JP2004335459A - Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same - Google Patents
Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same Download PDFInfo
- Publication number
- JP2004335459A JP2004335459A JP2004121247A JP2004121247A JP2004335459A JP 2004335459 A JP2004335459 A JP 2004335459A JP 2004121247 A JP2004121247 A JP 2004121247A JP 2004121247 A JP2004121247 A JP 2004121247A JP 2004335459 A JP2004335459 A JP 2004335459A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- porous carbon
- fuel cell
- electrode
- carbon film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
この発明は、金属担持多孔質炭素膜、燃料電池用電極及びそれを用いた燃料電池に関する。 The present invention relates to a metal-supported porous carbon membrane, an electrode for a fuel cell, and a fuel cell using the same.
近年、燃料電池の開発および実用化が進んでいる。例えば、固体高分子電解質形燃料電池の場合、厚さ0.1〜0.3mmの炭素繊維抄紙体からなる多孔質炭素フィルムを設け、その表面に電極触媒としての白金系触媒を担持させたガス拡散電極を高分子固体電解質層の両側に接合し、両側の多孔質炭素フィルムの外側にガス流路溝の付いた厚さ1〜3mmの緻密質炭素板からなるセパレ−タを設けて電池セルを構成している。
また、リン酸型燃料電池の場合、厚さ0.1〜0.3mmの炭素繊維抄紙体からなる多孔質炭素フィルムを設け、その表面に電極触媒としての白金系触媒を担持させたガス拡散電極をリン酸保持体にリン酸を保持させた電解質層の両側に接合し、両側の多孔質炭素フィルムの外側にガス流路溝の付いた厚さ1〜3mmのセパレ−タを設けて電池セルを構成している。
2. Description of the Related Art In recent years, development and commercialization of fuel cells have been progressing. For example, in the case of a solid polymer electrolyte fuel cell, a gas in which a porous carbon film made of a carbon fiber paper having a thickness of 0.1 to 0.3 mm is provided, and a platinum-based catalyst as an electrode catalyst is supported on the surface thereof. A diffusion electrode is joined to both sides of the solid polymer electrolyte layer, and a separator made of a dense carbon plate having a thickness of 1 to 3 mm with a gas channel groove is provided outside of the porous carbon film on both sides to form a battery cell. Is composed.
Further, in the case of a phosphoric acid type fuel cell, a gas diffusion electrode in which a porous carbon film made of a carbon fiber paper having a thickness of 0.1 to 0.3 mm is provided, and a platinum-based catalyst as an electrode catalyst is supported on the surface thereof. Is bonded to both sides of an electrolyte layer in which phosphoric acid is held by a phosphoric acid holder, and a separator having a gas flow channel groove with a thickness of 1 to 3 mm is provided outside the porous carbon film on both sides. Is composed.
従来、貴金属系触媒担持体のカ−ボン材料としては、担持比表面積を多くするためカ−ボンブラックに代表される粉末状の材料が使用されている。しかし、燃料電池用電極に適応する場合には、電子伝導性を実質的に有さない樹脂バインダ−を用いてフィルム状に成形しなければならない。
その結果電極内部抵抗の増大、面内での反応の不均一性などを引き起こし電池特性を低下させることが問題になっている。
Conventionally, as a carbon material of a noble metal catalyst carrier, a powdery material represented by carbon black has been used in order to increase the specific surface area of the carrier. However, when applied to a fuel cell electrode, it must be formed into a film using a resin binder having substantially no electron conductivity.
As a result, there arises a problem that the internal resistance of the electrode is increased, the in-plane reaction is non-uniform, and the battery characteristics are deteriorated.
そこで、我々は、樹脂バインダ−を介さずにフィルム形状を保持できる多孔質炭素膜およびその燃料電池用電極への適応を提案した(特許文献2、特許文献3)。
しかしながら、従来の金属前駆体溶液を用いた金属分散担持技術における重要な工程である攪拌操作を多孔質炭素膜に適応することは困難であり、ナノサイズの金属微粒子を均一に担持させることが非常に困難であった。
Therefore, we have proposed a porous carbon film capable of maintaining a film shape without the intervention of a resin binder and its application to an electrode for a fuel cell (
However, it is difficult to apply the stirring operation, which is an important step in the conventional metal dispersion and support technology using a metal precursor solution, to the porous carbon film, and it is very difficult to uniformly support nano-sized metal fine particles. Was difficult.
また、燃料電池用電極に一般的に用いられる金属、特に白金系材料は非常に高価であり重量当りの最大の活性を示すように微粒子(好適には2〜10nmの微粒子)を均一に分散担持することが望まれている。 In addition, metals generally used for fuel cell electrodes, particularly platinum-based materials, are very expensive and uniformly disperse and carry fine particles (preferably fine particles of 2 to 10 nm) so as to exhibit the maximum activity per weight. It is desired to do.
しかしながら、粒子径を制御しながら均一分散を達成する手法は未だ確立されておらず、経験と勘に基いて白金などの金属の担持が行われているのが実情である。
この発明の目的は、制御された粒子径を有する金属微粒子を均一に担持させて、金属系触媒を有効に利用できる担持体構造を有し作製工程がシンプルである、金属担持多孔質炭素膜、燃料電池用電極及びそれを用いた燃料電池を得ることである。
However, a technique for achieving uniform dispersion while controlling the particle size has not yet been established, and the fact is that metals such as platinum are supported based on experience and intuition.
It is an object of the present invention to uniformly support metal fine particles having a controlled particle diameter, to have a support structure capable of effectively utilizing a metal-based catalyst, and to simplify the manufacturing process. An object of the present invention is to obtain a fuel cell electrode and a fuel cell using the same.
この発明は、平均粒子直径が0.7〜20nm、特に1〜10nmの金属微粒子が細孔表面壁に分散担持された金属担持多孔質炭素膜に関する。
また、この発明は、前記の金属担持多孔質炭素膜を用いた燃料電池用電極に関する。
また、この発明は、前記の燃料電池用電極を高分子電解質膜の両側に接合してなる膜−電極接合体に関する。
さらに、この発明は、前記の燃料電池用電極を構成要素に含む燃料電池に関する。
The present invention relates to a metal-supported porous carbon membrane in which metal fine particles having an average particle diameter of 0.7 to 20 nm, particularly 1 to 10 nm are dispersed and supported on pore surface walls.
The present invention also relates to a fuel cell electrode using the metal-supported porous carbon film.
The present invention also relates to a membrane-electrode assembly in which the above-mentioned fuel cell electrode is joined to both sides of a polymer electrolyte membrane.
Further, the present invention relates to a fuel cell including the fuel cell electrode as a constituent element.
この発明によれば、制御された粒子径を有する金属微粒子が均一に担持し、金属系触媒を有効に利用できる担持体構造を有し作製工程がシンプルである、金属担持多孔質炭素膜を得ることができる。
また、この発明によれば、貴金属系触媒を有効に利用できる担持体構造を有しシンプルな作製工程によって燃料電池用電極、膜−電極接合体を得ることができる。
また、この発明によれば、動作が安定した燃料電池を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the metal fine particle having a controlled particle diameter is uniformly supported, and a metal-supported porous carbon film having a support structure capable of effectively utilizing a metal-based catalyst and having a simple manufacturing process is obtained. be able to.
Further, according to the present invention, an electrode for a fuel cell and a membrane-electrode assembly can be obtained by a simple manufacturing process having a support structure capable of effectively using a noble metal catalyst.
Further, according to the present invention, a fuel cell with stable operation can be obtained.
以下にこの発明の好ましい態様を列記する。
1)金属微粒子が、白金元素を含むものである上記の金属担持多孔質炭素膜。
2)金属微粒子が、多孔質炭素膜の細孔表面で、金属化合物に対して触媒を介した還元剤による化学還元反応を行って金属微粒子を微分散させたものである上記の金属担持多孔質炭素膜。
3)触媒が、炭素膜に担持したパラジウム化合物である上記の金属担持多孔質炭素膜。
4)金属微粒子が、その15%以上95%以下の数が多重双晶粒子からなる上記の金属担持多孔質炭素膜。
5)多重双晶粒子が、白金元素を主成分とするものである上記の金属担持多孔質炭素膜。
Preferred embodiments of the present invention are listed below.
1) The above metal-supporting porous carbon film, wherein the metal fine particles contain a platinum element.
2) The above metal-supported porous material, wherein the fine metal particles are finely dispersed by performing a chemical reduction reaction of a metal compound with a reducing agent via a catalyst on the fine pore surface of the porous carbon film. Carbon membrane.
3) The above metal-supported porous carbon film, wherein the catalyst is a palladium compound supported on the carbon film.
4) The above metal-supporting porous carbon film, wherein the number of metal fine particles is 15% or more and 95% or less and which are multiple twin particles.
5) The above metal-supported porous carbon film, wherein the multiple twin particles are mainly composed of platinum element.
この発明の金属担持多孔質炭素膜は、好適には化学メッキ(無電解メッキ)によって、多孔質炭素膜の細孔表面で金属化合物に対して化学還元触媒を介した還元剤により化学還元反応を選択的に行うことにより、金属微粒子が均一に微分散し、平均粒子直径が0.7〜20nm、特に1〜10nmの金属微粒子が表面壁に分散担持させることによって得ることができる。 The metal-supported porous carbon film of the present invention preferably undergoes a chemical reduction reaction with a reducing agent via a chemical reduction catalyst on a metal compound on the pore surface of the porous carbon film by chemical plating (electroless plating). By performing the selective treatment, the fine metal particles are uniformly finely dispersed, and the fine metal particles having an average particle diameter of 0.7 to 20 nm, particularly 1 to 10 nm can be obtained by being dispersed and supported on the surface wall.
前記の製造法によれば、非常に緩やかな攪拌操作のみで容易に金属微粒子の担持が可能となる。
前記の製造法によって、多孔質炭化膜の細孔表面で選択的に金属イオンが還元されると同時に析出するので、金属微粒子の成長がエピタキシャル成長の様式をとり、生成した金属微粒子は非常に結晶性が高く粒子も物理化学的に安定であることにより、微細な金属微粒子を細孔表面壁に均一に微分散担持させることが可能となる。
According to the above-mentioned production method, metal fine particles can be easily supported only by a very gentle stirring operation.
According to the above-described manufacturing method, metal ions are selectively reduced and precipitated at the surface of the pores of the porous carbonized film. At the same time, the growth of the metal fine particles takes the form of epitaxial growth, and the generated metal fine particles are extremely crystalline. And the particles are physicochemically stable, so that fine metal fine particles can be uniformly and finely dispersed and supported on the surface of the pore surface.
さらに、前記の製造法によれば、金属微粒子の析出は場所によるタイムラグがなく表面の全域において同時に起こり、担持体中の金属微粒子の粒子径が単分散的に揃えられ、粒子径がナノスケ−ルで任意に制御される。
特に、前記のエピタキシャル成長の過程で生成する多重双晶粒子は表面の活性が高い高密度結晶面で粒子の表面が構成され、また安定形状を有するので長期に亘って初期構造を維持するため、燃料電池の総合的な特性を向上させることができると考えられる。
Further, according to the above-mentioned production method, the deposition of metal fine particles occurs simultaneously over the entire surface without any time lag depending on the location, the particle diameter of the metal fine particles in the carrier is monodispersed, and the particle size becomes nanoscale. Is controlled arbitrarily.
In particular, the multi-twin particles generated in the above-mentioned epitaxial growth process have a high surface activity, and the surface of the particles is composed of high-density crystal planes.Also, since the particles have a stable shape, the initial structure is maintained over a long period of time. It is considered that the overall characteristics of the battery can be improved.
前記の金属としては、パラジウム、白金、ロジウム、ルテニウムおよびイリジウムよりなる群から選ばれる1種、及びこれらの物質の合金、各々の組合せ又は他の遷移金属との組合せのいずれか、好適には白金およびこの合金である貴金属が挙げられる。 As the metal, one selected from the group consisting of palladium, platinum, rhodium, ruthenium and iridium, and alloys of these substances, any combination thereof or any combination with another transition metal, preferably platinum And noble metals that are alloys thereof.
この発明において、金属系触媒担持体として多孔質炭素フィルム、多孔質黒鉛フィルム、好適には多孔質黒鉛フィルムが使用される。
前記の多孔質炭素フィルムは、微細な連通孔を有する多孔質構造を持ち、好適には平均孔径が0.05〜10μmで空孔率が25〜85%であり、特に厚みが3〜100μmである。
In the present invention, a porous carbon film, a porous graphite film, preferably a porous graphite film is used as the metal-based catalyst support.
The porous carbon film has a porous structure having fine communication holes, preferably has an average pore diameter of 0.05 to 10 μm, a porosity of 25 to 85%, and particularly has a thickness of 3 to 100 μm. is there.
前記の多孔質炭素フィルムは、微細な連通孔を有する多孔質構造を持ち、開放孔以外の表面が平滑な炭素膜構造体からなるものである。前記の微細な連通孔を有する多孔質炭素フィルムとは、任意の表面から細孔が通路状に他の表面まで通じるいわゆる開放孔であって、隣接する細孔間が壁状構造になっており、且つ、細孔は屈曲しながら非直線的に延びた構造を有し、開放孔以外の部分が平滑面であるフィルム、すなわちバインダ−を介さずに炭素が三次元的にネットワ−ク構造を有しているフィルムをいう。
特に、前記の多孔質炭素フィルムとして、平均孔径が0.05〜10μm、特に0.05〜2μmで空孔率が25〜85%、特に30〜70%で3〜100μm、特に5〜40μmの厚みを有するものが好適であり、その中でも特に多孔質黒鉛フィルムが好適である。
The porous carbon film has a porous structure having fine communication holes, and is made of a carbon film structure having a smooth surface other than the open holes. The porous carbon film having the fine communication pores is a so-called open pore in which pores communicate with other surfaces in a passage form from any surface, and the adjacent pores have a wall-like structure. The film has a structure in which the pores extend in a non-linear manner while bending, and the film other than the open holes has a smooth surface, that is, carbon has a three-dimensional network structure without a binder. Refers to the film possessed.
In particular, the porous carbon film has an average pore diameter of 0.05 to 10 μm, particularly 0.05 to 2 μm and a porosity of 25 to 85%, particularly 30 to 70% of 3 to 100 μm, and particularly 5 to 40 μm. Those having a thickness are preferable, and among them, a porous graphite film is particularly preferable.
前記の多孔質炭素フィルムの炭素膜構造体は、黒鉛化率が10%以上、好ましくは30%以上、特に好ましくは90%以上であることが好適である。黒鉛化率が30%以上になると導電性が一般的な炭素粉末からなる電極より高くなるので好ましく、特に90%以上になると電極の機械的強度が高くなり可撓性が向上するのでより好適であ。 The carbon film structure of the porous carbon film preferably has a graphitization ratio of 10% or more, preferably 30% or more, particularly preferably 90% or more. When the graphitization ratio is 30% or more, the conductivity is higher than that of an electrode made of a general carbon powder, which is preferable. Ah.
前記の多孔質炭素フィルムは、微細な連通孔を有する多孔質構造を持ち、開放孔以外の表面が略平滑な高耐熱性ポリマ−膜、好適にはポリイミド多孔質膜を嫌気性雰囲気下、好適には窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中か、真空中で加熱炭化して好適に製造することができる。炭素構造体の黒鉛化率を高めて機械的強度や導電性や熱伝導性を高くするためには1200〜3500℃、特に1900〜3000℃、その中でも2600〜3000℃の範囲が好ましく、前記温度範囲で20〜180分間保持することが好適である。 The porous carbon film has a porous structure having fine communication holes, and is preferably a highly heat-resistant polymer film having a substantially smooth surface other than the open holes, preferably a polyimide porous film, in an anaerobic atmosphere. Can be suitably produced by heating and carbonizing in an inert gas such as nitrogen gas, argon gas, helium gas or in a vacuum. In order to increase the graphitization rate of the carbon structure and increase the mechanical strength, electrical conductivity, and thermal conductivity, the temperature is preferably in the range of 1200 to 3500 ° C, particularly 1900 to 3000 ° C, and particularly preferably in the range of 2600 to 3000 ° C. It is preferable to hold for 20 to 180 minutes in the range.
前記の無電解メッキによって金属微粒子を与える金属化合物としては、パラジウム、白金、ロジウム、ルテニウムまたはイリジウムの無機塩あるいはカルボン酸塩、好適には塩化物が挙げられる。
この無電解メッキ液中にはキレ−ト剤としての酒石酸塩、エチレンジアミンテトラ酢酸、ロッセル塩等と還元剤として作用するヒドラジン塩等を必要量含有させることが好ましいが、実質的に触媒を介した還元作用でのみ所望の金属が還元析出する溶液組成に調整されていれば、その溶液組成は特に制限されるものではない。
Examples of the metal compound that gives the metal fine particles by the electroless plating include an inorganic salt or a carboxylate, preferably a chloride, of palladium, platinum, rhodium, ruthenium or iridium.
The electroless plating solution preferably contains a necessary amount of a chelating agent such as tartrate, ethylenediaminetetraacetic acid, a rossel salt, and a hydrazine salt acting as a reducing agent, but substantially via a catalyst. The solution composition is not particularly limited as long as it is adjusted to a solution composition in which the desired metal is reduced and precipitated only by the reduction action.
前記の方法において、多孔質炭素膜は予め表面を洗浄しておくことが好ましい。油脂成分の除去のためには有機溶媒、例えばアセトンやメタノ−ル中での洗浄が、無機成分の除去には酸による洗浄が好適に用いられる。洗浄後に、充分に後水洗することが好ましい。その後、無電解メッキ工程の初期段階で触媒として作用する金属元素を多孔質炭素膜の細孔表面に付着させる。付着させる元素は無電解メッキ処理において還元作用するものであれば制限されないが、好適にはパラジウムが用いられる。パラジウムは、例えば多孔質炭素膜を塩化錫(SnCl2)の酸性水溶液中に浸漬することでSn2+を細孔表面に付着した後、水洗し、パラジウム化合物、例えば塩化パラジウム、酸化パラジウム等の酸性水溶液中に浸漬することで、Sn2+からPd2+への電子授与を行うことで還元されたPdを細孔表面に付着させる方法を用いることができる。また、パラジウムの金属塩や有機パラジウム錯体などのパラジウム化合物を適切な溶媒に溶解して得られる溶液を用いて炭素表面にPdイオンを吸着した後に還元する手法を用いてもよい。 In the above method, the surface of the porous carbon film is preferably cleaned in advance. Washing in an organic solvent, for example, acetone or methanol, is preferably used for removing fats and oils, and washing with acid is preferably used for removing inorganic components. After washing, it is preferable to sufficiently wash with water. Thereafter, a metal element acting as a catalyst in the initial stage of the electroless plating process is attached to the surface of the pores of the porous carbon film. The element to be attached is not limited as long as it has a reducing effect in the electroless plating treatment, but palladium is preferably used. Palladium can be obtained by, for example, immersing a porous carbon film in an acidic aqueous solution of tin chloride (SnCl 2 ) so that Sn 2+ adheres to the surface of the pores, and then washed with water to form a palladium compound such as palladium chloride or palladium oxide. A method can be used in which immersion in an aqueous solution gives electrons from Sn 2+ to Pd 2+ , thereby causing reduced Pd to adhere to the pore surface. Alternatively, a method of dissolving a palladium compound such as a metal salt of palladium or an organic palladium complex in a suitable solvent and adsorbing Pd ions on the carbon surface using a solution obtained and reducing the solution may be used.
前記の方法において、無電解メッキは、所望の濃度の金属化合物、例えば白金化合物溶液にアンモニア水あるいは水酸化アルカリ溶液、純水等を加えてアルカリ性に調整して行うことが好ましい。水酸化アルカリ溶液としてはアンモニア水溶液を用いるのがよく、アルカリ性にする程度はpH8〜12.5の範囲にするのが好ましい。アルカリ性に調整にされると、パラジウムの触媒作用によって金属(白金)化合物が還元されて細孔表面に析出していく。 In the above method, it is preferable that the electroless plating is performed by adjusting the alkalinity by adding ammonia water, an alkali hydroxide solution, pure water or the like to a metal compound having a desired concentration, for example, a platinum compound solution. As the alkali hydroxide solution, an aqueous ammonia solution is preferably used, and the degree of alkalinity is preferably in the range of pH 8 to 12.5. When adjusted to be alkaline, the metal (platinum) compound is reduced by the catalytic action of palladium and is deposited on the surface of the pores.
前記の無電解メッキ液中に前記の洗浄等の前処理を行った多孔質炭素膜を浸漬し、50〜70℃で、1〜20分程度、特に1〜10分間程度無電解メッキすることが好ましい。前記の無電解メッキ時間が長時間に過ぎると金属微粒子の径が大きくなり遂には金属層が形成されるので好ましくない。
以上の方法によって、多孔質炭素フィルムの細孔表面に金属微粒子、特に白金微粒子を均一に担持させることができる。
この発明においては、金属、好適には白金を微粒子の形状に留めることが必要であり、そのために前記の温度および時間内にすることが好ましい。
It is possible to immerse the porous carbon film which has been subjected to the pretreatment such as the above-mentioned washing in the electroless plating solution, and perform electroless plating at 50 to 70 ° C. for about 1 to 20 minutes, particularly for about 1 to 10 minutes. preferable. If the above-mentioned electroless plating time is too long, the diameter of the metal fine particles increases, and eventually a metal layer is formed, which is not preferable.
By the above method, fine metal particles, particularly fine platinum particles, can be uniformly supported on the pore surfaces of the porous carbon film.
In the present invention, it is necessary to keep the metal, preferably platinum, in the form of fine particles, and therefore it is preferable to keep the temperature and time within the above-mentioned ranges.
また、前記の無電解メッキによって与えられる金属または金属化合物微粒子と接触して異なる金属微粒子を担持する、または合金化することが可能である。例えば、白金を無電解メッキによって担持した多孔質炭素膜を金属イオンが溶解した溶液中に浸漬し、緩やかな条件で還元処理、例えば加熱や化学的還元剤添加等の操作を行えば、溶解している金属イオンは還元作用の大きい白金微粒子の表面に優先的に還元析出させることができる。その後、該多孔質炭素膜を取出して洗浄、乾燥後、好適な条件で加熱処理を行うことで合金化することができる。
燃料電池用電極用途を考えた場合、合金化することで好ましく作用する金属は目的によって異なるが、例えば触媒の被毒を防ぎ使用時の活性低下を抑制するためには、白金とルテニウム、パラジウムあるいはコバルトとの合金が、活性向上のためには白金とコバルト、鉄あるいはニッケルとの合金が、低コスト化のためには白金とニッケルあるいは鉄との合金などが好適に選択される。
Further, it is possible to carry or alloy different metal fine particles by contacting the metal or metal compound fine particles provided by the electroless plating. For example, a porous carbon film carrying platinum by electroless plating is immersed in a solution in which metal ions are dissolved, and a reduction treatment is performed under mild conditions, for example, an operation such as heating or addition of a chemical reducing agent is performed. The metal ions can be preferentially reduced and precipitated on the surface of the platinum fine particles having a large reducing action. Thereafter, the porous carbon film is taken out, washed, dried, and then subjected to a heat treatment under suitable conditions, whereby alloying can be performed.
When considering the electrode application for fuel cells, the metal that works favorably by alloying differs depending on the purpose, but for example, platinum and ruthenium, palladium or An alloy of cobalt and an alloy of platinum and cobalt, iron or nickel are preferably selected for improving the activity, and an alloy of platinum and nickel or iron is preferably selected for cost reduction.
次いで、多孔質炭素フィルムを液から取り出し、水洗して洗浄液が中性になるまで繰り返し洗浄を行ったのち、乾燥することで目的とする燃料電池用の触媒である金属担持多孔質炭素膜を得ることができる。さらに、担持した金属微粒子の表面に酸化物や炭化物の薄膜が形成されない範囲の条件、好適には真空下、もしくは不活性ガス雰囲気下で150〜400℃、好ましくは180〜350℃で、10〜180分、好ましくは20〜120分間の条件で後熱処理を行うことで、金属微粒子表面の付着物を除去し結晶性を向上させることがより好ましい。前記の温度が低いと効果が少なく、高すぎると金属微粒子が基材の炭素と反応し、表面汚染や金属微粒子の基材中への埋まり込み現象が起こるので好ましくない。 Next, the porous carbon film is taken out of the liquid, washed with water and repeatedly washed until the washing liquid becomes neutral, and then dried to obtain a metal-carrying porous carbon film which is a catalyst for a target fuel cell. be able to. Further, the conditions are such that an oxide or carbide thin film is not formed on the surface of the supported metal fine particles, preferably under vacuum, or under an inert gas atmosphere at 150 to 400 ° C., preferably 180 to 350 ° C., 10 to 10 ° C. It is more preferable that the post-heat treatment is performed under the conditions of 180 minutes, preferably 20 to 120 minutes to remove the deposits on the surface of the metal fine particles and improve the crystallinity. If the temperature is low, the effect is small, and if the temperature is too high, the metal fine particles react with the carbon of the substrate, and surface contamination and the phenomenon of embedding of the metal fine particles in the substrate occur, which is not preferable.
この発明において、金属担持多孔質炭素膜を固体高分子形燃料電池用に用いる場合、貴金属粒子の担持量は、その電極を用いて作製される燃料電池に要求される特性および電極膜の膜厚み、比表面積によって異なってくるが、電極の単位面積あたりに換算して、酸素極では0.01mg/cm2以上、1.0mg/cm2以下、特に0.5mg/cm2以下、その中でも0.25mg/cm2以下の量で使用されることが好ましく、膜の水素極上では0.005mg/cm2以上、特に0.5mg/cm2以下の量で使用されることが好ましい。 In the present invention, when the metal-supported porous carbon film is used for a polymer electrolyte fuel cell, the amount of the noble metal particles supported depends on the characteristics required for a fuel cell manufactured using the electrode and the film thickness of the electrode film. Although it depends on the specific surface area, it is converted into 0.01 mg / cm 2 or more and 1.0 mg / cm 2 or less, particularly 0.5 mg / cm 2 or less, particularly 0 mg / cm 2 , in terms of the unit area of the electrode. It is preferably used in an amount of 0.25 mg / cm 2 or less, and is preferably used in an amount of 0.005 mg / cm 2 or more, particularly 0.5 mg / cm 2 or less on the hydrogen electrode of the film.
この発明の燃料電池用電極は、好適には前記の金属担持多孔質炭素膜および場合により高分子電解質あるいはオリゴマ−電解質(イオノマ−)を溶媒に均一分散させた組成物を金属担持多孔質炭素膜の片面全面あるいは所定形状に塗布、乾燥する方法よって得られる。
その際、高分子電解質あるいはオリゴマ−電解質は、電極膜の膜厚み、細孔比表面積によって異なってくるが、例えば電極の厚みが30μmの場合は電極の単位面積あたりで0.1mg/cm2以上、5mg/cm2以下、特に2mg/cm2以下、その中でも1mg/cm2以下であることが好ましい。
The fuel cell electrode of the present invention is preferably a metal-supported porous carbon membrane comprising the above-mentioned metal-supported porous carbon membrane and optionally a composition in which a polymer electrolyte or an oligomer electrolyte (ionomer) is uniformly dispersed in a solvent. By applying and drying the whole surface of one side or a predetermined shape.
At this time, the polymer electrolyte or the oligomer electrolyte varies depending on the thickness of the electrode membrane and the specific surface area of the pores. For example, when the thickness of the electrode is 30 μm, 0.1 mg / cm 2 or more per unit area of the electrode. , 5 mg / cm 2 or less, in particular 2 mg / cm 2 or less, and preferably even 1 mg / cm 2 or less therein.
前記の高分子電解質あるいはオリゴマ−電解質としては、イオン伝導度をもつ任意のポリマ−又はオリゴマ−、又は酸又は塩基と反応してイオン伝導度をもつポリマ−又はオリゴマ−を生ずる任意のポリマ−又はオリゴマ−を挙げることができる。
適当な高分子電解質あるいはオリゴマ−電解質としては、プロトン又は塩の形態でスルホン酸基等のペンダントイオン交換基を持つフルオロポリマ−、例えばスルホン酸フルオロポリマ−例えばナフィオン膜(デュポン社登録商標)、スルホン酸フルオロオリゴマ−やスルホン化ポリイミド、スルホン化オリゴマ−等が挙げられる。
前記の高分子電解質あるいはオリゴマ−電解質は100℃以下の温度で実質的に水に不溶性であることが必要である。
The above-mentioned polymer electrolyte or oligomer electrolyte may be any polymer or oligomer having ionic conductivity, or any polymer which reacts with an acid or a base to produce a polymer or oligomer having ionic conductivity, or Oligomers can be mentioned.
Suitable polyelectrolytes or oligomer electrolytes include fluoropolymers having pendant ion exchange groups such as sulfonic acid groups in the form of protons or salts, such as fluoropolymers of sulfonic acids, such as Nafion membranes (DuPont), sulfones Acid fluoro-oligomers, sulfonated polyimides, sulfonated oligomers and the like can be mentioned.
The above-mentioned polymer electrolyte or oligomer electrolyte must be substantially insoluble in water at a temperature of 100 ° C. or less.
前記の溶媒としては、C1-6アルコ−ル、グリセリン、エチレンカ−ボネ−ト、プロピレンカ−ボネ−ト、ブチルカ−ボネ−ト、エチレンカルバメ−ト、プロピレンカルバメ−ト、ブチレンカルバメ−ト、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロリドン、ジフルオロベンゼン及びスルホラン等の極性溶媒が挙げられる。有機溶媒は単独で使用してもよくまた水との混合液として使用してもよい。有機溶媒と水との混合液を使用する場合の使用割合は、体積比で有機溶媒:水が10:1〜1:3の範囲内であることが好ましい。 Examples of the solvent include C1-6 alcohol, glycerin, ethylene carbonate, propylene carbonate, butyl carbonate, ethylene carbamate, propylene carbamate, butylene carbamate. And polar solvents such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, difluorobenzene and sulfolane. The organic solvent may be used alone or as a mixture with water. When a mixed solution of an organic solvent and water is used, it is preferable that the volume ratio of organic solvent: water is in the range of 10: 1 to 1: 3.
この発明の膜−電極接合体は、前記のようにして得られる燃料電池用電極を高分子電解質膜の両側に、例えばホットプレスして、接合することによって得られる。
前記の高分子電解質膜としては、前述の、イオン伝導度をもつ任意のポリマ−又はオリゴマ−、又は酸又は塩基と反応してイオン伝導度をもつポリマ−又はオリゴマ−を生ずる任意のポリマ−又はオリゴマ−を挙げることができる。
The membrane-electrode assembly of the present invention is obtained by joining the fuel cell electrode obtained as described above to both sides of the polymer electrolyte membrane, for example, by hot pressing.
As the polymer electrolyte membrane, any of the above-mentioned polymers or oligomers having ionic conductivity, or any polymer which reacts with an acid or a base to produce a polymer or oligomer having ionic conductivity, or Oligomers can be mentioned.
この発明の燃料電池は、前記の膜−電極接合体を構成要素とし、好適には水の発生が多い酸素側に前記の膜−電極接合体を使用し、水素側(燃料側)には前記の膜−電極接合体あるいは他の種々の膜−電極接合体(膜−電極構造体ともいう)を使用し、例えば電極の両側に直接あるいはガス拡散層を介して一対のセパレ−タを、該一対のセパレ−タ間に反応ガスの漏れを防止するためのシ−ルを各々配設することによって得られる。 The fuel cell of the present invention comprises the above-mentioned membrane-electrode assembly as a constituent element, and preferably uses the above-mentioned membrane-electrode assembly on the oxygen side where water generation is large, and the above-mentioned membrane-electrode assembly on the hydrogen side (fuel side). A membrane-electrode assembly or various other membrane-electrode assemblies (also referred to as a membrane-electrode structure) is used. For example, a pair of separators is provided on both sides of the electrode directly or via a gas diffusion layer. This can be obtained by disposing a seal between the pair of separators to prevent leakage of the reaction gas.
次に、この発明について、実施例で説明する。但し、本発明は以下の実施例に限定されるものではない。
尚、本発明において、透気度、空孔率、平均孔径、黒鉛化率、燃料電池の性能評価は次の方法によって測定した。
Next, the present invention will be described with reference to examples. However, the present invention is not limited to the following examples.
In the present invention, air permeability, porosity, average pore size, graphitization rate, and performance evaluation of a fuel cell were measured by the following methods.
1)透気度
JIS P8117に準じて測定した。測定装置としてB型ガ−レ−デンソメ−タ−(東洋精機社製)を使用した。試料の膜を直径28.6mm、面積645mm2の円孔に締付け、内筒重量567gにより、筒内の空気を試験円孔部から
筒外へ通過させる。空気100ccが通過する時間を測定し、透気度(ガ−レ−値)とした。
1) Air permeability Measured according to JIS P8117. A B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The membrane of the sample is fastened to a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 , and the air in the cylinder is allowed to pass through the test hole to the outside of the cylinder with an inner cylinder weight of 567 g. The time during which 100 cc of air passed was measured and defined as the air permeability (Gurley value).
2)空孔率
所定の大きさに切取った膜の膜厚、面積及び重量を測定し、目付重量から次式により空孔率を求めた。次式のSは膜面積、dは膜厚、wは測定した重量、Dは密度でありポリイミドは1.34、炭素膜構造体については後述する方法で求めた黒鉛化率を考慮して試料ごとに密度を算出した。
空孔率=(1−(W/S×d×D))×100
2) Porosity The thickness, area and weight of the film cut into a predetermined size were measured, and the porosity was determined from the basis weight by the following formula. In the following formula, S is the film area, d is the film thickness, w is the measured weight, D is the density, which is 1.34 for polyimide, and the carbon film structure is a sample in consideration of the graphitization ratio obtained by a method described later. The density was calculated for each.
Porosity = (1− (W / S × d × D)) × 100
3)膜表面の平均孔径
膜表面の走査型電子顕微鏡写真を撮り、50点以上の開口部について孔面積を測定し、該孔面積の平均値から次式に従って孔形状が真円であるとした際の平均直径を計算より求めた。次式のSaは孔面積の平均値を意味する。
平均孔径=2×(Sa/π)1/2
4)黒鉛化率
X線回折を測定しRuland法により求めた。
3) Average pore diameter on membrane surface A scanning electron microscope photograph of the membrane surface was taken, the pore area was measured for 50 or more openings, and the pore shape was determined to be a perfect circle according to the following equation from the average value of the pore areas. The average diameter was determined by calculation. Sa in the following equation means the average value of the hole area.
Average pore size = 2 × (Sa / π) 1/2
4) Graphitization rate X-ray diffraction was measured and determined by the Ruland method.
5)多孔質炭素フィルムの厚み
多孔質炭素フィルムの厚みは、接触式の膜厚み計および断面の走査型顕微鏡観察により求めた。
6)貴金属粒子の大きさ
電極に分散した貴金属微粒子の大きさは、TEM及びSEM観察によって評価した。
5) Thickness of porous carbon film The thickness of the porous carbon film was determined by a contact-type film thickness meter and a scanning microscope observation of a cross section.
6) Size of noble metal particles The size of noble metal fine particles dispersed in the electrode was evaluated by TEM and SEM observation.
7)燃料電池の性能評価
燃料電池用電子負荷装置を用いて、セル内部の燃料ガス圧力を0.1MPa、電池温度80℃とし、燃料ガスの加湿を70℃のバブラ−を介して行うことで発電を行い、電流−電圧特性を測定した。
7) Performance evaluation of fuel cell By using a fuel cell electronic load device, the fuel gas pressure inside the cell is set to 0.1 MPa, the cell temperature is set to 80 ° C, and the fuel gas is humidified via a bubbler at 70 ° C. Power generation was performed, and current-voltage characteristics were measured.
参考例1
多孔質ポリイミドフィルムの製造
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとをN−メチル−2−ピロリドン中で重合して得たポリアミック酸溶液を鏡面研磨を施したステンレス基板上に一定の厚みで流延し、さらにその上部にドクタ−ナイフを用いてNMPを均一に塗布し1分間静置した後メタノ−ル中に浸漬し、ポリアミック酸膜を析出させた。その後イオン交換水浴に浸漬してこの膜をステンレス基板から剥離した後乾燥後、400℃、20分間の熱処理をおこなうことで、多孔質ポリイミドフィルムを得た。
このフィルムは三次元的にポリイミドが連なるネットワ−ク構造を有することをSEM観察により確認した。
また、このフィルムは、イミド化率が90%であり、膜厚32μm、透気度20秒/100ml、空孔率45%、膜表面の平均孔径0.15μmであった。
Reference Example 1
Production of Porous Polyimide Film A polyamic acid solution obtained by polymerizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine in N-methyl-2-pyrrolidone is subjected to mirror polishing. The film was cast on a stainless steel substrate having a predetermined thickness, and NMP was uniformly applied thereon by using a doctor knife and allowed to stand still for 1 minute, and then immersed in methanol to deposit a polyamic acid film. Was. Then, the film was immersed in an ion-exchange water bath to peel off the film from the stainless steel substrate, dried, and then heat-treated at 400 ° C. for 20 minutes to obtain a porous polyimide film.
It was confirmed by SEM observation that this film had a network structure in which polyimide was connected three-dimensionally.
This film had an imidation ratio of 90%, a film thickness of 32 μm, an air permeability of 20 seconds / 100 ml, a porosity of 45%, and an average pore diameter of 0.15 μm on the film surface.
参考例2
多孔質炭素フィルムの製造
この多孔質ポリイミドフィルムを窒素ガス気流下2100℃の温度で120分間炭素化して、黒鉛化率40%、膜厚27μm、透気度26秒/100ml、空孔率40%、平均孔径0.13μmの多孔質炭素フィルムを得た。このフィルムは三次元的に炭素が連なるネットワ−ク構造を有することをSEM観察により確認した。
Reference Example 2
Manufacture of porous carbon film This porous polyimide film was carbonized at a temperature of 2100 ° C. for 120 minutes in a nitrogen gas stream, and the graphitization rate was 40%, the film thickness was 27 μm, the air permeability was 26 seconds / 100 ml, and the porosity was 40%. Thus, a porous carbon film having an average pore diameter of 0.13 μm was obtained. It was confirmed by SEM observation that this film had a network structure in which carbon was connected three-dimensionally.
参考例3
多孔質黒鉛フィルムの製造
上記多孔質炭素フィルムをアルゴンガスの雰囲気中で、3000℃で120分保持して黒鉛化率(結晶化度)が90%以上、平均孔径は0.11μm、膜厚24μm、格子定数:a軸で2.53Å、c軸で6.68Å、結晶子サイズ:(002)面で180Å、(101)面で90Åの多孔質黒鉛膜を得た。膜の表面にメタノ−ルを滴下すると裏側に通過したことより、膜の内部に微細な連続孔を有していることが確認された。
Reference Example 3
Manufacture of porous graphite film The above-mentioned porous carbon film was held at 3000 ° C. for 120 minutes in an atmosphere of argon gas to have a graphitization ratio (crystallinity) of 90% or more, an average pore diameter of 0.11 μm, and a film thickness of 24 μm. A porous graphite film having a lattice constant of 2.53 ° on the a-axis, 6.68 ° on the c-axis, and a crystallite size of 180 ° on the (002) plane and 90 ° on the (101) plane was obtained. When methanol was dropped on the surface of the film, it passed through to the back side, confirming that the film had fine continuous holes inside.
参考例2で得られた多孔質炭素膜をアセトンおよびメタノ−ル中で浸漬して洗浄を行った後、水洗して、SnCl2塩酸水溶液中に5分間浸漬した後、水浴中に1分間浸漬し、さらにPdCl2塩酸水溶液中に5分間浸漬後、純水で洗浄した。
白金無電解メッキ液作製用溶剤として市販されている田中貴金属社製のTPX−205MU(白金化合物と添加剤からなる溶液)と、TPX−205R(還元剤と添加剤からなる溶液)、さらにアンモニア水、純水を適時混合攪拌することで、室温でpHが約10の無電解メッキ処理液を調製した後に、液温60℃に加温した。
この無電解メッキ浴に、フッ素樹脂の型枠で周囲を保持した前記の多孔質炭素膜を浸漬し、枠ごと遅い速度で適時回転させて白金微粒子を多孔質炭素膜の細孔表面に析出させた。8分後にメッキ浴から膜を引き上げ純水中で洗浄後、乾燥させて、白金微粒子が分散した多孔質炭素膜を得た。
The porous carbon film obtained in Reference Example 2 was immersed in acetone and methanol for washing, washed with water, immersed in an SnCl 2 hydrochloric acid aqueous solution for 5 minutes, and then immersed in a water bath for 1 minute. Then, the substrate was immersed in an aqueous solution of PdCl 2 hydrochloric acid for 5 minutes, and then washed with pure water.
TPX-205MU (a solution comprising a platinum compound and an additive) and TPX-205R (a solution comprising a reducing agent and an additive) manufactured by Tanaka Kikinzoku Co., Ltd., which are commercially available as a solvent for producing a platinum electroless plating solution, and ammonia water Then, pure water was mixed and stirred at appropriate times to prepare an electroless plating solution having a pH of about 10 at room temperature, and then heated to a solution temperature of 60 ° C.
In this electroless plating bath, the porous carbon film whose periphery is held by a fluororesin mold is immersed, and the platinum fine particles are deposited on the surface of the pores of the porous carbon film by rotating the entire frame at a slow speed as needed. Was. Eight minutes later, the film was taken out of the plating bath, washed in pure water, and dried to obtain a porous carbon film in which fine platinum particles were dispersed.
この白金微粒子が分散した多孔質炭素膜について、走査型電子顕微鏡(SEM)で表面、および断面の観察を行った。
その結果、10nm前後の白金微粒子が凝集を起こさず均一に分散担持されていることが確認された。また、白金微粒子の観察を高分解能透過電子顕微鏡(以下、HRTEMと略記することもある。)により観察したところ、粒子化数の割合で多重双晶粒子の割合が約20%程度であった。
The surface and cross section of the porous carbon film in which the fine platinum particles were dispersed were observed with a scanning electron microscope (SEM).
As a result, it was confirmed that the platinum fine particles of about 10 nm were uniformly dispersed and supported without causing aggregation. Further, observation of the platinum fine particles with a high-resolution transmission electron microscope (hereinafter sometimes abbreviated as HRTEM) revealed that the ratio of multiple twin particles was about 20% in terms of the number of particles.
参考例2で得られた多孔質炭素膜をアセトンおよびメタノ−ル中に浸漬して洗浄を行った。水洗後、有機パラジウム(デグサジャパン社製、Pd−C8)をメタノ−ルに溶解して調製した溶液中に1時間漬浸し、取り出した後に大気中で300℃で1.5時間の熱処理を行ってPd元素を炭素膜に分散させた。
その後、メッキ時間を3分間、および5分間とした他は実施例1と同様の操作を行うことで、白金微粒子が分散した多孔質炭素膜を得た。その一部を210℃で60分間の真空雰囲気中で熱処理を行った。
これらの白金微粒子が分散担持された多孔質炭素膜について、SEM、HRTEM観察を行い、平均粒子直径および多重多晶粒子の割合を求めた。また、いずれの炭素膜も白金微粒子が膜表面および膜内部の細孔表面に分散担持されていることが確認された。
実施例2の白金担持多孔質炭素膜の白金微粒子の平均直径および多重多晶粒子の割合、ICP発光分析法による元素分析結果をまとめて表1に示す。後熱処理後、SEM観察およびTEM観察から求めた白金微粒子径は熱処理前と変化がなかった。
The porous carbon film obtained in Reference Example 2 was immersed in acetone and methanol for washing. After washing with water, it was immersed in a solution prepared by dissolving organic palladium (Pd-C8, manufactured by Degussa Japan) in methanol for 1 hour, taken out, and then subjected to a heat treatment at 300 ° C. for 1.5 hours in the air. Thus, the Pd element was dispersed in the carbon film.
Thereafter, the same operation as in Example 1 was performed except that the plating time was set to 3 minutes and 5 minutes, to obtain a porous carbon film in which fine platinum particles were dispersed. A part thereof was heat-treated at 210 ° C. for 60 minutes in a vacuum atmosphere.
SEM and HRTEM observations were performed on the porous carbon film on which these platinum fine particles were dispersed and supported, and the average particle diameter and the ratio of polycrystalline particles were determined. In addition, it was confirmed that the platinum particles were dispersed and supported on the surface of the film and the surface of the pores inside the film in each of the carbon films.
Table 1 summarizes the average diameter of the platinum fine particles and the ratio of the polycrystalline particles of the platinum-supported porous carbon film of Example 2, and the results of elemental analysis by ICP emission spectrometry. After the post heat treatment, the diameter of the platinum fine particles determined from the SEM observation and the TEM observation did not change from that before the heat treatment.
参考例3で得られた多孔質黒鉛膜を用いる他は実施例2と同様に実施して、白金担持多孔質黒鉛膜を得た。
SEM、HRTEM観察を行い、平均粒子直径および多重多晶粒子の割合を求めた。また、いずれの炭素膜も白金微粒子が膜表面および膜内部の細孔表面に分散担持されていることが確認された。
実施例3の白金担持多孔質黒鉛膜の白金微粒子の平均直径および多重多晶粒子の割合、ICP発光分析法による元素分析結果をまとめて表2に示す。後熱処理後、SEM観察およびTEM観察から求めた白金微粒子径は目ツ処理前と変化がなかった。
A platinum-supported porous graphite film was obtained in the same manner as in Example 2, except that the porous graphite film obtained in Reference Example 3 was used.
SEM and HRTEM observations were performed to determine the average particle diameter and the ratio of polycrystalline particles. In addition, it was confirmed that the platinum particles were dispersed and supported on the surface of the film and the surface of the pores inside the film in each of the carbon films.
Table 2 summarizes the average diameter of the platinum fine particles and the ratio of the polycrystalline particles of the platinum-supported porous graphite film of Example 3, and the results of elemental analysis by ICP emission analysis. After the post heat treatment, the diameter of the platinum fine particles determined from the SEM observation and the TEM observation did not change from that before the cross-linking treatment.
実施例2、3において、得られた白金担持多孔質炭素膜および白金担持黒鉛膜について、X線散乱測定を行い白金の結晶構造を確認した。また、後熱処理を施した試料は、広角度側の散乱が鋭くなっており結晶性がより高くなっていることが確認できた。 In Examples 2 and 3, the obtained platinum-supported porous carbon film and platinum-supported graphite film were subjected to X-ray scattering measurement to confirm the crystal structure of platinum. In addition, it was confirmed that the sample subjected to the post-heat treatment had sharper scattering on the wide angle side and higher crystallinity.
実施例2で得られた白金担持多孔質炭素膜のうち、無電解メッキ時間が6分で後熱処理を施したものについて、ナフィオン/DMF/水溶液を電極投影面積当たり0.3mg/cm2滴下し熱処理することによりプロトン伝導膜をコ−ティングして電極を得た。
この電極を、市販のナフィオン11膜(デュポン社製)の両側に配置し熱プレスして、固体高分子形燃料電池の膜−電極接合体(MEA)を得た。この電極の投影面積当たりの白金とパラジウムの総量は0.48mg/cm2であった。
このMEAの両側を東レ社製のカ−ボンペ−パ−で挟みこんだ形でエレクトロケム社製の燃料電池セルに組み込み、水素、酸素ガスを燃料としてセル温度80℃の条件で燃料電池発電試験を行った。
その結果、良好な発電特性を確認した。結果を図8に示す。また、発電試験後にセルからMEAを取り出してもMEAの破壊は見られなかった。数日後にこのMEAを再度燃料電池セル内に組み込み同様の発電試験を行ったところ、再現よく良好な発電特性を示した。
また、実施例5とは別に、後熱処理を施していない電極を用いた試験を行ったところ、210℃後熱処理電極と比較して出力特性が8%程度低かった。
Of the platinum-carrying porous carbon films obtained in Example 2, those subjected to a post-heat treatment with an electroless plating time of 6 minutes, Nafion / DMF / aqueous solution was dropped at 0.3 mg / cm 2 per electrode projected area. The electrode was obtained by coating the proton conductive membrane by heat treatment.
The electrodes were placed on both sides of a commercially available Nafion 11 membrane (manufactured by DuPont) and hot pressed to obtain a membrane-electrode assembly (MEA) of a polymer electrolyte fuel cell. The total amount of platinum and palladium per projected area of this electrode was 0.48 mg / cm 2 .
The MEA was sandwiched between both sides of a carbon paper manufactured by Toray and assembled into a fuel cell manufactured by Electrochem, and a fuel cell power generation test was conducted using hydrogen and oxygen gas at a cell temperature of 80 ° C. Was done.
As a result, good power generation characteristics were confirmed. FIG. 8 shows the results. Further, even when the MEA was taken out of the cell after the power generation test, no MEA destruction was observed. After several days, this MEA was incorporated into the fuel cell again, and a similar power generation test was performed. As a result, good power generation characteristics were exhibited with good reproducibility.
In addition, a test using an electrode that was not subjected to post-heat treatment was performed separately from Example 5, and as a result, the output characteristics were about 8% lower than that of the electrode that was heat-treated after 210 ° C.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004121247A JP2004335459A (en) | 2003-04-18 | 2004-04-16 | Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003113978 | 2003-04-18 | ||
JP2004121247A JP2004335459A (en) | 2003-04-18 | 2004-04-16 | Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004335459A true JP2004335459A (en) | 2004-11-25 |
Family
ID=33513292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004121247A Pending JP2004335459A (en) | 2003-04-18 | 2004-04-16 | Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004335459A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006260909A (en) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell using the same |
JP2007194197A (en) * | 2005-12-22 | 2007-08-02 | Canon Inc | Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell |
JP2009518817A (en) * | 2005-12-12 | 2009-05-07 | ビーワイディー カンパニー リミテッド | Method for producing catalyst-coated membrane |
JP2013505117A (en) * | 2009-09-21 | 2013-02-14 | コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ | Method for depositing metal on a porous carbon layer |
CN115000427A (en) * | 2022-07-23 | 2022-09-02 | 北京亿华通科技股份有限公司 | Fuel cell electrode preparation method and electrode |
WO2023120318A1 (en) * | 2021-12-24 | 2023-06-29 | 東京エレクトロン株式会社 | Electroless plating solution and method for manufacturing wiring substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62163261A (en) * | 1986-01-10 | 1987-07-20 | Kuraray Co Ltd | Manufacture of electrode of high electric conductivity |
JP2002170574A (en) * | 2000-09-21 | 2002-06-14 | Ube Ind Ltd | Electrode substrate for fuel cell |
JP2002298861A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Fuel cell, fuel cell electrode and manufacutring method therefor |
JP2003109608A (en) * | 2001-09-28 | 2003-04-11 | Noritake Co Ltd | Electrode material and application of electrode material to fuel cell |
-
2004
- 2004-04-16 JP JP2004121247A patent/JP2004335459A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62163261A (en) * | 1986-01-10 | 1987-07-20 | Kuraray Co Ltd | Manufacture of electrode of high electric conductivity |
JP2002170574A (en) * | 2000-09-21 | 2002-06-14 | Ube Ind Ltd | Electrode substrate for fuel cell |
JP2002298861A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Fuel cell, fuel cell electrode and manufacutring method therefor |
JP2003109608A (en) * | 2001-09-28 | 2003-04-11 | Noritake Co Ltd | Electrode material and application of electrode material to fuel cell |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006260909A (en) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell using the same |
JP2009518817A (en) * | 2005-12-12 | 2009-05-07 | ビーワイディー カンパニー リミテッド | Method for producing catalyst-coated membrane |
JP2007194197A (en) * | 2005-12-22 | 2007-08-02 | Canon Inc | Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell |
JP2013505117A (en) * | 2009-09-21 | 2013-02-14 | コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ | Method for depositing metal on a porous carbon layer |
WO2023120318A1 (en) * | 2021-12-24 | 2023-06-29 | 東京エレクトロン株式会社 | Electroless plating solution and method for manufacturing wiring substrate |
CN115000427A (en) * | 2022-07-23 | 2022-09-02 | 北京亿华通科技股份有限公司 | Fuel cell electrode preparation method and electrode |
CN115000427B (en) * | 2022-07-23 | 2023-06-23 | 北京亿华通科技股份有限公司 | Fuel cell electrode preparation method and electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010241865B2 (en) | Single wall carbon nanotube based air cathodes | |
US7842432B2 (en) | Nanowire structures comprising carbon | |
JP5474352B2 (en) | Nanowire structure containing carbon | |
JP5497049B2 (en) | Electrochemical catalyst for fuel cell | |
US7939218B2 (en) | Nanowire structures comprising carbon | |
JP5484477B2 (en) | Membrane electrode composite having an interface layer | |
US20180123140A1 (en) | N-doped carbon nanomaterials as catalysts for oxygen reduction reaction in acidic fuel cells | |
KR20020074422A (en) | Electrode base material for fuel cell | |
JP6025230B2 (en) | Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof | |
WO2015020079A1 (en) | Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles | |
JP2003317729A (en) | Fuel cell electrode using porous graphite film, film- electrode bonded body and fuel cell | |
US20240304827A1 (en) | Coaxial nanowire electrode | |
JP2016054065A (en) | Manufacturing method of electrode catalyst | |
US7468340B2 (en) | Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode | |
JP2003128409A (en) | Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery | |
JP2004335459A (en) | Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same | |
US9203101B2 (en) | Method of manufacturing fuel cell | |
JP7346729B2 (en) | Fuel cell catalyst, method for producing the same, and membrane-electrode assembly including the same | |
JP5521959B2 (en) | Catalyst for polymer electrolyte fuel cell, electrode and battery using the same | |
JP2017170404A (en) | Method for producing catalyst particle and method for producing electrode catalyst | |
JP2003317728A (en) | Fuel cell electrode using porous carbon film, film- electrode bonded body and fuel cell | |
JP2009283254A (en) | Catalyst for polymer electrolyte fuel cell | |
JP2005093217A (en) | Fuel cell electrode, its manufacturing method, membrane-electrode jointed body, and fuel cell | |
JP2007103293A (en) | Membrane electrode assembly, its manufacturing method, and polymer electrolyte fuel cell using it | |
JP2003132900A (en) | Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110104 |