JPH02129338A - Wear-resistant aluminum alloy - Google Patents
Wear-resistant aluminum alloyInfo
- Publication number
- JPH02129338A JPH02129338A JP28198388A JP28198388A JPH02129338A JP H02129338 A JPH02129338 A JP H02129338A JP 28198388 A JP28198388 A JP 28198388A JP 28198388 A JP28198388 A JP 28198388A JP H02129338 A JPH02129338 A JP H02129338A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- wear
- wear resistance
- aluminum alloy
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 239000000919 ceramic Substances 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 10
- 230000005496 eutectics Effects 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000011856 silicon-based particle Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は例えば冷凍・空調用ロータリ圧縮機の仕切板や
ローリングピストン等の摺動部材として好適な耐摩耗ア
ルミニウム合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wear-resistant aluminum alloy suitable for sliding members such as partition plates and rolling pistons of rotary compressors for refrigeration and air conditioning.
従来の耐摩耗アルミニウム合金として、ケイ素約20%
までの高ケイ素鋳物合金が一般に用いられており、硬質
の初晶及び共晶Si粒子をアルミニウム合金マトリック
ス中に分散させることにより耐摩耗性を得ている。Approximately 20% silicon as a conventional wear-resistant aluminum alloy
High silicon casting alloys are commonly used, with wear resistance achieved by dispersing hard primary and eutectic Si particles in an aluminum alloy matrix.
このような従来の耐摩耗アルミニウム合金では次の不具
合がある。Such conventional wear-resistant aluminum alloys have the following drawbacks.
(1)速度、荷重等の摺動条件及び潤滑条件が厳しい条
件下では、耐摩耗性及び耐焼付性が不足している。(1) Wear resistance and seizure resistance are insufficient under severe sliding conditions such as speed and load and lubrication conditions.
(2) アルミ合金は熱膨張係数が約20 X 10
−’ /”Cで、鉄系材料の約12 X 10−’/’
Cに比べて大きく、機械構成部品として両者を組み合せ
て用いる場合に問題となる。(2) The thermal expansion coefficient of aluminum alloy is approximately 20 x 10
-'/''C, about 12 x 10-'/' of iron-based materials
It is larger than C, which poses a problem when the two are used in combination as a mechanical component.
(3) ケイ素含有量20wt%以上の高ケイ素アル
ミ合金の製造に際して溶解鋳造法等では初晶及び共晶S
i粒が粗大化し、機械的性質が低下し実用的でない。ま
た、セラミック硬質粒子の複合化が難しい。(3) When manufacturing high-silicon aluminum alloys with a silicon content of 20 wt% or more, primary crystal and eutectic S
It is not practical because the grains become coarse and the mechanical properties deteriorate. In addition, it is difficult to compose ceramic hard particles.
本発明は、従来合金の前記不具合点に鑑みてなされたも
ので十分な耐摩性、耐焼付性を有し、熱膨張係数が鉄系
釜みに小さくしかも製造が容易な耐摩耗アルミニウム合
金の提供を目的としている。The present invention was made in view of the above-mentioned disadvantages of conventional alloys, and provides a wear-resistant aluminum alloy that has sufficient wear resistance and seizure resistance, has a coefficient of thermal expansion smaller than iron-based pots, and is easy to manufacture. It is an object.
そのため本発明は、Si 20〜40 %、Cu1〜4
%、Mg1〜2%、Fe及びNiのうち少なくとも1種
類以上5〜10チ、残部実質的にAtからなるアルミニ
ウム合金中にセラミックス粒子を5〜20%含有させた
事を特徴とする耐摩耗アルミニウム合金とした。Therefore, in the present invention, Si 20-40%, Cu1-4
%, 1 to 2% Mg, 5 to 10% of at least one of Fe and Ni, and the remainder substantially At, containing 5 to 20% of ceramic particles. It was made into an alloy.
以下、本発明の限定理由を示す。 The reasons for the limitations of the present invention will be shown below.
(1) Si 20〜40チ
Siは熱膨張を低下させ、また補助的に微細に析出した
初晶及び共晶Si粒子により耐摩耗性を向上きせるため
に含有させる。しかし、20チ未満では熱膨張率の低下
が不十分であり、また逆に40%を越えると靭性が低下
し機械的性質が劣化するため20〜40%とした。(1) Si 20 to 40% Si is contained to reduce thermal expansion and to improve wear resistance by supplementarily finely precipitated primary and eutectic Si particles. However, if it is less than 20 inches, the reduction in the coefficient of thermal expansion is insufficient, and if it exceeds 40%, the toughness decreases and mechanical properties deteriorate, so it is set at 20 to 40%.
(2) Cul 〜4%、 Mg 1−2%CuとM
gは、時効処理により機械的性質、特に引張り強さと耐
力を向上させる。いずれも1%未満ではその効果が不十
分であり、Cuは4%、Mgは2%を超えると延性が低
下するので、Cu 1〜4%、Mg 1〜2チとした。(2) Cul ~4%, Mg 1-2%Cu and M
g improves mechanical properties, especially tensile strength and yield strength, through aging treatment. If any of them is less than 1%, the effect is insufficient, and if Cu exceeds 4% and Mg exceeds 2%, ductility decreases, so Cu was set at 1-4% and Mg was set at 1-2%.
(3) FeおよびNiのうち少なくとも1種類以上
を計5〜10チ、FeとNiは本発明でも最も重要な元
素であり、マトリクス中にFe −At、Ni−Alの
金属間化合物を形成し耐熱性を向上させる。(3) A total of 5 to 10 types of at least one of Fe and Ni, Fe and Ni are the most important elements in the present invention, and form intermetallic compounds of Fe-At and Ni-Al in the matrix. Improves heat resistance.
しかし、総計での含有量が5%未満では強度や耐熱性が
不十分であり、逆に10%を超えると延性を低下させる
ため、FeまたはNiの総量を5〜10%とした。However, if the total content is less than 5%, the strength and heat resistance will be insufficient, and if it exceeds 10%, the ductility will decrease, so the total content of Fe or Ni is set to 5 to 10%.
(4) セラミックス粒子5〜20%セラミックス粒
子としては、AムOs、Sac、S l5Na等の硬質
粒子があり、これを前記の合金中に分散・複合化させて
耐摩耗性を向上させるとともに本発明合金全体の熱膨張
を低下させる。(4) Ceramic particles 5 to 20% Ceramic particles include hard particles such as Am Os, Sac, and SlNa, which are dispersed and composited in the above alloy to improve wear resistance and to improve wear resistance. Reduces thermal expansion of the overall invention alloy.
複合率が5重量%未満では十分な耐摩耗性が得られず、
20%超えるとセラミックス粒子が凝集して均一分散組
織が得られにくく機械的性質を低下させるため複合率を
5〜20%とした。If the composite ratio is less than 5% by weight, sufficient wear resistance cannot be obtained,
If it exceeds 20%, the ceramic particles will aggregate, making it difficult to obtain a uniformly dispersed structure and reducing mechanical properties, so the composite ratio was set at 5 to 20%.
以下、本発明に係る合金の好ましい製造法について説明
する。Hereinafter, a preferred method for manufacturing the alloy according to the present invention will be explained.
まず、Si 20〜40%、Cu1〜4%、Mg1〜2
%、並びにFe又はNiの総量が5〜10%、残部実質
的にアルミニウムからなる粒径100メツシユ以下のア
ルミニウム合金粉末に、Aム08、SiC%51sNa
等の粒径2〜30μmのセラミックス粒子を5〜20チ
の割合で混入させ、ミキサーを用いて十分に攪拌混合す
る。First, Si 20-40%, Cu1-4%, Mg1-2
%, and the total amount of Fe or Ni is 5 to 10%, the balance is substantially aluminum, and the aluminum alloy powder has a particle size of 100 mesh or less, Am08, SiC%
5 to 20 pieces of ceramic particles having a particle size of 2 to 30 μm are mixed in, and the mixture is sufficiently stirred and mixed using a mixer.
次に、その混合粉を純アルミニウム缶に封入し、1〜2
ton/cfflの加圧力でプレスを行ない成形体と
する。1 torV’cj以上とすることにより粉体間
の気孔を極力低減させ密着を十分なものとすることがで
き、次工程の焼結工程での焼結晶の性能を向上させるこ
とができる。また、2 ton/c(以下に保持するこ
とにより封入管強度等の問題にわずられされることはな
いというメリットがある。Next, the mixed powder is sealed in a pure aluminum can, and 1 to 2
Pressing is performed with a pressure of ton/cffl to form a molded body. By setting the value to 1 torV'cj or more, it is possible to reduce the pores between the powders as much as possible to ensure sufficient adhesion, and it is possible to improve the performance of the sintered crystal in the next sintering process. Furthermore, by keeping the pressure below 2 ton/c (2 ton/c), there is an advantage that problems such as the strength of the sealed tube will not be affected.
上記プレス成形により成形体を得た稜、成形体を450
〜500“Cで1〜1.5時間加熱後押し出し加工比(
面積比) 10〜15で押し出し加工を施こしビレット
を得る。The edge of the molded body obtained by the above press molding, the molded body is 450
Heating at ~500"C for 1-1.5 hours Push-out processing ratio (
Extrusion processing is performed at an area ratio of 10 to 15 to obtain a billet.
加熱温度を450℃以上とすることにより、焼結が十分
に行われ機械的性質も十分確保できるとともに押し出し
抵抗も低く加工性を確保できる。また500℃以下とす
ることによりアルミニウム合金粉末中の微細析出Siの
粒成長を抑制し、顕著な機械的性質を確保できるメリッ
トがある。By setting the heating temperature to 450°C or higher, sintering can be sufficiently performed and mechanical properties can be sufficiently ensured, and extrusion resistance can also be low and workability can be ensured. Furthermore, by setting the temperature to 500° C. or lower, grain growth of finely precipitated Si in the aluminum alloy powder can be suppressed, which has the advantage of ensuring outstanding mechanical properties.
押し出し加工比を10以上とすることにより、気孔等の
欠陥を消滅させ、合金粉表面の酸化皮膜を分断させて、
マトリクスの密着をよくし顕著な機械的性質を確保でき
る。また、15以下とすることにより押し出し抵抗を小
さく保ちビレット表面のクラック増加を抑制しすぐれた
加工性を確保できる。By setting the extrusion processing ratio to 10 or more, defects such as pores are eliminated, and the oxide film on the surface of the alloy powder is divided,
Improves matrix adhesion and ensures outstanding mechanical properties. In addition, by setting it to 15 or less, it is possible to keep the extrusion resistance low, suppress the increase in cracks on the billet surface, and ensure excellent workability.
最後に、押し出加工にて得られたビレ、ットにT6熱処
理を施こす。T6熱処理とはJISに規定されていると
おり、溶体化処理を500±10℃、5十0.5時間保
持後水冷し、180±10°C18±0.5時間保持後
空冷して行う。Finally, the fillet obtained by extrusion processing is subjected to T6 heat treatment. T6 heat treatment is performed by holding solution treatment at 500±10° C. for 500.5 hours, followed by water cooling, and holding at 180±10° C. for 18±0.5 hours, followed by air cooling, as specified in JIS.
以下、具体的な実施例により本発明を説明する。The present invention will be explained below using specific examples.
まず第1表に示すSi含有量20〜40%で粒径100
メツシー以下の高Siアルミ合金粉と、粒径2〜30μ
mのセラミック硬質粒子5〜20%−+ミキサーで混合
する。尚、ここでZn、Mnは不純物である。First, the particle size is 100% with a Si content of 20 to 40% as shown in Table 1.
High-Si aluminum alloy powder with a particle size of 2 to 30μ
m ceramic hard particles 5-20%-+ mixed in a mixer. Note that Zn and Mn are impurities here.
その混合粉を純アルミニウム缶に封入し、約1tcn、
Wの加圧力で成型する。成型体を約450℃で1時間加
熱を行ない押し出し比約10で押し出し加工を施こして
ビレットとする。The mixed powder was sealed in a pure aluminum can, about 1tcn,
Mold with a pressure of W. The molded body is heated at about 450° C. for 1 hour and extruded at an extrusion ratio of about 10 to form a billet.
そのビレットを520℃で溶体化処理後170〜180
℃、5時間の時効処理を行ない、本実施例にかかる合金
(以下、本合金という)を得た。After solution treatment of the billet at 520℃, 170 to 180
The alloy according to this example (hereinafter referred to as the present alloy) was obtained by performing aging treatment at ℃ for 5 hours.
第1図に本実施例の金属組織模式図を示す。FIG. 1 shows a schematic diagram of the metal structure of this example.
アルミニウム合金マトリックス1中に微細析出した初晶
及び共晶Si粒子2とセラミック硬質粒子3が均一に分
散複合化することにより耐摩耗性を向上する。Wear resistance is improved by uniformly dispersing and compounding the primary and eutectic Si particles 2 and the ceramic hard particles 3 finely precipitated in the aluminum alloy matrix 1.
第2図に実施例Nα6のS i 30%、アルミナ粒子
10%含有アルミニウム合金の金属組織写真を示す。写
真中の黒色のやや大きな粒子がアルミナ粒子3で、灰色
の小さな粒子が、初晶又は共晶のSi粒子2で、白い部
分がマトリックス1である。FIG. 2 shows a photograph of the metal structure of an aluminum alloy containing 30% Si and 10% alumina particles of Example Nα6. In the photograph, the slightly larger black particles are the alumina particles 3, the smaller gray particles are the primary or eutectic Si particles 2, and the white portion is the matrix 1.
上記の本実施例による効果は次のとおりである。The effects of this embodiment described above are as follows.
(1) 本実施例Nα1〜6の摩耗特性を第3図に示
す。(1) The wear characteristics of Examples Nα1 to Nα6 are shown in FIG.
実施例Nα1の20%Siアルミ合金の摩耗量を100
とすると、高Si化により摩耗量は10〜20となり、
さらにアルミナ(Aム0.)及び炭化ケイ素(SiC)
のセラミック硬質粒子を5%以上複合化すると、摩耗量
は1〜5と大幅に減少する。The wear amount of the 20% Si aluminum alloy of Example Nα1 was 100
Then, due to high Si, the wear amount will be 10 to 20,
Furthermore, alumina (Am0.) and silicon carbide (SiC)
When 5% or more of ceramic hard particles are composited, the amount of wear is significantly reduced to 1 to 5.
(2)本実施例Nα1.5.9のセラミック硬質粒子を
含有しない20〜40チSi合金とNα2.6.10の
Si20〜40%とアルミナ粒子10%を含有する合金
の熱膨張特性を第4図に示す。熱膨張率はSi含有量の
増加に伴なって低下し、さらにアルミナ粒子含有により
低下する。Si20〜40%、アルミナ粒子10%を含
有する本実施例Nα2.5.7の熱膨張率は11〜15
X 10’ /”Cであり、鉄系材料とほぼ同等とな
る。(2) Thermal expansion characteristics of a 20-40% Si alloy with an Nα of 1.5.9, which does not contain ceramic hard particles, and an alloy with an Nα of 2.6.10, which contains 20-40% Si and 10% alumina particles. Shown in Figure 4. The coefficient of thermal expansion decreases as the Si content increases, and further decreases due to the inclusion of alumina particles. The coefficient of thermal expansion of this example Nα2.5.7 containing 20 to 40% Si and 10% alumina particles is 11 to 15.
X 10'/''C, which is almost equivalent to iron-based materials.
表 1 表
*為、)141は不純物
〔発明の効果〕
以上説明したとおり、本発明によれば、摺動条件及び潤
滑条件の厳しい条件下でも優れた耐摩耗性及び耐焼付性
を備えるとともに、鉄系合金との熱膨張差が小さく鉄や
鋼との接合による熱応力の問題を解決でき、更にすぐれ
た機械的性質と製造容易な耐摩耗アルミニウム合金を得
ることができる。Table 1 Table*) 141 is an impurity [Effect of the invention] As explained above, according to the present invention, it has excellent wear resistance and seizure resistance even under severe sliding conditions and lubrication conditions, and It has a small difference in thermal expansion with iron-based alloys, can solve the problem of thermal stress caused by joining with iron or steel, and can provide a wear-resistant aluminum alloy with excellent mechanical properties and easy manufacture.
第1図は本実施例に係る金属組織模式図である。
第2図は本実施例Nα6のSi30%、アルミナ粒子1
0 wt%を含有する合金の金属組織写真である。
第3図は本実施例Nα1〜6の摩耗特性を示すグラフで
ある。
第4図は本実施例Nα1.5.9のSi20〜40%合
金とNQ 2.6.10のアルミナ粒子を10wt%含
有する5t20〜40%合金の熱膨張特性を示すグラフ
である。
1・・・アルミ合金マトリックス、2・・・初晶及び共
晶Si粒子、3・・・セラミック硬質粒子、4・・・摺
動面。FIG. 1 is a schematic diagram of the metal structure according to this example. Figure 2 shows this example Nα6 with 30% Si and 1 alumina particle.
It is a metallographic photograph of an alloy containing 0 wt%. FIG. 3 is a graph showing the wear characteristics of Examples Nα1 to Nα6. FIG. 4 is a graph showing the thermal expansion characteristics of the Si 20-40% alloy with Nα 1.5.9 and the 5t 20-40% alloy containing 10 wt % of alumina particles with NQ 2.6.10. DESCRIPTION OF SYMBOLS 1... Aluminum alloy matrix, 2... Primary and eutectic Si particles, 3... Ceramic hard particles, 4... Sliding surface.
Claims (1)
、Mg1〜2%、並びにFe及びNiのうち少なくとも
1種類以上5〜10%、残部実質的にAlからなるアル
ミニウム合金中にセラミックス粒子を5〜20%含有さ
せたことを特徴とする耐摩耗アルミニウム合金。Si20-40% by weight (hereinafter referred to as %), Cu1-45
, 1 to 2% of Mg, 5 to 10% of at least one of Fe and Ni, and the balance substantially comprised of Al. A wear-resistant aluminum characterized by containing 5 to 20% of ceramic particles in an aluminum alloy. alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28198388A JPH02129338A (en) | 1988-11-08 | 1988-11-08 | Wear-resistant aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28198388A JPH02129338A (en) | 1988-11-08 | 1988-11-08 | Wear-resistant aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02129338A true JPH02129338A (en) | 1990-05-17 |
Family
ID=17646609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28198388A Pending JPH02129338A (en) | 1988-11-08 | 1988-11-08 | Wear-resistant aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02129338A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5374295A (en) * | 1992-03-04 | 1994-12-20 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5409661A (en) * | 1991-10-22 | 1995-04-25 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy |
US5464463A (en) * | 1992-04-16 | 1995-11-07 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5614036A (en) * | 1992-12-03 | 1997-03-25 | Toyota Jidosha Kabushiki Kaisha | High heat resisting and high abrasion resisting aluminum alloy |
JP2007182618A (en) * | 2006-01-10 | 2007-07-19 | Taiheiyo Cement Corp | Synchronizer ring, method for producing the same, and thermal spray powder used in the production |
CN110643861A (en) * | 2019-10-08 | 2020-01-03 | 佛山科学技术学院 | Heat-conducting aluminum alloy and preparation process thereof |
-
1988
- 1988-11-08 JP JP28198388A patent/JPH02129338A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409661A (en) * | 1991-10-22 | 1995-04-25 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy |
US5374295A (en) * | 1992-03-04 | 1994-12-20 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5464463A (en) * | 1992-04-16 | 1995-11-07 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5614036A (en) * | 1992-12-03 | 1997-03-25 | Toyota Jidosha Kabushiki Kaisha | High heat resisting and high abrasion resisting aluminum alloy |
JP2007182618A (en) * | 2006-01-10 | 2007-07-19 | Taiheiyo Cement Corp | Synchronizer ring, method for producing the same, and thermal spray powder used in the production |
CN110643861A (en) * | 2019-10-08 | 2020-01-03 | 佛山科学技术学院 | Heat-conducting aluminum alloy and preparation process thereof |
CN110643861B (en) * | 2019-10-08 | 2021-07-13 | 佛山科学技术学院 | Heat-conducting aluminum alloy and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0669404B1 (en) | Wear-resistant sintered aluminum alloy and method for producing the same | |
JPH0625782A (en) | High ductility aluminum sintered alloy and its manufacture as well as its application | |
JP3940022B2 (en) | Method for producing sintered aluminum alloy | |
JPH02129338A (en) | Wear-resistant aluminum alloy | |
RU2382099C2 (en) | Cast section from brass for manufacturing of rings of synchroniser | |
WO2019023818A1 (en) | Readily cold-formable deformable zinc alloy material, preparation method therefor, and application thereof | |
JPH10226840A (en) | Aluminum alloy for piston | |
JP3865430B2 (en) | Heat and wear resistant magnesium alloy | |
JPH029099B2 (en) | ||
JP3223619B2 (en) | High heat and high wear resistant aluminum alloy, high heat and high wear resistant aluminum alloy powder and method for producing the same | |
JP3920656B2 (en) | High rigidity aluminum alloy containing boron | |
JPH09263867A (en) | Aluminum alloy for casting | |
JPS58141356A (en) | Wear resistant sintered aluminum alloy | |
JP2002309333A (en) | Aluminum alloy, aluminum alloy for plain bearing and plain bearing | |
JPH06172903A (en) | Aluminum matrix composite with high heat resistance and high wear resistance | |
JP3104309B2 (en) | Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness | |
JPH06228697A (en) | Rapidly solidified al alloy excellent in high temperature property | |
JP2003119531A (en) | Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof | |
JPH04202736A (en) | Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging | |
JP2787703B2 (en) | A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion | |
JP6787752B2 (en) | Aluminum alloy member | |
JPH07314118A (en) | Cylinder block and production thereof | |
JP3179095B2 (en) | Valve train members for internal combustion engines | |
JPH05156399A (en) | Al-si alloy excellent in toughness | |
JP2921114B2 (en) | Method for manufacturing hypereutectic Al-Si alloy member having high strength and high toughness |