JP2002170574A - Electrode substrate for fuel cell - Google Patents

Electrode substrate for fuel cell

Info

Publication number
JP2002170574A
JP2002170574A JP2001078497A JP2001078497A JP2002170574A JP 2002170574 A JP2002170574 A JP 2002170574A JP 2001078497 A JP2001078497 A JP 2001078497A JP 2001078497 A JP2001078497 A JP 2001078497A JP 2002170574 A JP2002170574 A JP 2002170574A
Authority
JP
Japan
Prior art keywords
fuel cell
carbon film
electrode substrate
film structure
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001078497A
Other languages
Japanese (ja)
Inventor
Nobuo Oya
修生 大矢
Shigeru Yao
滋 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001078497A priority Critical patent/JP2002170574A/en
Priority to EP02005354A priority patent/EP1244165A3/en
Priority to US10/098,426 priority patent/US20020132159A1/en
Priority to AU26168/02A priority patent/AU784328B2/en
Priority to CN02107457A priority patent/CN1375886A/en
Priority to KR1020020014742A priority patent/KR20020074422A/en
Publication of JP2002170574A publication Critical patent/JP2002170574A/en
Priority to US11/636,440 priority patent/US20070082805A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an electrode substrate for a fuel cell which comprises a carbon film structure where the surface other than an open hole is smooth, with a porous structure comprising a fine communicating hole, so that the gas is widely and evenly distributed with no short path while conductivity and heat transmission characteristics are high, with low contact resistance and heat loss at the interface when a battery cell is formed. SOLUTION: The carbon film structure is flexible and rigid and comprises a porous structure containing a fine communicating hole, with the surface except for an open hole being smooth. The metal particle comprising a catalytic function is carried at nano level. So, when used as the electrode substrate for a fuel cell, the surface contact to another layer on an interface becomes possible when laminated, reducing the contact resistance and heat loss on the interface, for wide and even distribution of gas, causing more efficient catalytic reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用部材に
関する。特に、固体高分子電解質型燃料電池やリン酸型
燃料電池のガス拡散電極に好適な燃料電池用電極基材に
関する。
[0001] The present invention relates to a member for a fuel cell. In particular, the present invention relates to a fuel cell electrode base material suitable for a gas diffusion electrode of a solid polymer electrolyte fuel cell or a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】近年、燃料電池の開発および実用化が進
んでいる。例えば、固体高分子電解質型燃料電池の場
合、高分子固体電解質層の両側に厚さ0.1〜0.3m
mの炭素繊維抄紙体からなる多孔質炭素板を設け、その
表面に電極触媒としての白金系触媒を担持させてガス拡
散電極を形成し、その外側にガス流路溝の付いた厚さ1
〜3mmの緻密質炭素板からなるセパレータを設けて電
池セルを構成している。また、リン酸型燃料電池の場
合、リン酸保持体にリン酸を保持させた電解質層の両側
に、厚さ0.1〜0.3mmの炭素繊維抄紙体からなる
多孔質炭素板を設け、その表面に電極触媒としての白金
系触媒を担持させてガス拡散電極を形成し、その外側に
ガス流路溝の付いた厚さ1〜3mmセパレータを設けて
電池セルを構成している。このような炭素電極上に白金
系触媒を担持させた公報として、特開平9−15336
6号や特開2000−215899号などが開示されて
いる。
2. Description of the Related Art In recent years, fuel cells have been developed and put into practical use. For example, in the case of a solid polymer electrolyte fuel cell, a thickness of 0.1 to 0.3 m is provided on both sides of the polymer solid electrolyte layer.
m. A porous carbon plate made of a carbon fiber paper body is provided, a platinum-based catalyst as an electrode catalyst is supported on the surface of the porous carbon plate to form a gas diffusion electrode, and a gas channel groove having a thickness of 1
A battery cell is configured by providing a separator made of a dense carbon plate of about 3 mm. In the case of a phosphoric acid type fuel cell, a porous carbon plate made of a carbon fiber paper having a thickness of 0.1 to 0.3 mm is provided on both sides of an electrolyte layer in which phosphoric acid is retained in a phosphoric acid retainer, A gas diffusion electrode is formed by supporting a platinum-based catalyst as an electrode catalyst on the surface thereof, and a separator having a thickness of 1 to 3 mm with a gas flow channel is provided outside the gas diffusion electrode to constitute a battery cell. Japanese Patent Application Laid-Open No. 9-15336 discloses a publication in which a platinum-based catalyst is supported on such a carbon electrode.
No. 6, JP-A-2000-215899, and the like.

【0003】固体高分子電解質型燃料電池やリン酸型燃
料電池におけるガス拡散電極の基材は、燃料ガスや酸化
性ガスを反応サイトへ均一且つ容易に供給することがで
き、また水などのドレインガスを容易に排出し得る高い
ガス配流性をもつこと、更に、導電性、熱伝導性、機械
的強度、耐腐食性などが優れていること、及び、電解質
層やセパレータと積層してセルを形成したときに電解質
層及びセパレータと電極との界面の接触抵抗が小さくな
り、界面の高い導電性が確保されることが要求される。
A base material of a gas diffusion electrode in a solid polymer electrolyte fuel cell or a phosphoric acid fuel cell can uniformly and easily supply a fuel gas or an oxidizing gas to a reaction site, and a drain such as water. It has a high gas flowability that can easily discharge gas, and it has excellent conductivity, thermal conductivity, mechanical strength, corrosion resistance, etc., and the cell is laminated with an electrolyte layer and separator. When formed, the contact resistance at the interface between the electrolyte layer and the separator and the electrode is required to be small, and high conductivity at the interface is required to be ensured.

【0004】従来、前記のガス拡散電極基材としては炭
素繊維からなる炭素繊維抄紙体にフェノール樹脂などを
含浸したものを熱プレスなどでシート状に加熱成形し、
フェノール樹脂を炭素化し炭素繊維がフェノール樹脂の
炭化物で結合した基材が用いられている。
Conventionally, a carbon fiber paper made of carbon fiber impregnated with a phenol resin or the like is heat-formed into a sheet by a hot press or the like as the gas diffusion electrode base material.
A base material is used in which a phenol resin is carbonized and carbon fibers are bonded by a phenol resin carbide.

【0005】しかしながら、前記の電極基材は、抄紙体
を形成する炭素繊維の径が約7μmあるいはそれ以上の
ものであり、網状構造からなる多孔質構造であるのでガ
スはショートパスを起こしやすく、広く均一に配流する
点で疑問があった。更に、前記の電極基材は繊維と繊維
が点で接触した構造を持つので導電性及び熱伝導性を高
めることが難しく、また、電解質層とガス拡散電極とセ
パレータを積層させて電池セルを形成したときも各界面
は点接触になって接触抵抗及び熱損失が大きくなるとい
う問題があった。このため、抄紙体を形成する炭素繊維
の径をより細くして接触点数を増して接触抵抗を低減す
る試みがあるが、細い繊維で形成された電極基板は、配
流されるガスやドレインガスによって引きちぎれて脱落
を起こしやすくなる場合があった。
[0005] However, the above-mentioned electrode substrate has a carbon fiber forming a paper body having a diameter of about 7 µm or more, and has a porous structure of a network structure, so that gas is likely to cause a short path. There was a question in that the distribution was wide and uniform. Furthermore, since the electrode substrate has a structure in which fibers are in contact with each other at points, it is difficult to increase conductivity and heat conductivity, and a battery cell is formed by laminating an electrolyte layer, a gas diffusion electrode, and a separator. Also, there is a problem in that each interface becomes a point contact and the contact resistance and heat loss increase. For this reason, there is an attempt to reduce the contact resistance by increasing the number of contact points by making the diameter of the carbon fiber forming the paper body smaller, but the electrode substrate formed of the thin fiber is affected by the gas and drain gas distributed. In some cases, it was easily torn off and fall off.

【0006】一方、発電効率が高く耐久性にすぐれた高
性能燃料電池のためには、均一なガスの配流による電極
全面での均一な電池反応、電池の内部抵抗の低減、及
び、電池反応による発熱の効率よい放散が求められてい
る。このために、均一なガス配流が可能で、導電性、熱
伝導性が高く、特に界面での接触抵抗や熱損失を小さく
でき得る電極基材が求められていた。
On the other hand, for a high-performance fuel cell having high power generation efficiency and high durability, a uniform gas distribution by uniform gas distribution, a reduction in internal resistance of the battery, and a reduction in battery reaction are required. Efficient dissipation of heat is required. For this reason, there has been a demand for an electrode substrate capable of uniformly distributing gas, having high conductivity and heat conductivity, and particularly capable of reducing contact resistance and heat loss at an interface.

【発明が解決しようとする課題】本発明の目的は、微細
な連通孔を有する多孔質構造を持ち、開放孔以外の表面
が平滑な炭素膜構造体からなり、ショートパスを起こさ
ないでガスを広く均一に配流することができ、且つ、導
電性、熱伝導性が高く、特に電池セルを形成したとき界
面での接触抵抗や熱損失を小さくできる燃料電池用電極
基材を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a porous carbon film structure having fine communication holes, a surface other than the open holes, made of a carbon film structure having a smooth surface. An object of the present invention is to provide a fuel cell electrode base material that can be distributed uniformly over a wide area, has high conductivity and high heat conductivity, and in particular, can reduce contact resistance and heat loss at an interface when a battery cell is formed. .

【0007】[0007]

【課題を解決するための手段】本発明は、微細な連通孔
を有する多孔質構造を持ち、平均孔径が0.05〜10
μmで空孔率が15〜85%である炭素膜構造体からな
る燃料電池用電極基材に関する。また、前記炭素膜構造
体の開放孔以外の表面が平滑であること、前記炭素膜構
造体の黒鉛化率が50%以上であること、前記炭素膜構
造体が多孔質構造を持つ高耐熱性ポリマー膜を嫌気性雰
囲気下に加熱炭化して得られたこと、前記炭素膜構造体
が、前記高耐熱性ポリマー膜を複数枚積層した積層体を
嫌気性雰囲気下に加熱炭化して一体化して得られたこ
と、前記高耐熱性ポリマーがポリイミドであることに関
する。
The present invention has a porous structure having fine communicating holes, and has an average pore diameter of 0.05 to 10 mm.
The present invention relates to a fuel cell electrode substrate comprising a carbon film structure having a porosity of 15 to 85% in μm. Further, the surface of the carbon film structure other than the open pores is smooth, the graphitization ratio of the carbon film structure is 50% or more, and the carbon film structure has a high heat resistance having a porous structure. The polymer film was obtained by heating and carbonizing under an anaerobic atmosphere, and the carbon film structure was integrated by heating and carbonizing a laminate obtained by laminating a plurality of the high heat-resistant polymer films under an anaerobic atmosphere. It relates to the fact that the high heat-resistant polymer is a polyimide.

【0008】[0008]

【発明の実施の形態】本発明の燃料電池用電極基材は、
微細な連通孔を有する多孔質構造を持ち、開放孔以外の
表面が平滑な炭素膜構造体からなるものである。本明細
書において、微細な連通孔を有する多孔質構造とは、任
意の表面から細孔が通路状に他の表面まで連続したいわ
ゆる開放孔であって、隣接する細孔間が壁状構造になっ
ており、且つ、細孔は屈曲しながら非直線的に延びたも
のをいう。即ち、前記炭素膜構造体は、ガスを流すと非
直線的に延びた通路状の細孔に導かれて非直線的に配流
されるのでショートパスが起こらない。更に、本発明の
多孔質構造を持つ炭素膜構造体の表面は、細孔が膜内か
ら延びて表面に達して形成した開放孔以外の部分が平滑
面であり、セパレータなどと積層したときに他の層との
界面が前記平滑面によって面接触になるものである。上
述の多孔質構造と表面の平滑性を更に説明するために、
本発明の燃料電池用電極基材をなす多孔質構造を持つ炭
素膜構造体の代表的な一例について、その表面と断面の
走査型電子顕微鏡写真をそれぞれ図1、図2に示す。本
発明の炭素膜構造体は、開放孔以外の表面が図1に示す
ような平滑性を持っているので、積層体を形成したとき
に界面において面接触になる。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode substrate for a fuel cell of the present invention comprises
It has a porous structure having fine communication holes, and the surface other than the open holes is formed of a smooth carbon film structure. In the present specification, a porous structure having fine communication holes is a so-called open hole in which pores are continuous from an arbitrary surface to another surface in a passage form, and a space between adjacent pores has a wall-like structure. And the pores extend non-linearly while bending. That is, when the gas flows, the carbon film structure is guided to the non-linearly extending passage-like pores and is non-linearly distributed, so that a short path does not occur. Further, the surface of the carbon film structure having a porous structure of the present invention has a smooth surface except for the open holes formed by the pores extending from the inside of the film and reaching the surface, and when laminated with a separator or the like. The interface with another layer is brought into surface contact with the smooth surface. In order to further explain the above-mentioned porous structure and surface smoothness,
FIGS. 1 and 2 show scanning electron micrographs of a surface and a cross section of a typical example of a carbon film structure having a porous structure which constitutes an electrode substrate for a fuel cell of the present invention. Since the surface of the carbon film structure of the present invention has smoothness as shown in FIG. 1 except for the open holes, the carbon film structure comes into surface contact at the interface when the laminate is formed.

【0009】更に、本発明の電極基材となる炭素膜構造
体は、平均孔径が0.05〜10μmであり、空孔率は
15〜85%であるものである。表面の平均孔径が0.
05未満では圧損が生ずるのでガスを効率的に配流でき
なくなり、平均孔径が10μmを越えるとガスが直線的
に流れやすくなって広い範囲に亘ってガスを均一に配流
することが難しくなるので好適ではない。また、空孔率
が15%未満ではガスの配流量が少なくなり、空孔率が
85%を越えると膜の機械的強度が小さくなるので好ま
しくない。
Further, the carbon film structure serving as the electrode substrate of the present invention has an average pore diameter of 0.05 to 10 μm and a porosity of 15 to 85%. The average pore size on the surface is 0.
If it is less than 05, the gas cannot be efficiently distributed due to a pressure loss, and if the average pore diameter exceeds 10 μm, the gas tends to flow linearly and it becomes difficult to uniformly distribute the gas over a wide range. Absent. On the other hand, if the porosity is less than 15%, the flow rate of the gas is reduced, and if the porosity exceeds 85%, the mechanical strength of the film is undesirably reduced.

【0010】また、前記炭素膜構造体は、黒鉛化率が5
0%以上、好ましくは80%以上、特に好ましくは90
%以上であることが好適である。黒鉛化率が50%以上
になると、膜の機械的強度が高くなり可撓性が向上する
ので好適であり、また、導電性、熱伝導性も向上するの
で好ましい。
The carbon film structure has a graphitization rate of 5%.
0% or more, preferably 80% or more, particularly preferably 90%
% Is preferable. A graphitization ratio of 50% or more is preferable because the mechanical strength of the film is increased and the flexibility is improved, and the conductivity and thermal conductivity are also improved.

【0011】本発明の燃料電池用電極基材となる炭素膜
構造体は、微細な連通孔を有する多孔質構造を持ち、開
放孔以外の表面が平滑な高耐熱性ポリマー膜を嫌気性雰
囲気下で加熱炭化して好適に製造することができる。高
耐熱性ポリマーでないポリマーを用いると加熱したとき
に多孔質構造を保持できない。前記高耐熱性ポリマー
は、微細な連通孔を有する多孔質膜を形成することが可
能で、かつ、加熱炭化しても微細な連通孔からなる多孔
質構造を保持できるものであれば、特に限定するもので
はない。ポリイミド系、ポリアミド系、セルロース系、
フルフラール樹脂系、フェノール樹脂系などのポリマー
を好適に挙げることができるが、特に芳香族ポリイミド
は加熱炭化によって容易に機械的強度が高い炭素膜構造
体を得ることができるので好適である。ここで芳香族ポ
リイミドには、芳香族ポリイミドの前駆体であるポリア
ミック酸、及び、部分的にイミド化したポリアミック酸
も含む。
The carbon membrane structure as the electrode substrate for a fuel cell according to the present invention has a porous structure having fine communication holes, and a high heat-resistant polymer membrane having a smooth surface other than the open pores in an anaerobic atmosphere. And carbonized by heating. If a polymer that is not a high heat-resistant polymer is used, the porous structure cannot be maintained when heated. The high heat-resistant polymer is not particularly limited as long as it can form a porous film having fine communication holes and can maintain a porous structure including fine communication holes even when carbonized by heating. It does not do. Polyimide, polyamide, cellulose,
Polymers such as furfural resin-based and phenolic resin-based polymers can be suitably mentioned. In particular, aromatic polyimides are preferred because a carbon film structure having high mechanical strength can be easily obtained by heating and carbonizing. Here, the aromatic polyimide includes a polyamic acid that is a precursor of the aromatic polyimide and a polyamic acid that is partially imidized.

【0012】前記微細な連通孔を有する多孔質構造を持
ち、開放孔以外の表面が平滑な高耐熱性ポリマー膜は、
ポリマー溶液を用いて相転換法によって好適に製造する
ことができる。ポリマーを有機溶剤(溶媒)に溶解した
溶液を、例えばガラス板上に流延し、その流延膜を前記
有機溶剤とは相溶性を有しポリマーとは不溶な有機溶剤
や水など(非溶媒)に浸漬し、その際に溶媒と非溶媒と
が置換するために生じる相分離現象を利用して細孔を形
成するいわゆる相転換法によって得ることができる。し
かし通常の相転換法では表面に緻密層ができる。出典明
示して本発明の明細書の一部とみなす特開平11−31
0658号公報、特開2000−306568号、特願
2000−284651号に記載の、溶媒置換速度調整
材を用いて溶媒置換速度を調整する相転換法は容易に微
細な連通孔を有する多孔質高分子膜を得ることができる
ので好適である。具体的には、まず表面が平滑なポリマ
ー溶液の流延膜を形成し、次に該流延膜の表面に溶媒置
換速度調整材(多孔性フィルム)を積層させ、次いでそ
の積層体を非溶媒と接触させて相分離によって細孔を形
成しながら多孔質ポリマー膜を析出させる。この方法で
形成された多孔質ポリマー膜の表面(開孔部以外の表
面)は元の流延膜の表面平滑性を保持するので、連通孔
を有する多孔質構造を持ち開放孔以外の表面が平滑な多
孔質ポリマー膜を容易に得ることができる。
A highly heat-resistant polymer film having a porous structure having fine communication holes and having a smooth surface other than the open holes,
It can be suitably produced by a phase inversion method using a polymer solution. A solution in which a polymer is dissolved in an organic solvent (solvent) is cast on, for example, a glass plate, and the cast film is coated with an organic solvent or water that is compatible with the organic solvent and insoluble with the polymer (non-solvent). ), And at that time, a so-called phase inversion method in which pores are formed by utilizing a phase separation phenomenon caused by substitution between a solvent and a non-solvent. However, a dense layer is formed on the surface by the usual phase inversion method. Unexamined-Japanese-Patent No. 11-31, which is explicitly referred to as a part of the specification of the present invention
No. 0658, Japanese Patent Application Laid-Open No. 2000-306568, and Japanese Patent Application No. 2000-284651, the phase change method of adjusting the solvent replacement speed using a solvent replacement speed adjusting material easily allows a porous porous material having fine communication holes. It is preferable because a molecular film can be obtained. Specifically, first, a casting film of a polymer solution having a smooth surface is formed, and then a solvent replacement rate adjusting material (porous film) is laminated on the surface of the casting film. And depositing a porous polymer film while forming pores by phase separation. Since the surface of the porous polymer film formed by this method (the surface other than the opening) retains the surface smoothness of the original casting film, the surface of the porous polymer film has a porous structure having communication holes, and the surface other than the open holes has A smooth porous polymer membrane can be easily obtained.

【0013】微細な連通孔を有する多孔質構造を持ち開
放孔以外の表面が平滑な高耐熱性ポリマー膜を嫌気性雰
囲気下で加熱炭化することによって、微細な連通孔を有
する多孔質構造を持ち開放孔以外の表面が平滑な炭素膜
構造体を得ることができる。嫌気性雰囲気は、特に限定
しないが、窒素ガス、アルゴンガス、ヘリウムガスなど
の不活性ガス中か、真空中が好適である。加熱炭化は、
急激に昇温すると分解物が散逸したり炭素分が留去して
炭素収率が低くなることがあるので好ましくなく構造欠
陥もできやすい。
A highly heat-resistant polymer film having a porous structure having fine communication holes and having a smooth surface other than the open holes is heated and carbonized in an anaerobic atmosphere to form a porous structure having fine communication holes. A carbon film structure having a smooth surface other than the open holes can be obtained. The anaerobic atmosphere is not particularly limited, but is preferably in an inert gas such as a nitrogen gas, an argon gas, or a helium gas, or in a vacuum. Heat carbonization is
If the temperature is rapidly increased, decomposition products may be dissipated or carbon content may be distilled off to lower the carbon yield.

【0014】そのために昇温速度は20℃/分以下、特
に1〜10℃/分程度の十分遅い速度で昇温して徐々に
炭化するのが好ましい。加熱温度や加熱時間は十分な炭
化がおこなわれればどんな温度や時間でも構わないが、
得られる炭素構造体の黒鉛化率を高めて機械的強度や導
電性や熱伝導性を高くするためには2400〜3500
℃、特に2600〜3000℃の範囲が好ましく、前記
温度範囲で20〜180分間が好適である。
For this purpose, it is preferable to raise the temperature at a sufficiently low rate of 20 ° C./min or less, particularly about 1 to 10 ° C./min, and to gradually carbonize. The heating temperature and heating time may be any temperature and time as long as sufficient carbonization is performed,
In order to increase the graphitization rate of the obtained carbon structure to increase mechanical strength, electrical conductivity, and thermal conductivity, 2400 to 3500
° C, particularly preferably in the range of 2600 to 3000 ° C, and the temperature is preferably 20 to 180 minutes.

【0015】また、前記加熱炭化の際に加熱時に加圧す
ると、黒鉛化率を高めて機械的強度が高く且つ導電性及
び熱伝導性が高い炭素膜構造体を得ることができるので
好ましい。加圧によって、加熱炭素化中の収縮などに伴
う形状の変化を抑えたり、炭素化されつつある炭素部分
の配向性を高めて黒鉛化が促進されるので、機械的強
度、導電性、熱伝導性が高い炭素膜構造体を得ることが
できる。圧力は1〜250MPa特に100〜250M
Paで印加するのがよい。加圧は高温圧縮機や等方圧熱
間プレス(HIP)を用いて好適におこなわれる。
It is also preferable to apply pressure during heating during the heating and carbonization, since it is possible to increase the graphitization rate and obtain a carbon film structure having high mechanical strength and high electrical and thermal conductivity. The pressurization suppresses changes in shape due to shrinkage during heating carbonization and enhances the orientation of the carbon part being carbonized to promote graphitization, resulting in mechanical strength, conductivity, and heat conduction. A carbon film structure having high properties can be obtained. Pressure is 1-250MPa, especially 100-250M
It is preferable to apply with Pa. Pressurization is suitably performed using a high-temperature compressor or an isostatic hot press (HIP).

【0016】また、黒鉛化を促進するために、加熱する
微細な連通孔を有する多孔質構造を持つ高耐熱性ポリマ
ー膜に予めホウ素化合物などの黒鉛化を促進する効果を
有する化合物を添加することが好適である。これらの化
合物の微細な粉末を、原料とするポリマー溶液中に均一
に分散させておき、該溶液を用いて上述の方法によって
多孔質構造を持つ高耐熱性ポリマー膜を製造すれば、前
記化合物が均一に分散した多孔質構造を持つ高耐熱性ポ
リマー膜を製造することができる。
Further, in order to promote graphitization, a compound having an effect of promoting graphitization, such as a boron compound, is added in advance to a highly heat-resistant polymer film having a porous structure having fine communication holes to be heated. Is preferred. Fine powders of these compounds are uniformly dispersed in a polymer solution as a raw material, and a high heat-resistant polymer film having a porous structure is produced by the above-mentioned method using the solution. A highly heat-resistant polymer film having a uniformly dispersed porous structure can be manufactured.

【0017】また、本発明においては、微細な連通孔を
有する多孔質構造を持ち開放孔以外の表面が平滑な高耐
熱性ポリマー膜は、一枚ずつ個別に加熱炭化した後で目
的とする厚さになるように積層して用いても構わない
が、各層間に界面ができて各界面の接触抵抗を制御する
必要が生じて取扱いが複雑になるので好ましくない。接
着剤で接着する方法では接着剤が電池性能を低下させる
可能性がある。フェノール系接着剤などで接着して再度
加熱して接着剤を炭化して一体化するなどの方法もある
が、複雑な処理が必要になるので好ましくない。微細な
連通孔を有する多孔質構造を持ち開放孔以外の表面が平
滑な高耐熱性ポリマー膜を複数枚積層した積層体を加熱
炭化すると、炭化し且つ一体化して本発明の炭素膜構造
体を得ることができるので特に好適である。この方法で
は、同一の薄いポリマー膜から種々の膜厚の炭素膜構造
体を得ることができる。また孔径などが異なった前駆体
膜を積層することにより、孔径に傾斜をつけた傾斜膜な
どを作成することもできる。
In the present invention, the heat-resistant polymer film having a porous structure having fine communicating holes and having a smooth surface other than the open holes is heated and carbonized individually one by one to obtain a desired thickness. Although they may be used in a stacked state, it is not preferable because interfaces are formed between the layers and the contact resistance of each interface needs to be controlled, which complicates the handling. In the method of bonding with an adhesive, the adhesive may reduce battery performance. There is also a method of bonding with a phenolic adhesive or the like, heating again to carbonize the adhesive, and integrating it, but it is not preferable because complicated processing is required. When heating and carbonizing a laminate of a plurality of high heat-resistant polymer films having a porous structure having fine communication holes and having a smooth surface other than the open holes, the carbonized carbon film structure of the present invention is carbonized and integrated. It is particularly preferred because it can be obtained. In this method, carbon film structures having various thicknesses can be obtained from the same thin polymer film. Also, by laminating precursor films having different pore diameters and the like, a gradient film having a gradient pore diameter can be formed.

【0018】本発明の電極基材は、例えば金属イオンや
金属錯体などの金属微粒子前駆体を含んだ溶液で含浸、
浸漬などの処理を施した後に、還元剤によって化学的に
還元する方法によって触媒を担持させることによりガス
拡散電極を製造することができる。ここで、金属イオン
として白金、ロジウム、ルテニウム、イリジウム、パラ
ジウム、オスニウム等の白金族金属イオンがあげられ
る。金属微粒子前駆体として例えば[M(NH3)n]
Xm(M;白金族金属、X;Cl,NO3、n;4また
は6、m;2または4または6)であらわされる白金族
アンミン錯体、塩化白金酸カリウム(KPtCl
等の白金族塩化物があげられる。
The electrode substrate of the present invention is impregnated with a solution containing a metal fine particle precursor such as a metal ion or a metal complex.
After performing a treatment such as immersion, a gas diffusion electrode can be manufactured by supporting a catalyst by a method of chemically reducing with a reducing agent. Here, examples of the metal ion include platinum group metal ions such as platinum, rhodium, ruthenium, iridium, palladium, and osnium. As a metal fine particle precursor, for example, [M (NH3) n]
A platinum group ammine complex represented by Xm (M; platinum group metal, X; Cl, NO3, n; 4 or 6, m; 2 or 4 or 6), potassium chloroplatinate (K 2 PtCl 4 )
And the like.

【0019】特にこの手法では熱を加えないために金属
原子の拡散による凝集を防ぐことができ、ナノオーダー
での触媒機能を持つ金属粒子を担持するのに好適であ
る。ここでのナノオーダー金属粒子もしくは金属微粒子
とは、100nm以下の粒子好ましくは2〜40nmの
粒子をあらわす。
In particular, since no heat is applied in this method, aggregation due to diffusion of metal atoms can be prevented, and the method is suitable for supporting metal particles having a catalytic function on the order of nanometers. Here, the nano-order metal particles or metal fine particles mean particles having a size of 100 nm or less, preferably particles having a size of 2 to 40 nm.

【0020】また、本発明の電極基材は微細な連通孔を
多数持っているので、通常の電極基材である炭素繊維抄
紙体に比べて、より広い表面で担持することができる。
従って、広く均一に分散した電池反応の反応場を提供す
ることができる高性能燃料電池の電極基材として好適な
ものである。
Further, since the electrode substrate of the present invention has many fine communication holes, it can be supported on a wider surface than a carbon fiber paper body which is a usual electrode substrate.
Therefore, it is suitable as an electrode substrate for a high-performance fuel cell capable of providing a reaction field for a cell reaction which is widely and uniformly dispersed.

【0021】次に、本発明について、高耐熱性ポリマー
として好適な芳香族ポリイミドを使用した場合につての
実施例で説明する。但し、本発明は以下の実施例に限定
されるものではない。尚、本発明において、透気度、空
孔率、平均孔径、黒鉛化率は次の方法によって測定し
た。 透気度 JIS P8117に準じて測定した。測定装置として
B型ガーレーデンソメーター(東洋精機社製)を使用し
た。試料の膜を直径28.6mm、面積645mm
円孔に締付け、内筒重量567gにより、筒内の空気を
試験円孔部から筒外へ通過させる。空気100mlが通
過する時間を測定し、透気度(ガーレー値)とした。 空孔率 所定の大きさに切取った膜の膜厚、面積及び重量を測定
し、目付重量から次式により空孔率を求めた。次式のS
は膜面積、dは膜厚、wは測定した重量、Dは密度であ
りポリイミドは1.34、炭素膜構造体については後述
する方法で求めた黒鉛化率を考慮して試料ごとに密度を
算出した。 空孔率=(1−W/(S×d×D))×100 平均孔径 膜表面の走査型電子顕微鏡写真を撮り、50点以上の開
口部について孔面積を測定し、該孔面積の平均値から次
式に従って孔形状が真円であるとした際の平均直径を計
算より求めた。次式のSaは孔面積の平均値を意味す
る。 平均孔径=2×(Sa/π)1/2 黒鉛化率 X線回折を測定しRuland法により求めた。
Next, the present invention will be described with reference to examples in which an aromatic polyimide suitable as a high heat-resistant polymer is used. However, the present invention is not limited to the following examples. In the present invention, the air permeability, the porosity, the average pore diameter, and the graphitization rate were measured by the following methods. Air permeability Measured according to JIS P8117. A B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The membrane of the sample is fastened to a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 , and the air in the cylinder is allowed to pass from the test hole to the outside of the cylinder with an inner cylinder weight of 567 g. The time during which 100 ml of air passed was measured and defined as the air permeability (Gurley value). Porosity The thickness, area and weight of the film cut into a predetermined size were measured, and the porosity was determined from the basis weight by the following formula. S of the following formula
Is the film area, d is the film thickness, w is the measured weight, D is the density, 1.34 for polyimide, and the density for each sample in consideration of the graphitization rate obtained by the method described later for the carbon film structure. Calculated. Porosity = (1−W / (S × d × D)) × 100 Average pore diameter A scanning electron microscope photograph of the film surface is taken, the pore area is measured for 50 or more openings, and the average of the pore areas is measured. From the values, the average diameter assuming that the hole shape was a perfect circle was calculated by the following equation. Sa in the following equation means the average value of the hole area. Average pore size = 2 × (Sa / π) 1/2 graphitization ratio X-ray diffraction was measured and determined by the Landau method.

【0022】[0022]

【実施例】(実施例1) ポリイミド多孔質膜の作成 テトラカルボン酸成分として3,3’,4,4’−ビフ
ェニルテトラカルボン酸二無水物(以下、s−BPDA
と略すこともある)を、ジアミン成分として4,4’−
ジアミノジフェニルエーテル(以下、DADEと略すこ
ともある)を用い、S−BPDAに対するDADEのモ
ル比が0.997で且つ該モノマー成分の含有量が6重
量%になるようにN−メチル−2−ピロリドン(以下、
NMPと略すことがある)に溶解し、温度40℃、10
時間重合をおこなってポリイミド前駆体であるポリアミ
ック酸溶液を得た。このポリアミック酸溶液の溶液粘度
(温度25度、E型回転粘度計)は3000ポイズであ
った。この溶液に粒子径が20μm以下の炭化ホウ素粉
末をポリアミック酸に対して2重量%となるように加え
均一になるまで十分に攪拌した。
EXAMPLES Example 1 Preparation of Porous Polyimide Membrane As a tetracarboxylic acid component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter s-BPDA)
May be abbreviated as a), 4,4′- as a diamine component
N-methyl-2-pyrrolidone was prepared by using diaminodiphenyl ether (hereinafter sometimes abbreviated as DADE) such that the molar ratio of DADE to S-BPDA was 0.997 and the content of the monomer component was 6% by weight. (Less than,
NMP), at a temperature of 40 ° C, 10
Polymerization was performed for a time to obtain a polyamic acid solution as a polyimide precursor. The solution viscosity (temperature: 25 ° C., E-type rotational viscometer) of this polyamic acid solution was 3000 poise. To this solution, boron carbide powder having a particle diameter of 20 μm or less was added so as to be 2% by weight based on the polyamic acid, and the mixture was sufficiently stirred until it became uniform.

【0023】前記ポリアミック酸溶液を、ガラス板上に
厚みが約100μmになるように流延し、そのポリアミ
ック酸溶液の流延膜表面を、溶媒置換速度調整材である
透気度550秒/100mlのポリオレフィン微多孔膜
(宇部興産(株)製ユーポアUP2015)で表面にシ
ワが生じないように覆った。該積層物をメタノール中に
5分間浸漬し、溶媒置換速度調整材を介して溶媒置換を
おこなうことで、微細な連通孔を有する多孔質構造を持
ち開放孔以外の表面が平滑なポリアミック酸膜を析出さ
せた。
The above-mentioned polyamic acid solution is cast on a glass plate so as to have a thickness of about 100 μm, and the surface of the casting film of the polyamic acid solution is subjected to a gas exchange rate of 550 seconds / 100 ml, which is a solvent replacement rate adjusting material. Was covered with a microporous polyolefin membrane (UPORE UP2015, manufactured by Ube Industries, Ltd.) so that wrinkles did not occur on the surface. By immersing the laminate in methanol for 5 minutes and performing solvent replacement via a solvent replacement rate adjusting material, a polyamic acid film having a porous structure having fine communication holes and having a smooth surface other than the open holes is obtained. Was deposited.

【0024】次いで、前記ポリアミック酸膜を水中に1
0分間浸漬したあとで、ガラス板から剥離し、ピンテン
ターに固定した状態で、空気中にて温度300℃、20
分間熱処理をおこなった。得られた多孔性ポリイミド膜
のイミド化率は80%であり、膜厚20μm、透気度1
9秒/100ml、空孔率72%、平均孔径0.18μ
mであった。
Next, the polyamic acid film is placed in water for 1 hour.
After immersion for 0 minutes, the film was peeled off from the glass plate and fixed to a pin tenter.
Heat treatment was performed for minutes. The imidation ratio of the obtained porous polyimide film was 80%, the film thickness was 20 μm, and the air permeability was 1%.
9 seconds / 100 ml, porosity 72%, average pore size 0.18μ
m.

【0025】多孔質炭化膜の作成 前記多孔性ポリイミド膜3枚積層した積層体を、アルゴ
ンガスの雰囲気中で、通気性の炭素シートで両面を挟ん
で、昇温速度10秒/分で常温から1000℃まで昇温
した。更に、圧力200MPa、昇温速度5℃/分で温
度3000℃まで昇温し60分間保持した。降温後、得
られた多孔質構造を持つ炭素膜構造体は、光沢があり、
可撓性で強靭であり、膜厚45μm、透気度58秒/
分、空孔率68%、平均孔径0.13μm、黒鉛化度9
5%であり、走査型電子顕微鏡写真の観察から、微細な
連通孔を有する多孔質構造を持ち、開放孔以外の表面が
平滑であった。また表面にメタノール滴を直径が1mm
となるように滴下したとき1秒後には裏面に到達してお
り且つ直径が20mm以上の円状の広がりが観察され
た。
Preparation of Porous Carbide Film A laminate of the three porous polyimide films was sandwiched on both sides with a gas-permeable carbon sheet in an atmosphere of argon gas, and the temperature was raised from room temperature at a rate of 10 seconds / minute. The temperature was raised to 1000 ° C. Further, the temperature was raised to 3000 ° C. at a pressure of 200 MPa and a temperature rising rate of 5 ° C./min, and held for 60 minutes. After cooling, the obtained carbon membrane structure having a porous structure is glossy,
Flexible and tough, with a film thickness of 45 μm and air permeability of 58 seconds /
Min, porosity 68%, average pore diameter 0.13 μm, degree of graphitization 9
From observation of a scanning electron micrograph, it had a porous structure with fine communicating holes, and the surface other than the open holes was smooth. In addition, a drop of methanol with a diameter of 1 mm
When the droplet was dropped such that it reached the back surface after 1 second, a circular spread having a diameter of 20 mm or more was observed.

【0026】(実施例2) ポリイミド多孔質膜の作成 モノマー成分の含有量が20重量%となること以外は実
施例1と同様にしてポリアミック酸溶液を調整し、この
溶液を厚みが約150μmになるように流延して実施例
1と同様にして、多孔性ポリイミド膜を得た。得られた
多孔性ポリイミド膜のイミド化率は80%であり、膜厚
60μm、透気度1500秒/100ml、空孔率16
%、平均孔径0.40μmであった。
Example 2 Preparation of a Porous Polyimide Membrane A polyamic acid solution was prepared in the same manner as in Example 1 except that the content of the monomer component was 20% by weight, and the solution was reduced to a thickness of about 150 μm. It was then cast in the same manner as in Example 1 to obtain a porous polyimide film. The imidation ratio of the obtained porous polyimide film was 80%, the film thickness was 60 μm, the air permeability was 1500 seconds / 100 ml, and the porosity was 16%.
%, Average pore diameter 0.40 μm.

【0027】多孔質炭化膜の作成 前記多孔性ポリイミド膜を実施例1と同様に加熱炭化し
た。降温後、得られた多孔質構造を持つ炭素膜構造体
は、光沢があり、可撓性で強靭であり、膜厚125μ
m、透気度2500秒/分、空孔率13%、平均孔径
0.30μm、黒鉛化度95%であり、走査型電子顕微
鏡写真の観察から、微細な連通孔を有する多孔質構造を
持ち、開放孔以外の表面が平滑であった。また表面にメ
タノール滴を直径が1mmとなるように滴下したとき5
秒後には裏面に到達しており且つ直径が6mm程度の円
状の広がりが観察された。
Preparation of Porous Carbonized Film The porous polyimide film was heated and carbonized in the same manner as in Example 1. After cooling, the obtained carbon film structure having a porous structure is glossy, flexible and tough, and has a film thickness of 125 μm.
m, air permeability 2,500 sec / min, porosity 13%, average pore diameter 0.30 μm, degree of graphitization 95%, and from observation of a scanning electron micrograph, it has a porous structure with fine communicating holes. The surface other than the open holes was smooth. When a methanol droplet is dropped on the surface so that the diameter becomes 1 mm, 5
A second later, a circular spread having reached the back surface and having a diameter of about 6 mm was observed.

【0028】(実施例3) ポリイミド多孔質膜の作成 酸二無水物として、対称性ビフェニルテトラカルボン酸
二無水物(s−BPDA)を、ジアミン成分としてパラ
フェニレンジアミン(PDA)を用い、s−BPDAに
対するPDAのモル比が0.996で且つ該モノマー成
分の合計重量が10重量%になるように1−メチル−2
−ピロリドン(NMP)に溶解し、温度40℃、10時
間重合を行ってポリイミド前駆体溶液を得た。ポリイミ
ド前駆体溶液の溶液粘度は7000ポイズであった。
Example 3 Preparation of Porous Polyimide Membrane A symmetric biphenyltetracarboxylic dianhydride (s-BPDA) was used as an acid dianhydride, and paraphenylenediamine (PDA) was used as a diamine component. 1-methyl-2 so that the molar ratio of PDA to BPDA is 0.996 and the total weight of the monomer components is 10% by weight.
-It was dissolved in pyrrolidone (NMP) and polymerized at a temperature of 40 ° C for 10 hours to obtain a polyimide precursor solution. The solution viscosity of the polyimide precursor solution was 7,000 poise.

【0029】得られたポリイミド前駆体溶液を、鏡面研
磨を施したステンレス基板上に厚みが約100μmにな
るように流延し、溶媒置換速度調整材として透気度55
0秒/100mlのポリオレフィン微多孔膜(宇部興産
株式会社製)でシワの生じないように表面を覆った。該
積層物を2−プロパノール中に5分間浸漬し、溶媒置換
速度調整材を介して溶媒置換を行うことでポリイミド前
駆体の析出、多孔質化を行った。
The obtained polyimide precursor solution was cast onto a mirror-polished stainless steel substrate so as to have a thickness of about 100 μm.
The surface was covered with a 0 second / 100 ml polyolefin microporous membrane (manufactured by Ube Industries, Ltd.) so as not to cause wrinkles. The laminate was immersed in 2-propanol for 5 minutes, and the solvent was replaced via a solvent replacement speed adjusting material, thereby depositing the polyimide precursor and making it porous.

【0030】析出したポリイミド前駆体多孔質フィルム
を水中に15分間浸漬した後、ステンレス板及び溶媒置
換速度調整材から剥離し、ピンテンタ−に固定した状態
で、大気中にて400℃、30分間熱処理を行った。こ
のようにして作成されたポリイミド多孔質フィルムは、
フィルム断面方向に連続孔を有していた。得られたポリ
イミド多孔質フィルムの膜厚、透気度、空孔率、平均孔
径の測定結果を以下に示す。一方、ポリイミド多孔フィ
ルムの表面の走査型電子顕微鏡写真(SEM写真)およ
び断面の走査型電子顕微鏡写真からフィルム断面方向に
微細な連続孔を有していることが確認された。 膜厚 30μm 透気度 200秒/100ml 空孔率 55% 平均孔径 0.35μm
After the deposited polyimide precursor porous film is immersed in water for 15 minutes, it is peeled off from the stainless steel plate and the solvent displacement rate adjusting material, and is heat-treated at 400 ° C. for 30 minutes in the air while being fixed to a pin tenter. Was done. The polyimide porous film thus created is
The film had continuous holes in the cross-sectional direction of the film. The measurement results of the film thickness, air permeability, porosity, and average pore size of the obtained polyimide porous film are shown below. On the other hand, from a scanning electron micrograph (SEM photograph) of the surface of the polyimide porous film and a scanning electron micrograph of the cross section, it was confirmed that the film had fine continuous holes in the film cross-sectional direction. Film thickness 30 μm Air permeability 200 sec / 100 ml Porosity 55% Average pore size 0.35 μm

【0031】多孔質炭化膜の作成 前記ポリイミド多孔質フィルムを、窒素ガス気流中で、
通気性の炭素シ−トで両面を挟んで、昇温速度10℃/
分で20℃から1200℃まで昇温し、1200℃で1
20分保持した。得られたフィルムは鈍いが光沢を呈し
ており、また外観形状は破損も無くフラットで炭素化前
の状態を保持していた。この炭化多孔質フィルムの走査
型電子顕微鏡写真(表面、断面、拡大)を図1、図2に
示す。孔は、炭化前の孔径より小さくなっており、平均
孔径は0.28μmであり、空孔率は53%であった。
X線回折により得られた結果では、炭化膜はわずかに結
晶の様相を示し、ル−ランド法(Ruland)により
求めた結晶化度は28%であった。この炭化多孔質フィ
ルム断面の走査型電子顕微鏡観察およびこの炭化多孔質
フィルムをメタノ−ルが通過したことから、微細な連続
孔を有していることが確認された。
Preparation of Porous Carbonized Film The above polyimide porous film was placed in a nitrogen gas stream,
Heating rate 10 ° C /
Temperature from 20 ° C to 1200 ° C in 1 minute,
Hold for 20 minutes. The obtained film was dull but glossy, and the appearance was flat without any breakage and kept the state before carbonization. FIGS. 1 and 2 show scanning electron micrographs (surface, cross section, and enlargement) of the carbonized porous film. The pores were smaller than the pore diameter before carbonization, the average pore diameter was 0.28 μm, and the porosity was 53%.
According to the result obtained by X-ray diffraction, the carbonized film showed a slightly crystalline appearance, and the crystallinity determined by the Ruland method was 28%. The cross section of the carbonized porous film was observed with a scanning electron microscope, and methanol passed through the carbonized porous film. Thus, it was confirmed that the film had fine continuous pores.

【0032】白金担持多孔質炭化フィルムの作成 塩化白金酸カリウム(KPtCl)を純水とメタノ
ールの混合比率が60対40の混合溶媒中に濃度が2重
量%になるように溶解し、白金前駆体溶液を得た。この
白金前駆体溶液をシャーレに高さが3mm程度になる量
を測り取り、さらに上記の多孔質炭化フィルムを全体が
浸漬するようにシャーレ内に静置した。このシャーレに
ろ紙で蓋をして温度が20度、湿度が30%の雰囲気中
に48時間放置した。48時間後には、シャーレ内の溶
媒は揮発し乾燥していた。
Preparation of Platinum-Supported Porous Carbonized Film Potassium chloroplatinate (K 2 PtCl 4 ) was dissolved in a mixed solvent of pure water and methanol at a mixing ratio of 60:40 to a concentration of 2% by weight, A platinum precursor solution was obtained. The amount of the platinum precursor solution measured to a height of about 3 mm was measured on a Petri dish, and the porous carbonized film was allowed to stand still in the Petri dish so that the whole was immersed. This petri dish was covered with filter paper and left in an atmosphere at a temperature of 20 ° C. and a humidity of 30% for 48 hours. After 48 hours, the solvent in the petri dish was volatilized and dried.

【0033】次に、水素化ホウ素ナトリウム(NaBH
)を純水とメタノールの混合比率が60対40の混合
溶媒中に濃度が2重量%になるように溶解し、多孔質炭
化フィルムが静置されているシャーレ内に注ぎ込み、2
0分ほどそのまま放置うることで白金前駆体の還元を行
った。その後、純水でシャーレ内の溶液を希釈し、続い
て多孔質炭化フィルムを取り出した。取り出したフィル
ムを純水で洗浄後90度の真空中で乾燥し、白金担持多
孔質炭化フィルムを得た。
Next, sodium borohydride (NaBH)
4 ) was dissolved in a mixed solvent of pure water and methanol at a mixing ratio of 60:40 so that the concentration became 2% by weight, and the mixture was poured into a petri dish on which a porous carbonized film was allowed to stand.
The platinum precursor was reduced by being allowed to stand for about 0 minutes. Thereafter, the solution in the Petri dish was diluted with pure water, and then the porous carbonized film was taken out. The film taken out was washed with pure water and dried in a vacuum at 90 ° to obtain a platinum-supported porous carbonized film.

【0034】キャラクタリゼーション 得られたフィルムのSEM観察を行った(図3)。図中
で白く微分散している粒子が白金であることをEPMA
元素分析によって確認した。また、フィルム中に白金と
炭素以外の元素は検出感度以下の量であった。白金微粒
子はフィルムの表面と内部の連続孔表面に一様に微分散
している事がSEM観察の結果確認された。また、TE
Mによる観察も行った(図4)。観察用サンプルは、窒
化珪素乳鉢中にブタノールを注いだ中で試料を破砕して
分散させた後、その上澄み液をカーボン蒸着を施したT
EM観察用マイクログリッド上に注ぐ事により作成し
た。電子線回折から白金は結晶化している事が確認でき
た(図5)。また、粒子のサイズが数十ナノメータであ
ることも確認できる。また、このTEM観察用サンプル
作成の手順を合わせ考えれば、担持された白金粒子は担
持体である炭素と何らかの相互作用を及ぼし合う事によ
り容易に剥離しない程度の接着性を有している事も明ら
かである。
Characterization SEM observation of the obtained film was performed (FIG. 3). EPMA indicates that the finely dispersed particles in the figure are platinum.
Confirmed by elemental analysis. Elements in the film other than platinum and carbon were in amounts below the detection sensitivity. As a result of SEM observation, it was confirmed that the platinum fine particles were uniformly finely dispersed on the surface of the film and the surface of the continuous pores inside. Also, TE
Observation with M was also performed (FIG. 4). The observation sample was prepared by crushing and dispersing a sample in a silicon nitride mortar by pouring butanol, and then subjecting the supernatant to carbon deposition.
It was created by pouring on a microgrid for EM observation. Electron diffraction confirmed that platinum was crystallized (FIG. 5). It can also be confirmed that the size of the particles is several tens of nanometers. Considering the procedure for preparing the sample for TEM observation, the supported platinum particles also have an adhesive property such that they do not easily peel off due to some interaction with carbon as the support. it is obvious.

【0035】(比較例1)繊維径7μmの炭素繊維を用
いる以外は実施例3と同様の方法で白金微粒子の担持を
試みた。得られた繊維のSEM観察を行ったが、白金微
粒子はほとんど観測されなかった。また、糸屑状の構造
物が繊維周りに付着していたが、元素分析等の分析の結
果、還元されていない白金前駆体であることが分かっ
た。
Comparative Example 1 Platinum fine particles were loaded in the same manner as in Example 3 except that carbon fibers having a fiber diameter of 7 μm were used. SEM observation of the obtained fiber showed that almost no platinum fine particles were observed. In addition, a lint-like structure was attached around the fiber, but as a result of analysis such as elemental analysis, it was found that the platinum precursor was not reduced.

【0036】(比較例2)算術平均粒子径が9nmであ
るカーボンブラックを用いる以外は実施例1と同様の方
法で白金微粒子の担持を試みた。得られたカーボンブラ
ックのSEM観察、及びEPMA元素分析を行った結
果、微粒子状の白金微粒子と糸屑状の未還元白金前駆体
構造物が表面に付着していることが分かった。
Comparative Example 2 Platinum fine particles were loaded in the same manner as in Example 1 except that carbon black having an arithmetic average particle diameter of 9 nm was used. As a result of SEM observation and EPMA elemental analysis of the obtained carbon black, it was found that fine platinum particles in the form of fine particles and an unreduced platinum precursor structure in the form of lint were adhered to the surface.

【0037】[0037]

【発明の効果】本発明は、以上説明したようなものであ
るから、以下に示すような効果を奏する。すなわち、本
発明の炭素膜構造体は、可撓性で強靭であり、微細な連
通孔を有する多孔質構造を持ち開放孔以外の表面が平滑
なものである。また触媒機能を有する金属粒子をナノレ
ベルで担持することができる。従って、燃料電池用電極
基材として用いると、積層したときに界面において他の
層と面接触が可能になり、界面での接触抵抗や熱損失を
小さくでき、ガスを均一に広範囲に配流することができ
るため、さらに効率的に触媒反応を起こし得るものであ
る。
The present invention is as described above, and has the following effects. That is, the carbon film structure of the present invention is flexible and tough, has a porous structure having fine communication holes, and has a smooth surface other than the open holes. Further, metal particles having a catalytic function can be supported at a nano level. Therefore, when used as a fuel cell electrode substrate, when laminated, surface contact with other layers is possible at the interface, contact resistance and heat loss at the interface can be reduced, and gas can be distributed uniformly and widely. Therefore, a catalytic reaction can be caused more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の燃料電池用電極基材の代表的な
一例の表面の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of a typical example of the surface of an electrode substrate for a fuel cell of the present invention.

【図2】図2は本発明の燃料電池用電極基材の代表的な
一例の断面の走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron microscope photograph of a cross section of a representative example of the fuel cell electrode substrate of the present invention.

【図3】図3は本発明の内、金属触媒として白金を担持
した燃料電池用電極機材の代表的な一例の走査型電子顕
微鏡写真である。
FIG. 3 is a scanning electron micrograph of a typical example of a fuel cell electrode device supporting platinum as a metal catalyst in the present invention.

【図4】図4は本発明のうち、金属触媒として白金を担
持した燃料電池用電極材の代表的な一例の透過型電子顕
微鏡写真である。
FIG. 4 is a transmission electron micrograph of a typical example of a fuel cell electrode material supporting platinum as a metal catalyst in the present invention.

【図5】図5は本発明のうち、金属触媒として白金を担
持した燃料電池用電極材の代表的な一例の回折像であ
る。
FIG. 5 is a diffraction image of a representative example of a fuel cell electrode material supporting platinum as a metal catalyst in the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 31/04 101 C01B 31/04 101A C04B 35/52 H01M 4/88 C H01M 4/88 8/10 8/10 C04B 35/54 A E Fターム(参考) 4G032 AA13 AA41 BA05 GA12 4G046 EA03 EB02 EB04 EC03 EC06 4G069 AA01 AA03 AA08 BA08A BA08B BA22C BB02A BC75B CC32 DA05 EA08 EB19 EC16X EC17X EC17Y EC27 FA02 FB14 FB34 FC02 5H018 AA04 AA06 AS02 AS03 BB01 DD01 EE05 HH04 HH05 5H026 AA04 AA06 BB01 EE05 HH04 HH05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C01B 31/04 101 C01B 31/04 101A C04B 35/52 H01M 4/88 C H01M 4/88 8/10 8/10 C04B 35/54 AEF term (reference) 4G032 AA13 AA41 BA05 GA12 4G046 EA03 EB02 EB04 EC03 EC06 4G069 AA01 AA03 AA08 BA08A BA08B BA22C BB02A BC75B CC32 DA05 EA08 EB19 EC16X EC17X EC17 AS03 A02 FB01 AS02 A02 FB02 HH04 HH05 5H026 AA04 AA06 BB01 EE05 HH04 HH05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】微細な連通孔を有する多孔質構造を持ち、
平均孔径が0.05〜10μmで空孔率が15〜85%
である炭素膜構造体からなる燃料電池用電極基材。
(1) a porous structure having fine communication holes,
Average pore size is 0.05 to 10 µm and porosity is 15 to 85%
An electrode substrate for a fuel cell comprising the carbon membrane structure according to (1).
【請求項2】前記炭素膜構造体の開放孔以外の表面が平
滑であることを特徴とする請求項1に記載の燃料電池用
電極基材
2. The fuel cell electrode substrate according to claim 1, wherein the surface of the carbon film structure other than the open holes is smooth.
【請求項3】前記炭素膜構造体の黒鉛化率が50%以上
であることを特徴とする請求項1〜2のいずれかに記載
の燃料電池用電極基材。
3. The electrode substrate for a fuel cell according to claim 1, wherein the carbon film structure has a graphitization ratio of 50% or more.
【請求項4】前記炭素膜構造体が多孔質構造を持つ高耐
熱性ポリマー膜を嫌気性雰囲気下に加熱炭化して得られ
たことを特徴とする請求項1〜3のいずれかに記載の燃
料電池用電極基材。
4. The carbon film structure according to claim 1, wherein the carbon film structure is obtained by heating and carbonizing a highly heat-resistant polymer film having a porous structure in an anaerobic atmosphere. Electrode substrate for fuel cells.
【請求項5】前記炭素膜構造体が、前記高耐熱性ポリマ
ー膜を複数枚積層した積層体を嫌気性雰囲気下に加熱炭
化して一体化して得られたことを特徴とする請求項1〜
4のいずれかに記載の燃料電池用電極基材。
5. The carbon film structure according to claim 1, wherein the carbon film structure is obtained by heating and carbonizing a laminate obtained by laminating a plurality of the high heat-resistant polymer films in an anaerobic atmosphere.
5. The electrode substrate for a fuel cell according to any one of 4.
【請求項6】前記高耐熱性ポリマーがポリイミドである
ことを特徴とする請求項1〜5のいずれかに記載の燃料
電池用電極基材。
6. The electrode substrate for a fuel cell according to claim 1, wherein the high heat-resistant polymer is polyimide.
【請求項7】前記ポリイミドが、ビフェニルテトラカル
ボン酸ないしその無水物をモノマー成分として含んだポ
リイミドである事を特徴とする請求項6に記載の燃料電
池用電極基材。
7. The electrode substrate for a fuel cell according to claim 6, wherein the polyimide is a polyimide containing biphenyltetracarboxylic acid or an anhydride thereof as a monomer component.
【請求項8】請求項1〜7いずれかに記載の炭素膜構造
体に、金属がナノオーダー微粒子として担持されている
ことを特徴とする金属微分散炭素膜構造体。
8. A fine metal dispersed carbon film structure, wherein a metal is supported on the carbon film structure according to any one of claims 1 to 7 as nano-order fine particles.
【請求項9】請求項8記載の金属微分散炭素膜構造体を
用いた燃料電池用電極。
9. A fuel cell electrode using the metal finely dispersed carbon film structure according to claim 8.
【請求項10】請求項8記載の金属微分散炭素膜構造体
を用いた炭素構造体担持金属触媒。
10. A metal catalyst supporting a carbon structure using the finely dispersed metal carbon film structure according to claim 8.
JP2001078497A 2000-09-21 2001-03-19 Electrode substrate for fuel cell Pending JP2002170574A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001078497A JP2002170574A (en) 2000-09-21 2001-03-19 Electrode substrate for fuel cell
EP02005354A EP1244165A3 (en) 2001-03-19 2002-03-14 Electrode base material for fuel cell
US10/098,426 US20020132159A1 (en) 2001-03-19 2002-03-18 Electrode base material for fuel cell
AU26168/02A AU784328B2 (en) 2001-03-19 2002-03-18 Electrode base material for fuel cell
CN02107457A CN1375886A (en) 2001-03-19 2002-03-19 Electrode base material for fuel cell
KR1020020014742A KR20020074422A (en) 2001-03-19 2002-03-19 Electrode base material for fuel cell
US11/636,440 US20070082805A1 (en) 2001-03-19 2006-12-11 Electrode base material for fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-287361 2000-09-21
JP2000287361 2000-09-21
JP2001078497A JP2002170574A (en) 2000-09-21 2001-03-19 Electrode substrate for fuel cell

Publications (1)

Publication Number Publication Date
JP2002170574A true JP2002170574A (en) 2002-06-14

Family

ID=26600447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078497A Pending JP2002170574A (en) 2000-09-21 2001-03-19 Electrode substrate for fuel cell

Country Status (1)

Country Link
JP (1) JP2002170574A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092093A2 (en) * 2002-04-26 2003-11-06 Ube Industries, Ltd. Fuel cell electrode employing porous graphite film, membrane-electrode assembly and fuel cell
JP2004207228A (en) * 2002-12-12 2004-07-22 Hitachi Ltd Catalyst material, electrode, and fuel cell using this
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
JP2004335459A (en) * 2003-04-18 2004-11-25 Ube Ind Ltd Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same
WO2004113251A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Porous body and method for producing same
KR100647581B1 (en) * 2003-07-02 2006-11-24 삼성에스디아이 주식회사 Microporous thin film comprising nano particles and preparing process thereof
JP2007254231A (en) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd Carbon material, composite material, method for manufacturing carbon material and method for manufacturing composite material
JP2008254937A (en) * 2007-03-30 2008-10-23 Ube Ind Ltd Manufacturing method for obtaining carbonaceous film having shape as one's objective
WO2011114826A1 (en) * 2010-03-18 2011-09-22 独立行政法人物質・材料研究機構 Network-form polymeric nanofibers, process for producing same, gas absorbent, and gas separation material
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2014086228A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member
WO2016143002A1 (en) * 2015-03-06 2016-09-15 宇部興産株式会社 Conductive aromatic polyimide porous film and method for producing same
CN110050371A (en) * 2016-09-27 2019-07-23 凯得内株式会社 Gas diffusion layer for fuel cell including porous carbon film layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335909A (en) * 1999-05-27 2000-12-05 Ube Ind Ltd Porous carbonized film and its production
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335909A (en) * 1999-05-27 2000-12-05 Ube Ind Ltd Porous carbonized film and its production
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092093A2 (en) * 2002-04-26 2003-11-06 Ube Industries, Ltd. Fuel cell electrode employing porous graphite film, membrane-electrode assembly and fuel cell
WO2003092093A3 (en) * 2002-04-26 2004-02-26 Ube Industries Fuel cell electrode employing porous graphite film, membrane-electrode assembly and fuel cell
JP2004207228A (en) * 2002-12-12 2004-07-22 Hitachi Ltd Catalyst material, electrode, and fuel cell using this
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
US7718570B2 (en) 2003-02-13 2010-05-18 Samsung Sdi Co., Ltd. Carbon molecular sieve and method for manufacturing the same
JP4585773B2 (en) * 2003-02-13 2010-11-24 三星エスディアイ株式会社 Carbon molecular body and method for producing the same
JP2004335459A (en) * 2003-04-18 2004-11-25 Ube Ind Ltd Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same
WO2004113251A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Porous body and method for producing same
US7256147B2 (en) 2003-06-20 2007-08-14 Matsushita Electric Industrial Co., Ltd. Porous body and manufacturing method therefor
KR100647581B1 (en) * 2003-07-02 2006-11-24 삼성에스디아이 주식회사 Microporous thin film comprising nano particles and preparing process thereof
JP2007254231A (en) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd Carbon material, composite material, method for manufacturing carbon material and method for manufacturing composite material
JP2008254937A (en) * 2007-03-30 2008-10-23 Ube Ind Ltd Manufacturing method for obtaining carbonaceous film having shape as one's objective
WO2011114826A1 (en) * 2010-03-18 2011-09-22 独立行政法人物質・材料研究機構 Network-form polymeric nanofibers, process for producing same, gas absorbent, and gas separation material
JP5637208B2 (en) * 2010-03-18 2014-12-10 独立行政法人物質・材料研究機構 Network-like polymer nanofiber, production method thereof, gas adsorbent, and gas separation material
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
US9368796B2 (en) 2011-10-21 2016-06-14 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery
JP2014086228A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member
JPWO2014181562A1 (en) * 2013-05-09 2017-02-23 大豊工業株式会社 Sliding member
WO2016143002A1 (en) * 2015-03-06 2016-09-15 宇部興産株式会社 Conductive aromatic polyimide porous film and method for producing same
JPWO2016143002A1 (en) * 2015-03-06 2017-12-14 宇部興産株式会社 Conductive aromatic polyimide porous membrane and method for producing the same
CN110050371A (en) * 2016-09-27 2019-07-23 凯得内株式会社 Gas diffusion layer for fuel cell including porous carbon film layer
JP2019533298A (en) * 2016-09-27 2019-11-14 ガードネック カンパニー リミテッドGuardnec Co.,Ltd. Gas diffusion layer for fuel cell including porous carbonaceous film layer
US11289721B2 (en) 2016-09-27 2022-03-29 Guardnec Co., Ltd. Gas diffusion layer comprising porous carbonaceous film layer for fuel cell

Similar Documents

Publication Publication Date Title
EP1244165A2 (en) Electrode base material for fuel cell
KR101995527B1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
TW411637B (en) Process of forming a membrane electrode
CA2343246C (en) Electrode substrate for electrochemical cells based on low-cost manufacturing processes
CN100452499C (en) Electrode for fuel cell, membrane-electrode assembly and fuel cell system comprising same
JP2002170574A (en) Electrode substrate for fuel cell
US20050181268A1 (en) Fuel cell electrode employing porous graphite film, membrane-electrode assembly and fuel cell
WO2002059989A2 (en) Gas diffusion electrode manufacture and mea fabrication
JP2011219585A (en) Porous polyimide film and method for producing the same
JP2011219586A (en) Porous polyimide film and method for producing the same
CA2939196A1 (en) Gas diffusion electrode substrate
JP2000353528A (en) Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
EP1447816A1 (en) Polymer electrolyte solution for manufacturing electrode for fuel cell
JP2003128409A (en) Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
JP4273608B2 (en) High crystalline porous graphite film and method for producing the same
US7468340B2 (en) Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
JP2004359860A (en) Polyimide porous membrane having microscale through paths, and method for manufacturing the same
JP2004164854A (en) Polymer electrolyte solution for forming electrode for fuel cell
JP2003317728A (en) Fuel cell electrode using porous carbon film, film- electrode bonded body and fuel cell
JP2002100379A (en) Separator for fuel cell with flow delivering function
KR20140118914A (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
JP2005093217A (en) Fuel cell electrode, its manufacturing method, membrane-electrode jointed body, and fuel cell
JP2004335459A (en) Metal carrying porous carbon film, electrode for fuel cell, and fuel cell using the same
JP2003132900A (en) Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
JP2007123284A (en) Metal dispersed carbon film structure, electrode for fuel cell, electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104