JP2022552169A - Catalyst for cycloalkane dehydrogenation and its production and application - Google Patents

Catalyst for cycloalkane dehydrogenation and its production and application Download PDF

Info

Publication number
JP2022552169A
JP2022552169A JP2022520737A JP2022520737A JP2022552169A JP 2022552169 A JP2022552169 A JP 2022552169A JP 2022520737 A JP2022520737 A JP 2022520737A JP 2022520737 A JP2022520737 A JP 2022520737A JP 2022552169 A JP2022552169 A JP 2022552169A
Authority
JP
Japan
Prior art keywords
catalyst
hours
group viii
sulfur
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022520737A
Other languages
Japanese (ja)
Other versions
JP7411078B2 (en
Inventor
潮 高
建任 曾
Original Assignee
ハイケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイケム株式会社 filed Critical ハイケム株式会社
Publication of JP2022552169A publication Critical patent/JP2022552169A/en
Application granted granted Critical
Publication of JP7411078B2 publication Critical patent/JP7411078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

シクロアルカン脱水素用触媒は、アルミナ担体と、第VIII族元素と、Sn元素と、硫黄元素と、アルカリ金属から選択される少なくとも1種のドープ金属とを含み、第VIII族元素及びSn元素は、VIII3Sn金属間化合物の形態で存在する。また、上記触媒の製造及びそのシクロアルカン脱水素における用途に関する。【選択図】図1The catalyst for cycloalkane dehydrogenation comprises an alumina support, a Group VIII element, Sn element, sulfur element, and at least one dope metal selected from alkali metals, wherein the Group VIII element and Sn element are , VIII3Sn in the form of intermetallic compounds. It also relates to the preparation of said catalyst and its use in cycloalkane dehydrogenation. [Selection drawing] Fig. 1

Description

本発明は、シクロアルカン脱水素用触媒及びその製造方法に関し、さらに、上記触媒のシクロアルカン脱水素における用途に関する。 TECHNICAL FIELD The present invention relates to a catalyst for cycloalkane dehydrogenation and a method for producing the same, and further to use of the above catalyst in cycloalkane dehydrogenation.

水素は、清潔で、効率的な環境に優しいエネルギーとして、21世紀で発展可能性が最も高いエネルギーと見なされ、その開発及び利用が既に世界的に注目されている。現在、水素ガスの貯蔵技術には大きく分けて、主に物理的水素貯蔵、吸着式水素貯蔵及び化学的水素貯蔵の三種類がある。物理的水素貯蔵の技術は、水素貯蔵装置に対して厳しい要件及び過酷な操作条件を要求するため、この技術の使用コストが高い。吸着式水素貯蔵及び化学的水素貯蔵は、現在の研究の重点である。化学的水素貯蔵において、液体有機ハイドライドによる水素貯蔵の技術は、不飽和液体芳香族炭化水素とその対応するシクロアルカンとの間の水素化-脱水素の可逆反応サイクルを用いて、水素ガスの貯蔵及び放出を実現する。液体有機ハイドライドの水素貯蔵能力は、高圧圧縮水素貯蔵法及び金属水素化物水素貯蔵法よりもはるかに高い。液体有機ハイドライドにおいて、シクロアルカンは、常温常圧で液体状態であるため、該技術は、既存の石油化学品の輸送方法で遠距離輸送を実現することができる。しかしながら、この過程における脱水素反応は可逆的であるため、水素生成速度が低く、かつ副反応が発生するため、生成された水素ガスの純度が高くなく、分離コストを増加させる。したがって、高い安定性、高い転化率及び高い選択性を備える脱水素触媒の開発は、液体有機ハイドライドによる水素貯蔵技術の応用の鍵となる。 As a clean, efficient and environmentally friendly energy, hydrogen is regarded as the energy with the highest potential for development in the 21st century, and its development and utilization have already attracted worldwide attention. At present, hydrogen gas storage technologies are mainly classified into three types: physical hydrogen storage, adsorption hydrogen storage and chemical hydrogen storage. The technology of physical hydrogen storage places stringent requirements and harsh operating conditions on the hydrogen storage device, making the technology costly to use. Adsorption hydrogen storage and chemical hydrogen storage are the focus of current research. In chemical hydrogen storage, the technique of hydrogen storage with liquid organic hydrides uses a reversible reaction cycle of hydrogenation-dehydrogenation between unsaturated liquid aromatic hydrocarbons and their corresponding cycloalkanes to store hydrogen gas. and release. The hydrogen storage capacity of liquid organic hydrides is much higher than high-pressure compressed hydrogen storage and metal hydride hydrogen storage. In liquid organic hydrides, cycloalkanes are in a liquid state at normal temperature and normal pressure, so this technology can realize long-distance transportation using existing transportation methods for petrochemicals. However, since the dehydrogenation reaction in this process is reversible, the hydrogen production rate is low and side reactions occur, so the purity of the produced hydrogen gas is not high, which increases the separation cost. Therefore, the development of dehydrogenation catalysts with high stability, high conversion and high selectivity is the key to the application of liquid organic hydride hydrogen storage technology.

一般的に使用されるシクロアルカン脱水素用触媒は、担持型金属触媒であり、活性成分がPt、Pd、Rh、Ni、Coなどである。アルミナは、貴金属脱水素用触媒の最も一般的に使用される担体として、入手しやすく、反応活性が高いという特徴を有するが、その表面に酸性の活性中心が多いため、触媒をコークス化し不活性化しやすい。文献1(燃料化学ジャーナル、1998、26(6)、543~547)には、Pt担持脱水素触媒に適量のKOを添加すると、触媒表面の強い酸点を変更することができ、炭素堆積物の形成を防止し、触媒の安定性を向上させるのに役立つことが報告されている。しかし、この方法は、触媒の選択性を高める効果が明らかではなく、副反応が発生してメタンを生成するという問題を解決することができない。また、第2金属成分、例えば、Ni、Mo、W、Re、Ir、Snなどを添加することにより、触媒の脱水素活性をさらに向上させ、触媒の性能を改善することができる。CN107376907Aには、白金スズ担持型ハイドロタルサイト脱水素触媒及びその製造方法が開示されており、該触媒において、Ptは、還元状態であり、Snは、還元状態及び酸化状態で共存し、シクロアルカンの脱水素反応において反応条件が温和で、選択性が高く、水素放出速度が大きいなどの利点を有する。しかし、該触媒の担持量が低い条件下での転化率は、さらに改善する必要がある。 A commonly used catalyst for cycloalkane dehydrogenation is a supported metal catalyst, and its active component is Pt, Pd, Rh, Ni, Co, or the like. Alumina is the most commonly used support for precious metal dehydrogenation catalysts, and is characterized by its availability and high reaction activity. easy to convert. Reference 1 (Journal of Fuel Chemistry, 1998, 26(6), 543-547) states that the addition of a suitable amount of K 2 O to a Pt-supported dehydrogenation catalyst can modify the strong acid sites on the catalyst surface. It is reported to help prevent deposit formation and improve catalyst stability. However, this method does not have a clear effect of increasing the selectivity of the catalyst, and cannot solve the problem of side reactions to produce methane. Also, by adding a second metal component such as Ni, Mo, W, Re, Ir, Sn, etc., the dehydrogenation activity of the catalyst can be further improved, and the performance of the catalyst can be improved. CN107376907A discloses a platinum-tin-supported hydrotalcite dehydrogenation catalyst and its preparation method, in which Pt is in a reduced state, Sn coexists in a reduced state and an oxidized state, and a cycloalkane In the dehydrogenation reaction of , the reaction conditions are mild, the selectivity is high, and the hydrogen release rate is high. However, the conversion rate under the condition of low loading of the catalyst needs to be further improved.

従来技術の上記状況に鑑み、本発明者は、改善されたシクロアルカン転化率、改善された芳香族炭化水素選択性及び安定性を有するシクロアルカン脱水素用触媒を見出すために、シクロアルカン脱水素用触媒に対して広範囲で詳細な研究を行った。本発明者は、アルミナ担体と、第VIII族元素と、Sn元素と、硫黄元素と、アルカリ金属から選択される少なくとも1種のドープ金属とを含む脱水素触媒を見出し、該触媒において、アルカリ金属が酸化物の形態で存在し、第VIII族元素及びSn元素がVIIISn金属間化合物の形態で存在する。該触媒は、シクロアルカン脱水素反応に用いられる場合、第VIII族元素の担持量が低い条件下でも高い転化率及び選択性、高い安定性を保持することができる。本発明は、前述の知見に基づくものである。 In view of the above situation of the prior art, the present inventors sought to find catalysts for cycloalkane dehydrogenation with improved cycloalkane conversion, improved selectivity to aromatic hydrocarbons and stability. Extensive and detailed research has been carried out on catalysts for The present inventors have found a dehydrogenation catalyst comprising an alumina support, a Group VIII element, a Sn element, a sulfur element, and at least one dope metal selected from alkali metals, wherein the catalyst comprises an alkali metal is present in the form of oxides, and the group VIII elements and Sn elements are present in the form of VIII 3 Sn intermetallic compounds. When used in a cycloalkane dehydrogenation reaction, the catalyst can maintain high conversion, selectivity, and high stability even under conditions where the Group VIII element loading is low. The present invention is based on the above findings.

本発明は、シクロアルカンから水素ガスを放出する際に発生する脱水素反応に用いられる触媒を提供することを目的とする。該触媒は、シクロアルカン脱水素に用いられる場合、改善されたシクロアルカン転化率及び芳香族炭化水素選択性を得ることができ、さらに改善された安定性を有する。 An object of the present invention is to provide a catalyst that is used in the dehydrogenation reaction that occurs when hydrogen gas is released from cycloalkane. The catalyst can obtain improved cycloalkane conversion and aromatic hydrocarbon selectivity when used in cycloalkane dehydrogenation, and has improved stability.

本発明は、シクロアルカン脱水素用触媒を製造する方法を提供することを他の目的とする。該方法でシクロアルカン脱水素用触媒を簡単に製造することができるだけでなく、該方法で製造された触媒は、シクロアルカン脱水素に用いられる場合、改善されたシクロアルカン転化率及び芳香族炭化水素選択性を得ることができ、さらに改善された安定性を有する。 Another object of the present invention is to provide a method for producing a cycloalkane dehydrogenation catalyst. Not only can the catalyst for cycloalkane dehydrogenation be easily prepared by the method, but the catalyst prepared by the method provides improved cycloalkane conversion and aromatic hydrocarbons when used in cycloalkane dehydrogenation. Selectivity can be obtained and also has improved stability.

本発明は、本発明の触媒又は本発明の方法で製造された触媒の、シクロアルカン脱水素における触媒とする用途を提供することを最後の目的とする。該応用において、改善されたシクロアルカン転化率及び芳香族炭化水素選択性を得ることができ、さらに改善された安定性を有する。 A final object of the present invention is to provide the use of the catalyst of the present invention or the catalyst produced by the process of the present invention as a catalyst in the dehydrogenation of cycloalkanes. In such applications, improved cycloalkane conversion and aromatic hydrocarbon selectivity can be obtained with improved stability.

本発明の上記目的を達成できる技術案は、以下のようにまとめられる。 Technical proposals that can achieve the above object of the present invention are summarized as follows.

1.シクロアルカン脱水素用触媒であって、アルミナ担体と、第VIII族元素と、Sn元素と、硫黄元素と、アルカリ金属から選択される少なくとも1種のドープ金属とを含み、第VIII族元素及びSn元素は、VIIISn金属間化合物の形態で存在する。 1. A catalyst for cycloalkane dehydrogenation, comprising an alumina support, a Group VIII element, Sn element, sulfur element, and at least one dope metal selected from alkali metals, wherein the Group VIII element and Sn The elements are present in the form of VIII 3 Sn intermetallic compounds.

2.第1項に記載の触媒において、アルミナ担体は、比表面積が150m/g以上であり、細孔容積が0.5cm/g以上であり、平均細孔径が70~200Åであり、好ましくは、比表面積が210m/g以上であり、細孔容積が0.55cm/g以上であり、平均細孔径が80~150Åである。 2. In the catalyst according to item 1, the alumina support has a specific surface area of 150 m 2 /g or more, a pore volume of 0.5 cm 3 /g or more, and an average pore diameter of 70 to 200 Å, preferably , a specific surface area of 210 m 2 /g or more, a pore volume of 0.55 cm 3 /g or more, and an average pore diameter of 80 to 150 Å.

3.第1又は2項に記載の触媒において、第VIII族元素は、Pt、Pd、Irから選択される1種又は複数種であり、好ましくはPtであり、触媒の重量に基づいて、含有量が0.2~5.0wt%であり、好ましくは0.3~2.0wt%である。 3. In the catalyst according to item 1 or 2, the Group VIII element is one or more selected from Pt, Pd, Ir, preferably Pt, and the content, based on the weight of the catalyst, is 0.2 to 5.0 wt%, preferably 0.3 to 2.0 wt%.

4.第1~3項のいずれか1項に記載の触媒において、Sn元素は、触媒の重量に基づいて、含有量が0.04~1.0wt%であり、好ましくは0.06~0.4wt%である。 4. In the catalyst according to any one of items 1 to 3, the Sn element has a content of 0.04 to 1.0 wt%, preferably 0.06 to 0.4 wt%, based on the weight of the catalyst. %.

5.第1~4項のいずれか1項に記載の触媒において、硫黄元素は、触媒の重量に基づいて、含有量が0.1~3wt%であり、好ましくは0.3~1wt%である。 5. In the catalyst according to any one of items 1 to 4, elemental sulfur has a content of 0.1 to 3 wt%, preferably 0.3 to 1 wt%, based on the weight of the catalyst.

6.第1~5項のいずれか1項に記載の触媒において、アルカリ金属元素は、触媒の重量に基づいて、含有量が0.1~1wt%であり、好ましくは0.2~0.5wt%である。 6. In the catalyst according to any one of items 1 to 5, the content of the alkali metal element is 0.1 to 1 wt%, preferably 0.2 to 0.5 wt%, based on the weight of the catalyst. is.

7.第1~6項のいずれか1項に記載の触媒を製造する方法は、
a.アルミニウム源とバインダーを均一に混合した後、混練し、ストリップ状に押出してアルミナ担体を得るステップと、
b.乾燥して、焼成した後、第VIII族元素及びSn元素を担持させるステップと、
c.乾燥して、焼成した後、アルカリ金属化合物を添加するステップと、
d.焼成、還元処理によりアルカリ金属を酸化物の形態で存在させ、担持された金属をVIIISn金属間化合物の形態で存在させるステップと、を含み、
硫黄又は硫黄化合物は、アルミニウム源に存在し、或はアルミナ担体の製造過程中又は製造後にアルミナ担体に添加される。
7. The method for producing the catalyst according to any one of items 1 to 6,
a. a step of uniformly mixing an aluminum source and a binder, then kneading and extruding into strips to obtain an alumina carrier;
b. After drying and calcining, loading the group VIII element and the Sn element;
c. After drying and calcining, adding an alkali metal compound;
d. calcination, reduction treatment to cause the alkali metal to be present in the form of an oxide and the supported metal to be present in the form of a VIII 3 Sn intermetallic compound;
Sulfur or sulfur compounds may be present in the aluminum source or added to the alumina support during or after manufacture of the alumina support.

8.第7項に記載の方法において、アルミニウム源は、擬ベーマイト、ベーム石、水酸化アルミニウムから選択される1種又は複数種であり、好ましくは擬ベーマイトである。 8. In the method according to item 7, the aluminum source is one or more selected from pseudoboehmite, boehmite and aluminum hydroxide, preferably pseudoboehmite.

9.第7又は8項に記載の方法において、硫黄又は硫黄化合物は、硫黄粉末、硫酸、硫酸塩から選択される1種又は複数種である。 9. In the method according to paragraphs 7 or 8, the sulfur or sulfur compound is one or more selected from sulfur powder, sulfuric acid and sulfate.

10.第7~9項のいずれか1項に記載の方法において、第VIII族元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法で第VIII族元素の担持を実現する。 10. In the method according to any one of items 7 to 9, ion exchange, impregnation or precipitation using a group VIII element metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex or mixture thereof as a raw material Supporting of the group VIII element is realized by the method of

11.第7~10項のいずれか1項に記載の方法において、Sn元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、逐次含浸又は共含浸の方法でSn元素の担持を実現する。 11. In the method according to any one of items 7 to 10, the metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or mixture thereof of Sn element is used as a raw material, and is sequentially impregnated or co-impregnated. Carrying of Sn element is realized.

12.第7~11項のいずれか1項に記載の方法において、ステップbでは、第VIII族元素とSn元素のモル比nVIII:nSnは、2~4であり、好ましくは2.5~3.5である。 12. In the method according to any one of clauses 7-11, in step b, the molar ratio n VIII :n Sn of group VIII element and Sn element is between 2 and 4, preferably between 2.5 and 3. .5.

13.第7~12項のいずれか1項に記載の方法において、アルカリ金属元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法でアルカリ金属元素の担持を実現する。 13. In the method according to any one of items 7 to 12, ion exchange, impregnation or precipitation is performed using a metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex or a mixture thereof of an alkali metal element as a raw material. The supporting of the alkali metal element is realized by the method.

14.第7~13項のいずれか1項に記載の方法において、第VIII族元素とSn元素を担持した後に乾燥させ、静置後に焼成し、焼成温度が300~750℃であり、焼成時間が1~12時間である。 14. In the method according to any one of Items 7 to 13, the Group VIII element and the Sn element are supported, then dried, left to stand and then fired, and the firing temperature is 300 to 750 ° C., and the firing time is 1. ~12 hours.

15.第7~14項のいずれか1項に記載の方法において、触媒を用いる前に還元剤、例えば、水素ガスで還元し、還元温度が350~800℃であり、還元時間が0.5~24時間である。 15. 15. The method according to any one of items 7 to 14, wherein the catalyst is reduced with a reducing agent such as hydrogen gas before using the catalyst, the reduction temperature is 350 to 800° C., and the reduction time is 0.5 to 24 It's time.

16.第1~6項のいずれか1項に記載の触媒のシクロアルカン脱水素における用途。 16. Use of the catalyst according to any one of claims 1-6 in cycloalkane dehydrogenation.

本発明のこれら及び他の目的、特徴及び利点は、以下の内容を参照して本発明を考えた後、当業者に理解されやすい。 These and other objects, features and advantages of the present invention will become readily apparent to those skilled in the art after considering the present invention with reference to the following.

PtSn及びPtSn金属間化合物の原子構造を示す。1 shows the atomic structures of PtSn and Pt 3 Sn intermetallics. 比較例1、比較例3及び実施例1におけるPt、PtSn及びPtSn金属間化合物のXRD回折図を示す。1 shows XRD diffractograms of Pt, PtSn and Pt 3 Sn intermetallic compounds in Comparative Example 1, Comparative Example 3 and Example 1. FIG.

本発明の一態様に係るシクロアルカン脱水素用触媒は、アルミナ担体と、第VIII族元素と、Sn元素と、硫黄元素と、アルカリ金属から選択される少なくとも1種のドープ金属とを含み、第VIII族元素及びSn元素は、VIIISn金属間化合物の形態で存在する。 A catalyst for cycloalkane dehydrogenation according to an aspect of the present invention comprises an alumina support, a Group VIII element, a Sn element, a sulfur element, and at least one dope metal selected from alkali metals, Group VIII elements and Sn elements exist in the form of VIII 3 Sn intermetallic compounds.

2種以上の金属を含む触媒において、金属粒子は、単体又は合金の状態で存在する以外に、異なる配合比率の金属間化合物を形成する。金属間化合物とは、2種以上の金属間に形成される定比化合物を意味する。 In a catalyst containing two or more kinds of metals, the metal particles form intermetallic compounds with different compounding ratios, in addition to existing in the state of a single substance or an alloy. An intermetallic compound means a stoichiometric compound formed between two or more metals.

一実施形態において、上記アルミナ担体に対して、多孔性担体は、比表面積が150m/g以上であり、細孔容積が0.5cm/g以上であり、平均細孔径が70~200Åであり、好ましくは、比表面積が210m/g以上であり、細孔容積が0.55cm/g以上であり、平均細孔径が80~150Åである。 In one embodiment, relative to the alumina support, the porous support has a specific surface area of 150 m 2 /g or more, a pore volume of 0.5 cm 3 /g or more, and an average pore diameter of 70 to 200 Å. It preferably has a specific surface area of 210 m 2 /g or more, a pore volume of 0.55 cm 3 /g or more, and an average pore diameter of 80 to 150 Å.

好ましくは、上記触媒において、第VIII族元素は、Pt、Pd、Irから選択される1種又は複数種であり、好ましくはPtであり、上記触媒の重量に基づいて、含有量が0.2~5.0wt%であり、好ましくは0.3~2.0wt%である。 Preferably, in the catalyst, the Group VIII element is one or more selected from Pt, Pd, Ir, preferably Pt, and the content is 0.2 based on the weight of the catalyst. ~5.0 wt%, preferably 0.3-2.0 wt%.

好ましくは、上記触媒において、Sn元素は、上記触媒の重量に基づいて、含有量が0.04~1.0wt%であり、好ましくは0.06~0.4wt%である。 Preferably, in the catalyst, the Sn element has a content of 0.04 to 1.0 wt%, preferably 0.06 to 0.4 wt%, based on the weight of the catalyst.

好ましくは、上記触媒において、硫黄元素は、上記触媒の重量に基づいて、含有量が0.1~3wt%であり、好ましくは0.3~1wt%である。 Preferably, in the catalyst, elemental sulfur has a content of 0.1 to 3 wt%, preferably 0.3 to 1 wt%, based on the weight of the catalyst.

好ましくは、上記触媒において、アルカリ金属は、Li、Na、K、Rbから選択される1種又は複数種であり、好ましくはKであり、上記触媒の重量に基づいて、含有量が0.1~1wt%であり、好ましくは0.2~0.5wt%である。 Preferably, in the catalyst, the alkali metal is one or more selected from Li, Na, K, Rb, preferably K, and the content is 0.1 based on the weight of the catalyst. ~1 wt%, preferably 0.2-0.5 wt%.

本発明の第2態様に係る本発明の触媒を製造する方法は、
a.アルミニウム源とバインダーを均一に混合した後、混練し、ストリップ状に押出してアルミナ担体を得るステップと、
b.乾燥させ、焼成した後、第VIII族元素及びSn元素を担持するステップと、
c.乾燥させ、焼成した後、アルカリ金属化合物を添加するステップと、
d.焼成、還元処理によりアルカリ金属を酸化物の形態で存在させ、担持された金属をVIIISn金属間化合物の形態で存在させるステップと、を含み、
硫黄又は硫黄化合物は、アルミニウム源に存在し、或いはアルミナ担体の製造過程中又は製造後にアルミナ担体に添加される。
The method for producing the catalyst of the present invention according to the second aspect of the present invention comprises:
a. a step of uniformly mixing an aluminum source and a binder, then kneading and extruding into strips to obtain an alumina carrier;
b. After drying and calcining, loading the group VIII element and the Sn element;
c. After drying and calcining, adding an alkali metal compound;
d. calcination, reduction treatment to cause the alkali metal to be present in the form of an oxide and the supported metal to be present in the form of a VIII 3 Sn intermetallic compound;
Sulfur or sulfur compounds may be present in the aluminum source or added to the alumina support during or after manufacture of the alumina support.

一実施形態において、アルミニウム源とバインダーなどを均一に混合した後、混練し、ストリップ状に押出し、乾燥させ、焼成して成形アルミナ担体を得る。ここで混練、ストリップ押出、乾燥、焼成のステップは、特に制限されず、当該分野で公知の任意の方法を用いることができる。 In one embodiment, the aluminum source, binder, etc. are uniformly mixed, then kneaded, extruded into strips, dried and calcined to obtain a shaped alumina carrier. Here, the steps of kneading, strip extrusion, drying, and baking are not particularly limited, and any method known in the art can be used.

好ましくは、上記アルミニウム源は、擬ベーマイト、ベーム石、水酸化アルミニウムから選択される1種又は複数種であり、好ましくは擬ベーマイトである。 Preferably, the aluminum source is one or more selected from pseudoboehmite, boehmite, aluminum hydroxide, preferably pseudoboehmite.

好ましくは、上記バインダーは、硝酸、セスバニア粉、ポリアクリルアミド、メチルセルロース、ポリビニルアルコール、カルボキシルメチルセルロースナトリウムから選択される1種又は複数種であり、好ましくは硝酸、セスバニア粉及びメチルセルロースである。 Preferably, the binder is one or more selected from nitric acid, sesbania powder, polyacrylamide, methylcellulose, polyvinyl alcohol, sodium carboxymethylcellulose, preferably nitric acid, sesbania powder and methylcellulose.

好ましい実施形態において、硫黄又は硫黄化合物は、触媒の担体を製造するためのアルミニウム源に予め存在してもよく、或いは触媒の担体の製造過程中又は製造後に触媒の担体に分散されてもよい。例えば、硫黄粉末と、硫酸アルミニウム、硫酸アンモニウムなどを含む硫酸塩、硫酸などのような硫黄化合物とを挙げることができる。硫黄が担体に分散される可能性があるという観点から、水又は有機溶媒に溶解性を有する硫黄化合物が好ましく、このような硫黄化合物として硫酸、硫酸アルミニウム、硫酸アンモニウムなどを挙げることができる。 In a preferred embodiment, the sulfur or sulfur compound may be pre-existing in the aluminum source for making the catalyst support or may be dispersed in the catalyst support during or after making the catalyst support. Examples include sulfur powder and sulfur compounds such as sulfates, sulfuric acid, including aluminum sulfate, ammonium sulfate, and the like. From the viewpoint that sulfur may be dispersed in the carrier, sulfur compounds that are soluble in water or organic solvents are preferred, and examples of such sulfur compounds include sulfuric acid, aluminum sulfate, and ammonium sulfate.

好ましくは、第VIII族元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法で第VIII族元素の担持を実現する。 Preferably, metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex or a mixture thereof of group VIII element is used as raw material, and ion exchange, impregnation or precipitation method is used to realize the support of group VIII element.

好ましくは、Sn元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、逐次含浸又は共含浸の方法でSn元素の担持を実現する。 Preferably, the Sn element is supported by sequential impregnation or co-impregnation using a metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or a mixture thereof as raw materials of Sn element.

好ましくは、ステップbでは、第VIII族元素とSn元素のモル比nVIII:nSnは、2~4であり、好ましくは2.5~3.5である。 Preferably, in step b, the molar ratio n VIII :n Sn of group VIII elements and Sn elements is between 2 and 4, preferably between 2.5 and 3.5.

第VIII族元素及びSn元素を担持した後、アルカリ金属を添加する方式で触媒の表面の酸性を調整する。好ましくは、アルカリ金属元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法でアルカリ金属元素の担持を実現する。 After supporting the Group VIII element and Sn element, the acidity of the surface of the catalyst is adjusted by adding an alkali metal. Preferably, the metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or mixture thereof of the alkali metal element is used as the starting material, and the alkali metal element is supported by ion exchange, impregnation, or precipitation.

好ましい実施形態において、本発明の触媒は、第VIII族元素及びSn元素を担持した後、適切な時間、例えば、24時間静置し、次に例えば、約30℃で徐々に撹拌して表面の水を蒸発させ、乾燥させ、適切な室温で一晩静置した後に焼成し、焼成温度が300~750℃であり、焼成時間が1~12時間である。第VIII族元素及びSn元素は、VIIISn金属間化合物の形態で存在する。アルカリ金属元素を添加した後に再び焼成し、焼成温度が300~500℃であり、焼成時間が1~12時間である。 In a preferred embodiment, the catalyst of the present invention is allowed to stand for an appropriate period of time, for example, 24 hours after supporting the Group VIII element and the Sn element, and then slowly stirred at, for example, about 30° C. to remove the surface of the catalyst. Evaporate the water, dry, and calcine after standing overnight at a suitable room temperature, with a calcination temperature of 300-750° C. and a calcination time of 1-12 hours. Group VIII elements and Sn elements are present in the form of VIII 3 Sn intermetallic compounds. After adding the alkali metal element, it is fired again, the firing temperature is 300-500° C., and the firing time is 1-12 hours.

好ましい実施形態において、本発明の触媒を用いる前に還元処理を行い、従来の触媒還元方法を用いることができ、すなわち、水素ガスなどの還元剤を触媒と接触させて触媒を還元する方法で外部予備還元又はインライン還元を実現する。好ましくは、還元温度が350~800℃であり、還元時間が0.5~24時間である。 In a preferred embodiment, the catalyst of the present invention is subjected to a reduction treatment prior to use, and conventional catalyst reduction methods can be used, i.e., an external catalyst is reduced by contacting the catalyst with a reducing agent, such as hydrogen gas, to reduce the catalyst. Pre-reduction or in-line reduction is achieved. Preferably, the reduction temperature is 350-800° C. and the reduction time is 0.5-24 hours.

本発明の最後の一態様によれば、本発明の触媒又は本発明の方法で製造された触媒の、シクロアルカン脱水素における触媒とする用途を提供する。 According to a last aspect of the invention there is provided the use of the catalyst of the invention or the catalyst produced by the process of the invention as a catalyst in the dehydrogenation of cycloalkanes.

好ましい実施形態において、シクロアルカンは、メチルシクロヘキサン、シクロヘキサン及びデカヒドロナフタレンから選択される1種又は複数種であり、好ましくはメチルシクロヘキサン又はシクロヘキサンである。 In a preferred embodiment, the cycloalkane is one or more selected from methylcyclohexane, cyclohexane and decahydronaphthalene, preferably methylcyclohexane or cyclohexane.

好ましい実施形態において、メチルシクロヘキサンを原料として、固定床反応器内で脱水素反応を行う。触媒の充填量は、反応器の容積に応じて変化する。供給前に触媒に対して還元処理を行うことにより、担持された金属を単体の形態で存在させ、還元条件は、水素ガス圧が0.1~10MPaで、温度が300~800℃で、時間が0.5~24時間であることであり、好ましい条件は、水素ガス圧が0.2~5MPaで、温度が300~550℃で、時間が3~8時間であることである。反応条件は、水素ガス圧が0.1~10MPaで、温度が250~500℃で、重量空間速度が0.5~20h-1で、水素と油のモル比が0~15であることであり、好ましい条件は、水素ガス圧が0.2~2MPaで、温度が300~450℃で、重量空間速度が1~10h-1で、水素と油のモル比が1~10であることである。 In a preferred embodiment, the dehydrogenation reaction is carried out in a fixed bed reactor starting with methylcyclohexane. The catalyst loading varies according to the reactor volume. By performing a reduction treatment on the catalyst before supply, the supported metal is present in the form of a single substance, and the reduction conditions are a hydrogen gas pressure of 0.1 to 10 MPa, a temperature of 300 to 800 ° C., and a time of is 0.5 to 24 hours, and preferred conditions are hydrogen gas pressure of 0.2 to 5 MPa, temperature of 300 to 550° C., and time of 3 to 8 hours. The reaction conditions are a hydrogen gas pressure of 0.1-10 MPa, a temperature of 250-500° C., a weight hourly space velocity of 0.5-20 h −1 , and a molar ratio of hydrogen to oil of 0-15. The preferred conditions are a hydrogen gas pressure of 0.2-2 MPa, a temperature of 300-450° C., a weight hourly space velocity of 1-10 h −1 , and a molar ratio of hydrogen to oil of 1-10. be.

以下の実施例は、本発明をさらに説明するが、本発明は、以下の実施例に限定されるものではない。 The following examples further illustrate the invention, but the invention is not limited to the following examples.

比較例1
擬ベーマイト10gに、含浸法により硫黄の担持量が0.5wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Comparative example 1
10 g of pseudoboehmite was impregnated with an aluminum sulfate solution having a sulfur content of 0.5 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成する。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, Bake at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元し、0.5wt%Pt/Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain a 0.5 wt % Pt/Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

比較例2
10gの擬ベーマイト、0.2gのセスバニア粉、0.2gのカルボキシメチルセルロースを秤量し、均一に混合した後に、撹拌しながら12.5gの3.6wt%硝酸を滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Comparative example 2
10 g of pseudo-boehmite, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were weighed and uniformly mixed, then 12.5 g of 3.6 wt % nitric acid was added dropwise while stirring, and the mixture was transferred to a kneader. For about 1 hour, the powder is fully kneaded and then extruded with a strip extruder (1-2 mm in diameter and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3, and was placed at 30 °C after standing for 24 hours. evaporate water on the surface while stirring at , then dry at 120° C. for 12 hours, and bake at 400° C. for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain a 0.5 wt% Pt--Sn--K 2 O/Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

比較例3 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.5wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Comparative Example 3 (PtSn structure)
10 g of pseudoboehmite was impregnated with an aluminum sulfate solution having a sulfur content of 0.5 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=0.6であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 0.6, and after standing for 24 hours Moisture on the surface is evaporated while stirring at 30°C, then dried at 120°C for 12 hours and calcined at 400°C for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

実施例1 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.5wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Example 1 (Pt 3 Sn structure)
10 g of pseudoboehmite was impregnated with an aluminum sulfate solution having a sulfur content of 0.5 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3, and was placed at 30 °C after standing for 24 hours. evaporate water on the surface while stirring at , then dry at 120° C. for 12 hours, and bake at 400° C. for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

実施例2 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.5wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Example 2 (Pt 3 Sn structure)
10 g of pseudoboehmite was impregnated with an aluminum sulfate solution having a sulfur content of 0.5 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3.4であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3.4, and after standing for 24 hours Moisture on the surface is evaporated while stirring at 30°C, then dried at 120°C for 12 hours and calcined at 400°C for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

実施例3 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.8wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Example 3 (Pt 3 Sn structure)
10 g of pseudo-boehmite was impregnated with an aluminum sulfate solution having a sulfur loading of 0.8 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of Sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3, and was placed at 30 °C after standing for 24 hours. evaporate water on the surface while stirring at , then dry at 120° C. for 12 hours, and bake at 400° C. for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

実施例4 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.3wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Example 4 (Pt 3 Sn structure)
10 g of pseudo-boehmite was impregnated with an aluminum sulfate solution having a sulfur loading of 0.3 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of Sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3, and was placed at 30 °C after standing for 24 hours. evaporate water on the surface while stirring at , then dry at 120° C. for 12 hours, and bake at 400° C. for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで降温する。原料油であるメチルシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度320℃、反応圧力0.4MPaである。メチルシクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、2である。5時間後のメチルシクロヘキサンの脱水素反応の結果を表1に示す。24時間後のメチルシクロヘキサンの脱水素反応の結果を表2に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at 10° C./min, and after constant temperature for 1 hour, the temperature is lowered to the reaction temperature in a hydrogen gas stream. The feed oil, methylcyclohexane, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 320° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of methylcyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 2. Table 1 shows the results of the dehydrogenation reaction of methylcyclohexane after 5 hours. Table 2 shows the results of the dehydrogenation reaction of methylcyclohexane after 24 hours.

実施例5 (PtSn構造)
擬ベーマイト10gに、含浸法により硫黄の担持量が0.5wt%の硫酸アルミニウム溶液に含浸させ、得られたS含有アルミニウム粉末と、セスバニア粉0.2gと、カルボキシメチルセルロース0.2gとを均一に混合した後に、撹拌しながら3.6wt%硝酸12.5gを滴下し、混合物を混練機へ移して約1時間練り、粉体を完全に練り上げた後にストリップ押出機で押出成形する(直径が1~2mmであり、長さが約5mmである)。押出されたストリップ状の担体を120℃で12時間乾燥させた後、700℃で3時間焼成して、成形担体を得る。
Example 5 (Pt 3 Sn structure)
10 g of pseudoboehmite was impregnated with an aluminum sulfate solution having a sulfur content of 0.5 wt% by an impregnation method, and the obtained S-containing aluminum powder, 0.2 g of sesbania powder, and 0.2 g of carboxymethyl cellulose were uniformly mixed. After mixing, 12.5 g of 3.6 wt % nitric acid is added dropwise while stirring, the mixture is transferred to a kneader and kneaded for about 1 hour, and extruded with a strip extruder after fully kneading the powder (1 diameter ~2 mm and about 5 mm in length). After drying the extruded strip carrier at 120° C. for 12 hours, it is calcined at 700° C. for 3 hours to obtain a shaped carrier.

孔充填含浸法でHPtCl溶液(1mL当たり0.00748gのPtを含む)に含浸した後に24時間静置し、次に60℃で3時間減圧乾燥させ、120℃で12時間乾燥させ、400℃で3時間焼成して単一白金触媒を得る。 After being impregnated with H 2 PtCl 2 solution (containing 0.00748 g of Pt per mL) by pore-filling impregnation method, let stand for 24 hours, then vacuum dry at 60° C. for 3 hours, dry at 120° C. for 12 hours, A single platinum catalyst is obtained by calcining at 400° C. for 3 hours.

調製された単一白金触媒を純粋な水素ガスで還元した後、孔充填含浸法でSnCl溶液に含浸し、モル比がnPt:nSn=3であり、24時間静置した後に30℃で撹拌しながら表面の水分を蒸発させ、次に120℃で12時間乾燥させ、400℃で3時間焼成する。続いて孔充填含浸法でKNO溶液に含浸し、Kの担持量が0.3wt%であり、24時間静置した後に120℃で12時間乾燥させ、400℃で3時間焼成する。 After reducing the prepared single platinum catalyst with pure hydrogen gas, it was impregnated with SnCl2 solution by pore - filling impregnation method, the molar ratio of nPt : nSn = 3, and was placed at 30 °C after standing for 24 hours. evaporate water on the surface while stirring at , then dry at 120° C. for 12 hours, and bake at 400° C. for 3 hours. Then , it is impregnated with KNO3 solution by pore filling impregnation method, the amount of K supported is 0.3 wt%, left to stand for 24 hours, dried at 120° C. for 12 hours, and calcined at 400° C. for 3 hours.

調製された触媒2mLを純粋な水素ガスでインライン還元して、0.5wt%Pt-Sn-KO/S-Al触媒を得る。還元条件は、水素ガスの流速が50mL/minである。10℃/minで400℃まで昇温し、1時間恒温した後、水素ガス流中で反応温度まで昇温する。原料油であるシクロヘキサンを導入して反応させ、生成物をガスクロマトグラフィーで分析する。反応条件は、温度480℃、反応圧力0.4MPaである。シクロヘキサンの液体空間速度は、2h-1であり、水素と油の比(mol/mol)は、4である。5時間及び24時間後のシクロヘキサンの脱水素反応の結果を表3に示す。 2 mL of the prepared catalyst is in-line reduced with pure hydrogen gas to obtain 0.5 wt% Pt--Sn--K 2 O/S--Al 2 O 3 catalyst. The reduction condition is a hydrogen gas flow rate of 50 mL/min. The temperature is raised to 400° C. at a rate of 10° C./min, and after constant temperature for 1 hour, the temperature is raised to the reaction temperature in a hydrogen gas stream. Cyclohexane, which is a raw material oil, is introduced and reacted, and the product is analyzed by gas chromatography. The reaction conditions are a temperature of 480° C. and a reaction pressure of 0.4 MPa. The liquid hourly space velocity of cyclohexane is 2h −1 and the hydrogen to oil ratio (mol/mol) is 4. Table 3 shows the results of the cyclohexane dehydrogenation reaction after 5 hours and 24 hours.

Figure 2022552169000002
Figure 2022552169000002

Figure 2022552169000003
Figure 2022552169000003

Figure 2022552169000004
以上の実施例及び比較例から分かるように、本発明に係る触媒は、メチルシクロヘキサン及びシクロヘキサンの脱水素反応に用いられる場合、より高いシクロアルカン転化率及び芳香族炭化水素選択性を有し、かつ安定性がより高い。
Figure 2022552169000004
As can be seen from the above examples and comparative examples, the catalyst according to the present invention has higher cycloalkane conversion and aromatic hydrocarbon selectivity when used for the dehydrogenation reaction of methylcyclohexane and cyclohexane, and More stable.

以上の説明は、本発明の好ましい実施形態に過ぎず、なお、当業者にとって、本発明の原理の範囲内で行われたいくつかの改良及び修飾も同様に本発明の保護範囲にあるものと見なすべきである。
The above descriptions are merely preferred embodiments of the present invention, and for those skilled in the art, any improvements and modifications made within the principle of the present invention shall also fall within the protection scope of the present invention. should be considered.

Claims (16)

アルミナ担体と、第VIII族元素と、Sn元素と、硫黄元素と、アルカリ金属から選択される少なくとも1種のドープ金属とを含み、第VIII族元素及びSn元素は、VIIISn金属間化合物の形態で存在する、シクロアルカン脱水素用触媒。 Alumina support, Group VIII element, Sn element, sulfur element, and at least one doping metal selected from alkali metals, wherein the Group VIII element and Sn element are VIII 3 Sn intermetallic compound A catalyst for cycloalkane dehydrogenation, present in the form アルミナ担体は、比表面積が150m/g以上であり、細孔容積が0.5cm/g以上であり、平均細孔径が70~200Åであり、好ましくは、比表面積が210m/g以上であり、細孔容積が0.55cm/g以上であり、平均細孔径が80~150Åである、請求項1に記載の触媒。 The alumina carrier has a specific surface area of 150 m 2 /g or more, a pore volume of 0.5 cm 3 /g or more, an average pore diameter of 70 to 200 Å, and preferably a specific surface area of 210 m 2 /g or more. , a pore volume of 0.55 cm 3 /g or more, and an average pore diameter of 80 to 150 Å. 第VIII族元素は、Pt、Pd、Irから選択される1種又は複数種であり、好ましくはPtであり、触媒の重量に基づいて、含有量が0.2~5.0wt%であり、好ましくは0.3~2.0wt%である、請求項1又は2に記載の触媒。 The Group VIII element is one or more selected from Pt, Pd, and Ir, preferably Pt, and has a content of 0.2 to 5.0 wt% based on the weight of the catalyst; Catalyst according to claim 1 or 2, preferably between 0.3 and 2.0 wt%. Sn元素は、触媒の重量に基づいて、含有量が0.04~1.0wt%であり、好ましくは0.06~0.4wt%である、請求項1~3のいずれか1項に記載の触媒。 The Sn element according to any one of claims 1 to 3, having a content of 0.04 to 1.0 wt%, preferably 0.06 to 0.4 wt%, based on the weight of the catalyst. catalyst. 硫黄元素は、触媒の重量に基づいて、含有量が0.1~3wt%であり、好ましくは0.3~1wt%である、請求項1~4のいずれか1項に記載の触媒。 Catalyst according to any one of the preceding claims, wherein elemental sulfur has a content of 0.1-3 wt%, preferably 0.3-1 wt%, based on the weight of the catalyst. アルカリ金属元素は、触媒の重量に基づいて、含有量が0.1~1wt%であり、好ましくは0.2~0.5wt%である、請求項1~5のいずれか1項に記載の触媒。 The alkali metal element according to any one of claims 1 to 5, having a content of 0.1 to 1 wt%, preferably 0.2 to 0.5 wt%, based on the weight of the catalyst. catalyst. 請求項1~6のいずれか1項に記載の触媒を製造する方法であって、
a.アルミニウム源とバインダーを均一に混合した後、混練し、ストリップ状に押出してアルミナ担体を得るステップと、
b.乾燥させ、焼成した後、第VIII族元素及びSn元素を担持するステップと、
c.乾燥させ、焼成した後、アルカリ金属化合物を添加するステップと、
d.焼成、還元処理によりアルカリ金属を酸化物の形態で存在させ、担持された金属をVIIISn金属間化合物の形態で存在させるステップと、を含み、
硫黄又は硫黄化合物は、アルミニウム源に存在し、或いはアルミナ担体の製造過程中又は製造後にアルミナ担体に添加される、方法。
A method for producing the catalyst according to any one of claims 1 to 6,
a. a step of uniformly mixing an aluminum source and a binder, then kneading and extruding into strips to obtain an alumina carrier;
b. After drying and calcining, loading the group VIII element and the Sn element;
c. After drying and calcining, adding an alkali metal compound;
d. calcination, reduction treatment to cause the alkali metal to be present in the form of an oxide and the supported metal to be present in the form of a VIII 3 Sn intermetallic compound;
A process wherein the sulfur or sulfur compound is present in the aluminum source or is added to the alumina support during or after manufacture of the alumina support.
アルミニウム源は、擬ベーマイト、ベーム石、水酸化アルミニウムから選択される1種又は複数種であり、好ましくは擬ベーマイトである、請求項7に記載の方法。 8. Process according to claim 7, wherein the aluminum source is one or more selected from pseudo-boehmite, boehmite, aluminum hydroxide, preferably pseudo-boehmite. 硫黄又は硫黄化合物は、硫黄粉末、硫酸、硫酸塩から選択される1種又は複数種である、請求項7又は8に記載の方法。 9. The method according to claim 7 or 8, wherein the sulfur or sulfur compound is one or more selected from sulfur powder, sulfuric acid, sulfate. 第VIII族元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法で第VIII族元素の担持を実現する、請求項7~9のいずれか1項に記載の方法。 Claim 7, wherein the metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or mixture thereof of the Group VIII element is used as a raw material, and the Group VIII element is supported by ion exchange, impregnation or precipitation. 10. The method according to any one of items 1 to 9. Sn元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、逐次含浸又は共含浸の方法でSn元素の担持を実現する、請求項7~10のいずれか1項に記載の方法。 Any one of claims 7 to 10, wherein the Sn element is supported by sequential impregnation or co-impregnation using a Sn element metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or a mixture thereof as a raw material. 1. The method according to item 1. ステップbにおける、第VIII族元素とSn元素のモル比nVIII:nSnは、2~4であり、好ましくは2.5~3.5である、請求項7~11のいずれか1項に記載の方法。 12. The method according to any one of claims 7 to 11, wherein the molar ratio n VIII :n Sn of group VIII elements to Sn elements in step b is between 2 and 4, preferably between 2.5 and 3.5. described method. アルカリ金属元素の金属酸、金属酸塩、塩化物、アンモニア錯体、カルボニル錯体又はそれらの混合物を原料として、イオン交換、含浸又は沈殿の方法でアルカリ金属元素の担持を実現する、請求項7~12のいずれか1項に記載の方法。 Claims 7 to 12, wherein the metal acid, metal acid salt, chloride, ammonia complex, carbonyl complex, or mixture thereof of an alkali metal element is used as a raw material, and an alkali metal element is supported by ion exchange, impregnation, or precipitation. A method according to any one of 第VIII族元素とSn元素を担持した後に乾燥させ、静置後に焼成し、焼成温度が300~750℃であり、焼成時間が1~12時間である、請求項7~13のいずれか1項に記載の方法。 14. Any one of claims 7 to 13, wherein after supporting the Group VIII element and the Sn element, it is dried, left to stand and then calcined, and the calcination temperature is 300 to 750° C. and the calcination time is 1 to 12 hours. The method described in . 触媒を使用する前に還元剤、例えば、水素ガスで還元し、還元温度が350~800℃であり、還元時間が0.5~24時間である、請求項7~14のいずれか1項に記載の方法。 15. The catalyst according to any one of claims 7 to 14, wherein the catalyst is reduced with a reducing agent, such as hydrogen gas, before use, the reduction temperature is 350-800° C., and the reduction time is 0.5-24 hours. described method. 請求項1~6のいずれか1項に記載の触媒のシクロアルカン脱水素における用途。
Use of the catalyst according to any one of claims 1-6 in cycloalkane dehydrogenation.
JP2022520737A 2019-10-11 2020-10-10 Catalyst for cycloalkane dehydrogenation and its production and application Active JP7411078B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910962010.6 2019-10-11
CN201910962010.6A CN112642444A (en) 2019-10-11 2019-10-11 Catalyst for dehydrogenation of naphthenic hydrocarbon and preparation and application thereof
PCT/CN2020/120172 WO2021068934A1 (en) 2019-10-11 2020-10-10 Catalyst for dehydrogenation of cycloalkanes, preparation method therefor and application thereof

Publications (2)

Publication Number Publication Date
JP2022552169A true JP2022552169A (en) 2022-12-15
JP7411078B2 JP7411078B2 (en) 2024-01-10

Family

ID=75343763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520737A Active JP7411078B2 (en) 2019-10-11 2020-10-10 Catalyst for cycloalkane dehydrogenation and its production and application

Country Status (4)

Country Link
JP (1) JP7411078B2 (en)
CN (1) CN112642444A (en)
AU (1) AU2020362824B2 (en)
WO (1) WO2021068934A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703065B (en) * 2021-08-17 2024-05-07 中国石油天然气股份有限公司 Low temperature dehydrogenation method for hydrogenation aromatic compound
CN113866044B (en) * 2021-11-23 2024-04-19 云南电网有限责任公司电力科学研究院 Method for testing liquid organic hydrogen storage material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531912A (en) * 2011-12-31 2012-07-04 浙江工业大学 Preparation method of N-alkyl arylamine
CN106693993A (en) * 2016-12-21 2017-05-24 北京赛诺时飞石化科技有限公司 Sulfur-containing light alkane dehydrogenation catalyst and preparation method thereof
CN107649125A (en) * 2017-10-09 2018-02-02 中国石油大学(华东) Dehydrogenating propane Ptx Sny binary alloy nano catalysts and preparation method thereof
CN110180537A (en) * 2019-06-12 2019-08-30 福州大学 One kind is for dehydrogenating low-carbon alkane metal alloy catalyst and its preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013361B (en) * 1987-03-13 1991-07-31 中国科学院大连化学物理研究所 Catalyst containing pt, sn, li, s for dehydrogenation of saturated hydrocarbon
CN107376907B (en) * 2017-07-28 2019-09-17 湘潭大学 A kind of platinum tin carried hydrotalcite dehydrogenation and its preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531912A (en) * 2011-12-31 2012-07-04 浙江工业大学 Preparation method of N-alkyl arylamine
CN106693993A (en) * 2016-12-21 2017-05-24 北京赛诺时飞石化科技有限公司 Sulfur-containing light alkane dehydrogenation catalyst and preparation method thereof
CN107649125A (en) * 2017-10-09 2018-02-02 中国石油大学(华东) Dehydrogenating propane Ptx Sny binary alloy nano catalysts and preparation method thereof
CN110180537A (en) * 2019-06-12 2019-08-30 福州大学 One kind is for dehydrogenating low-carbon alkane metal alloy catalyst and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG, J. ET AL.: "Effect of Direct Reduction Treatment on Pt-Sn/Al2O3 Catalyst for Propane Dehydrogenation", CATALYSTS, vol. 9, JPN6023030152, 14 May 2019 (2019-05-14), CH, pages 446, ISSN: 0005114693 *

Also Published As

Publication number Publication date
WO2021068934A1 (en) 2021-04-15
JP7411078B2 (en) 2024-01-10
AU2020362824B2 (en) 2023-11-23
AU2020362824A1 (en) 2022-05-26
CN112642444A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2015106634A1 (en) Metal-phase carrier loaded catalyst, and preparation method therefor and uses thereof
CN109647372B (en) Preparation of C by oxidative coupling of methane 2 Hydrocarbon catalyst, process for its preparation and its use
JP7352487B2 (en) Ammonia decomposition catalyst
JP2022552169A (en) Catalyst for cycloalkane dehydrogenation and its production and application
WO2022151585A1 (en) Preparation method for 2,5-furandicarboxylic acid
CN114700084A (en) Catalyst for hydrogenation and dehydrogenation of organic hydrogen storage liquid, preparation method thereof and hydrogenation and dehydrogenation method of organic hydrogen storage liquid
CN114917929B (en) Catalyst for hydrogenation and dehydrogenation of organic liquid hydrogen storage material and preparation method and application thereof
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
WO2006006277A1 (en) Catalyst for cycloolefin production and process for production
JP4222839B2 (en) Hydrocarbon reforming method
JP2016175079A (en) Catalyst and method for production of chlorine by gas phase oxidation
CN1954910A (en) Preparation method of ruthenium-base ammonia synthetic catalyst
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
WO2019176247A1 (en) Method for producing indane
JP4597024B2 (en) Cycloolefin production catalyst and cycloolefin production method
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
CN114425384B (en) Catalyst for preparing synthesis gas and preparation method and application thereof
JP6821151B2 (en) Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method
CN112023921B (en) Preparation method of Pt-based catalyst with high dispersion of active component
CN107537475B (en) Composite catalyst, preparation method and application thereof
WO2014137293A1 (en) A method for preparing a highly dispersed supported metal catalyst
WO2019011005A1 (en) Method for catalytically hydrogenating oxalate
WO2022121398A1 (en) Hydrodechlorination catalyst and application thereof in preparation of chlorotrifluoroethylene
JP7410507B2 (en) Composite, catalyst and method for producing ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7411078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150