JP2003109600A - Current collector material for battery, and battery using the same - Google Patents

Current collector material for battery, and battery using the same

Info

Publication number
JP2003109600A
JP2003109600A JP2001303463A JP2001303463A JP2003109600A JP 2003109600 A JP2003109600 A JP 2003109600A JP 2001303463 A JP2001303463 A JP 2001303463A JP 2001303463 A JP2001303463 A JP 2001303463A JP 2003109600 A JP2003109600 A JP 2003109600A
Authority
JP
Japan
Prior art keywords
battery
current collector
plating
nickel
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001303463A
Other languages
Japanese (ja)
Other versions
JP4903959B2 (en
Inventor
Kazuya Sato
和哉 佐藤
Yasushi Nishibori
寧 西堀
Toshiaki Takase
俊明 高瀬
Masanao Tanaka
政尚 田中
Yoshiyuki Mayuzumi
良享 黛
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Japan Vilene Co Ltd
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd, Jemco Inc filed Critical Japan Vilene Co Ltd
Priority to JP2001303463A priority Critical patent/JP4903959B2/en
Publication of JP2003109600A publication Critical patent/JP2003109600A/en
Application granted granted Critical
Publication of JP4903959B2 publication Critical patent/JP4903959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current collector material enabling a battery to have high capacity, enabled to carry out a high rate discharge, and to provide a battery using the same. SOLUTION: A current collector comprises an unwoven fabric 11, and a plated film 12 formed on the unwoven fabric 11. The area of the cross section of the plated area on the surface of the unwoven fabric fiber ranges between 20-130 μm<2> . It is preferable to apply a treatment making the unwoven fabric 11 hydroforbic, and to make the fineness of the fiber composing the unwoven fabric 11 not less than 1.5 dtex. The current collector is enabled to use for various primary batteries and secondary batteries, and it is recommendable to use it for an alkali secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池用集電材及び
それを用いた電池、特に不織布を所定のめっき断面積で
めっき処理した電池用集電材及びそれを用いた電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collector for a battery and a battery using the same, and more particularly to a current collector for a battery obtained by plating a non-woven fabric with a predetermined plating cross-sectional area and a battery using the same.

【0002】[0002]

【従来の技術】従来、電池、特にアルカリ二次電池は、
高信頼性でかつ小型軽量化が可能であるため、ポータブ
ル機器から産業用大型設備までの各種装置の電源として
多用されている。このアルカリ二次電池には、ほとんど
の場合正極としては、水酸化ニッケル電極が使用され
る。水酸化ニッケル電極としては、集電機能を分担する
集電材に、電池反応を生起させるための正極活物質を担
持させた構造とされる。その場合の集電材としては、従
来からニッケル粉末を焼結した焼結ニッケル板やパンチ
ングニッケル板などが広く用いられてきた。電池の容量
はこのようなニッケル板の空隙中に充填させる活物質の
量によって決定され、当該活物質の充填量はニッケル板
の空隙率によって決定されるため、ニッケル板の空隙率
をできるだけ大きくすることが望まれる。
2. Description of the Related Art Conventionally, batteries, especially alkaline secondary batteries, are
Since it is highly reliable and can be made compact and lightweight, it is widely used as a power source for various devices from portable equipment to large industrial equipment. In most of the alkaline secondary batteries, a nickel hydroxide electrode is used as the positive electrode. The nickel hydroxide electrode has a structure in which a positive electrode active material for causing a battery reaction is carried on a current collector that shares the current collecting function. As the current collector in that case, a sintered nickel plate obtained by sintering nickel powder, a punching nickel plate, or the like has been widely used. The capacity of the battery is determined by the amount of the active material to be filled in the voids of the nickel plate, and the filling amount of the active material is determined by the void ratio of the nickel plate. Therefore, the void ratio of the nickel plate should be maximized. Is desired.

【0003】ところが焼結ニッケル板はパンチングニッ
ケル板を基材としており、この基材は空隙率が75〜8
0%と低い上、硝酸塩溶液中のニッケル含有量が少ない
ため、活物質を所定量充填するためには含浸及び中和の
充填サイクルを数回以上繰り返す必要があり、充填サイ
クルを繰り返すに従い硝酸塩溶液のニッケル板内部への
浸透が悪化するため、活物質を高密度に充填することが
困難である。そこで、最近では、電池の小型化、高容量
化の要請に伴い、集電材の活物質の充填密度を高めるた
めに、空隙率が大きく、それ故活物質の充填密度を高め
ることができる三次元網状構造体からなる集電材が採用
されている。
However, the sintered nickel plate has a punching nickel plate as a base material, and the base material has a porosity of 75 to 8
Since it is as low as 0% and the nickel content in the nitrate solution is low, it is necessary to repeat the filling cycle of impregnation and neutralization several times or more to fill the predetermined amount of the active material. It is difficult to fill the active material with a high density because the penetration into the nickel plate deteriorates. Therefore, recently, in order to increase the packing density of the active material of the current collector with the demand for smaller size and higher capacity of the battery, the porosity is large and hence the packing density of the active material can be increased in three dimensions. A current collector made of a mesh structure is used.

【0004】この三次元網状構造の集電材としては、例
えば特開平8−329956号公報に記載されているよ
うに、有機繊維を抄造してなる不織布に所定量のニッケ
ルめっきを施し、不織布を熱分解除去することなしに、
不織布の表面のみが導電性を発揮できるようにした三次
元網状構造からなる集電材が知られている。
As the current collector having this three-dimensional network structure, for example, as described in JP-A-8-329956, a non-woven fabric made of organic fibers is plated with a predetermined amount of nickel to heat the non-woven fabric. Without disassembling and removing
There is known a current collector having a three-dimensional network structure in which only the surface of the nonwoven fabric can exhibit conductivity.

【0005】また、不織布と、この不織布の表面に形成
されたニッケルめっき膜とを備えたアルカリ二次電池用
集電材も知られている。
Further, a current collecting material for an alkaline secondary battery, which is provided with a non-woven fabric and a nickel plating film formed on the surface of the non-woven fabric, is also known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
8−329956号公報に示された集電材に使用する有
機繊維を抄造してなる不織布は、その表面に施されるニ
ッケルめっき量が多いため、空隙率が低くなると同時に
孔径が小さくなるため、電池の活物質を十分に充填でき
ず電池の高容量化が困難であるという問題点があった。
However, the non-woven fabric made of the organic fiber used for the current collector disclosed in JP-A-8-329956 has a large amount of nickel plating applied to the surface thereof. Since the porosity becomes low and the pore size becomes small at the same time, there is a problem that it is difficult to sufficiently fill the active material of the battery and it is difficult to increase the capacity of the battery.

【0007】また、従来の不織布の表面にニッケルめっ
き膜が形成された集電材では、表面抵抗が高くハイレー
ト充放電が困難であるという問題点があった。
Further, the current collector having the nickel plating film formed on the surface of the conventional non-woven fabric has a problem that the surface resistance is high and high-rate charge / discharge is difficult.

【0008】本発明は、このような従来の問題点を解決
するためになされたもので、電池を高容量化することが
でき、かつハイレート充放電が可能な電池を製造できる
集電体及びそれを用いた電池を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned conventional problems, and a current collector capable of increasing the capacity of a battery and capable of producing a battery capable of high-rate charging / discharging and a collector thereof. An object of the present invention is to provide a battery using.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1に係る
発明は、不織布と、前記不織布の表面に形成されためっ
き膜とを備える電池用集電材であって、前記めっき膜が
形成されためっき不織布繊維表面のめっき断面積が20
μm2〜130μm2であることを特徴とする電池用集電
材である。
The invention according to claim 1 of the present invention is a current collector for a battery comprising a nonwoven fabric and a plating film formed on the surface of the nonwoven fabric, wherein the plating film is formed. The cross section of the plated non-woven fiber surface is 20
a battery current collector, which is a μm 2 ~130μm 2.

【0010】請求項2に係る発明は、前記不織布が親水
化処理されていることを特徴とする。
The invention according to claim 2 is characterized in that the non-woven fabric is hydrophilized.

【0011】請求項3に係る発明は、前記不織布の構成
繊維として、繊度が1.5dtex以上の繊維を含むこ
とを特徴とする。
The invention according to claim 3 is characterized in that the constituent fibers of the non-woven fabric include fibers having a fineness of 1.5 dtex or more.

【0012】請求項4に係る発明は、請求項1〜3のい
ずれか1項に記載された集電材を用いることを特徴とす
る電池である。
[0012] The invention according to claim 4 is a battery characterized by using the current collector according to any one of claims 1 to 3.

【0013】請求項1の発明によれば、めっき不織布繊
維表面のめっき断面積が20μm2〜130μm2である
ので、めっき膜の表面抵抗が低く、活物質を充分に充填
でき、電池を高容量化することができ、かつハイレート
充放電が可能な電池を製造できる。
According to the invention of claim 1, since the plating sectional area of the plating nonwoven fiber surface is 20μm 2 ~130μm 2, low surface resistivity of the plating film can be sufficiently filled with the active material, a high capacity battery It is possible to manufacture a battery that can be made into a high-speed charge and discharge.

【0014】請求項2の発明によれば、不織布が親水化
処理されているので、不織布の繊維のめっき膜との密着
度が上昇し、めっき膜の表面抵抗が低下するため、ハイ
レート充放電が可能となる。
According to the second aspect of the present invention, since the non-woven fabric is hydrophilized, the adhesion of the fibers of the non-woven fabric to the plating film is increased, and the surface resistance of the plating film is decreased, so that high-rate charging / discharging is performed. It will be possible.

【0015】請求項3の発明によれば、不織布の構成繊
維として、繊度が1.5dtex以上の繊維を含んでい
るので、空隙率が増大して活物質の充填量を増大できる
と共に、めっき量を調節して容易に所定のめっき断面積
が得られる。
According to the invention of claim 3, as the constituent fibers of the non-woven fabric, fibers having a fineness of 1.5 dtex or more are included, so that the porosity is increased and the filling amount of the active material can be increased and the plating amount is increased. Can be easily adjusted to obtain a desired plating cross-sectional area.

【0016】請求項4の発明によれば、電池が請求項1
〜3のいずれか1項に記載された集電材を用いるので、
高容量化され、かつハイレート充放電が可能な電池が得
られる。
According to the invention of claim 4, the battery is claim 1.
Since the current collector described in any one of 1 to 3 is used,
A battery having a high capacity and capable of high-rate charge / discharge can be obtained.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0018】図1に示すように、本発明の集電材10
は、不織布11と、この不織布11の表面に形成された
めっき膜12とを有する。また、めっき膜12が形成さ
れためっき不織布繊維表面のめっき断面積は、20μm
2〜130μm2の範囲である。本発明による集電材は、
種々の一次電池及び二次電池、例えばアルカリ電池やリ
チウム電池に使用することができるが、望ましい電池の
例として、アルカリ二次電池を例に説明する。
As shown in FIG. 1, the current collector 10 of the present invention.
Has a nonwoven fabric 11 and a plating film 12 formed on the surface of the nonwoven fabric 11. Further, the plating cross-sectional area of the surface of the plated non-woven fabric on which the plated film 12 is formed is 20 μm.
It is in the range of 2 to 130 μm 2 . The current collector according to the present invention is
Although it can be used for various primary batteries and secondary batteries, for example, alkaline batteries and lithium batteries, an alkaline secondary battery will be described as an example of a desirable battery.

【0019】まず、不織布11は、ポリオレフィン系繊
維又はポリアミド樹脂系繊維のいずれか一方又は双方で
構成される。ポリオレフィン系繊維の樹脂成分として
は、例えば、ポリエチレン、ポリプロピレン、ポリメチ
ルペンテン、エチレン−プロピレンコポリマー、エチレ
ン−ブテン−プロピレンコポリマー又はエチレン−ビニ
ルアルコールコポリマーなどが挙げられ、ポリオレフイ
ン系の繊維は、これらの樹脂成分を一種以上含むことが
好ましい。ポリアミド樹脂系繊維の樹脂成分としては、
例えば、ナイロン6,ナイロン66,ナイロン12,又
はナイロン6とナイロン12との共重合体等が挙げら
れ、ポリアミド樹脂系繊維はこれらの樹脂成分を1種以
上含むことが好ましい。
First, the non-woven fabric 11 is composed of either one or both of a polyolefin fiber and a polyamide resin fiber. Examples of the resin component of the polyolefin fiber include, for example, polyethylene, polypropylene, polymethylpentene, ethylene-propylene copolymer, ethylene-butene-propylene copolymer, ethylene-vinyl alcohol copolymer, and the like. It is preferable to include one or more components. As the resin component of the polyamide resin fiber,
Examples thereof include nylon 6, nylon 66, nylon 12, or a copolymer of nylon 6 and nylon 12, and the polyamide resin fiber preferably contains one or more of these resin components.

【0020】ポリオレフイン系繊維又はポリアミド樹脂
系繊維のいずれか一方又は双方で構成された不織布11
を使用するのは、ポリオレフィン系繊維及びポリアミド
樹脂系繊維自体がすでに電池のセパレータとして使用さ
れている実績があり、20〜35重量%KOH水溶液と
接触してもポリオレフイン系繊維及びポリアミド樹脂系
繊維は溶解しないため物性の変化がなく、耐アルカリ性
が優れており、非常に安価に購入できて汎用性が高いか
らである。
Nonwoven fabric 11 composed of either or both of polyolefin fibers and polyamide resin fibers
The fact that polyolefin fibers and polyamide resin fibers themselves have already been used as separators for batteries, and polyolefin fibers and polyamide resin fibers are used even when they are contacted with a 20 to 35 wt% KOH aqueous solution, This is because it does not dissolve, has no change in physical properties, has excellent alkali resistance, and can be purchased at a very low price and has high versatility.

【0021】ポリオレフイン系繊維の場合であれば、耐
アルカリ性及び耐酸性に優れているポリエチレン樹脂又
はポリプロピレン樹脂であることが特に好ましい。ポリ
オレフイン系繊維はポリプロピレン樹脂のみでも、ポリ
エチレン樹脂のみでも、或いはこれらの樹脂を組み合わ
せた繊維でもよい。特に、ポリプロピレン(芯)の周囲
がポリエチレン(鞘)で覆われている芯鞘型複合繊維
は、耐アルカリ性と強度特性の両者を同時に満たすこと
ができるので好適である。図1ではポリオレフィン系繊
維又はポリアミド系繊維を示しているが、本発明はそれ
に限定されるものではない。
In the case of polyolefin fibers, a polyethylene resin or a polypropylene resin having excellent alkali resistance and acid resistance is particularly preferable. The polyolefin fibers may be polypropylene resin only, polyethylene resin only, or fibers obtained by combining these resins. In particular, a core-sheath type composite fiber in which the periphery of polypropylene (core) is covered with polyethylene (sheath) is suitable because it can simultaneously satisfy both alkali resistance and strength characteristics. Although polyolefin fibers or polyamide fibers are shown in FIG. 1, the present invention is not limited thereto.

【0022】この不織布11を構成する繊維としては特
に限定されるものではないが、巻縮を有する繊維を使用
することが好ましい。不織布11が巻縮を有する繊維を
含むと、不織布11が嵩高となるためその空隙体積が大
きくなり、活物質を多く充填できるので高容量の電池と
なる。また、平均孔径が大きくなるため活物質の充填が
容易となる。巻縮繊維としては巻縮数が3個/インチ以
上であるのが好ましく、5個/インチ以上であるのが更
に好ましい。また、適度な空隙率を保持できるように、
巻縮を有する繊維は、不織布中5重量%以上混在してい
るのが好ましく、より好ましくは20重量%以上の比率
で混在するのが良く、50重量%以上の比率で混在して
いるのが更に好ましい。この巻縮繊維は機械的に巻縮を
付与しても良いし、熱により巻縮が発現する繊維でも良
い。熱により巻縮が発現する繊維としては、収縮温度の
異なる2種の樹脂からなるサイドバイサイド繊維又は偏
芯タイプの芯鞘型繊維などが挙げられる。
The fibers constituting the nonwoven fabric 11 are not particularly limited, but it is preferable to use crimped fibers. When the non-woven fabric 11 contains crimped fibers, the non-woven fabric 11 becomes bulky and its void volume increases, and a large amount of active material can be filled, resulting in a high-capacity battery. In addition, since the average pore size becomes large, it becomes easy to fill the active material. The crimped fiber preferably has a crimping number of 3 fibers / inch or more, more preferably 5 fibers / inch or more. Also, in order to maintain an appropriate porosity,
The crimped fibers are preferably mixed in the nonwoven fabric in an amount of 5% by weight or more, more preferably 20% by weight or more, and 50% by weight or more. More preferable. The crimped fiber may be mechanically crimped, or may be a fiber that is crimped by heat. Examples of the fiber which is crimped by heat include a side-by-side fiber made of two kinds of resins having different shrinking temperatures or an eccentric type core-sheath type fiber.

【0023】不織布11を製造する方法としては、カ
ード法やエアレイ法、又は紡糸状態から連続的にシー
ト化するメルトブロー法やスパンボンド法のような乾式
法、或いは繊維を水に分散し、それを抄きとる湿式法
等により繊維ウエブを形成した後、適宜繊維同士を結合
して得ることができる。特に、湿式法により得られた繊
維ウエブから製造した不織布は、乾式法により得られた
繊維ウエブから製造した不織布と比較してその目付及び
厚みのばらつきが小さいので、均一な集電材を得ること
ができる。このため、この集電材を使用すると厚みが均
一な電極が形成され、その電極を巻回すると密着性に優
れた極群が形成でき、結果として充放電特性に優れた電
池を得ることができる。
As the method for producing the nonwoven fabric 11, a card method, an air-laying method, a dry method such as a melt blow method or a spunbond method for continuously forming a sheet from a spun state, or a method in which fibers are dispersed in water It can be obtained by forming fiber webs by a wet method or the like and then appropriately binding the fibers together. In particular, since the non-woven fabric produced from the fibrous web obtained by the wet method has less variation in unit weight and thickness as compared with the non-woven fabric produced from the fibrous web obtained by the dry method, a uniform current collector can be obtained. it can. Therefore, when this current collector is used, an electrode having a uniform thickness is formed, and when the electrode is wound, a pole group having excellent adhesion can be formed, and as a result, a battery having excellent charge / discharge characteristics can be obtained.

【0024】繊維ウエブの結合方法としては、例えば交
絡処理や熱処理を行って強度特性を高める方法を例示で
きる。交絡処理としては、例えば、非常に細かい高圧の
水ジェットを衝撃的に与える水流交絡処理や、ニードル
パンチによる交絡処理などを採用することができる。繊
維ウエブに交絡処理を施すと、繊維が互いに絡み合って
各繊維間の接触点11aの数が増加してその強度特性は
向上し、また、空隙率を適正な値に調整することもでき
る。熱処理は、繊維を互いの接触点11aで局部的に融
着させることにより全体の強度特性を高めるために行わ
れる。しかし、繊維の熱分解温度以上の温度で熱処理を
行うと、繊維が熱分解して消失してしまうので、その処
理温度は繊維の熱分解温度未満に設定して行うことが必
要である。
As a method of joining the fibrous webs, for example, a method of enhancing the strength characteristics by performing entanglement treatment or heat treatment can be exemplified. As the entanglement treatment, for example, a water entanglement treatment that impacts a very fine high-pressure water jet, a entanglement treatment using a needle punch, or the like can be adopted. When the fiber web is subjected to the entanglement treatment, the fibers are entangled with each other, the number of contact points 11a between the fibers is increased, the strength characteristics are improved, and the porosity can be adjusted to an appropriate value. The heat treatment is performed to locally fuse the fibers at the contact points 11a of each other to improve the overall strength characteristics. However, if the heat treatment is performed at a temperature equal to or higher than the thermal decomposition temperature of the fiber, the fiber thermally decomposes and disappears. Therefore, it is necessary to set the treatment temperature below the thermal decomposition temperature of the fiber.

【0025】熱処理の温度は、繊維の熱分解温度よりも
低く、かつ繊維が軟化する温度から融点よりも30℃高
い温度の範囲内に設定されるが、その温度内において、
あまり低温であると、繊維相互の熱融着は十分といえな
いので、得られた不織布の強度は低くなり、活物質合成
ペーストの充填時に座屈などが起こり始める。一方、あ
まり高温にすると繊維の溶融が進行して空隙率の低下を
招き、これもまた、活物質合成ペーストの充填密度を低
めることになる。このため、繊維としてポリプロピレン
の周囲がポリエチレンで覆われている前述の芯鞘型複合
繊維を用いた場合、熱処理の温度は110〜140℃で
あることが好ましい。この交絡処理と熱処理は、それぞ
れ独立して行ってもよいが、交絡処理を行った後に熱処
理を行うと、得られる不織布の強度特性が著しく向上す
るので好適である。
The temperature of the heat treatment is set to a temperature lower than the thermal decomposition temperature of the fiber and a temperature higher than the melting point of the fiber and 30 ° C. higher than the melting point, but within that temperature,
If the temperature is too low, the heat fusion between the fibers cannot be said to be sufficient, so that the strength of the obtained non-woven fabric becomes low, and buckling or the like begins to occur when the active material synthetic paste is filled. On the other hand, if the temperature is too high, the fibers are melted and the porosity is lowered, which also lowers the packing density of the active material synthetic paste. Therefore, when the above-mentioned core-sheath type composite fiber in which polypropylene is covered with polyethylene is used as the fiber, the heat treatment temperature is preferably 110 to 140 ° C. The entanglement treatment and the heat treatment may be performed independently, but it is preferable to perform the entanglement treatment and then the heat treatment, because the strength characteristics of the obtained nonwoven fabric are significantly improved.

【0026】不織布11は、その空隙率が70%以上で
あることが好ましい。この場合の空隙率とは、不織布全
体の容積に対する空孔の百分率をいう。空隙率を70%
より小さくすると、得られた不織布11の強度特性は向
上するが、活物質合成ペーストの充填密度が低くなり、
結果として高容量電池の電極用集電材10としての性能
低下を招くようになるからである。一方、空隙率をあま
り高くすると、大幅な強度の低下が引き起こされるの
で、この空隙率は80〜98%となるようにすることが
好ましい。
The nonwoven fabric 11 preferably has a porosity of 70% or more. The porosity in this case refers to the percentage of pores with respect to the volume of the entire nonwoven fabric. 70% porosity
If it is made smaller, the strength characteristics of the obtained non-woven fabric 11 are improved, but the packing density of the active material synthetic paste becomes low,
As a result, the performance of the electrode current collector 10 of the high capacity battery is deteriorated. On the other hand, if the porosity is too high, the strength is significantly reduced, so that the porosity is preferably 80 to 98%.

【0027】集電材10は、上述のようなポリオレフィ
ン系繊維又はポリアミド樹脂系繊維のいずれか一方又は
双方で構成された不織布11を使用する。好ましくは、
不織布11を親水化処理してもよく、これにより、不織
布の繊維とめっき膜との密着度が上昇し、めっき膜の表
面抵抗が低下するため、ハイレート充放電が可能とな
る。親水化処理は、スルホン化処理,フッ素ガス処理又
はビニルモノマーのグラフト処理、界面活性剤処理、親
水性樹脂付与処理及び放電処理により行われる。集電材
10は、その親水化処理された不織布11をめっき処理
して作られる。
As the current collector 10, a non-woven fabric 11 composed of either one or both of the above-mentioned polyolefin fiber or polyamide resin fiber is used. Preferably,
The non-woven fabric 11 may be subjected to a hydrophilic treatment, which increases the degree of adhesion between the fibers of the non-woven fabric and the plating film and lowers the surface resistance of the plating film, enabling high-rate charging / discharging. The hydrophilic treatment is performed by sulfonation treatment, fluorine gas treatment or vinyl monomer graft treatment, surfactant treatment, hydrophilic resin application treatment and discharge treatment. The current collector 10 is made by plating the hydrophilic non-woven fabric 11.

【0028】一般に、ポリプロピレンなどのポリオレフ
イン系の材料及びポリアミド系の材料は、めっき液との
親和性が悪く、繊維表面とめっき膜との密着性に乏し
い。一方、親水化処理することにより、めっき液の繊維
表面との親和性が向上し、強固にニッケルイオンと結合
するので、導電性の向上と繊維表面に形成される金属め
っきとの密着性の向上が図られる。
Generally, polyolefin-based materials such as polypropylene and polyamide-based materials have poor affinity with the plating solution and poor adhesion between the fiber surface and the plating film. On the other hand, the hydrophilic treatment improves the affinity of the plating solution with the fiber surface and firmly binds to nickel ions, improving the conductivity and the adhesion to the metal plating formed on the fiber surface. Is planned.

【0029】親水化処理としては、例えば、スルホン化
処理、フッ素ガス処理、ビニルモノマーのグラフト重
合、界面活性化剤処理、放電処理或いは親水性樹脂付与
処理などがある。特に、スルホン化処理、フッ素ガス処
理又はビニルモノマーのグラフト処理は電池に使用され
る電解液である20〜35重量%KOHの水溶液中で長
期間におけるめっき膜の脱落や表面抵抗の上昇がなく好
ましい。
Examples of the hydrophilization treatment include sulfonation treatment, fluorine gas treatment, vinyl monomer graft polymerization, surfactant treatment, discharge treatment, and hydrophilic resin application treatment. In particular, the sulfonation treatment, the fluorine gas treatment or the vinyl monomer grafting treatment is preferable in an aqueous solution of 20 to 35 wt% KOH, which is an electrolyte used for a battery, because the plating film does not drop out and the surface resistance does not increase for a long period of time. .

【0030】スルホン化処理としては、特に限定するも
のではないが、例えば発煙硫酸、硫酸、三酸化イオウ、
クロロ硫酸、又は塩化スルフリルなどへの浸漬による処
理がある。これらの中でも発煙硫酸によるスルホン化処
理は、反応性が高く、比較的容易にスルホン化できるた
め、好適である。フッ素ガス処理についても、特に限定
するものではないが、例えば、不活性ガス(例えば窒素
ガス、アルゴンガス等)で希釈したフッ素ガスと、酸素
ガス、二酸化炭素ガス、及び二酸化イオウガスなどの中
から選んだ少なくとも一種類のガスとの混合ガスヘの接
触による処理を挙げることができる。なお、不織布に二
酸化イオウガスを予め付着させた後に、フッ素ガスを接
触させる方法は、より効率的で、恒久的な親水化処理方
法である。ビニルモノマーのグラフト処理についても、
特に限定するものではないが、例えば、アクリル酸、メ
タクリル酸、アクリル酸エステル、メタクリル酸エステ
ル、ビニルピリジン、或いはスチレンの中から選んだ少
なくとも1種類のグラフト重合液を不織布に含浸し、紫
外線を照射する処理を挙げることができる。これらの中
でも、アクリル酸は電解液であるKOH水溶液中での長
時間におけるめっき膜の脱落や表面抵抗の上昇がなく好
ましい。
The sulfonation treatment is not particularly limited, but for example, fuming sulfuric acid, sulfuric acid, sulfur trioxide,
There is treatment by immersion in chlorosulfuric acid, sulfuryl chloride or the like. Among these, the sulfonation treatment with fuming sulfuric acid is preferable because it has high reactivity and can be sulfonated relatively easily. The fluorine gas treatment is also not particularly limited, but is selected from, for example, fluorine gas diluted with an inert gas (such as nitrogen gas and argon gas), oxygen gas, carbon dioxide gas, and sulfur dioxide gas. However, a treatment by contacting with a mixed gas with at least one kind of gas can be mentioned. It should be noted that the method of previously adhering sulfur dioxide gas to the nonwoven fabric and then contacting it with fluorine gas is a more efficient and permanent hydrophilization treatment method. Also for vinyl monomer grafting,
Although not particularly limited, for example, the nonwoven fabric is impregnated with at least one graft polymerization liquid selected from acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl pyridine, or styrene, and then irradiated with ultraviolet rays. The processing can be mentioned. Among these, acrylic acid is preferable because it does not drop the plating film or increase the surface resistance in a KOH aqueous solution as an electrolytic solution for a long time.

【0031】このようにして得られた親水化処理不織布
をめっき処理を行う。このめっき処理は、無電解めっき
法であることが好ましく、必要に応じて無電解めっき法
により形成された無電解めっき膜12aに更に電解めっ
き法により電解めっき膜12bを形成し、不織布11の
表面をめっき膜12で被覆する。めっきを行う金属とし
ては、代表的にはニッケルであるが、使用する電池に応
じて種々の金属、例えば銅、金、アルミニウムなどを使
用することができる。
The hydrophilic treated non-woven fabric thus obtained is plated. This plating treatment is preferably an electroless plating method. If necessary, the electroless plating film 12a formed by the electroless plating method is further formed with an electrolytic plating film 12b by the electrolytic plating method, and the surface of the nonwoven fabric 11 is formed. Are coated with the plating film 12. The metal to be plated is typically nickel, but various metals such as copper, gold and aluminum can be used depending on the battery used.

【0032】本発明においては、めっき膜12が形成さ
れためっき不織布繊維表面のめっき断面積は、20μm
2〜130μm2の範囲であることが望ましい。めっき断
面積が20μm2未満であると、めっき膜12の表面抵
抗が高くなり、ハイレート充放電が困難となるので、3
0μm2以上であるのがより好ましく、40μm2以上で
あるのがさらに好ましい。また、めっき断面積が130
μm2を超えると、繊維が太くなり、空隙率が低下し、
活物質の充填量が減り、電池の高容量化が困難となるの
で、120μm2以下であるのがより好ましく、110
μm2以下であるのがさらに好ましい。
In the present invention, the plating cross-sectional area of the surface of the plated non-woven fabric on which the plating film 12 is formed is 20 μm.
It is preferably in the range of 2 to 130 μm 2 . If the plating cross-sectional area is less than 20 μm 2 , the surface resistance of the plating film 12 becomes high and high rate charging / discharging becomes difficult.
It is more preferably 0 μm 2 or more, still more preferably 40 μm 2 or more. In addition, the plating cross-sectional area is 130
If it exceeds μm 2 , the fiber becomes thick and the porosity decreases,
Since the filling amount of the active material decreases and it becomes difficult to increase the capacity of the battery, it is more preferably 120 μm 2 or less.
More preferably, it is less than or equal to μm 2 .

【0033】このようなめっき断面積とするためには、
めっき不織布のもととなる不織布を構成する繊維とし
て、繊度が1.5dtex以上の繊維を含んでいること
が望ましい。さらに望ましくは、2.5dtex以上の
繊維を含んでおり、最も好ましくは4dtex以上の繊
維を含んでいる。なお、上限は特に限定するものではな
いが、繊度が30dtex程度の繊維が適当である。こ
のような比較的太い繊維を使用することにより、隣り合
う繊維同士の間隔が大きくなり、空隙率が増大して活物
質の充填量を増加させることができる。また、所望めっ
き断面積を容易に得ることができる。このような比較的
太い繊維は、不織布中、10mass%以上含まれてい
るのが好ましく、20mass%以上含まれているのが
より好ましい。
In order to obtain such a plating cross section,
It is desirable that the fibers forming the non-woven fabric that is the basis of the plated non-woven fabric include fibers having a fineness of 1.5 dtex or more. More preferably, it contains 2.5 dtex or more fibers, and most preferably 4 dtex or more fibers. The upper limit is not particularly limited, but fibers having a fineness of about 30 dtex are suitable. By using such a relatively thick fiber, the interval between adjacent fibers is increased, the porosity is increased, and the filling amount of the active material can be increased. Further, the desired plating cross-sectional area can be easily obtained. Such a relatively thick fiber is preferably contained in the nonwoven fabric in an amount of 10 mass% or more, more preferably 20 mass% or more.

【0034】ここで、無電解めっき法は、具体的には触
媒付与化工程と無電解めっき工程とに分けられる。触媒
付与化工程は、塩化第一錫の塩酸水溶液で処理した後に
塩化パラジウムの塩酸水溶液で触媒化する方法と、硬化
剤のアミノ基を含む塩化パラジウムの塩酸溶液のみで固
定化する方法などがあるが、前者による方法が、最もめ
っき膜厚の均一性に優れるので好ましい。無電解めっき
工程は、一般的に硝酸ニッケル、塩化ニッケル、硫酸ニ
ッケル等のニッケル塩を含有する水溶液中でニッケルを
還元剤にて還元する方法であり、必要に応じて錯化剤、
pH調整剤、緩衝剤、安定化剤等が投入される。特に純
度の高いニッケル皮膜を得るため、還元剤として水和ヒ
ドラジン、硫酸ヒドラジン、酸化ヒドラジン等のヒドラ
ジン誘導体を使用する方法が好ましい。無電解めっきす
る際の不織布の性状は、連続した長尺を巻き取りながら
触媒付与槽からめっき槽へと連続にめっきする方法や、
ロール状に巻き取った状態で、チーズ染色機を使用して
強制的に液を循環させてめっきする方法などが挙げられ
る。ロール状に巻き取った状態での処理にあっては、触
媒付与工程のみ或いは無電解めっき工程のみを行っても
良く、又はその両工程をロール状に巻き取った状態で行
っても良い。
Here, the electroless plating method is specifically divided into a catalyst applying step and an electroless plating step. The catalyst application step includes a method of treating with stannous chloride in hydrochloric acid solution and then catalyzing with palladium chloride in hydrochloric acid solution, and a method of immobilizing with only hydrochloric acid solution of palladium chloride containing an amino group of a curing agent. However, the former method is preferable because it provides the most uniform plating film thickness. The electroless plating step is generally a method of reducing nickel with a reducing agent in an aqueous solution containing nickel salt such as nickel nitrate, nickel chloride and nickel sulfate, and if necessary, a complexing agent,
A pH adjuster, a buffer, a stabilizer, etc. are added. In order to obtain a nickel film having a particularly high purity, it is preferable to use a hydrazine derivative such as hydrated hydrazine, hydrazine sulfate and hydrazine oxide as a reducing agent. The property of the non-woven fabric during electroless plating is a method of continuously plating from a catalyst applying tank to a plating tank while winding a continuous long length,
Examples of the method include a method in which a cheese dyeing machine is used to forcibly circulate a liquid and plating is performed in a state of being rolled up. In the treatment in the state of being rolled up, only the catalyst applying step or only the electroless plating step may be performed, or both of these steps may be performed in the state of being rolled up.

【0035】必要に応じて電解めっき膜12bを更に形
成する。電解めっき法は、めっき浴を用いて行われる。
めっき浴としては、ワット浴、塩化浴、スルファミン酸
浴が知られている。これに、pH緩衝剤、界面緩衝剤等
の添加剤が使用される場合もある。この浴に無電解めっ
きした不織布を陰極に、ニッケル対極板を陽極に接続し
て直流或いはパルス断続電流を通電させることにより、
無電解めっき膜12aを形成した上に更に電解めっき膜
12bを形成する。
If necessary, an electrolytic plating film 12b is further formed. The electrolytic plating method is performed using a plating bath.
Known plating baths are a Watt bath, a chloride bath, and a sulfamic acid bath. Additives such as a pH buffer and an interface buffer may be used for this. By connecting the electrolessly plated non-woven fabric to this bath as the cathode and connecting the nickel counter electrode plate to the anode and applying a DC or pulse intermittent current,
After forming the electroless plated film 12a, the electrolytic plated film 12b is further formed.

【0036】このようにして作られた集電材は、電池の
セパレータとして使用されている実績があるポリオレフ
イン系繊維又はポリアミド樹脂系繊維のいずれか一方又
は双方で構成された不織布11を使用するので、比較的
信頼性が高い。また、この不織布11を親水化処理(特
にスルホン化処理,フッ素ガス処理又はビニルモノマー
のグラフト処理)するので、不織布のめっき液との親和
性が向上し、親水化処理されたこの不織布をニッケルめ
っき処理するので、不織布11は強固にニッケルイオン
と結合する。この結果、導電性の向上と繊維表面に形成
される金属めっきとの密着性が向上した集電材10を得
ることができる。
The current collector made in this way uses the non-woven fabric 11 composed of either one or both of polyolefin-based fibers and polyamide resin-based fibers that have been used as separators for batteries. Relatively reliable. Further, since the non-woven fabric 11 is subjected to a hydrophilic treatment (particularly a sulfonation treatment, a fluorine gas treatment or a vinyl monomer graft treatment), the affinity of the non-woven fabric with a plating solution is improved, and the hydrophilic treated non-woven fabric is nickel-plated. Since the treatment is performed, the nonwoven fabric 11 is firmly bonded to nickel ions. As a result, it is possible to obtain the current collector 10 having improved conductivity and improved adhesion to the metal plating formed on the fiber surface.

【0037】なお、不織布には一方の表面から他方の表
面に貫通する複数の細孔を散在させることが好ましい。
不織布に複数の細孔を散在させれば、これらの細孔にも
活物質が充填されることから、活物質の充填量が増大し
て電池、特にアルカリ二次電池の高容量化を図ることが
できる。細孔の不織布の形成は、打ち抜くことにより細
孔を複数形成するいわゆるパンチ加工により形成するこ
とが好ましいが、熱やレーザ加工等により不織布を局部
的に溶解又は消失させることにより形成してもよい。
The non-woven fabric preferably has a plurality of pores penetrating from one surface to the other surface.
If multiple pores are scattered in the non-woven fabric, these pores are also filled with the active material, so that the filling amount of the active material is increased and the capacity of the battery, especially the alkaline secondary battery is increased. You can The non-woven fabric having fine pores is preferably formed by so-called punching in which a plurality of fine pores are formed by punching, but may be formed by locally dissolving or disappearing the non-woven fabric by heat or laser processing. .

【0038】次に、本発明による集電材を用いた電池の
例として、アルカリ二次電池を図面に基づいて説明す
る。
Next, an alkaline secondary battery will be described with reference to the drawings as an example of a battery using the current collector according to the present invention.

【0039】図2に示すように、電池101は、親水化
処理(例えばスルホン化処理,フッ素ガス処理又はビニ
ルモノマーのグラフト処理)した不織布にニッケルめっ
きを施した集電材を用いたアルカリ二次電池であり、こ
の集電材からなる帯状の正極102と帯状の負極103
を備える。そして正極102と負極103との間には第
1セパレータ104aが介装されており、正極102の
内側に第2セパレータ104bが介装されたロール状発
電体106を備えている(図2)。そしてこの電池10
1は、発電体106を収容し負極を兼ねる導電性の電池
ケース107と、このケース107を封止し正極を兼ね
る封入板108とを備えている。
As shown in FIG. 2, a battery 101 is an alkaline secondary battery using a current collector made of nickel-plated non-woven fabric subjected to hydrophilic treatment (for example, sulfonation treatment, fluorine gas treatment or vinyl monomer graft treatment). And a strip-shaped positive electrode 102 and a strip-shaped negative electrode 103 made of this current collector.
Equipped with. The first separator 104a is interposed between the positive electrode 102 and the negative electrode 103, and the roll-shaped power generator 106 in which the second separator 104b is interposed inside the positive electrode 102 is provided (FIG. 2). And this battery 10
1 includes a conductive battery case 107 that houses the power generator 106 and also serves as a negative electrode, and an encapsulation plate 108 that seals the case 107 and also serves as a positive electrode.

【0040】正極102は、上述した集電材を帯状に形
成し、端子を取り付ける箇所を押しつぶした後、集電材
全体の空隙部に正極活物質を含む正極ペーストを充填
し、その後乾燥及び圧延する。そして押しつぶした箇所
に集電用外部端子としてのニッケル片102aをスポッ
ト溶接することにより作られる。また、負極103は上
述の集電材を帯状に形成し、端子を取り付ける箇所を押
しつぶした後、集電材全体の空隙部に負極活物質を含む
負極ペーストを充填し、その後乾燥及び圧延する。そし
てその押しつぶした箇所に集電用外部端子としてのニッ
ケル片(図示せず)をスポット溶接することにより作ら
れる。一方、セパレータ104は多孔質シートにより帯
状に形成され、上記正極102及び負極103間に介装
された第1セパレータ104aと、正極102の内面に
積層された第2セパレータ104bとを有する。第1及
び第2セパレータ104a,104bは正極102及び
負極103の短絡を防止し、かつ電解液を保持するよう
に構成される。
For the positive electrode 102, the above-mentioned current collector is formed in a strip shape, and after crushing the place where the terminal is attached, the voids of the entire current collector are filled with the positive electrode paste containing the positive electrode active material, and then dried and rolled. Then, the nickel piece 102a as an external terminal for current collection is spot-welded to the crushed portion. Further, the negative electrode 103 is formed by forming the above current collector into a strip shape, crushing the places where the terminals are attached, filling the voids of the entire current collector with the negative electrode paste containing the negative electrode active material, and then drying and rolling. Then, a nickel piece (not shown) as an external terminal for collecting electricity is spot-welded to the crushed portion. On the other hand, the separator 104 is formed of a porous sheet in a band shape, and has a first separator 104 a interposed between the positive electrode 102 and the negative electrode 103, and a second separator 104 b laminated on the inner surface of the positive electrode 102. The first and second separators 104a and 104b are configured to prevent a short circuit between the positive electrode 102 and the negative electrode 103 and to hold the electrolytic solution.

【0041】導電性電池ケース107は缶底107aを
有する筒状に形成され、封入板108はこの電池ケース
107の上端の開口部を塞ぐように構成される。電池ケ
ース107bはその内周面に負極103が接触するよう
に発電体106が収容可能に構成される。また、封入板
108の中央には電池の正極端子を形成する突起108
aが形成される。また、缶底107aと発電体106と
の間にはロア絶縁体109aが介装される。発電体10
6はロア絶縁体109aが挿入された電池ケース107
に挿入され、発電体106の上端にはアッパ絶縁体10
9bが配置される。
The conductive battery case 107 is formed in a cylindrical shape having a can bottom 107a, and the enclosing plate 108 is constructed so as to close the opening at the upper end of the battery case 107. The battery case 107b is configured so that the power generator 106 can be housed so that the negative electrode 103 contacts the inner peripheral surface of the battery case 107b. In addition, a protrusion 108 that forms the positive electrode terminal of the battery is formed in the center of the encapsulation plate 108.
a is formed. Further, a lower insulator 109a is interposed between the can bottom 107a and the power generator 106. Power generator 10
6 is a battery case 107 in which a lower insulator 109a is inserted.
The upper insulator 10 is inserted into the upper end of the power generator 106.
9b is arranged.

【0042】ロア絶縁体109aには負極103にスポ
ット溶接されたニッケル片が挿通可能なスリットが形成
され、アッパ絶縁体109bには正極102にスポット
溶接されたニッケル片102aが挿通可能なスリットが
形成される。負極103にスポット溶接されたニッケル
片はロア絶縁体109aに形成されたスリットを挿通し
て缶底107a側に突出し、正極102にスポット溶接
されたニッケル片102aはアッパ絶縁体109bに形
成されたスリットを挿通して封止板108側に突出する
ように構成される。ロア絶縁体109aのスリットから
突出したニッケル片は缶底107aに接続され、アッパ
絶縁体109bのスリットから突出したニッケル片10
2aは封止板108に接続される。
The lower insulator 109a is formed with a slit through which the nickel piece spot-welded to the negative electrode 103 can be inserted, and the upper insulator 109b is formed with a slit through which the nickel piece 102a spot-welded to the positive electrode 102 can be inserted. To be done. The nickel piece spot-welded to the negative electrode 103 is inserted into a slit formed in the lower insulator 109a and protrudes toward the can bottom 107a side, and the nickel piece 102a spot-welded to the positive electrode 102 is a slit formed in the upper insulator 109b. Is configured to pass through and to protrude toward the sealing plate 108 side. The nickel piece protruding from the slit of the lower insulator 109a is connected to the can bottom 107a, and the nickel piece 10 protruding from the slit of the upper insulator 109b.
2a is connected to the sealing plate 108.

【0043】アッパ絶縁体109bが電池ケース107
に挿入された状態で、電池ケース107の開口部近傍の
上部にリング状のくびれ部107bが形成され、その後
正極102のニッケル片102aが接続された封止板1
08がそのくびれ部107bにリング状の絶縁用パッキ
ン111を介して配置される。その後電池ケース107
の上端縁を折返して封入板108の外周縁に絶縁用パッ
キン111とともに被せることにより封入板108が電
池ケース107と電気的に絶縁され、電池ケースはその
封入板108により封止される。
The upper insulator 109b is the battery case 107.
The sealing plate 1 in which the ring-shaped constricted portion 107b is formed in the upper portion of the battery case 107 in the vicinity of the opening, and the nickel piece 102a of the positive electrode 102 is connected thereafter.
08 is arranged in the constricted portion 107b via a ring-shaped insulating packing 111. Then battery case 107
The upper end edge of the battery is folded back and the outer peripheral edge of the encapsulating plate 108 is covered with the insulating packing 111 so that the encapsulating plate 108 is electrically insulated from the battery case 107, and the battery case is sealed by the encapsulating plate 108.

【0044】このように構成された電池101では、第
2セパレータ104b、正極102、第1セパレータ1
04a、負極103の順に積層する。このように積層さ
れた状態で、負極103が外側となるようにロール状に
巻回することにより発電体106は製造されるが、親水
化処理した不織布にニッケルめっきを施した集電材は、
従来のニッケルからなる網状骨格からなる集電材に比較
して比較的柔軟であるため、この集電材を用いた正極1
02及び負極103も比較的柔軟なものになり、ロール
状に巻回することが比較的容易であり、電池101自体
の組み立てが容易になる。
In the battery 101 thus constructed, the second separator 104b, the positive electrode 102, and the first separator 1
04a and the negative electrode 103 are laminated in this order. In such a laminated state, the power generator 106 is manufactured by winding the negative electrode 103 in a roll shape so that the negative electrode 103 is on the outer side. However, the current collector obtained by applying nickel plating to the hydrophilized nonwoven fabric is
The positive electrode 1 using this current collector is relatively flexible as compared with the conventional current collector having a net-like skeleton made of nickel.
02 and the negative electrode 103 are also relatively flexible, are relatively easy to wind in a roll shape, and facilitate the assembly of the battery 101 itself.

【0045】また、親水化処理した不織布にニッケルめ
っきを施した集電材はニッケルめっきの密着性が高いの
で、電池の組み立てや充放電を繰り返してもめっき膜質
が変化することや部分的に欠落することはない。このた
め、この集電材を用いた電池ではハイレート放電特性及
び容量を従来の電池より向上させることができる。
Further, since the current collector obtained by nickel-plating the non-woven fabric subjected to the hydrophilic treatment has high nickel-plating adhesion, the quality of the plating film is changed or partially missing even when the battery is assembled and charged and discharged repeatedly. There is no such thing. Therefore, the battery using this current collector can have higher rate discharge characteristics and higher capacity than conventional batteries.

【0046】なお、上述した実施の形態では円筒状の電
池ケース107にロール状に巻かれた発電体106が挿
入された電池を説明したが、電池ケースは角筒状のもの
であっても良く、発電体は図4に示すように正極102
及び負極103を渦巻き角状に巻回したもの、又は図5
に示すように蛇腹状に屈曲積層したものであっても良
い。
In the above-described embodiment, the battery in which the power generator 106 wound in a roll shape is inserted in the cylindrical battery case 107 has been described, but the battery case may have a rectangular tube shape. , The positive electrode 102 as shown in FIG.
And the negative electrode 103 wound into a spiral shape, or FIG.
It may be bent and laminated in a bellows shape as shown in FIG.

【0047】[0047]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples.

【0048】実施例1〜4、比較例1〜4 芯成分がポリプロピレンからなり、鞘成分が高密度ポリ
エチレンからなる繊度6.6dtex、繊維長5mmの
芯鞘型複合繊維100重量%を分散させたスラリーを、
常法の湿式抄造法により繊維ウエブを形成した。この繊
維ウエブを135℃に設定されたドライヤにより熱処理
し、芯鞘型複合繊維の鞘成分を融着させて目付100g
/m2、厚さ0.8mmの不織布を作った。この不織布
の空隙率は86%であった。
Examples 1 to 4 and Comparative Examples 1 to 4 100% by weight of a core-sheath type composite fiber having a fineness of 6.6 dtex and having a core component of polypropylene and a sheath component of high density polyethylene and a fiber length of 5 mm was dispersed. The slurry,
A fibrous web was formed by a conventional wet papermaking method. This fiber web is heat-treated with a dryer set at 135 ° C. to fuse the sheath component of the core-sheath type composite fiber to give a basis weight of 100 g.
A non-woven fabric having a thickness of 0.8 mm / m 2 was prepared. The porosity of this nonwoven fabric was 86%.

【0049】この不織布を80℃の発煙硫酸液に浸漬す
ることによりスルホン化処理を行い、得られた親水化処
理不織布をニッケルめっき処理した。このニッケルめっ
き処理は、親水化処理不織布を染色機のキャリヤーに巻
き付け、精錬剤を循環、水洗いし、次に、塩化第1スズ
10g/リットル、塩酸20ml/リットルを含んだ水
溶液を循環し、水洗後、塩化パラジウム1g/リット
ル、塩酸20ml/リットルを含む水溶液を循環させて
触媒化を行った。
This non-woven fabric was subjected to a sulfonation treatment by immersing it in a fuming sulfuric acid solution at 80 ° C., and the resulting hydrophilicized non-woven fabric was subjected to nickel plating treatment. In this nickel plating treatment, the hydrophilic treated non-woven fabric is wrapped around a carrier of a dyeing machine, a refining agent is circulated and washed with water, and then an aqueous solution containing 10 g / liter of stannous chloride and 20 ml / liter of hydrochloric acid is circulated and washed with water. Then, an aqueous solution containing 1 g / liter of palladium chloride and 20 ml / liter of hydrochloric acid was circulated to carry out catalysis.

【0050】その後、更に水洗を行い、硫酸ニッケル1
8g/リットル、クエン酸ナトリウム109/リット
ル、水和ヒドラジン50ml/リットル、25%アンモ
ニア水100ml/リットルに各濃度となる無電解ニッ
ケルめっき液を、めっき後の集電材の全重量に対するニ
ッケルめっき重量が、以下の表1に記載の量となるニッ
ケルを含有する液量で、80℃に加熱して循環した。1
時間循環させてめっき液がほぼ透明となった後にその循
環を止めて不織布を取り出し、水洗し更に乾燥を行って
集電材を得た。
After that, further washing with water was performed to obtain nickel sulfate 1
8 g / liter, sodium citrate 109 / liter, hydrated hydrazine 50 ml / liter, 25% ammonia water 100 ml / liter, each concentration of electroless nickel plating solution, the nickel plating weight relative to the total weight of the current collector after plating The amount of nickel-containing liquid described in Table 1 below was heated to 80 ° C. and circulated. 1
After the plating solution was circulated for a time to become almost transparent, the circulation was stopped, the nonwoven fabric was taken out, washed with water, and further dried to obtain a current collector.

【0051】[0051]

【表1】 この表1において、めっき断面積が20μm2〜130
μm2である集電材を実施例1〜4とし、この範囲を外
れるめっき断面積の集電材を比較例1〜4として示し
た。これらの集電材について、電池試験を行った。測定
方法は、次の通りである。
[Table 1] In Table 1, the plating cross-sectional area is 20 μm 2 to 130
The current collectors having a size of μm 2 are shown as Examples 1 to 4, and the current collectors having a plating cross-sectional area outside this range are shown as Comparative Examples 1 to 4. A battery test was performed on these current collectors. The measuring method is as follows.

【0052】まず、表1中、活物質の充填密度(g/c
3)は、活物質である水酸化ニッケル(Ni(O
H)2)を充填した後の集電材重量W1(g)を測定
し、この重量から活物質充填前の重量W(g)を引き、
活物質充填量(W1−W)を計算する。次に、活物質を
充填した後の集電材の厚みT(cm)及び面積A(cm
2)を測定する。これらの測定結果から、活物質の充填
密度は、充填密度(g/cm 3)=(W1−W)/(A
×T)として求めた。
First, in Table 1, the packing density of active material (g / c
m3) Is nickel hydroxide (Ni (O
H)2) After measuring the weight W1 (g) of the current collector
Then, subtract the weight W (g) before filling the active material from this weight,
The active material filling amount (W1-W) is calculated. Next, the active material
Thickness T (cm) and area A (cm) of the current collector after filling
2) Is measured. Filling the active material from these measurement results
Density is the packing density (g / cm 3) = (W1-W) / (A
XT).

【0053】また、不織布の繊維比重(ポリプロピレン
/ポリエチレン)(g/cm3)は0.94であり、ニ
ッケル金属の比重(g/cm3)は8.9であった。こ
れらの値から、めっき後の繊維比重(SG)(g/cm
3)は、(集電材重量(g))/{(ニッケル重量÷
8.9)+(不織布重量÷0.94)}から求めた。
The fiber specific gravity (polypropylene / polyethylene) (g / cm 3 ) of the nonwoven fabric was 0.94, and the specific gravity (g / cm 3 ) of nickel metal was 8.9. From these values, the fiber specific gravity (SG) after plating (g / cm
3 ) is (current collector weight (g)) / {(nickel weight /
8.9) + (nonwoven fabric weight / 0.94)}.

【0054】次に、表1中、集電材の空隙率(%)は、
集電材の厚みt(μm)、目付W(g/m2)から、空
隙率(%)={1−W/(t×SG)}×100により
求めた。また、利用率(%)は、次のようにして測定し
た。すなわち、正極に実施例及び比較例の集電材を使用
し、負極に発泡ニッケルを使用して、AA(単3)型電
池(容量1200mAh)を作製し、20℃、0.1C
充放電で電池を活性化させた。試験電流を変化させて、
5サイクルずつ充放電を行った。各試験レート0.1C
〜3Cについての試験電流は、0.1Cについて0.1
×1200(mAh)、1Cについて1×1200(m
Ah)、2Cについて2×1200(mAh)、3Cに
ついて3×1200(mAh)である。利用率(%)
は、利用率(%)={放電容量(5回の測定の平均値)
÷1200}×100により求めた。めっき比率(%)
は、めっき比率(%)={ニッケル重量(g)÷集電材
重量W(g)}×100により求めた。
Next, in Table 1, the porosity (%) of the current collector is
The porosity (%) = {1-W / (t × SG)} × 100 was calculated from the thickness t (μm) of the current collector and the basis weight W (g / m 2 ). The utilization rate (%) was measured as follows. That is, an AA (AA) type battery (capacity 1200 mAh) was produced by using the current collectors of Examples and Comparative Examples for the positive electrode and nickel foam for the negative electrode, and the temperature was 20 ° C. and 0.1 C.
The battery was activated by charging and discharging. By changing the test current,
Charge and discharge were performed every 5 cycles. Each test rate 0.1C
The test current for ~ 3C is 0.1 for 0.1C.
× 1200 (mAh), 1C for 1 × 1200 (m
Ah) 2 × 1200 (mAh) for 2C and 3 × 1200 (mAh) for 3C. Utilization ratio(%)
Is the utilization rate (%) = {discharge capacity (average value of 5 measurements)
÷ 1200} × 100. Plating ratio (%)
Was calculated by the following formula: plating ratio (%) = {nickel weight (g) ÷ current collector weight W (g)} × 100.

【0055】表1から明らかなように、めっき断面積が
130μm2を超えると、めっき後の繊維が太くなり、
空隙率が下がるため、活物質の充填量が不十分となる。
また、めっき断面積が20μm2未満であると、めっき
量が少なく表面抵抗が高いため、ハイレート充放電で充
分な容量が得られないことが判った。これに対して、め
っき不織布繊維表面のめっき断面積が20μm2〜13
0μm2の範囲であると、めっき膜の表面抵抗が低く、
活物質を充分に充填でき、電池を高容量化することがで
き、かつハイレート充放電が可能な電池が得られること
が判った。
As is clear from Table 1, when the plating cross-sectional area exceeds 130 μm 2 , the fiber after plating becomes thick,
Since the porosity decreases, the filling amount of the active material becomes insufficient.
It was also found that when the plating cross-sectional area is less than 20 μm 2 , the plating amount is small and the surface resistance is high, so that a sufficient capacity cannot be obtained by high rate charge / discharge. On the other hand, the plating cross-section area of the plated non-woven fiber surface is 20 μm 2 to 13
When it is in the range of 0 μm 2 , the surface resistance of the plating film is low,
It has been found that a battery can be obtained in which the active material can be sufficiently filled, the battery can have a high capacity, and high-rate charging / discharging can be performed.

【0056】[0056]

【発明の効果】以上述べたように、請求項1の発明によ
れば、めっき不織布繊維表面のめっき断面積が20μm
2〜130μm2であるので、めっき膜の表面抵抗が低
く、活物質を充分に充填でき、電池を高容量化すること
ができ、かつハイレート充放電が可能な電池を製造でき
るという効果を奏する。
As described above, according to the invention of claim 1, the plating cross-sectional area of the surface of the plated nonwoven fabric fiber is 20 μm.
Since it is 2 to 130 μm 2 , the surface resistance of the plating film is low, the active material can be sufficiently filled, the capacity of the battery can be increased, and a battery capable of high rate charge and discharge can be manufactured.

【0057】請求項2の発明によれば、不織布が親水化
処理されているので、不織布の繊維のめっき膜との密着
度が上昇し、めっき膜の表面抵抗が低下するため、ハイ
レート充放電が可能となるという効果を奏する。
According to the second aspect of the present invention, since the non-woven fabric is hydrophilized, the adhesion of the fibers of the non-woven fabric to the plating film increases and the surface resistance of the plating film decreases, so that high-rate charging / discharging occurs. It has the effect of being possible.

【0058】請求項3の発明によれば、不織布の構成繊
維として、繊度が1.5dtex以上の繊維を含んでい
るので、空隙率が増大して活物質の充填量を増加できる
と共に、めっき量を調節して容易に所定のめっき断面積
が得られるという効果を奏する。
According to the invention of claim 3, as the constituent fibers of the non-woven fabric, fibers having a fineness of 1.5 dtex or more are included, so that the porosity is increased and the filling amount of the active material can be increased and the plating amount is increased. There is an effect that a predetermined plating cross-sectional area can be easily obtained by adjusting.

【0059】請求項4の発明によれば、電池が請求項1
〜3のいずれか1項に記載された集電材を用いるので、
高容量化され、かつハイレート充放電が可能な電池が得
られるという効果を奏する。
According to the invention of claim 4, the battery is claim 1.
Since the current collector described in any one of 1 to 3 is used,
It is possible to obtain a battery having a high capacity and capable of high-rate charge / discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】不織布とめっき膜を含む本発明の集電材の局部
拡大図である。
FIG. 1 is a partially enlarged view of a current collector of the present invention including a nonwoven fabric and a plating film.

【図2】本発明のアルカリ二次電池の一部を切り欠いた
斜視図である。
FIG. 2 is a perspective view in which a part of the alkaline secondary battery of the present invention is cut away.

【図3】集電体が渦巻き円状に巻回された図2のA−A
線断面図である。
FIG. 3 AA of FIG. 2 in which the current collector is spirally wound
It is a line sectional view.

【図4】集電体が渦巻き角状に巻回された図3に対応す
る断面図である。
FIG. 4 is a cross-sectional view corresponding to FIG. 3, in which a current collector is wound in a spiral shape.

【図5】集電体が蛇腹状に屈曲積層された図3に対応す
る断面図である。
5 is a cross-sectional view corresponding to FIG. 3 in which current collectors are bent and stacked in a bellows shape.

【符号の説明】 10…集電材、11…不織布、11a…接触点、12…
めっき膜、12a…無電解めっき膜、12b…電解めっ
き膜、101…アルカリ二次電池、102…正極、10
2a…ニッケル片、103…負極、104…セパレー
タ、104a…第1セパレータ、104b…第2セパレ
ータ、106…発電体、107…電池ケース、107a
…缶底、108…突起、109a…ロア絶縁体、109
b…アッパ絶縁体。
[Explanation of Codes] 10 ... Current collector, 11 ... Nonwoven fabric, 11a ... Contact point, 12 ...
Plating film, 12a ... Electroless plating film, 12b ... Electrolytic plating film, 101 ... Alkaline secondary battery, 102 ... Positive electrode, 10
2a ... Nickel piece, 103 ... Negative electrode, 104 ... Separator, 104a ... First separator, 104b ... Second separator, 106 ... Generator, 107 ... Battery case, 107a
… Can bottom, 108… Protrusion, 109a… Lower insulator, 109
b ... Upper insulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西堀 寧 茨城県猿島郡総和町大字北利根7番地 日 本バイリーン株式会社内 (72)発明者 高瀬 俊明 茨城県猿島郡総和町大字北利根7番地 日 本バイリーン株式会社内 (72)発明者 田中 政尚 茨城県猿島郡総和町大字北利根7番地 日 本バイリーン株式会社内 (72)発明者 黛 良享 秋田県秋田市茨島三丁目1番6号 株式会 社ジェムコ内 (72)発明者 今井 浩之 秋田県秋田市茨島三丁目1番6号 株式会 社ジェムコ内 Fターム(参考) 5H017 AA02 AA03 BB08 BB16 CC05 DD05 EE01 EE04 EE05 EE07 HH03 HH04 5H028 BB10 EE01 EE06 EE10 HH05 5H029 AJ02 AJ03 AK02 AL11 BJ02 BJ14 BJ15 CJ11 CJ24 DJ07 DJ15 EJ01 EJ12 HJ04 HJ07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nishihori Nei             7 Kitatone, Oaza, Sowa-machi, Sarushima-gun, Ibaraki             Inside Baireen Co., Ltd. (72) Inventor Toshiaki Takase             7 Kitatone, Oza, Sowa-machi, Sarushima-gun, Ibaraki             Inside Baireen Co., Ltd. (72) Inventor Masataka Tanaka             7 Kitatone, Oza, Sowa-machi, Sarushima-gun, Ibaraki             Inside Baireen Co., Ltd. (72) Inventor Ryoho Mayuzumi             Akita City Akita City 3-6 Ibaraki Stock Association             Company Gemco (72) Inventor Hiroyuki Imai             Akita City Akita City 3-6 Ibaraki Stock Association             Company Gemco F term (reference) 5H017 AA02 AA03 BB08 BB16 CC05                       DD05 EE01 EE04 EE05 EE07                       HH03 HH04                 5H028 BB10 EE01 EE06 EE10 HH05                 5H029 AJ02 AJ03 AK02 AL11 BJ02                       BJ14 BJ15 CJ11 CJ24 DJ07                       DJ15 EJ01 EJ12 HJ04 HJ07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不織布と、 前記不織布の表面に形成されためっき膜とを備える電池
用集電材であって、 前記めっき膜が形成されためっき不織布繊維表面のめっ
き断面積が20μm2〜130μm2であることを特徴と
する電池用集電材。
1. A non-woven fabric and said a battery current collector and a plating film formed on the surface of the nonwoven fabric, plating sectional area 20μm 2 ~130μm 2 of plating the nonwoven fiber surface in which the plating film is formed A current collector for a battery, characterized in that
【請求項2】 前記不織布は、親水化処理されているこ
とを特徴とする、請求項1に記載の電池用集電材。
2. The current collector for a battery according to claim 1, wherein the non-woven fabric is hydrophilized.
【請求項3】 前記不織布の構成繊維として、繊度が
1.5dtex以上の繊維を含むことを特徴とする、請
求項1又は2に記載の電池用集電材。
3. The current collector for a battery according to claim 1, wherein the constituent fibers of the non-woven fabric include fibers having a fineness of 1.5 dtex or more.
【請求項4】 請求項1〜3のいずれか1項に記載され
た集電材を用いることを特徴とする電池。
4. A battery using the current collector according to any one of claims 1 to 3.
JP2001303463A 2001-09-28 2001-09-28 Battery current collector and battery using the same Expired - Fee Related JP4903959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303463A JP4903959B2 (en) 2001-09-28 2001-09-28 Battery current collector and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303463A JP4903959B2 (en) 2001-09-28 2001-09-28 Battery current collector and battery using the same

Publications (2)

Publication Number Publication Date
JP2003109600A true JP2003109600A (en) 2003-04-11
JP4903959B2 JP4903959B2 (en) 2012-03-28

Family

ID=19123545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303463A Expired - Fee Related JP4903959B2 (en) 2001-09-28 2001-09-28 Battery current collector and battery using the same

Country Status (1)

Country Link
JP (1) JP4903959B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149980A (en) * 2003-11-18 2005-06-09 Japan Vilene Co Ltd Current collector with terminal, electrochemical element using this
JP2005347177A (en) * 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery
WO2006011538A1 (en) * 2004-07-27 2006-02-02 Toyota Jidosha Kabushiki Kaisha Positive electrode for alkaline storage battery and alkaline storage battery
JP2006040698A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Positive electrode for alkaline storage battery and alkaline storage battery
JP2006048957A (en) * 2004-07-30 2006-02-16 Toyota Motor Corp Positive electrode for alkaline storage battery, and alkaline storage battery
JP2006073463A (en) * 2004-09-06 2006-03-16 Toyota Motor Corp Positive electrode for alkali storage battery and alkali storage battery
JP2008192476A (en) * 2007-02-06 2008-08-21 Sumitomo Electric Ind Ltd Manufacturing method of electrode substrate for battery, electrode for battery using it, and battery
JP2008198470A (en) * 2007-02-13 2008-08-28 Sumitomo Electric Ind Ltd Manufacturing method of battery nonwoven fabric board and battery electrode and battery using the board
JP2010009971A (en) * 2008-06-27 2010-01-14 Fdk Corp Current collector for electricity storage element and electricity storage element
US7879496B2 (en) 2006-09-07 2011-02-01 Sumitomo Electric Industries, Ltd. Battery electrode substrate, battery electrode, and alkaline secondary battery including the same
US7998621B2 (en) 2005-01-14 2011-08-16 Sumitomo Electric Industries, Ltd. Collector, battery electrode substrate, and methods for producing the same
WO2012111699A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode comprising porous aluminum member having three-dimensional reticulated structure, non-aqueous electrolyte battery comprising electrode, and capacitor and lithium-ion capacitor comprising non-aqueous electrolyte solution
JP7364295B1 (en) * 2023-01-27 2023-10-18 帝国イオン株式会社 Thin film current collector for storage batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208756A (en) * 1985-03-12 1986-09-17 Hitachi Maxell Ltd Electrode for alkaline secondary battery
JPH08124578A (en) * 1994-08-31 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material
JPH08321303A (en) * 1995-05-26 1996-12-03 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery
JPH08329956A (en) * 1995-05-31 1996-12-13 Furukawa Battery Co Ltd:The Current collector for battery electrode and nickel electrode using it
JPH09176862A (en) * 1995-12-22 1997-07-08 C Uyemura & Co Ltd Electroless plating method of non-conductive body and catalytic activity imparting agent for electroless plating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208756A (en) * 1985-03-12 1986-09-17 Hitachi Maxell Ltd Electrode for alkaline secondary battery
JPH08124578A (en) * 1994-08-31 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material
JPH08321303A (en) * 1995-05-26 1996-12-03 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery
JPH08329956A (en) * 1995-05-31 1996-12-13 Furukawa Battery Co Ltd:The Current collector for battery electrode and nickel electrode using it
JPH09176862A (en) * 1995-12-22 1997-07-08 C Uyemura & Co Ltd Electroless plating method of non-conductive body and catalytic activity imparting agent for electroless plating

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149980A (en) * 2003-11-18 2005-06-09 Japan Vilene Co Ltd Current collector with terminal, electrochemical element using this
JP2005347177A (en) * 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery
WO2006011538A1 (en) * 2004-07-27 2006-02-02 Toyota Jidosha Kabushiki Kaisha Positive electrode for alkaline storage battery and alkaline storage battery
JP2006040698A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Positive electrode for alkaline storage battery and alkaline storage battery
JP2006048957A (en) * 2004-07-30 2006-02-16 Toyota Motor Corp Positive electrode for alkaline storage battery, and alkaline storage battery
JP2006073463A (en) * 2004-09-06 2006-03-16 Toyota Motor Corp Positive electrode for alkali storage battery and alkali storage battery
US7998621B2 (en) 2005-01-14 2011-08-16 Sumitomo Electric Industries, Ltd. Collector, battery electrode substrate, and methods for producing the same
US7879496B2 (en) 2006-09-07 2011-02-01 Sumitomo Electric Industries, Ltd. Battery electrode substrate, battery electrode, and alkaline secondary battery including the same
JP2008192476A (en) * 2007-02-06 2008-08-21 Sumitomo Electric Ind Ltd Manufacturing method of electrode substrate for battery, electrode for battery using it, and battery
JP2008198470A (en) * 2007-02-13 2008-08-28 Sumitomo Electric Ind Ltd Manufacturing method of battery nonwoven fabric board and battery electrode and battery using the board
JP2010009971A (en) * 2008-06-27 2010-01-14 Fdk Corp Current collector for electricity storage element and electricity storage element
WO2012111699A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode comprising porous aluminum member having three-dimensional reticulated structure, non-aqueous electrolyte battery comprising electrode, and capacitor and lithium-ion capacitor comprising non-aqueous electrolyte solution
US8541134B2 (en) 2011-02-18 2013-09-24 Sumitomo Electric Industries, Ltd. Electrode using three-dimensional network aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
CN103380522A (en) * 2011-02-18 2013-10-30 住友电气工业株式会社 Electrode comprising porous aluminum member having three-dimensional reticulated structure, non-aqueous electrolyte battery comprising electrode, and capacitor and lithium-ion capacitor comprising non-aqueous electrolyte solution
JPWO2012111699A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Electrode using three-dimensional network aluminum porous body, non-aqueous electrolyte battery using the electrode, capacitor using non-aqueous electrolyte, and lithium ion capacitor
JP7364295B1 (en) * 2023-01-27 2023-10-18 帝国イオン株式会社 Thin film current collector for storage batteries
WO2024158025A1 (en) * 2023-01-27 2024-08-02 帝国イオン株式会社 Thin-film current collector for storage battery

Also Published As

Publication number Publication date
JP4903959B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US7598001B2 (en) Alkaline battery, current collector, electrode, and method of manufacturing electrode
TW516252B (en) Collector for alkaline secondary battery, method for making the same, and alkaline secondary battery using the same
JP5119577B2 (en) Nickel metal hydride battery
JP4903959B2 (en) Battery current collector and battery using the same
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4481282B2 (en) Battery electrode substrate, battery electrode, and alkaline secondary battery using the same
JP2002319410A (en) Alkaline secondary battery electrode and alkaline secondary battery using the same
JP5016866B2 (en) battery
JP4220718B2 (en) Battery current collector and battery using the same
JP2003282066A (en) Current collector component for battery and battery using the same
JP4580139B2 (en) Battery current collector and battery using the same
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3330263B2 (en) Alkaline secondary battery and manufacturing method thereof
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery
JPH07134979A (en) Battery
JP3451888B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JP3614493B2 (en) Method for producing alkaline secondary battery
JP3555473B2 (en) Method for producing positive electrode for alkaline secondary battery
JP2001273879A (en) Nickel - hydrogen secondary battery
JPH10284117A (en) Alkaline storage battery
JPH10334894A (en) Manufacture of alkaline storage battery and its electrode
JPH10334892A (en) Manufacture of alkaline storage battery and its electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees