JP4119980B2 - Catalyst for propane dehydrogenation reaction - Google Patents

Catalyst for propane dehydrogenation reaction Download PDF

Info

Publication number
JP4119980B2
JP4119980B2 JP2003285709A JP2003285709A JP4119980B2 JP 4119980 B2 JP4119980 B2 JP 4119980B2 JP 2003285709 A JP2003285709 A JP 2003285709A JP 2003285709 A JP2003285709 A JP 2003285709A JP 4119980 B2 JP4119980 B2 JP 4119980B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
precipitate
weight
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003285709A
Other languages
Japanese (ja)
Other versions
JP2005052730A (en
Inventor
昌弘 斉藤
功 高原
和久 村田
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003285709A priority Critical patent/JP4119980B2/en
Publication of JP2005052730A publication Critical patent/JP2005052730A/en
Application granted granted Critical
Publication of JP4119980B2 publication Critical patent/JP4119980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、プロパンを脱水素反応させることによりプロピレンを製造するために使用する触媒に関するものである。   The present invention relates to a catalyst used for producing propylene by dehydrogenating propane.

プロピレンは、ポリプロピレンなどの原料として非常に重要な基礎化学品の一つである。従来、プロピレンを工業的に製造するには、石油の接触分解ガスからの分離、プロパンの脱水素反応などの方法が採用されている。水素非共存下におけるプロパンの脱水素反応に用いる触媒としては、酸化クロムを主成分とする触媒が開発され、工業的に使用されている。(例えば非特許文献1参照)。
しかしながら、環境保全の観点から、酸化クロムを含まない安全で、高性能な触媒の開発が重要な技術開発課題となっている。
Propylene is one of the most important basic chemicals as a raw material for polypropylene and the like. Conventionally, in order to industrially produce propylene, methods such as separation of petroleum from catalytic cracking gas and propane dehydrogenation are employed. As a catalyst used for the dehydrogenation reaction of propane in the absence of hydrogen, a catalyst mainly composed of chromium oxide has been developed and used industrially. (For example, refer nonpatent literature 1).
However, from the viewpoint of environmental conservation, the development of a safe and high-performance catalyst that does not contain chromium oxide is an important technical development issue.

「石油化学プロセス」、31頁〜37頁、石油学会編、講談社発行(2001)。"Petrochemical process", pages 31-37, edited by the Japan Petroleum Institute, published by Kodansha (2001).

本発明は、プロパンを脱水素反応させることによりプロピレンを製造する方法において、環境に優しい、高性能な触媒を提供することを課題とする。   An object of the present invention is to provide an environment-friendly and high-performance catalyst in a method for producing propylene by dehydrogenating propane.

本発明者は、酸化ガリウムを主成分とする触媒に注目し、その触媒性能に及ぼす種々の添加物の影響を検討した結果、意外にも、酸化ガリウム、酸化アルミニウム、さらに、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種を必須成分とすることを特徴とする触媒により、その課題を解決し得ることを見い出した。   As a result of studying the influence of various additives on the catalyst performance, the present inventor unexpectedly found that gallium oxide, aluminum oxide, calcium oxide, and strontium oxide. It has been found that the problem can be solved by a catalyst characterized in that at least one selected from the group consisting of barium oxide, manganese oxide, cerium oxide, lanthanum oxide and yttrium oxide is an essential component.

即ち、この出願によれば、第一に、(1)酸化ガリウム、(2)酸化アルミニウム、及び(3)酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種の酸化物を、必須成分とする触媒であって、触媒全体を100重量%とするとき、各酸化物の含有量が、上記の順に5〜20重量%、60〜94重量%、1〜20重量%であることを特徴とするプロパンの脱水素反応用触媒が提供される。That is, according to this application, first, it is composed of (1) gallium oxide, (2) aluminum oxide, and (3) calcium oxide, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide, and yttrium oxide. A catalyst comprising at least one oxide selected from the group as an essential component, and when the total catalyst is 100% by weight, the content of each oxide is 5 to 20% by weight in the above order, 60 Provided is a catalyst for dehydrogenation of propane, characterized in that it is ˜94 wt% and 1 to 20 wt%.
第二に、プロパンを上記第1に記載の触媒に接触させることを特徴とするプロピレンの製造方法が提供される。Second, there is provided a method for producing propylene, characterized in that propane is brought into contact with the catalyst described in the first.

本発明の触媒は、プロパンの脱水素反応において、安全で、かつ高い触媒活性を示すものである。従って、プロピレンを工業的有利に製造することができる。   The catalyst of the present invention is safe and exhibits high catalytic activity in the propane dehydrogenation reaction. Therefore, propylene can be produced industrially advantageously.

以下本発明を詳細に説明する。
本発明のプロパンの脱水素反応用触媒成分は、(1)酸化ガリウム、(2)酸化アルミニウム、及び(3)酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種を必須成分とすることを特徴とする。
The present invention will be described in detail below.
The catalyst component for the dehydrogenation reaction of propane of the present invention includes (1) gallium oxide, (2) aluminum oxide, and (3) calcium oxide, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide, and yttrium oxide. An essential component is at least one selected from the group consisting of:

本発明の触媒は、プロパンの脱水素反応によるプロピレンの製造において、プロピレン収率およびプロピレン選択率が高く、かつ、触媒上への炭素析出量の少ないという優れた性能を発揮する。   The catalyst of the present invention exhibits excellent performance in producing propylene by dehydrogenation of propane, such as high propylene yield and propylene selectivity, and low carbon deposition on the catalyst.

各触媒成分の割合は、特に限定されないが、触媒全体を100重量%とするとき、(1)酸化ガリウムが5〜20重量%、(2)酸化アルミニウムが60〜94重量%、(3)酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種の酸化物が1〜20重量%とされる。このような量的範囲において、組成を反応条件に応じて適切に定めることにより、その反応条件に適した触媒性能を得ることができる。
また、本発明の脱水素反応用触媒は、(1)酸化ガリウム、(2)酸化アルミニウム、及び(3)酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種の酸化物を必須成分とするが、本発明の触媒の性能を損なわない範囲で、他の物質を含んでいても良い。このような物質としては、たとえば、酸化珪素、活性炭などが挙げられる。
The ratio of each catalyst component is not particularly limited. When the total catalyst is 100% by weight, (1) gallium oxide is 5 to 20% by weight, (2) aluminum oxide is 60 to 94% by weight, and (3) oxidation is performed. At least one oxide selected from the group consisting of calcium, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide and yttrium oxide is 1 to 20% by weight. In such a quantitative range, by appropriately determining the composition according to the reaction conditions, catalyst performance suitable for the reaction conditions can be obtained.
The dehydrogenation reaction catalyst of the present invention comprises (1) gallium oxide, (2) aluminum oxide, and (3) calcium oxide, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide, and yttrium oxide. Although at least one oxide selected from the group is an essential component, it may contain other substances as long as the performance of the catalyst of the present invention is not impaired. Examples of such a substance include silicon oxide and activated carbon.

本発明の触媒成分となる酸化ガリウム、酸化アルミニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムの原料としては、それぞれの硝酸塩、塩酸塩、硫酸塩、有機酸塩、水酸化物等を用いることができる。触媒は、共沈法、含浸法、混合法、逐次沈殿法、アルコキシド法等の方法により、あるいは、これらの方法を組み合わせた方法により触媒前駆体を調製し、次いで、触媒前駆体を空気中で焼成することにより製造できる。触媒前駆体の焼成温度は、特に限定しないが、300〜1000℃の範囲が好ましく、500〜800℃が特に好ましい。   As raw materials for gallium oxide, aluminum oxide, calcium oxide, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide, and yttrium oxide, which are the catalyst components of the present invention, the respective nitrates, hydrochlorides, sulfates, organic acids A salt, a hydroxide, or the like can be used. For the catalyst, a catalyst precursor is prepared by a method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, an alkoxide method, or a combination of these methods. It can be manufactured by firing. Although the calcination temperature of a catalyst precursor is not specifically limited, The range of 300-1000 degreeC is preferable and 500-800 degreeC is especially preferable.

このようにして製造された触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。すなわち、本発明による触媒は、固定床、流動床等いずれの反応方式においても用いることができる。   The catalyst thus produced is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as a fixed bed and a fluidized bed.

本発明による触媒を用いて、プロパンの脱水素反応によりプロピレンを製造する際の反応条件は、反応温度は500〜650℃の範囲、好ましくは、530〜630℃、反応圧力は、加圧、常圧、減圧のいずれでも良く、好ましくは0.2〜1.5気圧(絶対圧力)である。反応開始前に、触媒を反応温度付近において水素で処理することにより、反応開始後の初期段階における触媒性能を改善することができる。また、本発明の触媒は、一定時間使用後に活性が低下した場合には、空気中で再度焼成することによりその性能を回復させることができる。   The reaction conditions for producing propylene by the dehydrogenation reaction of propane using the catalyst according to the present invention are such that the reaction temperature is in the range of 500 to 650 ° C, preferably 530 to 630 ° C, the reaction pressure is increased, Either pressure or reduced pressure may be used, and preferably 0.2 to 1.5 atmospheres (absolute pressure). By treating the catalyst with hydrogen in the vicinity of the reaction temperature before the start of the reaction, the catalyst performance in the initial stage after the start of the reaction can be improved. Further, when the activity of the catalyst of the present invention decreases after use for a certain period of time, its performance can be recovered by firing again in air.

以下、実施例をあげて本発明の特徴とするところをより一層明確にする。
実施例1
Hereinafter, the features of the present invention will be further clarified by giving examples.
Example 1

硝酸ガリウム水和物0.95g、硝酸アルミニウム九水和物14.7g、硝酸カルシウム1.10gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.2gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム(Ga)5重量%、酸化アルミニウム(Al)90重量%、酸化カルシウム(CaO)5重量%であった。 0.95 g of gallium nitrate hydrate, 14.7 g of aluminum nitrate nonahydrate, and 1.10 g of calcium nitrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.2 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of the catalyst, (2 O 3 Ga) 5 wt% gallium oxide, aluminum oxide (Al 2 O 3) 90 wt% and 5 wt% calcium oxide (CaO).

得られた触媒1gを反応管に充填し、アルゴン中で反応温度に昇温した後、10容量%のプロパンおよび90容量%のアルゴンからなる混合ガスを触媒層に通して、圧力0.1MPa、混合ガス流量10ml/分、温度550℃の条件下に上記混合ガスを反応させた。反応生成ガスをガスクロマトグラフで分析した。その結果、反応経過時間9時間後において、プロピレン収率33%、プロピレン選択率82%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり1mgであった(表1参照)。
実施例2
1 g of the obtained catalyst was charged into a reaction tube and heated to a reaction temperature in argon, then a mixed gas consisting of 10% by volume of propane and 90% by volume of argon was passed through the catalyst layer to obtain a pressure of 0.1 MPa, The mixed gas was reacted under the conditions of a mixed gas flow rate of 10 ml / min and a temperature of 550 ° C. The reaction product gas was analyzed by gas chromatography. As a result, after 9 hours of reaction elapsed time, the propylene yield was 33% and the propylene selectivity was 82%, and the amount of carbonaceous material deposited on the catalyst was 1 mg per 1 g of the catalyst amount (see Table 1). .
Example 2

硝酸ガリウム水和物0.97g、硝酸アルミニウム九水和物35.5g、硝酸ストロンチウム0.55gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.3gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化ストロンチウム(SrO)5重量%であった。   0.97 g of gallium nitrate hydrate, 35.5 g of aluminum nitrate nonahydrate, and 0.55 g of strontium nitrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.3 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of strontium oxide (SrO).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率33%、プロピレン選択率80%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり9mgであった(表1参照)。
実施例3
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 33% and the propylene selectivity was 80%, and the amount of carbonaceous material deposited on the catalyst was 9 mg per 1 g of the catalyst amount (see Table 1). .
Example 3

硝酸ガリウム水和物0.98g、硝酸アルミニウム九水和物35.8g、硝酸バリウム0.46gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.4gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化バリウム(BaO)5重量%であった。   0.98 g of gallium nitrate hydrate, 35.8 g of aluminum nitrate nonahydrate, and 0.46 g of barium nitrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.4 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of barium oxide (BaO).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率32%、プロピレン選択率79%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり1mgであった(表1参照)。
実施例4
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction time, the propylene yield was 32% and the propylene selectivity was 79%, and the amount of carbonaceous material deposited on the catalyst was 1 mg per 1 g of the catalyst amount (see Table 1). .
Example 4

硝酸ガリウム水和物0.97g、硝酸アルミニウム九水和物35.3g、硝酸マンガン六水和物0.88gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.7gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化マンガン(MnO)5重量%であった。 0.97 g of gallium nitrate hydrate, 35.3 g of aluminum nitrate nonahydrate, and 0.88 g of manganese nitrate hexahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of manganese oxide (MnO 2 ).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率32%、プロピレン選択率81%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり10mgであった(表1参照)。
実施例5
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 32% and the propylene selectivity was 81%, and the amount of carbonaceous material deposited on the catalyst was 10 mg per gram of catalyst (see Table 1). .
Example 5

硝酸ガリウム水和物0.98g、硝酸アルミニウム九水和物35.8g、硝酸セリウム六水和物0.68gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.5gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化セリウム(CeO)5重量%であった。 0.98 g of gallium nitrate hydrate, 35.8 g of aluminum nitrate nonahydrate, and 0.68 g of cerium nitrate hexahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of cerium oxide (CeO 2 ).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率30%、プロピレン選択率79%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり16mgであった(表1参照)。
実施例6
1 g of the obtained catalyst was charged into a reaction tube, and propane dehydrogenation reaction was carried out in the same manner as in Example 1. As a result, after 9 hours of reaction time, the propylene yield was 30%, the propylene selectivity was 79%, and the amount of carbonaceous material deposited on the catalyst was 16 mg per gram of catalyst (see Table 1). .
Example 6

硝酸ガリウム水和物0.98g、硝酸アルミニウム九水和物35.8g、硝酸ランタン六水和物0.72gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.5gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化ランタン(La)5重量%であった。 0.98 g of gallium nitrate hydrate, 35.8 g of aluminum nitrate nonahydrate, and 0.72 g of lanthanum nitrate hexahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 17.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of lanthanum oxide (La 2 O 3 ).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率30%、プロピレン選択率79%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり19mgであった(表1参照)。
実施例7
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction time, the propylene yield was 30%, the propylene selectivity was 79%, and the amount of carbonaceous material deposited on the catalyst was 19 mg per gram of catalyst (see Table 1). .
Example 7

硝酸ガリウム水和物0.97g、硝酸アルミニウム九水和物35.5g、硝酸イットリウム六水和物0.91gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.5gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化イットリウム(Y)5重量%であった。 0.97 g of gallium nitrate hydrate, 35.5 g of aluminum nitrate nonahydrate, and 0.91 g of yttrium nitrate hexahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of yttrium oxide (Y 2 O 3 ).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率30%、プロピレン選択率78%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり19mgであった(表1参照)。
比較例1
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 30% and the propylene selectivity was 78%, and the amount of carbonaceous material deposited on the catalyst was 19 mg per gram of catalyst (see Table 1). .
Comparative Example 1

硝酸ガリウム水和物0.95g、硝酸アルミニウム九水和物36.5gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.5gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム95重量%であった。   0.95 g of gallium nitrate hydrate and 36.5 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 17.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide and 95% by weight of aluminum oxide.

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率30%、プロピレン選択率74%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり21mgであった(表1参照)。
比較例2
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 30% and the propylene selectivity was 74%, and the amount of carbonaceous material deposited on the catalyst was 21 mg per gram of the catalyst (see Table 1). .
Comparative Example 2

硝酸ガリウム水和物0.97g、硝酸アルミニウム九水和物35.2g、硝酸亜鉛六水和物0.97gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.3gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化亜鉛(ZnO)5重量%であった。   0.97 g of gallium nitrate hydrate, 35.2 g of aluminum nitrate nonahydrate, and 0.97 g of zinc nitrate hexahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.3 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of zinc oxide (ZnO).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率26%、プロピレン選択率72%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり25mgであった(表1参照)。
比較例3
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 26%, the propylene selectivity was 72%, and the amount of carbonaceous material deposited on the catalyst was 25 mg per gram of the catalyst (see Table 1). .
Comparative Example 3

硝酸ガリウム水和物0.98g、硝酸アルミニウム九水和物35.6g、硝酸ジルコニル二水和物0.58gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.4gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化ジルコニウム(ZrO)5重量%であった。 0.98 g of gallium nitrate hydrate, 35.6 g of aluminum nitrate nonahydrate, and 0.58 g of zirconyl nitrate dihydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 17.4 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of zirconium oxide (ZrO 2 ).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率29%、プロピレン選択率75%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり24mgであった(表1参照)。
比較例4
1 g of the obtained catalyst was filled in a reaction tube, and propane dehydrogenation reaction was performed in the same manner as in Example 1. As a result, after 9 hours of reaction elapsed time, the propylene yield was 29%, the propylene selectivity was 75%, and the amount of carbonaceous material deposited on the catalyst was 24 mg per 1 g of the catalyst amount (see Table 1). .
Comparative Example 4

硝酸アルミニウム九水和物37.5gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム17.5gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を、破砕し、250〜600μmに粒度調製して、酸化アルミニウムとした。得られた酸化アルミニウム4.6gに、硝酸ガリウム水和物0.93gおよび硝酸マグネシウム六水和物1.64gを50mlの蒸留水に溶解して得た水溶液を加えて、良く混合した。その後、混合物を110℃で乾燥し、空気中、600℃で2時間焼成した。次に、焼成後の酸化物を、破砕し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化ガリウム5重量%、酸化アルミニウム90重量%、酸化マグネシウム(MgO)5重量%であった。   37.5 g of aluminum nitrate nonahydrate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 17.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the fired oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain aluminum oxide. An aqueous solution obtained by dissolving 0.93 g of gallium nitrate hydrate and 1.64 g of magnesium nitrate hexahydrate in 50 ml of distilled water was added to 4.6 g of the obtained aluminum oxide and mixed well. Thereafter, the mixture was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. Next, the calcined oxide was crushed and the particle size was adjusted to 250 to 600 μm to obtain a catalyst. The composition of this catalyst was 5% by weight of gallium oxide, 90% by weight of aluminum oxide, and 5% by weight of magnesium oxide (MgO).

得られた触媒1gを反応管に充填し、実施例1と同様なプロパンの脱水素反応を行った。その結果、反応経過時間9時間後において、プロピレン収率26%、プロピレン選択率75%であり、触媒上への炭素質物質の析出量は、触媒量1g当たり27mgであった(表1参照)。   1 g of the obtained catalyst was charged into a reaction tube, and propane dehydrogenation reaction was carried out in the same manner as in Example 1. As a result, after 9 hours of reaction time, the propylene yield was 26% and the propylene selectivity was 75%, and the amount of carbonaceous material deposited on the catalyst was 27 mg per gram of the catalyst (see Table 1). .

Figure 0004119980
Figure 0004119980

Claims (2)

(1)酸化ガリウム、(2)酸化アルミニウム、及び(3)酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化セリウム、酸化ランタン、酸化イットリウムからなる群から選ばれた少なくとも1種の酸化物を、必須成分とする金属酸化物で構成された触媒であって、触媒全体を100重量%とするとき、各酸化物の含有量が、上記の順に5〜20重量%、60〜94重量%、1〜20重量%であることを特徴とするプロパンの脱水素反応用触媒。(1) gallium oxide, (2) aluminum oxide, and (3) at least one oxide selected from the group consisting of calcium oxide, strontium oxide, barium oxide, manganese oxide, cerium oxide, lanthanum oxide, and yttrium oxide. , A catalyst composed of metal oxides as essential components, and when the total catalyst is 100 wt%, the content of each oxide is 5 to 20 wt%, 60 to 94 wt% in the above order, A catalyst for dehydrogenation of propane, which is 1 to 20% by weight. プロパンを請求項1に記載の触媒に接触させることを特徴とするプロピレンの製造方法。A method for producing propylene, comprising contacting propane with the catalyst according to claim 1.
JP2003285709A 2003-08-04 2003-08-04 Catalyst for propane dehydrogenation reaction Expired - Lifetime JP4119980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285709A JP4119980B2 (en) 2003-08-04 2003-08-04 Catalyst for propane dehydrogenation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285709A JP4119980B2 (en) 2003-08-04 2003-08-04 Catalyst for propane dehydrogenation reaction

Publications (2)

Publication Number Publication Date
JP2005052730A JP2005052730A (en) 2005-03-03
JP4119980B2 true JP4119980B2 (en) 2008-07-16

Family

ID=34365259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285709A Expired - Lifetime JP4119980B2 (en) 2003-08-04 2003-08-04 Catalyst for propane dehydrogenation reaction

Country Status (1)

Country Link
JP (1) JP4119980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368364A (en) * 2014-11-10 2015-02-25 华玉叶 Preparation method of catalyst for preparing propylene by virtue of propane dehydrogenation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585805B2 (en) * 2007-08-13 2014-09-10 日産自動車株式会社 PM oxidation catalyst and production method thereof
JP2009167171A (en) * 2008-01-11 2009-07-30 Rohm & Haas Co Supported catalyst for conversion of propane to propene and its use in process for that conversion
KR101653429B1 (en) * 2008-11-24 2016-09-01 사우디 베이식 인더스트리즈 코포레이션 Process for oxidative dehydrogenation of paraffinic lower hydrocarbons
CN102451677B (en) * 2011-05-13 2014-04-23 中国石油大学(华东) Catalyst for alkane dehydrogenation and device
US9364815B2 (en) 2013-11-07 2016-06-14 Saudi Basic Industries Corporation Method of preparing an alumina catalyst support and catalyst for dehydrogenation reactions, and its use
CN105233844A (en) * 2015-11-13 2016-01-13 无锡清杨机械制造有限公司 Preparation method of catalyst for preparing propene through propane dehydrogenation
CA3088314A1 (en) * 2018-01-26 2019-08-01 Clariant Corporation Dehydrogenation catalysts and methods for preparing and using them
CN113426437B (en) * 2021-07-16 2023-03-31 广西化工研究院有限公司 Catalyst for preparing propylene by gallium-based propane dehydrogenation and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368364A (en) * 2014-11-10 2015-02-25 华玉叶 Preparation method of catalyst for preparing propylene by virtue of propane dehydrogenation

Also Published As

Publication number Publication date
JP2005052730A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP2815275B2 (en) Alkane dehydrogenation method
JP3339655B2 (en) Catalyst precursor for hydrogenation reaction, method for producing the same, and method for producing alcohol
JP4673531B2 (en) Method for producing phenol and acetone
JP4119980B2 (en) Catalyst for propane dehydrogenation reaction
TW201041841A (en) Method for manufacturing olefin
EP1680385A1 (en) Catalyst for dehydrogenation of hydrocarbons
JPH05245383A (en) Solid-acid alkylation catalyst composition and alkylation process using it
GB1412534A (en) Removing carbonyl compound impurities
US20100081855A1 (en) Semi-Supported Dehydrogenation Catalyst
US6037305A (en) Use of Ce/Zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
EP2111296A1 (en) A dehydrogenation catalyst, process for preparation, and a method of use thereof
JPH10277392A (en) Catalyst for synthesis of methanol
JP2006219375A (en) Method for producing propylene
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2004122063A (en) Catalyst for co shift reaction
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
CN114630885B (en) C 3 -C 5 Paraffin fixed bed dehydrogenation catalyst and carrier for producing same
JP3837487B2 (en) Methanol reforming catalyst
WO2023246892A1 (en) Shaped catalyst body
US4484017A (en) Olefin aromatization process
JP3032816B2 (en) Method for producing styrene monomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

R150 Certificate of patent or registration of utility model

Ref document number: 4119980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term