cutting tool and is superior in workability than the materials containing other ceramics.

【0021】予備試験2 次に、六方晶系α型SiCを含有するアルミニウム合金
と、立方晶系β型SiCを含有するアルミニウム合金の
特性を比較するために、予備試験1と同じ組成のアルミ
ニウム合金粉末を予備試験1と同一の方法で作製し、得
られたアルミニウム合金粉末を分級して、平均粒径5μ
mのα型SiCおよびβ型SiCをそれぞれ5%添加、
混合し、これらの混合粉末を用いて、予備試験1と同様
にして直径60mmの丸棒を作製し、直径60mm、厚
さ5mmのディスク材に加工した。比較のために、Si
Cを添加しない直径60mmの丸棒材も作製し、ディス
ク材をとした。
Preliminary Test 2 Next, in order to compare the characteristics of the aluminum alloy containing hexagonal α-type SiC and the aluminum alloy containing cubic β-type SiC, an aluminum alloy having the same composition as in Preliminary Test 1 A powder was prepared in the same manner as in Preliminary test 1, and the obtained aluminum alloy powder was classified to have an average particle size of 5 μm.
5% each of α-type SiC and β-type SiC of m,
By mixing and using these mixed powders, a round bar having a diameter of 60 mm was prepared in the same manner as in the preliminary test 1, and processed into a disk material having a diameter of 60 mm and a thickness of 5 mm. For comparison, Si
A round bar material having a diameter of 60 mm to which C was not added was also prepared, and used as a disk material.

【0022】これら3種類のディスク材と、焼結金属材
料からなるピン材料を組合わせて、図1に示すピン−オ
ン摩耗試験機によりピンディスク摩耗試験を実施した。
試験条件としては、3本のピン材料に490N(2MP
a)の荷重をかけた状態でディスク材に押付け、摩擦速
度を2m/秒としてディスク材を2時間回転させ、摩擦
距離として14400m、3本のピン材料をディスク材
上を走行させた。
A pin disk wear test was carried out using a pin-on wear tester shown in FIG. 1 by combining these three types of disk materials and a pin material made of a sintered metal material.
As a test condition, 490N (2MP
It was pressed against the disc material under the load of a), the disc material was rotated at a friction speed of 2 m / sec for 2 hours, and a friction distance of 14400 m and three pin materials were run on the disc material.

【0023】結果は、図2に示すように、β型SiCを
含有する材料において、ディスク材の摩耗量、ピン材料
の摩耗量が共に少なく、耐摩耗性並びに相手材攻撃性に
優れていることが確認された。
As a result, as shown in FIG. 2, in the material containing β-type SiC, both the wear amount of the disc material and the wear amount of the pin material are small, and the wear resistance and the attacking property of the mating material are excellent. Was confirmed.

【0024】実施例1 表1の試験材No.1〜11の成分組成を有するアルミ
ニウム合金を配合、溶解し、予備試験1と同様にして、
アトマイズ温度830〜890℃でアルミニウム合金粉
末を作製し、分級後、立方晶系β型SiCを表1に示す
ように添加混合し、これらの混合粉末を用いて、予備試
験1と同じ工程で、直径60mmの丸棒材を作製した。
Example 1 Test material No. 1 in Table 1 An aluminum alloy having a component composition of 1 to 11 was blended and melted, and in the same manner as in the preliminary test 1,
An aluminum alloy powder was prepared at an atomizing temperature of 830 to 890 ° C., and after classification, cubic β-type SiC was added and mixed as shown in Table 1. Using these mixed powders, in the same step as in the preliminary test 1, A round bar material having a diameter of 60 mm was produced.

【0025】得られた丸棒材を、490℃×4時間→水
冷→210℃×4時間→空冷の条件で熱処理した後、以
下の方法に従って、(1)耐摩耗性及び相手材攻撃性、
(2)耐熱性、(3)熱伝導率(導電率)を測定し、評
価する。
The obtained round bar material was heat-treated under the conditions of 490 ° C. × 4 hours → water cooling → 210 ° C. × 4 hours → air cooling, and then (1) wear resistance and mating material attacking property were measured according to the following method.
(2) Heat resistance and (3) Thermal conductivity (electrical conductivity) are measured and evaluated.

【0026】(1)耐摩耗性及び相手材攻撃性 熱処理後の丸棒材から、直径60mm、厚さ5mmのデ
ィスク材を作製し、図1に示すピン−オン摩耗試験機に
より、予備試験2と同一の条件で、ピンディスク摩耗試
験を実施し、ディスク材の摩耗量およびピン材の摩耗に
よる相手材攻撃性を評価する。その評価基準は以下の通
りである。 耐摩耗性:ディスク材の摩耗量が10μm未満のものは
○、摩耗量が10μm〜20μmのものは△、摩耗量が
20μmを越えるものは× 相手攻撃性:pin材の摩耗量が0.8mm未満のもの
は○、摩耗量が0.8mm〜1.5mmのものは△、摩
耗量が1.5mmを越えるものは×
(1) Abrasion resistance and mating material aggressiveness A disk material having a diameter of 60 mm and a thickness of 5 mm was prepared from a round bar material after heat treatment, and a preliminary test 2 was conducted by a pin-on abrasion tester shown in FIG. Under the same conditions as above, a pin disk wear test is performed to evaluate the amount of wear of the disk material and the aggression of the mating material due to the wear of the pin material. The evaluation criteria are as follows. Abrasion resistance: ○ when the wear amount of the disc material is less than 10 μm, Δ when the wear amount is 10 μm to 20 μm, × when the wear amount exceeds 20 μm Opponent aggression: The wear amount of the pin material is 0.8 mm If the wear amount is less than ◯, the wear amount is 0.8 mm to 1.5 mm, the wear amount is Δ, and if the wear amount exceeds 1.5 mm, is the X mark.

【0027】(2)耐熱性 熱処理後の○棒材から引張試験片を採取し、200℃及
び300℃で引張試験を行うこにより評価する。その評
価基準は以下の通りである。200℃の高温引張試験に
おける耐力が140MPa未満のものは×、140MP
a以上160MPa未満のものは△、160MPa以上
のものは○ (3)熱伝導率(導電率) 熱伝導率は、導電率に比例するので、測定の容易さから
導電率を測定した。その評価基準は以下の通りである。
導電率が20未満のものは×、20以上25未満のもの
は△、25以上のものは○
(2) Heat resistance After heat treatment, a tensile test piece is sampled from a bar and subjected to a tensile test at 200 ° C. and 300 ° C. for evaluation. The evaluation criteria are as follows. If the yield strength in a high temperature tensile test at 200 ° C is less than 140 MPa, x, 140MP
A is a or more and less than 160 MPa, and Δ is 160 MPa or more. (3) Thermal conductivity (conductivity) Since the thermal conductivity is proportional to the conductivity, the conductivity was measured for ease of measurement. The evaluation criteria are as follows.
Conductivity is less than 20, x is more than 20 and less than 25, and is 25 or more.

【0028】結果を表1に示す。表1にみられるよう
に、本発明に従う実施例1〜11の耐摩耗性、相手攻撃
性、耐熱性、熱伝導率(導電率)はいずれも優れている
ことが認められる。
The results are shown in Table 1. As can be seen from Table 1, it is recognized that Examples 1 to 11 according to the present invention are all excellent in wear resistance, opponent attack, heat resistance, and thermal conductivity (electrical conductivity).

【0029】[0029]

【表1】 [Table 1]

【0030】比較例1 表2の試験材No.12〜19の組成を有するアルミニ
ウム合金を配合、溶解し、実施例と同様にして、アルミ
ニウム合金粉末を作製し、分級後、六方晶系α型SiC
または立方晶系β型SiCを表1に示すように添加混合
し、これらの混合粉末を用いて、予備試験1と同じ工程
で、直径60mmの丸棒材を作製した。なお、試験材N
o.12は、950℃〜1000℃の温度でアトマイズ
した。
Comparative Example 1 Test material No. An aluminum alloy having a composition of 12 to 19 was blended and melted, an aluminum alloy powder was prepared in the same manner as in the example, and after classification, hexagonal α-type SiC
Alternatively, cubic β-type SiC was added and mixed as shown in Table 1, and the mixed powders were used to produce a round bar material having a diameter of 60 mm in the same process as in the preliminary test 1. The test material N
o. No. 12 was atomized at a temperature of 950 ° C to 1000 ° C.

【0031】得られた丸棒材を、490℃×4時間→水
冷→210℃×4時間→空冷の条件で熱処理した後、実
施例と同様に、(1)耐摩耗性及び相手材攻撃性、
(2)耐熱性、(3)熱伝導率(導電率)を測定し、評
価する。結果を表2に示す。
The obtained round bar was heat-treated under the conditions of 490 ° C. × 4 hours → water cooling → 210 ° C. × 4 hours → air cooling, and then (1) wear resistance and mating material attack ,
(2) Heat resistance and (3) Thermal conductivity (electrical conductivity) are measured and evaluated. The results are shown in Table 2.

【0032】[0032]

【表2】 《表注》試験材No.19 はAC8A合金鋳物[Table 2] << Table Note >> Test material No. 19 is AC8A alloy casting

【0033】本発明の条件を外れる試験材No.12〜
19は、少なくともいずれかの特性において劣ってい
る。すなわち、試験材No.12は、Tiが2.0%と
上限値より高いため導電率(熱伝導率)が不足してい
る。試験材No.13は、Tiが含まれていないため耐
熱性が劣り、試験材No.14は、Si量が少ないため
耐摩耗性が不足し、且つSiCがα型であるため相手材
攻撃性が大きく、更にTiが含まれていないため耐熱性
が不足した。
Test material Nos. 12-
No. 19 is inferior in at least one characteristic. That is, the test material No. In No. 12, since Ti is 2.0%, which is higher than the upper limit value, the electrical conductivity (thermal conductivity) is insufficient. Test material No. No. 13 has poor heat resistance because it does not contain Ti, and the test material No. In No. 14, wear resistance was insufficient due to a small amount of Si, and since the mating material was aggressive because SiC was α type, heat resistance was insufficient because Ti was not contained.

【0034】試験材No.15は、SiCがα型である
ため相手材攻撃性が大きく、更にTiが含まれていない
ため耐熱性が不足した。試験材No.16は、Fe量が
低いため耐熱性が不足し、更にSiCがα型であるため
相手材攻撃性が大きい。試験材No.17及び18は、
Si量が多いため導電率が不足し、すなわち、熱伝導率
が不足して放熱性が悪くなって高温となり易く、溶損の
おそれが生じる、更にTiを含有しないため耐熱性が不
足した。試験材No.19は、JISAC8Aのアルミ
ニウム合金鋳物であり、SiCが含まれていないため耐
摩耗性が劣る。
Test material No. In No. 15, since the SiC was α type, the mating material had a high attack property, and since Ti was not contained, the heat resistance was insufficient. Test material No. No. 16 has a low Fe content and thus lacks heat resistance. Further, since the SiC is α-type, the mating material is highly attackable. Test material No. 17 and 18 are
Since the amount of Si is large, the electrical conductivity is insufficient, that is, the thermal conductivity is insufficient, the heat dissipation is poor, and the temperature tends to be high, which may cause melting loss. Further, since Ti is not contained, the heat resistance is insufficient. Test material No. No. 19 is a JIS AC8A aluminum alloy casting, and since it does not contain SiC, its wear resistance is poor.

【0035】実施例2 実施例1の試験材No.2の組成を有するアルミニウム
合金を、実施例1と同じ方法で作製し、鍛造によりピス
トン形状に成形し、このピストンについて、以下の方法
に従って耐久試験を実施し、ピストンのリング溝の摩耗
状況を測定して、耐久性を評価した。
Example 2 Test material No. 1 of Example 1 An aluminum alloy having the composition of No. 2 was produced by the same method as in Example 1 and was formed into a piston shape by forging, and the piston was subjected to a durability test according to the following method to measure the wear condition of the ring groove of the piston. Then, the durability was evaluated.

【0036】耐久性試験:製品に加工したピストンをエ
ンジンに組み込み、13000rpmで100時間エン
ジン耐久試験を行い、エンジンの耐久試験後のピストン
のリング溝の摩耗状況(摩耗状況測定部位を図3に示
す)を測定する。リング溝下面の角度γで評価したリン
グ溝の摩耗状況を表2に示す。なお、耐久試験前の角度
γは0.00〜0.01°である。
Durability test: A piston processed into a product is incorporated into an engine, and an engine durability test is performed at 13000 rpm for 100 hours. After the durability test of the engine, the wear condition of the ring groove of the piston (the wear condition measuring portion is shown in FIG. 3). ) Is measured. Table 2 shows the wear condition of the ring groove evaluated by the angle γ of the lower surface of the ring groove. The angle γ before the durability test is 0.00 to 0.01 °.

【0037】[0037]

【表3】 [Table 3]

【0038】表3にみられるように、ピストンのリング
溝の摩耗はほとんど認められず、実用上も優れた耐摩耗
性を示すことが確証された。
As shown in Table 3, almost no wear was observed in the ring groove of the piston, and it was confirmed that the piston ring exhibits excellent wear resistance in practical use.

【0039】[0039]

【発明の効果】以上の通り、本発明によれば、耐摩耗
性、高温強度、高熱伝導率(放熱性)等の諸特性をそな
えたアルミニウム合金及びその製造方法が提供される。
当該アルミニウム合金は、特にエンジンのピストン用材
料として好適に使用できる。
As described above, according to the present invention, there are provided an aluminum alloy having various characteristics such as wear resistance, high temperature strength, and high thermal conductivity (heat dissipation), and a method for producing the same.
The aluminum alloy can be preferably used especially as a material for engine pistons.

【図面の簡単な説明】[Brief description of drawings]

【図1】ピン−オン摩耗試験機の概要を示す図である。FIG. 1 is a diagram showing an outline of a pin-on wear tester.

【図2】ピン−オン摩耗試験機によるディスク材及びピ
ン材の摩耗量を示す図である。
FIG. 2 is a diagram showing wear amounts of a disc material and a pin material by a pin-on wear tester.

【図3】本発明のアルミニウム合金によるピストンのリ
ング溝の摩耗測定位置を示す図である。
FIG. 3 is a diagram showing wear measurement positions of a ring groove of a piston made of the aluminum alloy of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌博 静岡県浜松市高塚町300番地 スズキ株式 会社内 (72)発明者 菊地 昭雄 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 大久保 喜正 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 Fターム(参考) 4K018 AA16 AB04 AC01 BA20 BB01 BB06 BC10 KA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Takahashi             300, Takatsuka-cho, Hamamatsu City, Shizuoka Prefecture Suzuki shares             In the company (72) Inventor Akio Kikuchi             Sumitomo Light Gold 5-11-3 Shimbashi, Minato-ku, Tokyo             Inside the industry (72) Inventor Yoshimasa Okubo             Sumitomo Light Gold 5-11-3 Shimbashi, Minato-ku, Tokyo             Inside the industry F-term (reference) 4K018 AA16 AB04 AC01 BA20 BB01                       BB06 BC10 KA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiC粒子を含み、急冷凝固アルミニウ
ム合金粉末を成形してなるアルミニウム合金であって、
前記SiC粒子は、丸みを帯びた形状の立方晶系β型と
し、含有量が1〜5%(質量%、以下同じ)、平均粒径
が2〜10μmであり、前記アルミニウム合金は、F
e:2〜6%、Si:14%以上20%未満、Mg:
0.2〜2%、Cu:0.5〜3%及びTi:0.01
〜0.05%を含み、残部が不可避的不純物からなるこ
とを特徴とする耐摩耗性、耐熱性並びに熱伝導性に優れ
たアルミニウム合金。
1. An aluminum alloy containing SiC particles and formed by molding a rapidly solidified aluminum alloy powder, comprising:
The SiC particles are cubic β type having a rounded shape, the content is 1 to 5% (mass%, the same hereinafter), the average particle size is 2 to 10 μm, and the aluminum alloy is F
e: 2 to 6%, Si: 14% or more and less than 20%, Mg:
0.2-2%, Cu: 0.5-3% and Ti: 0.01
An aluminum alloy having excellent wear resistance, heat resistance and thermal conductivity, characterized in that it contains ˜0.05% and the balance is unavoidable impurities.
【請求項2】 請求項1記載のアルミニウム合金の急冷
凝固粉末と請求項1記載のSiC粒子とを混合し、該混
合粉末を300℃以上で脱ガス処理した後、固化するこ
とを特徴とする耐摩耗性、耐熱性並びに熱伝導性に優れ
たアルミニウム合金の製造方法。
2. The rapidly solidified powder of the aluminum alloy according to claim 1 is mixed with the SiC particles according to claim 1, the mixed powder is degassed at 300 ° C. or higher, and then solidified. A method for producing an aluminum alloy having excellent wear resistance, heat resistance and thermal conductivity.
JP2001313867A 2001-10-11 2001-10-11 Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof Pending JP2003119531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313867A JP2003119531A (en) 2001-10-11 2001-10-11 Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313867A JP2003119531A (en) 2001-10-11 2001-10-11 Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003119531A true JP2003119531A (en) 2003-04-23

Family

ID=19132273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313867A Pending JP2003119531A (en) 2001-10-11 2001-10-11 Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003119531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072474A (en) * 2010-09-29 2012-04-12 Sumitomo Electric Sintered Alloy Ltd Alloy for cylinder sleeve and cylinder sleeve using the same
CN102618740A (en) * 2011-12-27 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 Silicon carbide reinforced aluminum-based composite material and its preparation method
CN107130143A (en) * 2017-05-16 2017-09-05 苏州莱特复合材料有限公司 A kind of high volume fraction grain enhanced aluminum-base compound material and preparation method thereof
CN111206173A (en) * 2019-11-05 2020-05-29 中国电子科技集团公司第十六研究所 Piston material of Stirling refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072474A (en) * 2010-09-29 2012-04-12 Sumitomo Electric Sintered Alloy Ltd Alloy for cylinder sleeve and cylinder sleeve using the same
CN102618740A (en) * 2011-12-27 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 Silicon carbide reinforced aluminum-based composite material and its preparation method
CN107130143A (en) * 2017-05-16 2017-09-05 苏州莱特复合材料有限公司 A kind of high volume fraction grain enhanced aluminum-base compound material and preparation method thereof
CN111206173A (en) * 2019-11-05 2020-05-29 中国电子科技集团公司第十六研究所 Piston material of Stirling refrigerator

Similar Documents

Publication Publication Date Title
EP0144898B1 (en) Aluminum alloy and method for producing same
JPH0120215B2 (en)
JP3304021B2 (en) Copper alloy with excellent high-temperature wear resistance
JP2003119531A (en) Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof
JPH029099B2 (en)
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JPH02129338A (en) Wear-resistant aluminum alloy
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS58141356A (en) Wear resistant sintered aluminum alloy
JP2745699B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion
JPH06172903A (en) Aluminum matrix composite with high heat resistance and high wear resistance
JP2745696B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2697171B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JPH04131352A (en) Al-si-mg sintered alloy having excellent wear resistance
JP3179095B2 (en) Valve train members for internal combustion engines
CA3224244A1 (en) Powder metal composition with aluminum nitride mmc
JP3337087B2 (en) Copper alloy with excellent high-temperature wear resistance
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPH10140265A (en) Wear resistant composite material
JP2000504376A (en) High temperature aluminum material, especially aluminum material for piston
JPH04131339A (en) Sintered copper-base alloy excellent in wear resistance
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture