JPS62163261A - Manufacture of electrode of high electric conductivity - Google Patents

Manufacture of electrode of high electric conductivity

Info

Publication number
JPS62163261A
JPS62163261A JP61004058A JP405886A JPS62163261A JP S62163261 A JPS62163261 A JP S62163261A JP 61004058 A JP61004058 A JP 61004058A JP 405886 A JP405886 A JP 405886A JP S62163261 A JPS62163261 A JP S62163261A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
sheet
carbon fiber
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61004058A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Hayami Yoshimochi
吉持 駛視
Shiro Osada
長田 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61004058A priority Critical patent/JPS62163261A/en
Publication of JPS62163261A publication Critical patent/JPS62163261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemically Coating (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance electric conductivity without losing original useful properties, by using an electroless plating method to deposit an electroconductive metal layer on the surface of an active carbon fiber. CONSTITUTION:A phosphite, hydrazine, a hydrogenated boron compound, amine borane or the like is used as a chemical reducing agent for an electroless plating solution. Nickel, cobalt, copper, silver, gold, platinum, rhodium or the like is used as a plated metal. The ratio of the weight of a deposited electroconductive metal layer to that of an active carbon fiber is 3-100%. An electrode of high electric conductivity is thus manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性金属層を活性炭素繊維表面に担持させた
高導電性電極の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a highly conductive electrode in which a conductive metal layer is supported on the surface of activated carbon fibers.

〔従来の技術〕[Conventional technology]

近年、比表面積の大きな活性炭素繊維を用いた電極の開
発が積極的に行われている。これらの電極の用途として
は燃料電池用極板(特開59−46762、特開58−
100364 ) 、電気二重層キャパシタ用分極性電
極(特開5 B −206116、特開59−4114
 )、二次電池用電極(特開59−157974 、特
開s 9−163765 ) 、電気化学的表示装置用
対向W(特開59−143130 )等様々のものが提
案されている。
In recent years, electrodes using activated carbon fibers with a large specific surface area have been actively developed. Applications of these electrodes include electrode plates for fuel cells (JP-A-59-46762, JP-A-58-
100364), Polarizable electrode for electric double layer capacitor (JP-A-5B-206116, JP-A-59-4114)
), electrodes for secondary batteries (JP-A-59-157974, JP-A-S9-163765), opposing W for electrochemical display devices (JP-A-59-143130), etc. have been proposed.

100〜40 Q Om2/gのように大きな比表面積
を有する活性炭素繊維は溶液との接触面積が大きいため
に各種の電極材として極めて有用である。例えば活性炭
素繊維を分極性II極として用いた電気二重層キャパシ
タの場合、大きな比表面積のために多量のドーピングが
可能であυ、このため高エネルギーの出力を有するキャ
パシタの作製が可能であるという特徴を有する。
Activated carbon fibers having a large specific surface area such as 100 to 40 Q Om2/g are extremely useful as various electrode materials because of their large contact area with solutions. For example, in the case of electric double layer capacitors using activated carbon fibers as polarizable II poles, a large amount of doping is possible due to their large specific surface area, making it possible to create capacitors with high energy output. Has characteristics.

しかしながらこのように有用な活性炭素繊維を用いた電
極は抵抗が大きいという欠点を有していた。このため各
種の電池に用いた場合にはII極の抵抗が大きいために
、各種電池の内部抵抗が大きくなるという欠点があった
However, electrodes using such useful activated carbon fibers have a drawback of high resistance. Therefore, when used in various types of batteries, the resistance of the II pole is large, resulting in a disadvantage that the internal resistance of the various types of batteries increases.

活性炭素繊維からなるW、極の抵抗を下げようとする試
みは当該業者の間では積極的に行われている。最も良い
方法として活性炭素繊維に導電性改艮層を担持させる方
法が特開昭59−67617号により提案されている。
Attempts to lower the resistance of W poles made of activated carbon fibers are actively being made by those in the industry. As the best method, JP-A-59-67617 proposes a method in which activated carbon fibers are supported with a conductive modification layer.

上記の発明においては、■塩化ルテニウムのような熱分
解性塩の浸漬熱分解法、■カーボンコロイド液等の導電
性塗料を塗布、または含浸する方法、■酸化スズのよう
な導電性酸化物を真空蒸着或はスパッタ法により形成す
る方法が挙げられている。
In the above invention, there are two methods: (1) an immersion pyrolysis method using a thermally decomposable salt such as ruthenium chloride, (2) a method of applying or impregnating a conductive paint such as a carbon colloid liquid, and (2) a method of applying a conductive oxide such as tin oxide. Examples include methods of forming by vacuum evaporation or sputtering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら■の浸せき熱分解法や■の塗布または含浸
する方法によっては導電性の向上効果が十分でないばか
シか、繊維表面が被覆されるために、比表面積が大幅に
低下するという問題点が生じる。また■の真空蒸着或は
スパッタ法によれば、表面の次素繊維にしか金属層が担
持されないために、特にシートの形態においては導電性
の向上効果が十分でない。従って従来のいずれの方法を
採用しても、活性炭素繊維の有用性を保持したままで、
導電性を改良することは極めて困難であった。
However, depending on the immersion pyrolysis method (2) or the coating or impregnation method (2), the effect of improving conductivity may not be sufficient, or the fiber surface may be coated, resulting in a problem that the specific surface area is significantly reduced. . Furthermore, according to the vacuum evaporation or sputtering method (2), since the metal layer is supported only on the subatomic fibers on the surface, the effect of improving conductivity is not sufficient, especially in the form of a sheet. Therefore, no matter which conventional method is adopted, the usefulness of activated carbon fibers is maintained.
It has been extremely difficult to improve conductivity.

本発明の目的は活性炭素繊維からなる電極においてこれ
らの有する有用な特性を失うことなく導電性の顕著に向
上した電極を得ることである。
The object of the present invention is to obtain an electrode made of activated carbon fibers which has significantly improved conductivity without losing these useful properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の目的に鑑みて広範に亘る検討を行っ
たところ、無電界めっき法を用いて活性炭素繊維表面に
金層導電層を析出させたものを用いた電極は、本来の有
用な特性を失うことなく、電極そのものの導電性が顕著
に向上することを認め本発明に至った。
The present inventors conducted extensive studies in view of the above objectives, and found that an electrode using a gold conductive layer deposited on the surface of activated carbon fibers using an electroless plating method was found to be useful. The present invention was achieved by recognizing that the conductivity of the electrode itself can be significantly improved without losing its properties.

すなわち本発明は活性炭素繊維を無電界めっき法により
メッキすることを特徴とする高導電性電極の製法に関す
るものである。そしてこの高導電性電極は各種の電池の
電極として極めて有用である。
That is, the present invention relates to a method for producing a highly conductive electrode characterized by plating activated carbon fibers by electroless plating. This highly conductive electrode is extremely useful as an electrode for various batteries.

本発明で用いられる活性炭素繊維とは、吸着能に特に優
れた戻素繊維であシ、一般に1o Om/1以上の比表
面積を有するものである。好ましい比表面積は700I
/y以上、特に1400 Qη以上の範囲にある。この
ような活性炭素繊維は、綿、麻、セルロース再生繊維、
ポリビニルアルコール繊維、アクリルR維、芳香族ポリ
アミド繊維、架橋ホルムアルデヒド繊維、リグニン繊維
、フェノール繊維、石油ピッチ繊維等の原料繊維より常
法に従って得られる。原料繊維としては、得られた活性
炭素繊維の比表面積が大きく、吸着能に優れているとい
うのみならず、無電解メッキ法によっても該活性炭素繊
維の性能の低下が極めて少ないということで、ポリビニ
ルアルコール系繊維またはフェノール系繊維であること
がよい。
The activated carbon fibers used in the present invention are recycled fibers with particularly excellent adsorption ability, and generally have a specific surface area of 10 Om/1 or more. The preferred specific surface area is 700I
/y or more, particularly in the range of 1400 Qη or more. Such activated carbon fibers include cotton, linen, cellulose regenerated fiber,
It can be obtained from raw material fibers such as polyvinyl alcohol fibers, acrylic R fibers, aromatic polyamide fibers, crosslinked formaldehyde fibers, lignin fibers, phenol fibers, and petroleum pitch fibers according to conventional methods. As a raw material fiber, polyvinyl is used because not only the obtained activated carbon fiber has a large specific surface area and excellent adsorption ability, but also the performance of the activated carbon fiber hardly deteriorates even when subjected to electroless plating. It is preferable to use alcohol-based fibers or phenol-based fibers.

上記活性炭素繊維は任意の形態で無電解メッキを施すこ
とができる。即ち、電極の形状としてシート状のものが
好まれる場合は、原料の繊維を編織布または不織布等の
布帛としておくことにより得られた活性炭素繊維シート
をそのままめっきすることで得られる。
The activated carbon fibers can be electrolessly plated in any form. That is, when a sheet-like electrode is preferred, the activated carbon fiber sheet obtained by using the raw material fiber as a fabric such as a woven fabric or a non-woven fabric can be directly plated.

本発明においては通常の無電解めっき方法がそのまま採
用される。即ち、脱脂、エツチングなどを行ない、素材
表面の汚れを除去したり、めっき膜の密着性をよくする
ための表面調整工程及び/または無電解めっきの反応を
開始させるために素材表面に金、白金、パラジウム、銀
などの貴金属触媒核を付与する触媒化工程を経た活性炭
素繊維を化学還元剤を含む無電解めっき液中に浸漬する
ことによシ行なうことができる。
In the present invention, a normal electroless plating method is directly adopted. That is, degreasing, etching, etc. are performed to remove dirt on the surface of the material, a surface conditioning process to improve the adhesion of the plating film, and/or gold or platinum is applied to the surface of the material to start the electroless plating reaction. This can be done by immersing activated carbon fibers that have undergone a catalytic process of providing noble metal catalyst nuclei such as palladium, silver, etc. in an electroless plating solution containing a chemical reducing agent.

触媒化工程は増感化処理工程及び活性化処理工程に細分
される。増感化処理工程は素材表面に還元力のある金属
を吸着させる工程である。この工程は増感化処理液中に
素材を浸せきすることによシ行なわれる。増感化処理液
としては、スズや貴金属の塩化物が例示されるが、この
中で塩化第1スズの塩酸溶液が還元力が強い金属イオン
が得られるためによい。活性化処理工程は素材表面に貴
金属触媒核を付与する工程である。この工程は活性化処
理液中に増感化処理された素材を浸漬することによ9行
なわれる。活性化処理液としては貴金属イオンの酸性溶
液が例示されるが、塩化パラジウムの塩酸溶液を用いる
と得られる金属膜の導電性が高いためによい。
The catalytic process is subdivided into a sensitization process and an activation process. The sensitization process is a process in which metals with reducing power are adsorbed onto the surface of the material. This step is carried out by immersing the material in a sensitizing solution. Examples of the sensitizing solution include chlorides of tin and noble metals, and among these, a solution of stannous chloride in hydrochloric acid is preferable because it produces metal ions with strong reducing power. The activation treatment step is a step of imparting noble metal catalyst nuclei to the surface of the material. This step is carried out by immersing the sensitized material in an activation treatment solution. As the activation treatment liquid, an acidic solution of noble metal ions is exemplified, but it is preferable to use a hydrochloric acid solution of palladium chloride because the resulting metal film has high conductivity.

無電解めっき液に用いられる化学的還元剤としては、次
亜リン酸塩が最もよいが、そのほかヒドラジノ、水素化
ホウ素化合物、アミンボラン等が使用できる。めっきさ
れる金属種としては、ニッケル、コバルト、銅、銀、金
、白金、ロジウム等が挙げられるが、得られる電極の導
電性が良好なこと及びコストが安価なことを考慮すれば
ニッケルが最も優れている。めっき条件は浴組成、めっ
き時間、温度またはpHによシ大きく左右されるので、
常法に従い十分に管理することが必要である。
As the chemical reducing agent used in the electroless plating solution, hypophosphite is best, but hydrazino, borohydride compounds, amineborane, etc. can also be used. Examples of metals that can be plated include nickel, cobalt, copper, silver, gold, platinum, and rhodium, but nickel is the most suitable because it provides good conductivity of the resulting electrode and is inexpensive. Are better. Plating conditions are greatly influenced by bath composition, plating time, temperature or pH.
It is necessary to adequately manage it in accordance with conventional laws.

通常40〜70℃、特に好ましくは50〜60℃に昇温
し、30秒から10時間、特に好ましくは5分〜3時間
、pH3,5〜12特に好ましくは4〜5または7〜1
1、の範囲で行なわれる。
The temperature is usually raised to 40 to 70°C, particularly preferably 50 to 60°C, for 30 seconds to 10 hours, particularly preferably 5 minutes to 3 hours, and the pH is 3.5 to 12, particularly preferably 4 to 5 or 7 to 1.
This is done within the range of 1.

導電性金属層り担持量は活性炭素繊維の重量に対して、
3重量%以上100重量%の範囲がよく、特に好ましく
は5重量%以上50重量%以下である。担持量が少ない
と導電化効果が十分でなく、また担持量が多すぎると比
表面積の低下が増大する場合がある。
The amount of conductive metal layer supported is based on the weight of activated carbon fiber.
The range is preferably 3% by weight or more and 100% by weight, particularly preferably 5% by weight or more and 50% by weight or less. If the supported amount is too small, the conductivity effect will not be sufficient, and if the supported amount is too large, the specific surface area may decrease more.

以上の無電解めっき法によれば、活性炭素繊維できる。According to the above electroless plating method, activated carbon fiber can be produced.

また、該無電解めっき方法によればシート状でめっきし
た場合において、シートの内部の活性炭素繊維の表面ま
で均一に金属層が担持されるため、シートとしての導電
性が顕著に向上し、結果として吸着性能及び電気伝導性
に優れた電極が得られる。
In addition, according to this electroless plating method, when plating a sheet, the metal layer is uniformly supported on the surface of the activated carbon fibers inside the sheet, so the conductivity of the sheet is significantly improved. As a result, an electrode with excellent adsorption performance and electrical conductivity can be obtained.

本発明の高導電性電極は燃料電池用極板、電気二重層キ
ャパシタ用分極性電極、二次電池用電極、電気化学的表
示装置用対向極として工業的に非常に重要である。
The highly conductive electrode of the present invention is industrially very important as an electrode plate for fuel cells, a polarizable electrode for electric double layer capacitors, an electrode for secondary batteries, and a counter electrode for electrochemical display devices.

〔実施例〕〔Example〕

以下実施例によシ本発明をよシ具体的に説明する。 The present invention will be explained in more detail below using examples.

実施例1 〔活性炭素繊維シートに対するニッケル無電界めっき〕 フェノール系の活性炭素繊維よシなるシート〔比表面積
;2500−r?L/f〕を用い、これにニッケル無電
界めっきを行った。めっきに先立って以下の3液を準備
した。
Example 1 [Nickel electroless plating on activated carbon fiber sheet] Sheet made of phenolic activated carbon fiber [specific surface area: 2500-r? L/f], and nickel electroless plating was performed on this. Prior to plating, the following three solutions were prepared.

■ 蒸留水に5nC12を] OVl 、 HCJを0
.5 CC/1の濃度で溶解させた増感化処理液。
■ 5nC12 in distilled water] OVl, HCJ 0
.. Sensitization treatment solution dissolved at a concentration of 5 CC/1.

■ 蒸留水に′Pd輪を2 f/l 、 Hαを10 
cc/lの濃度で溶解させた活性化処理液。
■ Pd ring at 2 f/l and Hα at 10 in distilled water.
Activation treatment solution dissolved at a concentration of cc/l.

■ 蒸留水にNiSO4・6H20を201/l 、次
亜リン酸ソーダを20 f/l 、クエン酸3ナトリウ
ムを10 f/l 、乳酸(50wt%)を5 cc/
l 。
■ In distilled water, add 201/l of NiSO4/6H20, 20 f/l of sodium hypophosphite, 10 f/l of trisodium citrate, and 5 cc/l of lactic acid (50 wt%).
l.

NH4OH(25wt%)を40 CC/lの濃度で溶
解させためつき液。
A tamping solution in which NH4OH (25wt%) is dissolved at a concentration of 40 CC/l.

活性炭素繊維シート(5cm X 10 cts )を
20℃の上記増感化処理液100CCに5分間浸せきし
増感化処理を行った。その後シートを液中よシ取シ出し
、十分な水洗を行い、吸引脱水を行った。脱水後のシー
トを上記の活性化処理液100ccに5分間浸せきし活
性化処理を行った。その後シートを液中より取り出し十
分な水洗を行い、吸引脱水を行った。上記のめっき液5
ooccをウォータパス中で55℃に昇温し、活性化処
理を行ったシートを投入し、軽く攪拌した。約3分後に
シート表面より気泡が発生し同時にめっきが始まった。
An activated carbon fiber sheet (5 cm x 10 cts) was sensitized by immersing it in 100 cc of the above sensitizing solution at 20° C. for 5 minutes. Thereafter, the sheet was taken out of the liquid, thoroughly washed with water, and dehydrated by suction. The dehydrated sheet was immersed in 100 cc of the above activation treatment solution for 5 minutes to perform activation treatment. Thereafter, the sheet was taken out of the liquid and thoroughly washed with water, followed by suction dehydration. Above plating solution 5
The temperature of the oocc was raised to 55° C. in a water path, and the activated sheet was placed therein and lightly stirred. After about 3 minutes, bubbles were generated from the sheet surface and plating started at the same time.

めっき反応が始まってから10分間反応させ、その後シ
ートを液中よシ取り出し十分な水洗を行い、150°C
で4時間真空乾燥を行った。
After the plating reaction started, let it react for 10 minutes, then remove the sheet from the solution, wash it thoroughly with water, and heat it at 150°C.
Vacuum drying was performed for 4 hours.

めっき前のシートの重量は13 mg/zであったがめ
つき後は21 mgまで、約60重量%増加した。
The weight of the sheet before plating was 13 mg/z, but after plating it increased to 21 mg, an increase of about 60% by weight.

シートの抵抗を間隔】cllのステンレスの2本の線(
太さl +m )を電極としてシートに垂直な方向から
圧着しこの間の抵抗を測定することによって評価した。
The resistance of the sheet is spaced between two stainless steel wires of CLL (
The evaluation was made by pressing an electrode having a thickness of l + m from a direction perpendicular to the sheet and measuring the resistance between the electrodes.

めっき前の抵抗が540巾であったのに対しめつき後は
6Ω/cmまで減少していた。めっき前後の比表面積を
BET法を用いて測定したが、めっき前が25oo這7
yであったのに対し、めっき後は2100.717gで
あって、約16%減少していた。
While the resistance before plating was 540, it decreased to 6Ω/cm after plating. The specific surface area before and after plating was measured using the BET method.
y, but after plating it was 2100.717g, which was a decrease of about 16%.

活性炭素繊維の表面を走査型電子顕餓鏡を用い観察を行
ったところ、金属層には多くの微細孔が観察された。
When the surface of the activated carbon fiber was observed using a scanning electron microscope, many micropores were observed in the metal layer.

比較例1 〔塩化ルテニウムの浸漬熱分解による効果〕実施例】で
用いたのと同じ活性炭素繊維シートを0.5モル/lの
塩化ルテニウム水溶液中に5分間ディップした後に30
0℃の炉中に保持し、活性炭素繊維の表面を酸化ルテニ
ウム層でコーティングした。
Comparative Example 1 [Effects of immersion pyrolysis of ruthenium chloride] The same activated carbon fiber sheet used in Example was dipped in a 0.5 mol/l ruthenium chloride aqueous solution for 5 minutes.
The activated carbon fibers were kept in a furnace at 0° C. and their surfaces were coated with a ruthenium oxide layer.

このシートの抵抗を実施例1と同じ方法で測定した。処
理前のシートの抵抗は54Ω/αMであったが、処理後
は20Ω/αまで減少した、しかし減少の度合はニッケ
ル無電界めっきの方法を用いた場合に比し極端に少なか
った。処理後の比表面積を測定したが処理前が2500
 m/fであったのに対し処理後は1300 m、/f
lと、約48%減少していた。
The resistance of this sheet was measured in the same manner as in Example 1. The resistance of the sheet before treatment was 54Ω/αM, which decreased to 20Ω/α after treatment, but the degree of reduction was extremely small compared to when the nickel electroless plating method was used. The specific surface area after treatment was measured, but before treatment it was 2500.
m/f, but after treatment it was 1300 m/f.
l, a decrease of about 48%.

このような熱分解性塩の浸漬熱分解法によって導電層を
設ける方法ではいずれの場合にも導電性の向上効果が十
分でないだけでなく繊維表面が被覆されるために比表面
積が大幅に低下するという欠点があった。
In any case, this method of forming a conductive layer by immersion pyrolysis of a pyrolyzable salt not only does not have a sufficient effect of improving conductivity but also significantly reduces the specific surface area because the fiber surface is covered. There was a drawback.

比較例2 〔真空蒸着による金属導電層による効果〕実施例】で用
いたのと同じ活性炭素繊維シートを真窒蒸着器のペルジ
ャーの中に入れ系内を1×10Torrの真空にした後
に金の真空蒸着を行った。
Comparative Example 2 [Effects of Metal Conductive Layer Deposited in Vacuum] The same activated carbon fiber sheet used in Example was placed in a Pel jar of a pure nitrogen evaporator, and the system was evacuated to 1 x 10 Torr. Vacuum deposition was performed.

シートの片面に3回ずつ計6回の真空蒸着を行った。Vacuum deposition was performed a total of six times, three times on each side of the sheet.

このシートの抵抗を実施例1と同じ方法で測定した。処
理前のシートの抵抗は54Ω/C肩であったが金蒸着後
は460Aiで減少した。処理後の比表面積を測定した
が処理後は2200 cm/fと、約実体顕微鏡観察に
よれば、活性炭素繊維シート内部の繊維にまで導電層が
付与されていないことが確認された。このためにシート
の抵抗を大きく低下させることはできなかった。
The resistance of this sheet was measured in the same manner as in Example 1. The resistance of the sheet before treatment was 54 Ω/C, but it decreased to 460 Ai after gold deposition. The specific surface area after the treatment was measured and was found to be 2200 cm/f. According to observation using a stereoscopic microscope, it was confirmed that the conductive layer was not applied to the fibers inside the activated carbon fiber sheet. For this reason, it was not possible to significantly reduce the resistance of the sheet.

電気二重層キャパシタとしての使用例 実施例1で得られたニッケル無電界めっきを施した活性
炭素繊維シートを1 cx X 1 cmの大きさに切
シ出した。この試料2枚を両極の分極性電極として用い
電気二重層キャパシタを作製した。なおシートハチフロ
ンメンブランフィルタ−(ポアサイズ3μm)を介して
両極に設置され、電解液にはプロピレンカーボネートに
過塩素酸リチウム全1モル/lの濃度で溶解させたもの
20m1を用いた。
Example of use as an electric double layer capacitor The activated carbon fiber sheet coated with nickel electroless plated in Example 1 was cut into a size of 1 cx x 1 cm. An electric double layer capacitor was fabricated using these two samples as polarizable electrodes. A sheet Hachiflon membrane filter (pore size: 3 μm) was installed at both electrodes, and 20 ml of propylene carbonate dissolved in lithium perchlorate at a total concentration of 1 mol/l was used as the electrolyte.

この電気二重層キャパシタの256Cにおける容量と内
部抵抗を測定した、この結果を表1に示した。
The capacitance and internal resistance of this electric double layer capacitor at 256C were measured and the results are shown in Table 1.

さらに何の処理も施さない活性炭素繊維シート(実施例
1で用いたもの)と比較例1.2で得られた試料を用い
たキャパシタを作製した。集電用の電極として白金メツ
シュを用いた以外は実施例1の試料を用いた場合と同様
な方法を用いた。このキャパシタの緒特性を表1に示し
た。
Furthermore, a capacitor was produced using an untreated activated carbon fiber sheet (used in Example 1) and the sample obtained in Comparative Example 1.2. The same method as in the case of using the sample of Example 1 was used except that a platinum mesh was used as the current collecting electrode. Table 1 shows the characteristics of this capacitor.

表1の結果を比較すれば無電界めっきを行った活性炭素
繊維シートを用いたキャパシタが格段に優れた性能を与
えることがわかった。
Comparing the results in Table 1, it was found that a capacitor using an activated carbon fiber sheet subjected to electroless plating provided significantly superior performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に従えば高導電性の電極を
得ることができ、またこの電極を用いることによシ内部
抵抗の減少した各種の電池等の素子を作製することがで
きる。
As explained above, according to the present invention, a highly conductive electrode can be obtained, and by using this electrode, various devices such as batteries with reduced internal resistance can be manufactured.

Claims (1)

【特許請求の範囲】 1、活性炭素繊維の表面に導電性金属層を担持させる際
に無電界めつき法によることを特徴とする高導電性電極
の製法。 2、該活性炭素繊維が700〜4000m^2/gの比
表面積を有する活性炭素繊維である特許請求の範囲第1
項記載の電極の製法。
[Claims] 1. A method for producing a highly conductive electrode, characterized in that an electroless plating method is used to support a conductive metal layer on the surface of activated carbon fibers. 2. Claim 1, wherein the activated carbon fiber is an activated carbon fiber having a specific surface area of 700 to 4000 m^2/g.
Method for manufacturing electrodes described in Section 1.
JP61004058A 1986-01-10 1986-01-10 Manufacture of electrode of high electric conductivity Pending JPS62163261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004058A JPS62163261A (en) 1986-01-10 1986-01-10 Manufacture of electrode of high electric conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004058A JPS62163261A (en) 1986-01-10 1986-01-10 Manufacture of electrode of high electric conductivity

Publications (1)

Publication Number Publication Date
JPS62163261A true JPS62163261A (en) 1987-07-20

Family

ID=11574264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004058A Pending JPS62163261A (en) 1986-01-10 1986-01-10 Manufacture of electrode of high electric conductivity

Country Status (1)

Country Link
JP (1) JPS62163261A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213258A (en) * 1987-02-27 1988-09-06 Sharp Corp Electrode
JPH01201908A (en) * 1988-02-05 1989-08-14 Matsushita Electric Ind Co Ltd Polarizable electrode and preparation thereof
JPH01227354A (en) * 1988-03-04 1989-09-11 Sharp Corp Manufacture of graphite electrode
WO2004095614A2 (en) * 2003-04-18 2004-11-04 Ube Industries, Ltd. Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
JP2004335459A (en) * 2003-04-18 2004-11-25 Ube Ind Ltd Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
JP2006114469A (en) * 2003-12-26 2006-04-27 Hitachi Maxell Ltd Fuel-cell and membrane electrode assembly
WO2013084591A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery
JP2014027031A (en) * 2012-07-25 2014-02-06 Sato Komusho:Kk Electric double layer capacitor
JP2015505582A (en) * 2012-02-02 2015-02-23 ナノ−ヌーヴェル プロプライエタリー リミテッドNano−Nouvelle Pty Ltd. Thin coating on material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213258A (en) * 1987-02-27 1988-09-06 Sharp Corp Electrode
JPH01201908A (en) * 1988-02-05 1989-08-14 Matsushita Electric Ind Co Ltd Polarizable electrode and preparation thereof
JPH01227354A (en) * 1988-03-04 1989-09-11 Sharp Corp Manufacture of graphite electrode
WO2004095614A3 (en) * 2003-04-18 2005-04-14 Ube Industries Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
JP2004335459A (en) * 2003-04-18 2004-11-25 Ube Ind Ltd Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same
WO2004095614A2 (en) * 2003-04-18 2004-11-04 Ube Industries, Ltd. Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
US7468340B2 (en) 2003-04-18 2008-12-23 Ube Industries, Ltd. Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
US7517832B2 (en) 2003-09-19 2009-04-14 Teijin Limited Fibrous active carbon and nonwoven fabric including the same
JP2006114469A (en) * 2003-12-26 2006-04-27 Hitachi Maxell Ltd Fuel-cell and membrane electrode assembly
WO2013084591A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery
JP2015505582A (en) * 2012-02-02 2015-02-23 ナノ−ヌーヴェル プロプライエタリー リミテッドNano−Nouvelle Pty Ltd. Thin coating on material
JP2014027031A (en) * 2012-07-25 2014-02-06 Sato Komusho:Kk Electric double layer capacitor

Similar Documents

Publication Publication Date Title
US10164262B2 (en) Method for producing a porous metal body
US7250188B2 (en) Depositing metal particles on carbon nanotubes
JP3077113B2 (en) Microporous fluororesin material plated with platinum group or platinum group alloy and method for producing the same
US10205177B2 (en) Porous metal body, method for manufacturing porous metal body, and fuel cell
CN111975909B (en) Multifunctional metalized wood material and preparation method and application thereof
CN1375886A (en) Electrode base material for fuel cell
WO2007052861A1 (en) Metal oxide supercapacitor having metal oxide electrode coated onto the titanium dioxide ultrafine and its fabrication method
JP2007519165A (en) Nanostructured metal-carbon composite for electrode catalyst of fuel cell and production method thereof
JPS6176686A (en) Porous metal structure and its production and use
JPS62163261A (en) Manufacture of electrode of high electric conductivity
JP5595515B2 (en) Fabrication of nano-structured electrodes on porous substrates
JPH021918B2 (en)
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
CN110330078B (en) High-efficiency long-life three-dimensional structure antimony-doped tin oxide electrode
JP2000021415A (en) Conductive porous body and metallic porous body using the same, and electrode plate for battery
US8398754B2 (en) Proton conducting membrane and method for producing proton conducting membrane
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JPH0263730A (en) Porous conductive composite material and preparation thereof
JP4919226B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JPH08124577A (en) Manufacture of metallic porous material
CN113690058B (en) Self-supporting NiO/ACNF composite electrode material and preparation method and application thereof
RU2701549C1 (en) Method of forming catalytic layer of solid polymer fuel element
JP2004505178A (en) Complex porous structure coated with lead and conductive activation method thereof
CN112259383B (en) In-situ preparation method of electrode coated with nickel molybdate copper composite film
CN107460460B (en) A kind of method preparing the three-dimensional porous Copper thin film of self-supporting and self-supporting Copper thin film