JP2003117394A - Catalyst for dehydrogenation reaction of ethylbenzene under coexistence of carbon dioxide - Google Patents

Catalyst for dehydrogenation reaction of ethylbenzene under coexistence of carbon dioxide

Info

Publication number
JP2003117394A
JP2003117394A JP2001321788A JP2001321788A JP2003117394A JP 2003117394 A JP2003117394 A JP 2003117394A JP 2001321788 A JP2001321788 A JP 2001321788A JP 2001321788 A JP2001321788 A JP 2001321788A JP 2003117394 A JP2003117394 A JP 2003117394A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
weight
precipitate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001321788A
Other languages
Japanese (ja)
Other versions
JP3752531B2 (en
Inventor
Masahiro Saito
昌弘 斉藤
Isao Takahara
功 高原
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001321788A priority Critical patent/JP3752531B2/en
Publication of JP2003117394A publication Critical patent/JP2003117394A/en
Application granted granted Critical
Publication of JP3752531B2 publication Critical patent/JP3752531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst exhibiting high activity when ethylbenzene is dehydrogenated under coexistence of carbon dioxide to manufacture styrene. SOLUTION: The catalyst for dehydrogenation reaction of ethylbenzene comprises iron oxide, aluminum oxide and cerium oxide as essential components and preferably the contents of the iron oxide, aluminum oxide and cerium oxide are 5-20% wt.%, 65-94 wt.% and 1-15 wt.%, respectively, when the sum total of the catalyst is 100 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エチルベンゼンを
二酸化炭素共存下で脱水素反応させることによりスチレ
ンモノマーを製造するために使用する触媒に関するもの
である。
TECHNICAL FIELD The present invention relates to a catalyst used for producing a styrene monomer by dehydrogenating ethylbenzene in the presence of carbon dioxide.

【0002】[0002]

【従来の技術】従来、スチレンモノマーを工業的に製造
するには、エチルベンゼンを、大量の水蒸気共存下に、
酸化鉄とカリウムを主成分とする触媒上に600℃程度
の温度で接触させる方法が採用されている(触媒、38
巻、7号、572〜579(1996))。しかしなが
ら、この方法は、大量の水蒸気を共存させるために、
エネルギー消費量が大きいこと、スチレンモノマーの
単通収率を高くするために、反応を減圧下で行う必要が
あること、反応中に触媒中のカリウムの揮散がおこる
ことなど、改善すべき点も指摘されている。これらの問
題点を解決するために、本発明者らは、先に水蒸気の代
わりに、二酸化炭素を共存ガスに用いることにより、
従来のプロセスよりエネルギー消費量が低くなる、ス
チレンモノマーの単通収率が高くなる可能性を報告して
いる(Catalysis Today, 55(2000)173-178)。しかしなが
ら、この二酸化炭素を用いる新しい方法においても、優
れた触媒が必要とされており、本発明者らは、既に、酸
化鉄、酸化カルシウムおよび酸化アルミニウムからなる
触媒を開発した(特許第3032816号)。
2. Description of the Related Art Conventionally, in order to industrially produce a styrene monomer, ethylbenzene was added in the presence of a large amount of steam.
A method in which a catalyst containing iron oxide and potassium as main components is contacted at a temperature of about 600 ° C. (catalyst, 38
Vol. 7, No. 572-579 (1996)). However, this method requires a large amount of water vapor to coexist.
There are also points to be improved such as high energy consumption, need to carry out the reaction under reduced pressure in order to increase the single yield of styrene monomer, and volatilization of potassium in the catalyst during the reaction. It has been pointed out. In order to solve these problems, the present inventors previously used carbon dioxide instead of water vapor as a coexisting gas,
It has been reported that the energy consumption is lower than that in the conventional process, and the single yield of styrene monomer may be higher (Catalysis Today, 55 (2000) 173-178). However, even in this new method using carbon dioxide, an excellent catalyst is required, and the present inventors have already developed a catalyst composed of iron oxide, calcium oxide and aluminum oxide (Japanese Patent No. 3032816). .

【0003】[0003]

【発明が解決しようとする課題】本発明は、かかる特許
発明を更に発展・飛躍させたものであり、エチルベンゼ
ンを二酸化炭素共存下で脱水素反応させることによりス
チレンモノマーを製造する方法において、更に高性能な
触媒を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is a further development and leap forward of such a patented invention. In the method for producing a styrene monomer by subjecting ethylbenzene to a dehydrogenation reaction in the presence of carbon dioxide, the method is further improved. An object is to provide a high-performance catalyst.

【0004】[0004]

【課題を解決するための手段】本発明者は、酸化鉄およ
び酸化アルミニウムからなる触媒の性能に及ぼす種々の
添加物の影響を検討した結果、意外にも酸化セリウムを
添加した触媒により、その課題を解決し得ることを見い
出した。
As a result of studying the influence of various additives on the performance of a catalyst composed of iron oxide and aluminum oxide, the present inventor has surprisingly found that the problem is caused by the catalyst containing cerium oxide. Found that it could be solved.

【0005】即ち、本発明によれば、第一に、酸化鉄、
酸化アルミニウムおよび酸化セリウムを必須成分とす
る、二酸化炭素共存下でのエチルベンゼン脱水素反応に
おいて高い性能を示す触媒が提供される。第二に、第一
の発明において、酸化鉄、酸化アルミニウムおよび酸化
セリウムを必須成分とする触媒であって、触媒全体を1
00重量%とするとき、各酸化物の含有量が、上記の順
に5〜30重量%、55〜94重量%、1〜15重量%
であることを特徴とする二酸化炭素共存下でのエチルベ
ンゼン脱水素反応用触媒が提供される。第三に、エチル
ベンゼンを二酸化炭素の存在下、上記第1又は第2記載
の触媒に接触させることを特徴とするスチレンモノマー
の製造方法が提供される。
That is, according to the present invention, firstly, iron oxide,
Provided is a catalyst containing aluminum oxide and cerium oxide as essential components and showing high performance in an ethylbenzene dehydrogenation reaction in the presence of carbon dioxide. Secondly, in the first invention, a catalyst containing iron oxide, aluminum oxide and cerium oxide as essential components, wherein the whole catalyst is 1
When it is set to 00% by weight, the content of each oxide is 5 to 30% by weight, 55 to 94% by weight, and 1 to 15% by weight in the above order.
A catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide is provided. Thirdly, there is provided a method for producing a styrene monomer, which comprises contacting ethylbenzene with the catalyst according to the first or second aspect in the presence of carbon dioxide.

【0006】[0006]

【発明の実施の形態】以下本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0007】本発明の二酸化炭素共存下でのエチルベン
ゼン脱水素反応用触媒成分は、酸化鉄、酸化アルミニウ
ムおよび酸化セリウムを必須成分とすることを特徴とす
る。
The catalyst component for the ethylbenzene dehydrogenation reaction in the coexistence of carbon dioxide of the present invention is characterized by containing iron oxide, aluminum oxide and cerium oxide as essential components.

【0008】本発明の触媒は、二酸化炭素共存下でのエ
チルベンゼン脱水素反応において、前記特許第3032
816号公報記載の発明の触媒よりも更に優れた性能を
発揮する。これは、新たに添加した酸化セリウムの作用
によるものである。酸化セリウムの作用の内容が完全に
は明らかになっているわけではないが、酸化セリウム中
のセリウムの価数が四価から三価との間を容易に往来で
きることにより、反応中の触媒表面を活性状態に保持で
きるものと推察している。なお、セリウムと同じく希土
類元素の一つであるランタンの酸化物を添加しても、酸
化ランタン中のランタンの価数が三価のまま変化しない
ため、触媒の性能は改善されない(後記比較例4参
照)。
The catalyst of the present invention is used in the ethylbenzene dehydrogenation reaction in the coexistence of carbon dioxide as described in Patent No. 3032.
It exhibits even better performance than the catalyst of the invention described in Japanese Patent No. 816. This is due to the action of the newly added cerium oxide. Although the content of the action of cerium oxide is not completely clear, the cerium oxide in cerium oxide can easily move between tetravalent and trivalent, so that the surface of the catalyst during the reaction can be It is speculated that it can be kept active. Even if lanthanum oxide, which is one of rare earth elements similar to cerium, is added, the catalyst performance is not improved because the valence of lanthanum in lanthanum oxide remains trivalent (Comparative Example 4 below). reference).

【0009】各触媒成分の割合は、特に限定されない
が、触媒全体を100重量%とするとき、酸化鉄が5〜
20重量%、酸化アルミニウムが65〜94重量%、酸
化セリウムが1〜15重量%とされる。このような量的
範囲において、組成を反応条件に応じて適切に定めるこ
とにより、その反応条件に適した触媒性能を得ることが
できる。また、本発明の脱水素反応用触媒は、酸化鉄、
酸化アルミニウムおよび酸化セリウムを必須成分とする
が、本発明の反応を損なわない範囲で、他の物質を含ん
でいても良い。このような物質としては、たとえば、酸
化カルシウム、酸化マグネシウム、酸化マンガン、酸化
珪素、酸化ランタン、酸化イットリウムなどが挙げられ
る。
The proportion of each catalyst component is not particularly limited, but when the total amount of the catalyst is 100% by weight, iron oxide is 5 to 5.
20% by weight, 65 to 94% by weight of aluminum oxide, and 1 to 15% by weight of cerium oxide. In such a quantitative range, the catalyst performance suitable for the reaction conditions can be obtained by appropriately determining the composition according to the reaction conditions. Further, the catalyst for dehydrogenation reaction of the present invention, iron oxide,
Aluminum oxide and cerium oxide are essential components, but other substances may be included as long as the reaction of the present invention is not impaired. Examples of such substances include calcium oxide, magnesium oxide, manganese oxide, silicon oxide, lanthanum oxide, and yttrium oxide.

【0010】本発明の触媒成分となる酸化鉄、酸化アル
ミニウムおよび酸化セリウムの原料としては、それぞれ
の硝酸塩、塩酸塩、硫酸鉛、有機酸塩、水酸化物等を用
いることができる。触媒は、共沈法、含浸法、混合法、
逐次沈殿法、アルコキシド法等の方法により、あるい
は、これらの方法を組み合わせた方法により触媒前駆体
を調製し、次いで、触媒前駆体を空気中で焼成すること
により製造できる。触媒前駆体の焼成温度は、特に限定
しないが、300〜1000℃の範囲が好ましく、60
0〜800℃が特に好ましい。
As a raw material of iron oxide, aluminum oxide and cerium oxide which are the catalyst components of the present invention, respective nitrates, hydrochlorides, lead sulfates, organic acid salts, hydroxides and the like can be used. The catalyst is coprecipitation method, impregnation method, mixing method,
It can be produced by preparing a catalyst precursor by a method such as a sequential precipitation method, an alkoxide method, or a combination of these methods, and then calcining the catalyst precursor in air. The firing temperature of the catalyst precursor is not particularly limited, but is preferably in the range of 300 to 1000 ° C., 60
0-800 degreeC is especially preferable.

【0011】このようにして製造された触媒は、そのま
まで、あるいは適当な方法により造粒または打錠成型し
て用いる。触媒の粒子径や形状は、反応方式、反応器の
形状によって任意に選択できる。すなわち、本発明によ
る触媒は、固定床、流動床等いずれの反応方式において
も用いることができる。
The catalyst thus produced is used as it is or after being granulated or tablet-molded by an appropriate method. The particle size and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as fixed bed or fluidized bed.

【0012】本発明による触媒を用いて、エチルベンゼ
ンの脱水素反応によりスチレンを製造する際の反応条件
は、特許第3032816号公報に記載された反応条件
と同様であるが、二酸化炭素のエチルベンゼンに対する
割合は、エチルベンゼン1モルあたり、0.1〜100
モル、好ましくは1〜50モル、反応温度は500〜6
50℃の範囲、好ましくは、530〜630℃、反応圧
力は、加圧、常圧、減圧のいずれでも良く、好ましくは
0.2〜1.5気圧(絶対圧力)である。また、本発明
の触媒は、一定時間使用後に活性が低下した場合には、
空気中で再度焼成することによりその性能を回復させる
ことができる。
The reaction conditions for producing styrene by the dehydrogenation reaction of ethylbenzene using the catalyst of the present invention are the same as those described in Japanese Patent No. 3032816, but the ratio of carbon dioxide to ethylbenzene is the same. Is 0.1 to 100 per mol of ethylbenzene.
Mol, preferably 1 to 50 mol, reaction temperature is 500 to 6
The temperature is in the range of 50 ° C., preferably 530 to 630 ° C., and the reaction pressure may be increased pressure, normal pressure or reduced pressure, and is preferably 0.2 to 1.5 atm (absolute pressure). Further, the catalyst of the present invention, when the activity decreases after a certain period of use,
The performance can be restored by firing again in air.

【0013】[0013]

【実施例】以下、実施例をあげて本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Hereinafter, the features of the present invention will be further clarified by giving examples.

【0014】実施例1 硝酸鉄九水和物8.3g、硝酸アルミニウム九水和物1
02.9g、硝酸セリウム六水和物2.2gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化セリウム(CeO)5重量%
であった。
Example 1 8.3 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
02.9 g and 2.2 g of cerium nitrate hexahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst is as follows: iron oxide 10% by weight, aluminum oxide 85% by weight, cerium oxide (CeO 2 ) 5% by weight.
Met.

【0015】得られた触媒0.4gを反応管に充填し、
二酸化炭素中で反応温度に昇温した後、10容量%のエ
チルベンゼン蒸気および90容量%の二酸化炭素からな
る混合ガスを触媒層に通して、圧力0.1MPa、混合
ガス流量68ml/分、温度550℃の条件下に上記混
合ガスを反応させた。反応生成ガスを−1℃で冷却して
得られた液体成分をガスクロマトグラフで分析した。そ
の結果、反応経過時間6時間後において、スチレン収率
20%、スチレン選択率97%であった(表1参照)。
0.4 g of the obtained catalyst was filled in a reaction tube,
After the temperature was raised to the reaction temperature in carbon dioxide, a mixed gas consisting of 10% by volume of ethylbenzene vapor and 90% by volume of carbon dioxide was passed through the catalyst layer, the pressure was 0.1 MPa, the mixed gas flow rate was 68 ml / min, and the temperature was 550. The mixed gas was reacted under the condition of ° C. The liquid component obtained by cooling the reaction product gas at -1 ° C was analyzed by gas chromatography. As a result, the styrene yield was 20% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1).

【0016】実施例2 硝酸鉄九水和物8.1g、硝酸アルミニウム九水和物1
04.2g、硝酸セリウム六水和物0.9gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム88重量%、酸化セリウム(CeO)2重量%
であった。
Example 2 8.1 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
04.2 g and 0.9 g of cerium nitrate hexahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst is as follows: iron oxide 10% by weight, aluminum oxide 88% by weight, cerium oxide (CeO 2 ) 2% by weight.
Met.

【0017】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率14%、スチレン選択率97%であった(表1参
照)。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 14% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1).

【0018】実施例3 硝酸鉄九水和物8.6g、硝酸アルミニウム九水和物1
00.6g、硝酸セリウム六水和物4.5gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム80重量%、酸化セリウム(CeO)10重量
%であった。
Example 3 8.6 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
00.6 g and 4.5 g of cerium nitrate hexahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 80% by weight of aluminum oxide, and 10% by weight of cerium oxide (CeO 2 ).

【0019】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率18%、スチレン選択率97%であった(表1参
照)。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 18% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1).

【0020】比較例1 硝酸アルミニウム九水和物110.7g、硝酸セリウム
六水和物2.1gを蒸留水に溶解し、300mlの水溶
液を調製し、A液とした。一方、無水炭酸ナトリウム5
2.5gを蒸留水に溶解し、300mlの水溶液を調製
し、B液とした。A液およびB液を、それぞれ、8ml
/分の速度で良く攪拌した800mlの室温の蒸留水
に、同時に滴下して沈殿物を得た。この沈殿物を室温に
て1日間熟成させた後、ろ過、洗浄を行い、沈殿物中の
ナトリウムを除去した。その後、沈殿物を110℃で乾
燥し、空気中、750℃で2時間焼成した。次に、焼成
後の酸化物を圧縮成型後、粉砕し、250〜600μm
に粒度調製して、触媒とした。この触媒の組成は、酸化
アルミニウム95重量%、酸化セリウム5重量%であっ
た。
Comparative Example 1 110.7 g of aluminum nitrate nonahydrate and 2.1 g of cerium nitrate hexahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was used as solution A. On the other hand, anhydrous sodium carbonate 5
2.5 g was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. 8 ml each of solution A and solution B
A precipitate was obtained by simultaneously dropping it into 800 ml of room temperature distilled water that was well stirred at a speed of 1 / min. The precipitate was aged at room temperature for 1 day, filtered and washed to remove sodium from the precipitate. Then, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. Next, the oxide after firing is compression molded and then crushed to 250 to 600 μm.
The particle size was adjusted to a catalyst. The composition of this catalyst was 95% by weight of aluminum oxide and 5% by weight of cerium oxide.

【0021】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率1%、スチレン選択率82%であった(表1参
照)。この結果から、酸化アルミニウムと酸化セリウム
からなる触媒はほとんど活性を示さず、酸化セリウムを
添加した本発明の触媒における酸化セリウムは、酸化鉄
と酸化アルミニウムからなる触媒の性能を高める役割を
果たしていることが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 1% and the styrene selectivity was 82% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst composed of aluminum oxide and cerium oxide shows almost no activity, and the cerium oxide in the catalyst of the present invention to which cerium oxide is added plays a role of enhancing the performance of the catalyst composed of iron oxide and aluminum oxide. I understand.

【0022】比較例2 硝酸鉄九水和物8.1g、硝酸アルミニウム九水和物9
9.7gを蒸留水に溶解し、300mlの水溶液を調製
し、A液とした。一方、無水炭酸ナトリウム51.6g
を蒸留水に溶解し、300mlの水溶液を調製し、B液
とした。A液およびB液を、それぞれ、8ml/分の速
度で良く攪拌した800mlの室温の蒸留水に、同時に
滴下して沈殿物を得た。この沈殿物を室温にて1日間熟
成させた後、ろ過、洗浄を行い、沈殿物中のナトリウム
を除去した。その後、沈殿物を110℃で乾燥し、空気
中、750℃で2時間焼成した。次に、焼成後の酸化物
を圧縮成型後、粉砕し、250〜600μmに粒度調製
して、触媒とした。この触媒の組成は、酸化鉄10重量
%、酸化アルミニウム90重量%であった。
Comparative Example 2 8.1 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 9
9.7 g was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, anhydrous sodium carbonate 51.6g
Was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 1 day, filtered and washed to remove sodium from the precipitate. Then, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide and 90% by weight of aluminum oxide.

【0023】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率11%、スチレン選択率96%であった(表1参
照)。この結果から、酸化セリウムを添加していない触
媒は、酸化セリウムを添加した本発明の触媒より触媒活
性が低いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 11% and the styrene selectivity was 96% after the reaction elapsed time of 6 hours (see Table 1). From this result, it can be seen that the catalyst to which cerium oxide is not added has lower catalytic activity than the catalyst of the present invention to which cerium oxide is added.

【0024】比較例3 硝酸鉄九水和物8.1g、硝酸アルミニウム九水和物9
9.7g、硝酸カルシウム四水和物3.4gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム51.6gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化カルシウム5重量%であった。
Comparative Example 3 Iron nitrate nonahydrate 8.1 g, Aluminum nitrate nonahydrate 9
9.7 g and calcium nitrate tetrahydrate (3.4 g) were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 51.6 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of calcium oxide.

【0025】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率13%、スチレン選択率97%であった(表1参
照)。この結果から、酸化カルシウムを添加した触媒
(既発明の触媒)は、酸化セリウムを添加した本発明の
触媒より触媒活性が低いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 13% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From these results, it is understood that the catalyst to which calcium oxide is added (catalyst of the present invention) has lower catalytic activity than the catalyst of the present invention to which cerium oxide is added.

【0026】比較例4 硝酸鉄九水和物8.3g、硝酸アルミニウム九水和物1
02.9g、硝酸ランタン六水和物2.2gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム51.6gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化ランタン5重量%であった。
Comparative Example 4 8.3 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
02.9 g and lanthanum nitrate hexahydrate 2.2 g were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. On the other hand, 51.6 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of lanthanum oxide.

【0027】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率12%、スチレン選択率97%であった(表1参
照)。この結果から、酸化ランタンを添加した触媒は、
酸化セリウムを添加した本発明の触媒より触媒活性が低
いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 12% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst to which lanthanum oxide was added was
It can be seen that the catalytic activity is lower than that of the catalyst of the present invention to which cerium oxide is added.

【0028】比較例5 硝酸鉄九水和物8.3g、硝酸アルミニウム九水和物1
02.3g、オキシ硝酸ジルコニウム二水和物1.8g
を蒸留水に溶解し、300mlの水溶液を調製し、A液
とした。一方、無水炭酸ナトリウム52.1gを蒸留水
に溶解し、300mlの水溶液を調製し、B液とした。
A液およびB液を、それぞれ、8ml/分の速度で良く
攪拌した800mlの室温の蒸留水に、同時に滴下して
沈殿物を得た。この沈殿物を室温にて1日間熟成させた
後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去し
た。その後、沈殿物を110℃で乾燥し、空気中、75
0℃で2時間焼成した。次に、焼成後の酸化物を圧縮成
型後、粉砕し、250〜600μmに粒度調製して、触
媒とした。この触媒の組成は、酸化鉄10重量%、酸化
アルミニウム85重量%、酸化ジルコニウム5重量%で
あった。
Comparative Example 5 8.3 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
02.3 g, zirconium oxynitrate dihydrate 1.8 g
Was dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. On the other hand, anhydrous sodium carbonate (52.1 g) was dissolved in distilled water to prepare an aqueous solution (300 ml), which was used as solution B.
The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 1 day, filtered and washed to remove sodium from the precipitate. Then, the precipitate is dried at 110 ° C. and dried in air at 75 ° C.
It was calcined at 0 ° C. for 2 hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide and 5% by weight of zirconium oxide.

【0029】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率10%、スチレン選択率97%であった(表1参
照)。この結果から、酸化ジルコニウムを添加した触媒
は、酸化セリウムを添加した本発明の触媒より触媒活性
が低いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 10% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From these results, it can be seen that the catalyst containing zirconium oxide has a lower catalytic activity than the catalyst containing cerium oxide according to the present invention.

【0030】比較例6 硝酸鉄九水和物8.2g、硝酸アルミニウム九水和物1
01.2g、硝酸亜鉛六水和物3.0gを蒸留水に溶解
し、300mlの水溶液を調製し、A液とした。一方、
無水炭酸ナトリウム51.9gを蒸留水に溶解し、30
0mlの水溶液を調製し、B液とした。A液およびB液
を、それぞれ、8ml/分の速度で良く攪拌した800
mlの室温の蒸留水に、同時に滴下して沈殿物を得た。
この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄
を行い、沈殿物中のナトリウムを除去した。その後、沈
殿物を110℃で乾燥し、空気中、750℃で2時間焼
成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、
250〜600μmに粒度調製して、触媒とした。この
触媒の組成は、酸化鉄10重量%、酸化アルミニウム8
5重量%、酸化亜鉛5重量%であった。
Comparative Example 6 8.2 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
01.2 g and zinc nitrate hexahydrate 3.0 g were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. on the other hand,
Dissolve 51.9 g of anhydrous sodium carbonate in distilled water to give 30
A 0 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively, 800
A precipitate was obtained by simultaneously dropping into ml of distilled water at room temperature.
The precipitate was aged at room temperature for 1 day, filtered and washed to remove sodium from the precipitate. Then, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. Next, the oxide after firing is compression molded and then crushed,
The particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst is 10% by weight of iron oxide and 8% of aluminum oxide.
It was 5% by weight and 5% by weight of zinc oxide.

【0031】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率9%、スチレン選択率97%であった(表1参
照)。この結果から、酸化亜鉛を添加した触媒は、酸化
セリウムを添加した本発明の触媒より触媒活性が低いこ
とが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 9% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, it is understood that the catalyst added with zinc oxide has lower catalytic activity than the catalyst of the present invention added with cerium oxide.

【0032】比較例7 硝酸鉄九水和物8.2g、硝酸アルミニウム九水和物1
01.6g、硝酸ガリウム水和物2.9gを蒸留水に溶
解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム51.6gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化ガリウム5重量%であった。
Comparative Example 7 8.2 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
01.6 g and gallium nitrate hydrate 2.9 g were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. On the other hand, 51.6 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of gallium oxide.

【0033】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率8%、スチレン選択率97%であった(表1参
照)。この結果から、酸化ガリウムを添加した触媒は、
酸化セリウムを添加した本発明の触媒より触媒活性が低
いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 8% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst to which gallium oxide was added was
It can be seen that the catalytic activity is lower than that of the catalyst of the present invention to which cerium oxide is added.

【0034】比較例8 硝酸鉄九水和物8.4g、硝酸アルミニウム九水和物1
03.4g、硝酸ビスマス五水和物1.7gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化ビスマス5重量%であった。
Comparative Example 8 8.4 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
03.4 g and bismuth nitrate pentahydrate 1.7 g were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of bismuth oxide.

【0035】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率12%、スチレン選択率97%であった(表1参
照)。この結果から、酸化ランタンを添加した触媒は、
酸化セリウムを添加した本発明の触媒より触媒活性が低
いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 12% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst to which lanthanum oxide was added was
It can be seen that the catalytic activity is lower than that of the catalyst of the present invention to which cerium oxide is added.

【0036】比較例9 硝酸鉄九水和物8.3g、硝酸アルミニウム九水和物1
02.8g、硝酸バリウム1.4gを蒸留水に溶解し、
300mlの水溶液を調製し、A液とした。一方、無水
炭酸ナトリウム51.5gを蒸留水に溶解し、300m
lの水溶液を調製し、B液とした。A液およびB液を、
それぞれ、8ml/分の速度で良く攪拌した800ml
の室温の蒸留水に、同時に滴下して沈殿物を得た。この
沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行
い、沈殿物中のナトリウムを除去した。その後、沈殿物
を110℃で乾燥し、空気中、750℃で2時間焼成し
た。次に、焼成後の酸化物を圧縮成型後、粉砕し、25
0〜600μmに粒度調製して、触媒とした。この触媒
の組成は、酸化鉄10重量%、酸化アルミニウム85重
量%、酸化バリウム5重量%であった。
Comparative Example 9 Iron nitrate nonahydrate 8.3 g, aluminum nitrate nonahydrate 1
Dissolve 02.8 g and barium nitrate 1.4 g in distilled water,
A 300 ml aqueous solution was prepared and designated as solution A. On the other hand, 51.5 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 300 m
An aqueous solution of 1 was prepared and designated as solution B. Liquid A and liquid B
800 ml well stirred at a rate of 8 ml / min each
At the same time, it was added dropwise to distilled water at room temperature to obtain a precipitate. The precipitate was aged at room temperature for 1 day, filtered and washed to remove sodium from the precipitate. Then, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. Next, the oxide after firing is compression-molded and crushed to obtain 25
The particle size was adjusted to 0 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of barium oxide.

【0037】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率10%、スチレン選択率97%であった(表1参
照)。この結果から、酸化バリウムを添加した触媒は、
酸化セリウムを添加した本発明の触媒より触媒活性が低
いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 10% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst with barium oxide added was
It can be seen that the catalytic activity is lower than that of the catalyst of the present invention to which cerium oxide is added.

【0038】比較例10 硝酸鉄九水和物8.2g、硝酸アルミニウム九水和物1
01.4g、硝酸マンガン六水和物2.7gを蒸留水に
溶解し、300mlの水溶液を調製し、A液とした。一
方、無水炭酸ナトリウム51.9gを蒸留水に溶解し、
300mlの水溶液を調製し、B液とした。A液および
B液を、それぞれ、8ml/分の速度で良く攪拌した8
00mlの室温の蒸留水に、同時に滴下して沈殿物を得
た。この沈殿物を室温にて1日間熟成させた後、ろ過、
洗浄を行い、沈殿物中のナトリウムを除去した。その
後、沈殿物を110℃で乾燥し、空気中、750℃で2
時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉
砕し、250〜600μmに粒度調製して、触媒とし
た。この触媒の組成は、酸化鉄10重量%、酸化アルミ
ニウム85重量%、酸化マンガン5重量%であった。
Comparative Example 10 8.2 g of iron nitrate nonahydrate, aluminum nitrate nonahydrate 1
01.4 g and 2.7 g of manganese nitrate hexahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 51.9 g of anhydrous sodium carbonate was dissolved in distilled water,
A 300 ml aqueous solution was prepared and designated as solution B. Solution A and solution B were well stirred at a rate of 8 ml / min, respectively.
A precipitate was obtained by simultaneously dropping into 00 ml of room temperature distilled water. The precipitate was aged at room temperature for 1 day, filtered,
Washing was performed to remove sodium in the precipitate. After that, the precipitate is dried at 110 ° C. and dried in air at 750 ° C. for 2 hours.
Burned for hours. Next, the calcined oxide was compression-molded, crushed, and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 10% by weight of iron oxide, 85% by weight of aluminum oxide, and 5% by weight of manganese oxide.

【0039】得られた触媒0.4gを反応管に充填し、
実施例1と同様なエチルベンゼンの脱水素反応を行っ
た。その結果、反応経過時間6時間後において、スチレ
ン収率13%、スチレン選択率97%であった(表1参
照)。この結果から、酸化マンガンを添加した触媒は、
酸化セリウムを添加した本発明の触媒より触媒活性が低
いことが判る。
0.4 g of the obtained catalyst was filled in a reaction tube,
The same dehydrogenation reaction of ethylbenzene as in Example 1 was performed. As a result, the styrene yield was 13% and the styrene selectivity was 97% after the reaction elapsed time of 6 hours (see Table 1). From this result, the catalyst added with manganese oxide,
It can be seen that the catalytic activity is lower than that of the catalyst of the present invention to which cerium oxide is added.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明の触媒は、二酸化炭素共存下での
エチルベンゼンの脱水素反応において、長時間その触媒
活性が低下せず極めて高い触媒活性を示すものである。
従って、スチレンモノマーを工業的有利に製造すること
ができる。
INDUSTRIAL APPLICABILITY The catalyst of the present invention exhibits extremely high catalytic activity for a long time in the dehydrogenation reaction of ethylbenzene in the presence of carbon dioxide and does not decrease.
Therefore, the styrene monomer can be produced industrially advantageously.

【手続補正書】[Procedure amendment]

【提出日】平成14年7月23日(2002.7.2
3)
[Submission date] July 23, 2002 (2002.7.2)
3)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】即ち、本発明によれば、第一に、酸化鉄、
酸化アルミニウムおよび酸化セリウムを必須成分とす
る、二酸化炭素共存下でのエチルベンゼン脱水素反応に
おいて高い性能を示す触媒が提供される。第二に、第一
の発明において、酸化鉄、酸化アルミニウムおよび酸化
セリウムを必須成分とする触媒であって、触媒全体を1
00重量%とするとき、各酸化物の含有量が、上記の順
5〜20重量%、65〜94重量%、1〜15重量%
であることを特徴とする二酸化炭素共存下でのエチルベ
ンゼン脱水素反応用触媒が提供される。第三に、エチル
ベンゼンを二酸化炭素の存在下、上記第1又は第2記載
の触媒に接触させることを特徴とするスチレンモノマー
の製造方法が提供される。
That is, according to the present invention, firstly, iron oxide,
Provided is a catalyst containing aluminum oxide and cerium oxide as essential components and showing high performance in an ethylbenzene dehydrogenation reaction in the presence of carbon dioxide. Secondly, in the first invention, a catalyst containing iron oxide, aluminum oxide and cerium oxide as essential components, wherein the whole catalyst is 1
When it is set to 00% by weight, the content of each oxide is 5 to 20% by weight, 65 to 94% by weight , and 1 to 15 % by weight in the above order.
A catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide is provided. Thirdly, there is provided a method for producing a styrene monomer, which comprises contacting ethylbenzene with the catalyst according to the first or second aspect in the presence of carbon dioxide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 仁 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4G069 AA03 BA01A BA01B BB04A BB04B BC43A BC43B BC66A BC66B CB18 EA02Y EB18Y FC08 4H006 AA02 AC12 BA08 BA09 BA19 BA30 BC10 BC11 BC18 BE41 4H039 CA21 CC10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hitoshi Inaba             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 4G069 AA03 BA01A BA01B BB04A                       BB04B BC43A BC43B BC66A                       BC66B CB18 EA02Y EB18Y                       FC08                 4H006 AA02 AC12 BA08 BA09 BA19                       BA30 BC10 BC11 BC18 BE41                 4H039 CA21 CC10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化鉄、酸化アルミニウムおよび酸化セリ
ウムを必須成分とすることを特徴とする二酸化炭素共存
下でのエチルベンゼン脱水素反応用触媒。
1. A catalyst for an ethylbenzene dehydrogenation reaction in the presence of carbon dioxide, which comprises iron oxide, aluminum oxide and cerium oxide as essential components.
【請求項2】酸化鉄、酸化アルミニウムおよび酸化セリ
ウムを必須成分とする金属酸化物で構成された触媒であ
って、触媒全体を100重量%とするとき、各酸化物の
含有量が、上記の順に5〜20重量%、65〜94重量
%、1〜15重量%であることを特徴とする請求項1記
載の二酸化炭素共存下でのエチルベンゼン脱水素反応用
触媒。
2. A catalyst composed of a metal oxide containing iron oxide, aluminum oxide and cerium oxide as essential components, wherein the content of each oxide is the above when the total catalyst is 100% by weight. The catalyst for ethylbenzene dehydrogenation reaction in the coexistence of carbon dioxide according to claim 1, which is 5 to 20% by weight, 65 to 94% by weight, and 1 to 15% by weight in order.
【請求項3】エチルベンゼンを二酸化炭素の存在下、請
求項1又は2の触媒に接触させることを特徴とするスチ
レンモノマーの製造方法。
3. A method for producing a styrene monomer, which comprises contacting ethylbenzene with the catalyst according to claim 1 or 2 in the presence of carbon dioxide.
JP2001321788A 2001-10-19 2001-10-19 Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide Expired - Lifetime JP3752531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321788A JP3752531B2 (en) 2001-10-19 2001-10-19 Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321788A JP3752531B2 (en) 2001-10-19 2001-10-19 Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide

Publications (2)

Publication Number Publication Date
JP2003117394A true JP2003117394A (en) 2003-04-22
JP3752531B2 JP3752531B2 (en) 2006-03-08

Family

ID=19138946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321788A Expired - Lifetime JP3752531B2 (en) 2001-10-19 2001-10-19 Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide

Country Status (1)

Country Link
JP (1) JP3752531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410221C (en) * 2003-10-14 2008-08-13 国际壳牌研究有限公司 Method of operating a dehydrogenation reactor system
CN110624554A (en) * 2018-06-22 2019-12-31 中国石油天然气股份有限公司 Catalyst for preparing 1, 3-butadiene and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410221C (en) * 2003-10-14 2008-08-13 国际壳牌研究有限公司 Method of operating a dehydrogenation reactor system
CN110624554A (en) * 2018-06-22 2019-12-31 中国石油天然气股份有限公司 Catalyst for preparing 1, 3-butadiene and preparation method and application thereof
CN110624554B (en) * 2018-06-22 2022-07-05 中国石油天然气股份有限公司 Catalyst for preparing 1, 3-butadiene and preparation method and application thereof

Also Published As

Publication number Publication date
JP3752531B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP5102626B2 (en) Highly active and highly stable iron oxide based dehydrogenation catalyst with low titanium concentration and its production and use
JPH04277030A (en) Ethylbenzene dehydrogenation catalyst
KR20070086289A (en) An improved process for the manufacture of an alkenyl aromatic compound under low steam-to-oil process conditions
CN1032119A (en) Dehydrogenation catalyst
TWI746493B (en) Alkyl aromatic compound dehydrogenation catalyst and its manufacturing method and method of manufacturing alkenyl aromatic compound
JP4119980B2 (en) Catalyst for propane dehydrogenation reaction
WO1998039278A1 (en) USE OF Ce/Zr MIXED OXIDE PHASE FOR THE MANUFACTURE OF STYRENE BY DEHYDROGENATION OF ETHYLBENZENE
JP2010516465A (en) Dehydrogenation catalyst, process for its preparation and use thereof
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP3837520B2 (en) Catalyst for CO shift reaction
JP3530937B2 (en) Catalyst for methanol synthesis
JP5258617B2 (en) Method for producing copper catalyst
JP4512748B2 (en) Catalyst for water gas conversion reaction
CN113019391B (en) Catalyst for preparing cyclohexanol and ethanol by hydrogenating cyclohexyl acetate, preparation method and application thereof
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP2833907B2 (en) Ethylbenzene dehydrogenation catalyst and method for producing the same
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
JP4150771B2 (en) Catalyst for cyclohexanol dehydrogenation
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2002265396A (en) Method for manufacturing styrene monomer
EP0452695B1 (en) Production of a catalyst and its use for producing phenol
JPS6361931B2 (en)
JP3032816B2 (en) Method for producing styrene monomer
JP3837487B2 (en) Methanol reforming catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350