JP4150771B2 - Catalyst for cyclohexanol dehydrogenation - Google Patents
Catalyst for cyclohexanol dehydrogenation Download PDFInfo
- Publication number
- JP4150771B2 JP4150771B2 JP10067799A JP10067799A JP4150771B2 JP 4150771 B2 JP4150771 B2 JP 4150771B2 JP 10067799 A JP10067799 A JP 10067799A JP 10067799 A JP10067799 A JP 10067799A JP 4150771 B2 JP4150771 B2 JP 4150771B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- cyclohexanol
- oxide
- reaction
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、シクロヘキサノール脱水素反応によるシクロヘキサノン製造用触媒の高性能化に関する。
【0002】
【従来の技術】
従来、シクロヘキサノンを製造するためのシクロヘキサノール脱水素反応には、酸化銅を主体とする触媒が使用されており、触媒性能を向上させるために種々の成分を添加した触媒が周知である。例えば、酸化銅に酸化マグネシウムその他を添加した触媒が旧ソ連邦特許SU1833199号明細書、SU1482907号明細書及びSU697179号明細書、並びに中国特許CN1056067号明細書に記載されている。しかし、これらの触媒に添加されている酸化マグネシウムは、反応物中に含有される水と反応して水酸化物を生成し、この水酸化物が触媒の機械的強度の低下もしくは触媒の崩壊の原因となっている。
【0003】
また、米国特許US4918293号明細書には酸化銅、酸化亜鉛及び酸化アルミニウムを添加した触媒が開示され、欧州特許EP104046号には酸化亜鉛及びアルカリ金属酸化物を添加した触媒が開示されているが、何れの触媒においても重合体などの生成並びにその付着が原因と考えられる触媒の脱水素活性の低下が観察され、このため前記問題を低減・解消する触媒が望まれていた。
【0004】
【発明が解決しようとする課題】
従って、本発明の解決すべき課題は、シクロヘキサノール脱水反応において長時間にわたり高い活性を維持する高性能触媒を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、上述の先行技術を鑑みて鋭意研究を進めた結果、酸化銅、酸化亜鉛及びマグネシウムアルミネートからなる触媒が、シクロヘキサノールの脱水素反応において、長時間高活性を示すことを見出し本発明を完成させた。
【0006】
即ち、本発明は、酸化銅、酸化亜鉛、マグネシウムアルミネート及び酸化アルミニウムからなることを特徴とするシクロヘキサノール脱水素反応用触媒を提供するものである。本発明の触媒においては、触媒中のマグネシウム成分がアルミニウムと化合物を形成しているため、反応物中に含有される水と反応することにより水酸化物を生成することが無く、反応過程中安定した機械的強度を保持しており、性能の安定性にも優れている。
【0007】
【発明の実施の形態】
本発明のシクロヘキサノール脱水素用触媒は、酸化銅、酸化亜鉛及びマグネシウムアルミネートからなる触媒であるが、触媒の全重量を100重量%とするとき各成分の含量は、酸化銅が20〜60重量%、酸化亜鉛が30〜70重量%並びにマグネシウムアルミネートが0.1〜10重量%、好適には0.3〜7重量%である。この範囲外の触媒では、シクロヘキサノール脱水素活性の程度あるいは活性の経時安定性が不十分である。触媒中のマグネシウムアルミネートは、触媒上での重合体の生成などを抑制する作用があると考えられる。なお、本発明の触媒は、更に触媒性能を低下させない他の成分(例えば、酸化アルミニウム、酸化珪素など)を含有することができる。
本発明を更に下記する実施例を参照して説明する。
【0008】
本発明の触媒の製造法の一例を次に示す。本発明の触媒は、公知の共沈法、逐次沈殿法などにより上述の成分の触媒の前駆体である沈殿物を生成させ、次いでこの沈殿物を洗浄して乾燥した後、350〜650℃の温度で焼成することにより製造することができる。触媒の焼成工程において、前駆体の粒径や反応性を適宜調整して、マグネシウムアルミネートを形成させることが肝要である。その他の触媒製造法としては、共沈法と含浸法の組み合わせ等の公知の適当な組み合わせでも製造することが可能である。触媒中における酸化銅、酸化亜鉛及びマグネシウムアルミネートの組成が上記範囲内にあることが重要である。
【0009】
本発明の触媒の成分である銅、亜鉛、マグネシウム及びアルミニウムの原料としては硝酸塩、硫酸塩などの水溶性塩を使用することができる。
【0010】
本発明の触媒は、その形状あるいは粒子径などを特に限定せず、反応方式(気相又は液相)、反応器の形状などに応じて適宜選択することができ、触媒の製造時に調整すれば良い。
【0011】
焼成後の触媒は、反応に使用する前に触媒中の酸化銅を金属銅に予め還元することが必要である。
【0012】
【発明の効果】
本発明の触媒により、シクロヘキサノールの脱水素反応において高い脱水素効率を長時間にわたって得ることができる。
【0013】
以下に実施例を示し、本発明を詳細に説明する。
【0014】
【実施例】
[実施例1](マグネシウムアルミネートが0.1重量%になるように)
硝酸銅三水和物31.9g、硝酸亜鉛六水和物41.3g、硝酸アルミニウム九水和物7.7g及び硝酸マグネシウム六水和物2.2gを蒸留水に溶解して300mlとした溶液Aと、無水炭酸ナトリウム36.7gを蒸留水に溶解して300mlとした溶液Bとを、400gの蒸留水中に毎分7mlの速度で滴下して沈殿物を得た。得られた沈殿物を3日間熟成させ、濾過、洗浄した後に110℃で一昼夜乾燥した。乾燥後の沈殿物を400℃で3時間空気中で焼成して、触媒とした。
【0015】
得られた触媒0.3mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給して300℃で触媒中の酸化銅の還元を行った。触媒を還元した後、反応管にヘリウムとシクロヘキサノール(2重量%の水を含む)を供給し、温度240℃、圧力4kg/cm2G、ヘリウムとシクロヘキサノールのモル比4、並びにシクロヘキサノールの供給速度4.5ml/hの反応条件にて反応を実施した。
【0016】
反応生成物をガスクロマトグラフィにより分析し、シクロヘキサノンの収率を調べた。この結果を表1に示す。
【0017】
[実施例2]
溶液Aに硝酸銅三水和物29.5g、硝酸亜鉛六水和物35.4g、硝酸アルミニウム九水和物7.1g及び硝酸マグネシウム六水和物10.2gを使用し、溶液Bに無水炭酸ナトリウム36.1gを使用し、実施例1と同様にして触媒を得た。得られた触媒0.3mlを用いて、実施例1に準じてシクロヘキサノールの脱水素反応を実施し、次いで反応生成物をガスクロマトグラフィにより分析してシクロヘキサノンの収率を調べた。この結果を表1に示す。
【0018】
[実施例3]
溶液Aに硝酸銅三水和物27.0g、硝酸亜鉛六水和物29.2g、硝酸アルミニウム九水和物6.5g及び硝酸マグネシウム六水和物18.7gを使用し、溶液Bに無水炭酸ナトリウム40.2gを使用し、実施例1と同様にして触媒を得た。得られた触媒0.33mlを用いて、実施例1に準じてシクロヘキサノールの脱水素反応を実施し、次いで反応生成物をガスクロマトグラフィにより分析してシクロヘキサノンの収率を調べた。この結果を表1に示す。
【0019】
[実施例4](マグネシウムアルミネートが数値限定の上限10又は7重量%になるように)
溶液Aに硝酸銅三水和物21.5g、硝酸亜鉛六水和物15.5g、硝酸アルミニウム九水和物6.4g及び硝酸マグネシウム六水和物37.2gを使用し、溶液Bに無水炭酸ナトリウム44.8gを使用し、実施例1と同様にして触媒を得た。得られた触媒0.4mlを用いて、実施例1に準じてシクロヘキサノールの脱水素反応を実施し、次いで反応生成物をガスクロマトグラフィにより分析してシクロヘキサノンの収率を調べた。この結果を表1に示す。
【0020】
[比較例1]
溶液Aに硝酸銅三水和物32.5g、硝酸亜鉛六水和物43.0g及び硝酸アルミニウム九水和物7.9gを使用し、溶液Bに無水炭酸ナトリウム40.2gを使用し、実施例1と同様にして触媒を得た。得られた触媒0.3mlを用いて、実施例1に準じてシクロヘキサノールの脱水素反応を実施し、次いで反応生成物をガスクロマトグラフィにより分析してシクロヘキサノンの収率を調べた。この結果を表1に示す。
【0021】
【表1】
【0022】
表1の結果から、本発明の触媒により、シクロヘキサノールの脱水素反応において高いシクロヘキサノン収率を長期間にわたって得られることが示された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to enhancement of the performance of a catalyst for producing cyclohexanone by cyclohexanol dehydrogenation reaction.
[0002]
[Prior art]
Conventionally, in the cyclohexanol dehydrogenation reaction for producing cyclohexanone, a catalyst mainly composed of copper oxide has been used, and catalysts with various components added to improve the catalyst performance are well known. For example, a catalyst obtained by adding magnesium oxide or the like to copper oxide is described in former USSR patents SU1833199, SU1482907 and SU697179, and Chinese CN1056067. However, the magnesium oxide added to these catalysts reacts with the water contained in the reactants to form hydroxides, which reduce the mechanical strength of the catalyst or collapse the catalyst. It is the cause.
[0003]
In addition, U.S. Pat.No. 4,918,293 discloses a catalyst to which copper oxide, zinc oxide and aluminum oxide are added, and European Patent EP 104046 discloses a catalyst to which zinc oxide and an alkali metal oxide are added. In any catalyst, a decrease in the dehydrogenation activity of the catalyst, which is considered to be caused by the formation and adhesion of a polymer or the like, was observed. Therefore, a catalyst that reduces or eliminates the above problems has been desired.
[0004]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to provide a high-performance catalyst that maintains high activity for a long time in the cyclohexanol dehydration reaction.
[0005]
[Means for Solving the Problems]
As a result of diligent research in view of the above-described prior art, the present inventor has found that a catalyst comprising copper oxide, zinc oxide and magnesium aluminate exhibits high activity for a long time in a cyclohexanol dehydrogenation reaction. The present invention has been completed.
[0006]
That is, the present invention provides a cyclohexanol dehydrogenation catalyst comprising copper oxide, zinc oxide, magnesium aluminate and aluminum oxide. In the catalyst of the present invention, since the magnesium component in the catalyst forms a compound with aluminum, it does not generate hydroxide by reacting with water contained in the reaction product, and is stable during the reaction process. High mechanical stability and excellent performance stability.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The cyclohexanol dehydrogenation catalyst of the present invention is a catalyst comprising copper oxide, zinc oxide and magnesium aluminate. When the total weight of the catalyst is 100% by weight, the content of each component is 20 to 60 copper oxide. % By weight, zinc oxide 30-70% by weight and magnesium aluminate 0.1-10% by weight, preferably 0.3-7% by weight. For catalysts outside this range, the degree of cyclohexanol dehydrogenation activity or the stability over time of the activity is insufficient. The magnesium aluminate in the catalyst is considered to have an action of suppressing the production of a polymer on the catalyst. In addition, the catalyst of this invention can contain the other components (for example, aluminum oxide, silicon oxide, etc.) which do not reduce catalyst performance further.
The invention will be further described with reference to the following examples.
[0008]
An example of the method for producing the catalyst of the present invention is shown below. The catalyst of the present invention generates a precipitate which is a precursor of the catalyst of the above-mentioned components by a known coprecipitation method, a sequential precipitation method, etc., and then the precipitate is washed and dried, and then heated at 350 to 650 ° C. It can manufacture by baking at temperature. In the catalyst firing step, it is important to form the magnesium aluminate by appropriately adjusting the particle size and reactivity of the precursor. As other catalyst production methods, it is possible to produce them by a known appropriate combination such as a combination of a coprecipitation method and an impregnation method. It is important that the composition of copper oxide, zinc oxide and magnesium aluminate in the catalyst is within the above range.
[0009]
Water-soluble salts such as nitrates and sulfates can be used as raw materials for the copper, zinc, magnesium and aluminum components of the catalyst of the present invention.
[0010]
The catalyst of the present invention is not particularly limited in its shape or particle diameter, and can be appropriately selected according to the reaction method (gas phase or liquid phase), the shape of the reactor, etc. good.
[0011]
The catalyst after calcination needs to reduce the copper oxide in the catalyst to metallic copper in advance before use in the reaction.
[0012]
【The invention's effect】
With the catalyst of the present invention, high dehydrogenation efficiency can be obtained over a long period of time in the cyclohexanol dehydrogenation reaction.
[0013]
The following examples illustrate the invention in detail.
[0014]
【Example】
[Example 1] (so that magnesium aluminate is 0.1% by weight)
A solution prepared by dissolving 31.9 g of copper nitrate trihydrate, 41.3 g of zinc nitrate hexahydrate, 7.7 g of aluminum nitrate nonahydrate and 2.2 g of magnesium nitrate hexahydrate in distilled water to make 300 ml A and a solution B obtained by dissolving 36.7 g of anhydrous sodium carbonate in distilled water to 300 ml were dropped into 400 g of distilled water at a rate of 7 ml / min to obtain a precipitate. The resulting precipitate was aged for 3 days, filtered and washed, and then dried at 110 ° C. overnight. The precipitate after drying was calcined in the air at 400 ° C. for 3 hours to obtain a catalyst.
[0015]
0.3 ml of the obtained catalyst was filled into a reaction tube, and a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen) was supplied at a flow rate of 300 ml / min. Reduction was performed. After reducing the catalyst, helium and cyclohexanol (containing 2% by weight of water) were supplied to the reaction tube, the temperature was 240 ° C., the pressure was 4 kg / cm 2 G, the molar ratio of helium to cyclohexanol was 4, and the cyclohexanol The reaction was carried out under reaction conditions of a supply rate of 4.5 ml / h.
[0016]
The reaction product was analyzed by gas chromatography to check the yield of cyclohexanone. The results are shown in Table 1.
[0017]
[Example 2]
In solution A, 29.5 g of copper nitrate trihydrate, 35.4 g of zinc nitrate hexahydrate, 7.1 g of aluminum nitrate nonahydrate and 10.2 g of magnesium nitrate hexahydrate were used. A catalyst was obtained in the same manner as in Example 1 using 36.1 g of sodium carbonate. Using 0.3 ml of the obtained catalyst, a dehydrogenation reaction of cyclohexanol was carried out according to Example 1, and then the reaction product was analyzed by gas chromatography to check the yield of cyclohexanone. The results are shown in Table 1.
[0018]
[Example 3]
In solution A, 27.0 g of copper nitrate trihydrate, 29.2 g of zinc nitrate hexahydrate, 6.5 g of aluminum nitrate nonahydrate and 18.7 g of magnesium nitrate hexahydrate were used. A catalyst was obtained in the same manner as in Example 1 using 40.2 g of sodium carbonate. Using 0.33 ml of the obtained catalyst, cyclohexanol was dehydrogenated according to Example 1, and then the reaction product was analyzed by gas chromatography to examine the yield of cyclohexanone. The results are shown in Table 1.
[0019]
[Example 4] (so that magnesium aluminate has an upper limit of 10 or 7% by weight)
In solution A, 21.5 g of copper nitrate trihydrate, 15.5 g of zinc nitrate hexahydrate, 6.4 g of aluminum nitrate nonahydrate and 37.2 g of magnesium nitrate hexahydrate were used. Using 44.8 g of sodium carbonate, a catalyst was obtained in the same manner as in Example 1. Using 0.4 ml of the obtained catalyst, a dehydrogenation reaction of cyclohexanol was carried out according to Example 1, and then the reaction product was analyzed by gas chromatography to check the yield of cyclohexanone. The results are shown in Table 1.
[0020]
[Comparative Example 1]
Implementation using 32.5 g of copper nitrate trihydrate, 43.0 g of zinc nitrate hexahydrate and 7.9 g of aluminum nitrate nonahydrate for solution A and 40.2 g of anhydrous sodium carbonate for solution B A catalyst was obtained in the same manner as in Example 1. Using 0.3 ml of the obtained catalyst, a dehydrogenation reaction of cyclohexanol was carried out according to Example 1, and then the reaction product was analyzed by gas chromatography to check the yield of cyclohexanone. The results are shown in Table 1.
[0021]
[Table 1]
[0022]
From the results of Table 1, it was shown that a high cyclohexanone yield can be obtained over a long period of time in the dehydrogenation reaction of cyclohexanol by the catalyst of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10067799A JP4150771B2 (en) | 1999-04-07 | 1999-04-07 | Catalyst for cyclohexanol dehydrogenation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10067799A JP4150771B2 (en) | 1999-04-07 | 1999-04-07 | Catalyst for cyclohexanol dehydrogenation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000288395A JP2000288395A (en) | 2000-10-17 |
JP4150771B2 true JP4150771B2 (en) | 2008-09-17 |
Family
ID=14280396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10067799A Expired - Lifetime JP4150771B2 (en) | 1999-04-07 | 1999-04-07 | Catalyst for cyclohexanol dehydrogenation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4150771B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6930219B2 (en) * | 1999-09-07 | 2005-08-16 | Abb Lummus Global Inc. | Mesoporous material with active metals |
FR2878847B1 (en) * | 2004-12-07 | 2007-01-05 | Rhodia Chimie Sa | PROCESS FOR THE PREPARATION OF CYCLOHEXANONE |
KR101659163B1 (en) * | 2013-09-17 | 2016-09-22 | 주식회사 엘지화학 | Preparing method of alkanol |
CN109225281B (en) * | 2018-09-19 | 2022-04-15 | 中国天辰工程有限公司 | Catalyst containing multivalent copper active component, preparation method and application |
-
1999
- 1999-04-07 JP JP10067799A patent/JP4150771B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000288395A (en) | 2000-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108178164B (en) | Hierarchical porous ZSM-5 molecular sieve, preparation method thereof and method for preparing PX catalyst by using same | |
JPS62210057A (en) | Catalyst and its production | |
JP3118565B2 (en) | Catalyst for synthesizing methanol and method for synthesizing methanol | |
GB2049645A (en) | Activated alumina catalyst for the conversion of ethanol to ethylene | |
JP2021130100A (en) | Ammonia decomposition catalyst | |
JP7227564B2 (en) | Catalyst for alcohol synthesis and method for producing alcohol using the same | |
JP4150771B2 (en) | Catalyst for cyclohexanol dehydrogenation | |
CN109289831A (en) | The catalyst of preparing propylene by dehydrogenating propane and preparation method thereof with high anti-carbon | |
JP2022552169A (en) | Catalyst for cycloalkane dehydrogenation and its production and application | |
JPH04305541A (en) | Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor | |
WO2023134779A1 (en) | Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol | |
JP2685130B2 (en) | Ethanol production method | |
JP2813770B2 (en) | Ethanol production method | |
JPS647974B2 (en) | ||
CN106824177B (en) | Catalyst for synthesizing oxalate by CO gas phase, preparation method and application | |
CN113797950B (en) | Catalyst with low-temperature activity in methane oxidative coupling reaction, and preparation method and application thereof | |
JPH039772B2 (en) | ||
JP3636912B2 (en) | Method for producing catalyst for producing ethylene oxide | |
CN109939686B (en) | Catalyst for preparing cis-pinane by hydrogenation | |
JPH0535017B2 (en) | ||
CN111992209A (en) | Catalyst for synthesizing dimethyl oxalate and preparation method and application thereof | |
JP3143744B1 (en) | Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst | |
CN112023962A (en) | Catalyst for methanol synthesis, preparation method thereof and method for synthesizing methanol | |
JPS60257837A (en) | Catalyst for decomposing/reforming methanol and its preparation | |
JP2958994B2 (en) | Methanol dehydrogenation catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050729 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050729 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20050729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |