JPH08124578A - Manufacture of metallic porous material - Google Patents

Manufacture of metallic porous material

Info

Publication number
JPH08124578A
JPH08124578A JP7220291A JP22029195A JPH08124578A JP H08124578 A JPH08124578 A JP H08124578A JP 7220291 A JP7220291 A JP 7220291A JP 22029195 A JP22029195 A JP 22029195A JP H08124578 A JPH08124578 A JP H08124578A
Authority
JP
Japan
Prior art keywords
porous
metal
plating
insulator
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7220291A
Other languages
Japanese (ja)
Inventor
Akihisa Hosoe
晃久 細江
Yoshio Oka
良雄 岡
Takeshi Sakamoto
健 坂本
Takafumi Uemiya
崇文 上宮
Koji Hanabusa
幸司 花房
Atsuhiko Fujii
淳彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7220291A priority Critical patent/JPH08124578A/en
Publication of JPH08124578A publication Critical patent/JPH08124578A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: To provide a method for manufacturing a metal porous material extending a life of plating liquid and improving characteristic of electric resistance, tensile strength, etc. CONSTITUTION: In a method, after a metallic layer is formed by applying electroless plating next electric plating to a porous insulator, it is removed by heat treatment to manufacture a metallic porous material. Before applying the electroless plating, a surface of the porous insulator is roughed by corona discharge treatment or chemical etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、金属多孔体の製
造方法に関するものであり、特に、電池用電極に用いら
れる金属多孔体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a porous metal body, and more particularly to a method for producing a porous metal body used for a battery electrode.

【0002】[0002]

【従来の技術】近年、各種電子機器、特に携帯用機器の
電源としてニッケル−カドミウム(Ni−Cd)電池や
ニッケル−水素(Ni−MH)電池などの高容量のアル
カリ蓄電池が用いられるようになってきた。このような
高容量のアルカリ蓄電池において、電極には、容量を向
上させるためニッケルの金属多孔体に、たとえば水酸化
ニッケルなどの活物質を充填したものが用いられてき
た。
2. Description of the Related Art In recent years, high-capacity alkaline storage batteries such as nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen (Ni-MH) batteries have come to be used as power sources for various electronic devices, particularly portable devices. Came. In such a high capacity alkaline storage battery, a metal porous body of nickel filled with an active material such as nickel hydroxide has been used for the electrode in order to improve the capacity.

【0003】金属多孔体は、従来、たとえば特公昭57
−39317号公報に開示される技術により作製され
る。この方法では、多孔質絶縁体にカーボン粒子等を被
覆することにより導電性を付与した多孔体を、回転する
給電ロールに密着させながらめっき浴中に浸漬してめっ
きを行なう。次いで、所定の厚さになるように電気めっ
きした後、熱処理を施すことによって金属(たとえばニ
ッケル)からなる金属多孔体が形成される。
Metallic porous bodies have hitherto been used, for example, in Japanese Examined Patent Publication No. S57.
It is produced by the technique disclosed in Japanese Patent Publication No. 39317/1993. In this method, plating is performed by immersing the porous body, which is made conductive by coating the porous insulator with carbon particles or the like, in a plating bath while closely adhering to the rotating power feeding roll. Then, after electroplating to a predetermined thickness, heat treatment is performed to form a metal porous body made of metal (for example, nickel).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなカーボン粒子を被覆する方法では、カーボン粒子が
微細な多孔質に目詰りを起こし、一部の孔が塞がれたよ
うな金属多孔体しか得られないという問題が生じた。ま
た、カーボン粒子を被覆する際、どうしても不均一にな
る。そのため、給電ロールに巻きつけて電気めっきする
とき、カーボン粒子がついていない部分はめっきされ
ず、不均一なめっき膜しか得られないという問題もあっ
た。
However, in the method of coating such carbon particles, only the porous metal body in which the carbon particles are clogged in the fine porous material and some of the pores are blocked is used. There was a problem that it could not be obtained. Moreover, when the carbon particles are coated, they are nonuniform. Therefore, when wound around a power supply roll and electroplated, a portion without carbon particles is not plated, and only a non-uniform plating film is obtained.

【0005】さらに、炭素は嵩高いため、一層の高容量
化を図るのが困難であった。また、ニッケルの蒸着によ
る方法では、生産コストが高くなるという問題と、電極
の大量生産時に蒸着層を迅速にしかも精度よく形成する
ことが困難であるという問題があった。
Further, since carbon is bulky, it is difficult to further increase the capacity. In addition, the method of vapor deposition of nickel has problems that the production cost is high and that it is difficult to form the vapor deposition layer quickly and accurately at the time of mass production of electrodes.

【0006】このような問題を解決するため、多孔質絶
縁体にNiの無電解めっきを施すという手段が最近開発
されている。無電解めっきの方法としては、コストおよ
び液の安定性という観点から、触媒としてPd化合物、
還元剤として次亜リン酸を用いる方法が採用されてい
る。以下、図を参照して説明する。
In order to solve such a problem, a means for electrolessly plating Ni on a porous insulator has been recently developed. As a method of electroless plating, from the viewpoint of cost and solution stability, a Pd compound as a catalyst,
A method using hypophosphorous acid as a reducing agent has been adopted. Hereinafter, description will be made with reference to the drawings.

【0007】図3は、従来の金属多孔体の製造における
無電解めっきプロセスを示す図である。
FIG. 3 is a diagram showing a conventional electroless plating process in the production of a porous metal body.

【0008】図3を参照して、従来の無電解めっきプロ
セスにおいては、まず前処理工程として、ポリマー不織
布等の多孔質絶縁体を親水化して、ぬれ性を改善する。
この親水化処理には、アルカリ性、中性または酸性水溶
液に界面活性剤を加えたものが用いられる。次に、親水
化された多孔質絶縁体を塩酸等の酸溶液に浸漬すること
により密着性の高いめっき膜が得られるように触媒の吸
着力を高める。続いて、多孔質絶縁体の表面にパラジウ
ム(Pd)等の触媒金属核を吸着させることにより触媒
付を行なう。この触媒付には、スズ−パラジウム コロ
イド/錯体(「キャタリスト」)と酸の組合せが多く用
いられる。その後、5〜10%の硫酸または塩酸を使用
してスズを除去し、Pdをメタル化する。
Referring to FIG. 3, in a conventional electroless plating process, as a pretreatment step, a porous insulator such as a polymer nonwoven fabric is made hydrophilic to improve its wettability.
In this hydrophilic treatment, an alkaline, neutral or acidic aqueous solution to which a surfactant is added is used. Next, the hydrophilized porous insulator is immersed in an acid solution such as hydrochloric acid to enhance the adsorption power of the catalyst so that a plating film having high adhesion can be obtained. Then, a catalyst is attached by adsorbing a catalytic metal nucleus such as palladium (Pd) on the surface of the porous insulator. A combination of tin-palladium colloid / complex (“catalyst”) and acid is often used for this catalysis. Then, tin is removed using 5-10% sulfuric acid or hydrochloric acid to metallize Pd.

【0009】次に、このような前処理を行なった多孔質
絶縁体に無電解めっき処理を行なう。無電解めっき液に
は金属イオンと還元剤が共存しており、触媒の周囲での
み金属イオンへの還元反応が進行する。無電解めっきを
用いれば絶縁体に対しても、その表面に触媒を吸着させ
ることにより、金属皮膜を形成することが可能である。
Next, electroless plating is performed on the porous insulator that has been subjected to such pretreatment. Metal ions and a reducing agent coexist in the electroless plating solution, and the reduction reaction to metal ions proceeds only around the catalyst. If electroless plating is used, it is possible to form a metal film on an insulator by adsorbing a catalyst on its surface.

【0010】しかしながら、このような従来の無電解め
っきプロセスにおける前処理工程では、多孔質絶縁体と
触媒の吸着力が不十分であった。そのため、無電解めっ
き液中に触媒が脱落し、この脱落触媒の表面で還元反応
が進行し、無電解めっき液の寿命を縮めてしまうという
問題があった。また、触媒が脱落した部分はめっき膜厚
さが十分得られず、金属多孔体の特性を低下させてしま
うという問題もあった。
However, in the pretreatment step in such a conventional electroless plating process, the adsorptive power of the porous insulator and the catalyst was insufficient. Therefore, there is a problem that the catalyst is dropped into the electroless plating solution, the reduction reaction proceeds on the surface of the dropped catalyst, and the life of the electroless plating solution is shortened. Further, there is also a problem that the plating film thickness is not sufficiently obtained in the portion where the catalyst has fallen off, which deteriorates the characteristics of the porous metal body.

【0011】この発明の目的は、上述の問題点を解決し
て、めっき液を長寿命化し、電気抵抗、引張り強度等の
特性の改善された金属多孔体を製造するための方法を提
供することにある。
An object of the present invention is to solve the above problems and provide a method for prolonging the life of a plating solution and producing a metal porous body having improved characteristics such as electric resistance and tensile strength. It is in.

【0012】[0012]

【課題を解決するための手段】この発明による金属多孔
体の製造方法は、多孔質絶縁体に無電解めっき次いで電
気めっきを施して金属層を形成した後、熱処理により多
孔質絶縁体を除去して金属多孔体を製造する方法であっ
て、無電解めっきする前に、多孔質絶縁体の表面を粗化
することを特徴としている。この多孔質絶縁体の表面の
粗化は、たとえば、コロナ放電処理により行なうことが
できる。また、多孔質絶縁体の表面の粗化は、化学エッ
チングによっても行なうことができる。エッチング液と
しては、多孔質絶縁体をエッチングするものであれば特
に限定されるものではないが、好ましくは、酸系あるい
はアルカリ系のエッチング液、たとえば、クロム酸系エ
ッチング液、硫酸エッチング液、過マンガン酸−リン酸
エッチング液、過塩素酸−リン酸エッチング液、水酸化
ナトリウムエッチング液などが用いられる。
According to the method for producing a porous metal body of the present invention, electroless plating and then electroplating are applied to a porous insulator to form a metal layer, and then the porous insulator is removed by heat treatment. The method for producing a metal porous body by using the method described above is characterized in that the surface of the porous insulator is roughened before electroless plating. The surface of the porous insulator can be roughened by, for example, corona discharge treatment. Roughening of the surface of the porous insulator can also be performed by chemical etching. The etching solution is not particularly limited as long as it etches the porous insulator, but is preferably an acid-based or alkaline-based etching solution, for example, a chromic acid-based etching solution, a sulfuric acid etching solution, or an etching solution. A manganic acid-phosphoric acid etching solution, a perchloric acid-phosphoric acid etching solution, a sodium hydroxide etching solution, or the like is used.

【0013】好ましくは、多孔質絶縁体は、ポリマー不
織布またはポリマー発泡体であるとよい。
[0013] Preferably, the porous insulator is a polymer nonwoven fabric or a polymer foam.

【0014】本発明によれば、多孔質絶縁体に予めコロ
ナ放電処理または化学エッチングが施されることによ
り、その表面が粗化される。そのため、触媒が脱落しに
くくなる結果、無電解めっき液の寿命が長くなり、生産
性が向上し、生産コストの低減を実現できる。
According to the present invention, the surface of the porous insulator is roughened by subjecting the porous insulator to corona discharge treatment or chemical etching in advance. Therefore, as a result of making the catalyst less likely to fall off, the life of the electroless plating solution becomes longer, the productivity is improved, and the production cost can be reduced.

【0015】また、できたくぼみへめっきによる金属が
入り込み、めっき被膜の機械的結合力が増す。その結
果、被膜の剥がれを抑制できるため、多孔質絶縁体に対
し均一に金属被膜を形成することができ、電池用電極材
料としての金属多孔体の特性が向上する。
Further, the metal formed by plating enters the dents thus formed, so that the mechanical coupling force of the plating film increases. As a result, peeling of the coating film can be suppressed, so that the metal coating film can be uniformly formed on the porous insulator, and the characteristics of the metal porous body as the battery electrode material are improved.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明に従い、以下に示すように金属多孔
体を作製した。
(Example 1) According to the present invention, a metal porous body was prepared as follows.

【0017】図1は、本発明による金属多孔体の製造に
おける無電解めっきプロセスの一例を示す図である。
FIG. 1 is a diagram showing an example of the electroless plating process in the production of the porous metal body according to the present invention.

【0018】図1を参照して、まず、ポリエステル繊維
をエポキシ樹脂のバインダーで結着したポリマー不織布
を予めコロナ放電処理した。このときの放電処理条件
は、電圧が20000V、線速が3m/minであっ
た。
Referring to FIG. 1, first, a polymer non-woven fabric obtained by binding polyester fibers with an epoxy resin binder was previously subjected to corona discharge treatment. The discharge treatment conditions at this time were a voltage of 20000 V and a linear velocity of 3 m / min.

【0019】次に、コロナ放電処理したポリマー不織布
を、図3に示す従来の方法と同様に、界面活性剤を含む
溶液に5分間浸漬させて親水化を行ない、続いて10%
塩酸溶液に3分間浸漬させた後、触媒付を行なった。こ
のときの液の組成は、塩化パラジウム0.2g/l、塩
化第一スズ10g/l、塩酸200cc/lであり、5
分間浸漬した。その後、10%硫酸溶液に3分間浸漬さ
せることにより、活性化処理を行なった。続いて、この
ような前処理を行なったポリマー不織布に無電解ニッケ
ルめっきを5分間施した後、電気めっきを行ない所定の
めっき厚さとし、熱処理としての燃焼によりポリマー不
織布を除去してニッケルめっき層のみを残すことによ
り、400g/m2 の金属多孔体を作製した。
Then, the corona discharge treated polymer non-woven fabric is immersed in a solution containing a surfactant for 5 minutes to hydrophilize it in the same manner as in the conventional method shown in FIG.
After soaking in a hydrochloric acid solution for 3 minutes, a catalyst was added. The composition of the liquid at this time was 0.2 g / l of palladium chloride, 10 g / l of stannous chloride, and 200 cc / l of hydrochloric acid.
Soaked for a minute. After that, the activation treatment was performed by immersing in a 10% sulfuric acid solution for 3 minutes. Subsequently, the polymer non-woven fabric thus pretreated is subjected to electroless nickel plating for 5 minutes, and then electroplated to a predetermined plating thickness to remove the polymer non-woven fabric by burning as a heat treatment to remove only the nickel plating layer. Was left to prepare a metal porous body of 400 g / m 2 .

【0020】なお、無電解ニッケルめっき液の寿命は7
ターンであった。また、このときの無電解めっき後のニ
ッケルの付着量を測定してめっき速度に換算したとこ
ろ、2.5g/m2 ・minであった。
The life of the electroless nickel plating solution is 7
It was a turn. The amount of nickel deposited after electroless plating at this time was measured and converted to a plating rate, which was 2.5 g / m 2 · min.

【0021】(実施例2)図2は、本発明における金属
多孔体の製造における無電解めっきプロセスの他の例を
示す図である。
(Embodiment 2) FIG. 2 is a diagram showing another example of the electroless plating process in the production of the porous metal body of the present invention.

【0022】図2を参照して、まず、実施例1で用いた
のと同じ不織布を、界面活性剤を含む溶液に5分間浸漬
させて親水化を行ない、続いて高クロム酸浴にて化学エ
ッチングを行なった。高クロム酸浴の組成は、硫酸20
0cc/l、CrO3 400g/lであり、70℃にて
10分間浸漬した。次いで、10%塩酸溶液に3分間浸
漬させた後、触媒付を行なった。このときの液の組成
は、塩化パラジウム0.2g/l、塩化第一スズ10g
/l、塩酸200cc/lであり、5分間浸漬した。そ
の後、10%硫酸溶液に3分間浸漬させることにより、
活性化処理を行なった。続いて、このような前処理を行
なったポリマー不織布に無電解ニッケルめっきを5分間
施した後、電気めっきを行ない所定のめっき厚さとし、
熱処理としての燃焼によりポリマー不織布を除去してニ
ッケルめっき層のみを残すことにより、400g/m2
の金属多孔体を作製した。
Referring to FIG. 2, first, the same non-woven fabric as used in Example 1 was immersed in a solution containing a surfactant for 5 minutes to be hydrophilized, and then chemically treated in a high chromic acid bath. Etching was performed. The composition of the high chromic acid bath is 20% sulfuric acid.
It was 0 cc / l and CrO 3 was 400 g / l, and it was immersed at 70 ° C. for 10 minutes. Then, after soaking in a 10% hydrochloric acid solution for 3 minutes, a catalyst was added. The composition of the liquid at this time was 0.2 g of palladium chloride and 10 g of stannous chloride.
/ L, hydrochloric acid 200 cc / l, and immersed for 5 minutes. Then, by immersing it in a 10% sulfuric acid solution for 3 minutes,
An activation process was performed. Subsequently, after electroless nickel plating is applied to the polymer non-woven fabric thus pretreated for 5 minutes, electroplating is performed to a predetermined plating thickness,
400 g / m 2 by removing the polymer nonwoven fabric by combustion as heat treatment and leaving only the nickel plating layer
The metal porous body of was produced.

【0023】なお、無電解ニッケルめっき液の寿命およ
びめっき速度は、実施例1とほぼ同様であった。
The life and plating rate of the electroless nickel plating solution were almost the same as in Example 1.

【0024】(比較例1)実施例1で用いたのと同じ不
織布に、図3に示す従来の方法により、親水化、酸浸
漬、触媒付および活性化の前処理を施した後、実施例1
と同様の条件で無電解めっきを施した。続いて、実施例
1と同条件にて電気めっきにより所定のめっき厚さと
し、その後、熱処理としての燃焼によりポリマー不織布
を除去して、金属多孔体を作製した。
Comparative Example 1 The same non-woven fabric as used in Example 1 was subjected to pretreatments for hydrophilization, acid immersion, catalysis and activation by the conventional method shown in FIG. 1
Electroless plating was performed under the same conditions as in. Then, a predetermined plating thickness was obtained by electroplating under the same conditions as in Example 1, and then the polymer nonwoven fabric was removed by burning as a heat treatment to produce a metal porous body.

【0025】なお、無電解めっき液の寿命は、4ターン
であった。また、このときの無電解めっき後のニッケル
の付着量およびめっき速度は、実施例とほぼ同様であっ
た。
The life of the electroless plating solution was 4 turns. The amount of nickel deposited and the plating rate after electroless plating at this time were almost the same as those in the examples.

【0026】(比較例2)特公昭57−39317号公
報に開示された技術に従って、実施例1で用いたのと同
じポリマー不織布に、カーボン粒子を塗布して導電性を
付与して給電ロールに密着させて電気めっきを行ない、
さらに所定の厚さまで電気めっきして、その後熱処理と
しての燃焼によりポリマー不織布を除去することによ
り、金属多孔体を作製した。
(Comparative Example 2) According to the technique disclosed in Japanese Examined Patent Publication No. 57-39317, carbon particles are applied to the same polymer nonwoven fabric as that used in Example 1 to give conductivity to a power feeding roll. Electroplating with close contact,
Further, electroplating was performed to a predetermined thickness, and then the polymer nonwoven fabric was removed by combustion as a heat treatment to produce a porous metal body.

【0027】(評価)以上のように作製した実施例1、
実施例2、比較例1および比較例2の4種の金属多孔体
について、電気抵抗および引張り強度を測定して比較し
た。その結果を表1に示す。
(Evaluation) Example 1 manufactured as described above
The electrical resistance and the tensile strength of the four types of porous metal bodies of Example 2, Comparative Example 1 and Comparative Example 2 were measured and compared. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より明らかなように、前処理工程にお
いてコロナ放電処理または化学エッチングを施してポリ
マー不織布の表面を粗化することにより、電気抵抗、引
張り強度ともに、従来の無電解めっきにより作製した比
較例1よりも向上していることがわかる。また、カーボ
ン塗布により作製した比較例2と比較した場合は大幅
に、電気抵抗、引張り強度が向上していることがわか
る。
As is clear from Table 1, the surface of the polymer non-woven fabric was roughened by corona discharge treatment or chemical etching in the pretreatment step, so that both electric resistance and tensile strength were produced by conventional electroless plating. It can be seen that it is improved as compared with Comparative Example 1. Further, it can be seen that the electric resistance and the tensile strength are significantly improved when compared with Comparative Example 2 produced by applying carbon.

【0030】なお、上述の実施例においては、多孔質絶
縁体としてポリマー不織布を用いた場合について説明し
たが、このほかポリマー発泡体を用いた場合にも、同様
の効果が得られる。
In the above-mentioned embodiment, the case where the polymer non-woven fabric is used as the porous insulator has been described, but the same effect can be obtained when the polymer foam is used.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、無電解めっき液の寿命が長くなるとともに、電気抵
抗、引張り強度の大幅に向上した金属多孔体が得られ
る。
As described above, according to the present invention, it is possible to obtain a porous metal body in which the life of the electroless plating solution is extended and electric resistance and tensile strength are greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による金属多孔体の製造における無電解
めっきプロセスの一例を示す図である。
FIG. 1 is a diagram showing an example of an electroless plating process in the production of a metal porous body according to the present invention.

【図2】本発明による金属多孔体の製造における無電解
めっきプロセスの他の例を示す図である。
FIG. 2 is a diagram showing another example of the electroless plating process in the production of the porous metal body according to the present invention.

【図3】従来の金属多孔体の製造における無電解めっき
プロセスを示す図である。
FIG. 3 is a diagram showing a conventional electroless plating process in the production of a porous metal body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 5/50 5/56 A 7/00 R (72)発明者 上宮 崇文 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 花房 幸司 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 藤井 淳彦 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C25D 5/50 5/56 A 7/00 R (72) Inventor Takafumi Uemiya Takashi Shimaya, Konohana-ku, Osaka City 1st-3rd Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Koji Hanafusa 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Denki Industries Co., Ltd. (72) Inventor Atsuhiko Fujii Osaka City 1-3-3 Shimaya, Konohana-ku Sumitomo Electric Industries, Ltd. Osaka Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質絶縁体に無電解めっき次いで電気
めっきを施して金属層を形成した後、熱処理により多孔
質絶縁体を除去して金属多孔体を製造する方法であっ
て、 前記無電解めっきする前に、前記多孔質絶縁体の表面を
粗化することを特徴とする、金属多孔体の製造方法。
1. A method for producing a metal porous body by subjecting a porous insulator to electroless plating and then electroplating to form a metal layer, and then removing the porous insulator by heat treatment to produce a metal porous body. A method for producing a metal porous body, characterized in that the surface of the porous insulator is roughened before plating.
【請求項2】 前記多孔質絶縁体の表面の粗化は、コロ
ナ放電処理により行なわれることを特徴とする、請求項
1記載の金属多孔体の製造方法。
2. The method for producing a metal porous body according to claim 1, wherein the roughening of the surface of the porous insulator is performed by corona discharge treatment.
【請求項3】 前記多孔質絶縁体の表面の粗化は、化学
エッチングにより行なわれることを特徴とする、請求項
1記載の金属多孔体の製造方法。
3. The method for producing a metal porous body according to claim 1, wherein the roughening of the surface of the porous insulator is performed by chemical etching.
【請求項4】 前記多孔質絶縁体は、ポリマー不織布ま
たはポリマー発泡体である、請求項1〜請求項3のいず
れかに記載の金属多孔体の製造方法。
4. The method for producing a metal porous body according to claim 1, wherein the porous insulator is a polymer nonwoven fabric or a polymer foam.
JP7220291A 1994-08-31 1995-08-29 Manufacture of metallic porous material Withdrawn JPH08124578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220291A JPH08124578A (en) 1994-08-31 1995-08-29 Manufacture of metallic porous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20658694 1994-08-31
JP6-206586 1994-08-31
JP7220291A JPH08124578A (en) 1994-08-31 1995-08-29 Manufacture of metallic porous material

Publications (1)

Publication Number Publication Date
JPH08124578A true JPH08124578A (en) 1996-05-17

Family

ID=26515737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220291A Withdrawn JPH08124578A (en) 1994-08-31 1995-08-29 Manufacture of metallic porous material

Country Status (1)

Country Link
JP (1) JPH08124578A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109600A (en) * 2001-09-28 2003-04-11 Japan Vilene Co Ltd Current collector material for battery, and battery using the same
JP2010140647A (en) * 2008-12-09 2010-06-24 Toyama Sumitomo Denko Kk Metal porous body and electrode base board for battery using it
JP2011241457A (en) * 2010-05-20 2011-12-01 Sumitomo Electric Ind Ltd Highly corrosion-resistant metal porous body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109600A (en) * 2001-09-28 2003-04-11 Japan Vilene Co Ltd Current collector material for battery, and battery using the same
JP2010140647A (en) * 2008-12-09 2010-06-24 Toyama Sumitomo Denko Kk Metal porous body and electrode base board for battery using it
JP2011241457A (en) * 2010-05-20 2011-12-01 Sumitomo Electric Ind Ltd Highly corrosion-resistant metal porous body
US8377567B2 (en) 2010-05-20 2013-02-19 Sumitomo Electric Industries, Ltd. Highly corrosion-resistant porous metal member

Similar Documents

Publication Publication Date Title
JP3077113B2 (en) Microporous fluororesin material plated with platinum group or platinum group alloy and method for producing the same
KR20030051350A (en) Method of manufacturing electronic part, electronic part and electroless plating method
US6577218B2 (en) Electronic component and method of manufacturing same
JP2005529499A (en) Metalized parts made of plastic materials
JPH08124578A (en) Manufacture of metallic porous material
KR100825903B1 (en) Elasto-porous sheet for shielding electromagnetic wave, and method for manufacturing the same
JP2000021415A (en) Conductive porous body and metallic porous body using the same, and electrode plate for battery
JPS62163261A (en) Manufacture of electrode of high electric conductivity
JP2005529240A (en) Process for metallized support media made from plastic materials
JPH08124577A (en) Manufacture of metallic porous material
JPH07320742A (en) Electrode for alkaline storage battery and manufacture thereof
JP4423442B2 (en) Method for producing electrode substrate for alkaline secondary battery
JP2987556B2 (en) Method for forming metal conductive layer on fluororesin body surface
JPH05144434A (en) Manufacture of hydrogen storage electrode
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JPH06304454A (en) Hollow fiber membrane module
US4439465A (en) Method of making a light weight battery plaque
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
JPH0869814A (en) Manufacture of battery
JP2961491B2 (en) Preparation method of metal electrode material
JP2004505178A (en) Complex porous structure coated with lead and conductive activation method thereof
JPH08124576A (en) Electrode supporter for alkaline battery and manufacture of electrode for alkaline battery
JP2000299112A (en) Electrode substrate constituting material for lithium ion secondary battery and lithium polymer battery, electrode substrate for lithium ion secondary battery and lithium polymer battery, and manufacture thereof
JPH05186967A (en) Fiber, knit or woven fabric and nonwoven fabric having electric conductivity and their production
JPH09330722A (en) Manufacture of alkaline battery electrode base body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105