JP2003132900A - Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell - Google Patents

Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell

Info

Publication number
JP2003132900A
JP2003132900A JP2001322927A JP2001322927A JP2003132900A JP 2003132900 A JP2003132900 A JP 2003132900A JP 2001322927 A JP2001322927 A JP 2001322927A JP 2001322927 A JP2001322927 A JP 2001322927A JP 2003132900 A JP2003132900 A JP 2003132900A
Authority
JP
Japan
Prior art keywords
fuel cell
metal
electrode
carbon film
film structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001322927A
Other languages
Japanese (ja)
Inventor
Nobuo Oya
修生 大矢
Yuichi Fujii
有一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001322927A priority Critical patent/JP2003132900A/en
Priority to EP02005354A priority patent/EP1244165A3/en
Priority to AU26168/02A priority patent/AU784328B2/en
Priority to US10/098,426 priority patent/US20020132159A1/en
Priority to CN02107457A priority patent/CN1375886A/en
Priority to KR1020020014742A priority patent/KR20020074422A/en
Publication of JP2003132900A publication Critical patent/JP2003132900A/en
Priority to US11/636,440 priority patent/US20070082805A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the performance of a fuel cell by manufacturing, especially, a fuel cell electrode from a material in which metal fine particles are carried in a porous carbon structure, which is used to control a transportation path of electrons, fuel gas, and protons in an electrolyte film-gas diffusion electrode joint body for a fuel cell. SOLUTION: There are provided a carbon film structure which has a porous structure containing fine communication holes, with average bore being 0.05-10 μm and porosity being 25-85%, a metal dispersion carbon film structure having such structure as metal fine particles are dispersed, and a fuel cell electrode, electrode joint body, and fuel cell using the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用部材及
びに燃料電池用に関する。
TECHNICAL FIELD The present invention relates to a member for a fuel cell and a fuel cell.

【0002】[0002]

【従来の技術】近年、燃料電池の開発および実用化が進
んでいる。例えば、固体高分子電解質型燃料電池の場
合、高分子固体電解質層の両側に厚さ0.1〜0.3m
mの炭素繊維抄紙体からなる多孔質炭素板を設け、その
表面に電極触媒としての白金系触媒を担持させてガス拡
散電極を形成し、その外側にガス流路溝の付いた厚さ1
〜3mmの緻密質炭素板からなるセパレータを設けて電
池セルを構成している。また、リン酸型燃料電池の場
合、リン酸保持体にリン酸を保持させた電解質層の両側
に、厚さ0.1〜0.3mmの炭素繊維抄紙体からなる
多孔質炭素板を設け、その表面に電極触媒としての白金
系触媒を担持させてガス拡散電極を形成し、その外側に
ガス流路溝の付いた厚さ1〜3mmセパレータを設けて
電池セルを構成している。
2. Description of the Related Art In recent years, fuel cells have been developed and put into practical use. For example, in the case of a solid polymer electrolyte fuel cell, the polymer solid electrolyte layer has a thickness of 0.1 to 0.3 m on both sides.
A porous carbon plate made of m carbon fiber paper is provided, and a platinum-based catalyst as an electrode catalyst is supported on the surface of the porous carbon plate to form a gas diffusion electrode.
A battery cell is formed by providing a separator made of a dense carbon plate of 3 mm. Further, in the case of a phosphoric acid fuel cell, a porous carbon plate made of a carbon fiber paper body having a thickness of 0.1 to 0.3 mm is provided on both sides of the electrolyte layer in which the phosphoric acid holder holds phosphoric acid, A platinum catalyst as an electrode catalyst is supported on the surface to form a gas diffusion electrode, and a separator having a thickness of 1 to 3 mm with a gas flow channel groove is provided on the outside thereof to form a battery cell.

【0003】従来、貴金属系触媒担持体のカーボン材料
としては、カーボンブラックに代表される粉末状の材料
が使用されており、固体高分子型燃料電池の反応部の構
成材料である電極も、貴金属が担持されたカーボン粉末
と樹脂などのバインダーと溶媒からなるペーストを用い
て作製されている。(例えば、特開平5−36418号
公報など)しかしながら、粉末を出発原料とするゆえに
作製される電極の構造制御には制限が有り、高価な貴金
属系触媒を有効に利用できる担持体構造を形成する事は
困難であった。
Conventionally, a powdery material typified by carbon black has been used as a carbon material of a noble metal catalyst carrier, and an electrode which is a constituent material of a reaction part of a polymer electrolyte fuel cell is also noble metal. It is produced by using a paste composed of carbon powder on which is carried, a binder such as a resin, and a solvent. (For example, Japanese Patent Laid-Open No. 5-36418) However, the structure control of the electrode produced by using the powder as a starting material is limited, and a support structure capable of effectively utilizing an expensive noble metal catalyst is formed. Things were difficult.

【発明が解決しようとする課題】本発明は、多孔質炭素
構造体に金属微粒子を担持した形での材料、特に燃料電
池用電極を作製し、さらにこれを用いることで電子及び
燃料ガス、プロトンの輸送経路の制御を行なった電解質
膜−燃料電池用ガス拡散電極接合体を作製することで、
燃料電池の高性能化を達成することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, a material in which fine metal particles are supported on a porous carbon structure, particularly an electrode for a fuel cell, is prepared, and by using this, an electron, a fuel gas and a proton are produced. By preparing an electrolyte membrane-fuel cell gas diffusion electrode assembly in which the transport path of
The purpose is to achieve high performance of the fuel cell.

【0004】[0004]

【課題を解決するための手段】本発明は、微細な連通孔
を有する多孔質構造を持ち、平均孔径が0.05〜10
μmで空孔率が25〜85%である炭素膜構造体に、金
属微粒子が分散した構造体からなる金属分散炭素膜構造
体に関する。
The present invention has a porous structure having fine communicating pores and an average pore diameter of 0.05 to 10.
The present invention relates to a metal-dispersed carbon film structure having a structure in which fine metal particles are dispersed in a carbon film structure having a porosity of 25 to 85% in μm.

【0005】また、本発明は、該金属微粒子の大きさの
平均が1〜10nmがであることを特徴とする上記の金
属分散炭素膜構造体に関する。
The present invention also relates to the above metal-dispersed carbon film structure, wherein the average size of the metal fine particles is 1 to 10 nm.

【0006】また、本発明は、該金属微粒子の少なくて
も1種類が貴金属あるいは貴金属元素を含む合金である
ことを特徴とする上記の金属分散炭素膜構造体に関す
る。
The present invention also relates to the above metal-dispersed carbon film structure, wherein at least one kind of the fine metal particles is a noble metal or an alloy containing a noble metal element.

【0007】また、本発明は、上記の金属分散炭素膜構
造体を用いることを特徴とする燃料電池用電極に関す
る。
The present invention also relates to an electrode for a fuel cell, which uses the above metal-dispersed carbon membrane structure.

【0008】また、本発明は、上記の燃料電池用電極を
構成要素として持つ、電解質膜−燃料電池用ガス拡散電
極接合体に関する。
The present invention also relates to an electrolyte membrane-fuel cell gas diffusion electrode assembly having the fuel cell electrode as a constituent element.

【0009】また、本発明は、上記の燃料電池用電極を
構成要素として含む、燃料電池に関する。
The present invention also relates to a fuel cell including the above fuel cell electrode as a constituent element.

【0010】[0010]

【発明の実施の形態】本発明の金属分散炭素膜構造体
は、微細な連通孔を有する多孔質構造を持ち、平均孔径
が0.05〜10μmで空孔率が25〜85%である炭
素膜構造体に、金属微粒子が分散した構造体からなるも
のである。該炭素膜構造体は、微細な連通孔を有する多
孔質構造を持ち、開放孔以外の表面が平滑な炭素膜構造
体からなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The metal-dispersed carbon membrane structure of the present invention has a porous structure having fine communicating pores, an average pore diameter of 0.05 to 10 μm, and a porosity of 25 to 85%. The film structure is a structure in which fine metal particles are dispersed. The carbon film structure has a porous structure having fine communication holes, and is a carbon film structure having a smooth surface other than the open holes.

【0011】本明細書において、微細な連通孔を有する
多孔質構造とは、任意の表面から細孔が通路状に他の表
面まで連続したいわゆる開放孔であって、隣接する細孔
間が壁状構造になっており、且つ、細孔は屈曲しながら
非直線的に延びたものをいう。
In the present specification, the porous structure having fine communication holes is a so-called open hole in which pores are continuous from any surface to other surfaces in a passage form, and the space between adjacent pores is a wall. The pores have a linear structure and the pores extend non-linearly while bending.

【0012】即ち、前記炭素膜構造体は、ガスを流すと
非直線的に延びた通路状の細孔に導かれて非直線的に配
流されるのでショートパスが起こらない。更に、本発明
の多孔質構造を持つ炭素膜構造体の表面は、細孔が膜内
から延びて表面に達して形成した開放孔以外の部分が平
滑面であり、セパレータなどと積層したときに他の層と
の界面が前記平滑面によって面接触になるものである。
That is, when the gas flows, the carbon film structure is guided by the passage-like pores extending non-linearly and is distributed non-linearly, so that a short path does not occur. Furthermore, the surface of the carbon membrane structure having a porous structure of the present invention has a smooth surface except for the open pores formed by the pores extending from the inside of the membrane to reach the surface, and when laminated with a separator or the like. The interface with another layer is in surface contact with the smooth surface.

【0013】上述の多孔質構造と表面の平滑性を更に説
明するために、本発明の燃料電池用電極基材をなす多孔
質構造を持つ炭素膜構造体の代表的な一例について、そ
の表面と断面の走査型電子顕微鏡写真をそれぞれ図1、
図2に示す。本発明の炭素膜構造体は、開放孔以外の表
面が図1に示すような平滑性を持っているので、積層体
を形成したときに界面において面接触になる。
In order to further explain the above-mentioned porous structure and surface smoothness, a typical example of a carbon membrane structure having a porous structure forming the fuel cell electrode base material of the present invention will be described. Scanning electron micrographs of the cross section are shown in Fig. 1 and Fig. 1, respectively.
As shown in FIG. Since the surface of the carbon film structure of the present invention other than the open pores has the smoothness as shown in FIG. 1, when the laminated body is formed, it becomes surface contact at the interface.

【0014】更に、本発明の電極基材となる炭素膜構造
体は、平均孔径が0.05〜10μm、好ましくは0.
05〜2μmである。表面の平均孔径が上記の範囲未満
では圧損が生ずるのでガスを効率的に配流できなくな
り、平均孔径が上記の範囲を越えるとガスが直線的に流
れやすくなって広い範囲に亘ってガスを均一に配流する
ことが難しくなるので好適ではない。
Further, the carbon membrane structure as the electrode base material of the present invention has an average pore diameter of 0.05 to 10 μm, preferably 0.1.
It is 05-2 micrometers. When the average pore diameter of the surface is less than the above range, pressure loss occurs, so that the gas cannot be distributed efficiently, and when the average pore diameter exceeds the above range, the gas tends to flow linearly and the gas is evenly distributed over a wide range. It is not preferable because distribution becomes difficult.

【0015】また、炭素膜構造体の空孔率は25〜85
%、好ましくは30〜70%である。空孔率が上記の範
囲未満ではガスの配流量が少なくなり、空孔率が上記の
範囲を越えると膜の機械的強度が小さくなるので好まし
くない。
The porosity of the carbon film structure is 25 to 85.
%, Preferably 30 to 70%. When the porosity is less than the above range, the gas flow rate becomes small, and when the porosity exceeds the above range, the mechanical strength of the film becomes small, which is not preferable.

【0016】また、前記炭素膜構造体は、黒鉛化率が3
0%以上、好ましくは60%以上、特に好ましくは90
%以上であることが好適である。黒鉛化率が60%以上
になると、膜の機械的強度が高くなり可撓性が向上する
ので好適であり、また、導電性、熱伝導性も向上するの
で好ましい。
The carbon film structure has a graphitization ratio of 3
0% or more, preferably 60% or more, particularly preferably 90
% Or more is preferable. When the graphitization ratio is 60% or more, the mechanical strength of the film is increased and the flexibility is improved, which is preferable, and the electrical conductivity and the thermal conductivity are also improved, which is preferable.

【0017】本発明の炭素膜構造体は、微細な連通孔を
有する多孔質構造を持ち、開放孔以外の表面が平滑な高
耐熱性ポリマー膜を嫌気性雰囲気下で加熱炭化して好適
に製造することができる。高耐熱性ポリマーを用いると
加熱したときに多孔質構造を保持できるので好ましい。
The carbon membrane structure of the present invention has a porous structure having fine communicating pores, and is suitably manufactured by heating and carbonizing a high heat resistant polymer membrane having a smooth surface other than open pores in an anaerobic atmosphere. can do. It is preferable to use a high heat resistant polymer because it can retain a porous structure when heated.

【0018】前記高耐熱性ポリマーは、微細な連通孔を
有する多孔質膜を形成することが可能で、かつ、加熱炭
化しても微細な連通孔からなる多孔質構造を保持できる
ものであれば、特に限定するものではない。ポリイミド
系、セルロース系、フルフラール樹脂系、フェノール樹
脂系などのポリマーを好適に挙げることができるが、特
に芳香族ポリイミドは加熱炭化によって容易に機械的強
度が高い炭素構造体を得ることができるので好適であ
る。ここで芳香族ポリイミドには、芳香族ポリイミドの
前駆体であるポリアミック酸、及び、部分的にイミド化
したポリアミック酸も含む。
The high heat-resistant polymer is capable of forming a porous film having fine communication holes, and is capable of retaining a porous structure composed of fine communication holes even when carbonized by heating. It is not particularly limited. Polymers such as polyimide-based, cellulose-based, furfural resin-based, and phenol resin-based polymers can be preferably mentioned, but aromatic polyimide is particularly preferable because it can easily obtain a carbon structure having high mechanical strength by heating and carbonization. Is. Here, the aromatic polyimide also includes a polyamic acid that is a precursor of the aromatic polyimide and a partially imidized polyamic acid.

【0019】前記微細な連通孔を有する多孔質構造を持
ち、開放孔以外の表面が平滑な高耐熱性ポリマー膜は、
ポリマー溶液を用いて相転換法によって好適に製造する
ことができる。ポリマーを有機溶剤(溶媒)に溶解した
溶液を、例えばガラス板上に流延し、その流延膜を前記
有機溶剤とは相溶性を有しポリマーは不溶な有機溶剤や
水など(非溶媒)に浸漬し、その際に溶媒と非溶媒とが
置換するために生じる相分離現象を利用して細孔を形成
するいわゆる相転換法によって得ることができる。しか
し通常の相転換法では表面に緻密層ができる。
The highly heat-resistant polymer film having a porous structure having fine communication holes and having a smooth surface other than the open holes is
It can be suitably produced by a phase inversion method using a polymer solution. A solution prepared by dissolving a polymer in an organic solvent (solvent) is cast on a glass plate, for example, and the cast film is compatible with the organic solvent and the polymer is insoluble in an organic solvent or water (non-solvent). It can be obtained by a so-called phase inversion method in which pores are formed by utilizing a phase separation phenomenon caused by the substitution of the solvent with the non-solvent at that time. However, the usual phase inversion method forms a dense layer on the surface.

【0020】出典明示して本発明の明細書の一部とみな
す特開平11−310658号公報、特願平11−11
6178号、特願2000−284651号に記載の、
溶媒置換速度調整材を用いて溶媒置換速度を調整する相
転換法は容易に微細な連通孔を有する多孔質高分子膜を
得ることができるので好適である。
[0020] Japanese Patent Application Laid-Open No. 11-310658 and Japanese Patent Application No. 11-11, which are explicitly cited as a part of the specification of the present invention.
No. 6178, Japanese Patent Application No. 2000-284651,
The phase inversion method in which the solvent replacement rate adjusting material is used to adjust the solvent replacement rate is preferable because a porous polymer membrane having fine communication holes can be easily obtained.

【0021】具体的には、まず表面が平滑なポリマー溶
液の流延膜を形成し、次に該流延膜の表面に溶媒置換速
度調整材(多孔性フィルム)を積層させ、次いでその積
層体を非溶媒と接触させて相分離によって細孔を形成し
ながら多孔質ポリマー膜を析出させる。この方法で形成
された多孔質ポリマー膜の表面(開孔部以外の表面)は
元の流延膜の表面平滑性を保持するので、連通孔を有す
る多孔質構造を持ち開放孔以外の表面が平滑な多孔質ポ
リマー膜を容易に得ることができる。
Specifically, first, a casting film of a polymer solution having a smooth surface is formed, then a solvent substitution rate adjusting material (porous film) is laminated on the surface of the casting membrane, and then the laminated body. Is brought into contact with a non-solvent to form pores by phase separation to deposit a porous polymer film. Since the surface of the porous polymer film formed by this method (the surface other than the open pores) retains the surface smoothness of the original casting film, the surface other than the open pores has a porous structure having communicating pores. A smooth porous polymer film can be easily obtained.

【0022】微細な連通孔を有する多孔質構造を持ち開
放孔以外の表面が平滑な高耐熱性ポリマー膜を嫌気性雰
囲気下で加熱炭化することによって、微細な連通孔を有
する多孔質構造を持ち開放孔以外の表面が平滑な炭素膜
構造体を得ることができる。
By heating and carbonizing a highly heat-resistant polymer film having a porous structure having fine communication holes and having a smooth surface other than open pores in an anaerobic atmosphere, it has a porous structure having fine communication holes. A carbon film structure having a smooth surface other than the open pores can be obtained.

【0023】嫌気性雰囲気は、特に限定しないが、窒素
ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中
か、真空中が好適である。加熱炭化は、急激に昇温する
と分解物が散逸したり炭素分が留去して炭素収率が低く
なることがあるので好ましくなく構造欠陥もできやす
い。そのために昇温速度は20℃/分以下、特に1〜1
0℃/分程度の十分遅い速度で昇温して徐々に炭化する
のが好ましい。加熱温度や加熱時間は十分な炭化がおこ
なわれればどんな温度や時間でも構わない。また、得ら
れる炭素構造体の黒鉛化率を高めて機械的強度や導電性
や熱伝導性を高くするためには2400〜3500℃、
特に2600〜3000℃の範囲が好ましく、前記温度
範囲で20〜180分間が好適である。
The anaerobic atmosphere is not particularly limited, but an inert gas such as nitrogen gas, argon gas or helium gas, or vacuum is suitable. Carbonization by heating may undesirably cause structural defects, because decomposition products may be dissipated or carbon content may be distilled off to reduce the carbon yield when the temperature is rapidly raised. Therefore, the temperature rising rate is 20 ° C./min or less, particularly 1 to 1
It is preferable to raise the temperature at a sufficiently slow rate of about 0 ° C./minute to gradually carbonize. The heating temperature and heating time may be any temperature or time as long as sufficient carbonization is performed. Further, in order to increase the graphitization rate of the obtained carbon structure to increase the mechanical strength, electrical conductivity and thermal conductivity, 2400-3500 ° C.,
Particularly, the range of 2600 to 3000 ° C. is preferable, and the temperature range is preferably 20 to 180 minutes.

【0024】また、前記加熱炭化の際に加熱時に加圧す
ると、黒鉛化率を高めて機械的強度が高く且つ導電性及
び熱伝導性が高い炭素膜構造体を得ることができるので
好ましい。加圧によって、加熱炭素化中の収縮などに伴
う形状の変化を抑えたり、炭素化されつつある炭素部分
の配向性を高めて黒鉛化が促進されるので、機械的強
度、導電性、熱伝導性が高い炭素膜構造体を得ることが
できる。圧力は1〜250MPa特に10〜250MP
aで印加するのがよい。加圧は高温圧縮機や等方圧熱間
プレス(HIP)を用いて好適におこなわれる。
Further, it is preferable to pressurize at the time of heating during the heating and carbonization because a carbon film structure having a high graphitization rate and high mechanical strength and high electrical conductivity and thermal conductivity can be obtained. Pressurization suppresses changes in shape due to shrinkage during heating carbonization, and promotes graphitization by enhancing the orientation of the carbon portion that is being carbonized, so mechanical strength, conductivity, heat conduction A carbon film structure having high properties can be obtained. Pressure is 1-250MPa, especially 10-250MP
It is better to apply at a. Pressurization is suitably performed using a high temperature compressor or an isotropic hot press (HIP).

【0025】また、黒鉛化を促進するために、加熱する
微細な連通孔を有する多孔質構造を持つ高耐熱性ポリマ
ー膜に予めホウ素化合物などの黒鉛化を促進する効果を
有する化合物を添加することが好適である。これらの化
合物の微細な粉末を、原料とするポリマー溶液中に均一
に分散させておき、該溶液を用いて上述の方法によって
多孔質構造を持つ高耐熱性ポリマー膜を製造すれば、前
記化合物が均一に分散した多孔質構造を持つ高耐熱性ポ
リマー膜を製造することができる。
Further, in order to promote graphitization, a compound having an effect of promoting graphitization such as a boron compound is previously added to a highly heat-resistant polymer film having a porous structure having fine communication holes to be heated. Is preferred. Fine powders of these compounds are uniformly dispersed in a polymer solution as a raw material, and when the solution is used to produce a high heat-resistant polymer film having a porous structure by the above-mentioned method, the compound is obtained. A highly heat resistant polymer film having a uniformly dispersed porous structure can be produced.

【0026】また、本発明においては、微細な連通孔を
有する多孔質構造を持ち開放孔以外の表面が平滑な高耐
熱性ポリマー膜は、一枚ずつ個別に加熱炭化した後で目
的とする厚さになるように積層して用いても構わない
が、各層間に界面ができて各界面の接触抵抗を制御する
必要が生じて取扱いが複雑になるので好ましくない。接
着剤で接着する方法では接着剤が電池性能を低下させる
可能性がある。フェノール系接着剤などで接着して再度
加熱して接着剤を炭化して一体化するなどの方法もある
が、複雑な処理が必要になるので好ましくない。微細な
連通孔を有する多孔質構造を持ち開放孔以外の表面が平
滑な高耐熱性ポリマー膜を複数枚積層した積層体を加熱
炭化すると、炭化し且つ一体化して本発明の炭素膜構造
体を得ることができるので特に好適である。この方法で
は、同一の薄いポリマー膜から種々の膜厚の炭素膜構造
体を得ることができる。
Further, in the present invention, the high heat-resistant polymer film having a porous structure having fine communication holes and having a smooth surface other than the open holes has a target thickness after being individually carbonized by heating. It may be used by stacking so as to be small, but it is not preferable because an interface is formed between the respective layers and it becomes necessary to control the contact resistance of each interface, which makes the handling complicated. In the method of adhering with an adhesive, the adhesive may reduce the battery performance. There is also a method of adhering with a phenol-based adhesive or the like and heating again to carbonize the adhesive to integrate it, but it is not preferable because complicated treatment is required. When a laminated body in which a plurality of high heat-resistant polymer membranes having a porous structure having fine communicating pores and a surface other than open pores is smooth is carbonized by heating, they are carbonized and integrated to form the carbon membrane structure of the present invention. It is particularly preferable because it can be obtained. By this method, carbon film structures having various film thicknesses can be obtained from the same thin polymer film.

【0027】本発明の金属分散炭素膜構造体は、上記炭
素膜構造体に金属微粒子が分散した構造体からなるもの
である。
The metal-dispersed carbon film structure of the present invention comprises a structure in which fine metal particles are dispersed in the carbon film structure.

【0028】金属微粒子の大きさは、例えば1〜10n
mであることが好ましい。
The size of the fine metal particles is, for example, 1 to 10 n.
It is preferably m.

【0029】また、金属微粒子は、貴金属であることが
好ましい。貴金属としては、例えば白金、パラジウム、
ニッケルなどが挙げられ、特に、白金が好ましい。
The fine metal particles are preferably noble metals. Examples of the noble metal include platinum, palladium,
Examples thereof include nickel, and platinum is particularly preferable.

【0030】炭素膜構造体に、金属微粒子が分散させる
方法としては、真空蒸着などの気相を利用する方法、金
属前駆体溶液を用いて担持する方法などがあげられる。
具体的には、多孔質炭素膜構造体を、金属前駆体溶液に
浸漬し、そのまま乾燥することで白金前駆体を担持し、
続いて、不活性ガス雰囲気下で熱処理を施すことで白金
前駆体を還元し、洗浄、乾燥を行なうことで金属担持多
孔質炭素膜構造体を得ることができる。
Examples of the method of dispersing the metal fine particles in the carbon film structure include a method of utilizing a vapor phase such as vacuum deposition and a method of supporting using a metal precursor solution.
Specifically, the porous carbon membrane structure is immersed in a metal precursor solution and dried as it is to carry a platinum precursor,
Then, the platinum precursor is reduced by performing heat treatment in an inert gas atmosphere, and the metal-supported porous carbon membrane structure can be obtained by washing and drying.

【0031】上記の金属前駆体溶液は、例えば、白金ア
セチルアセトナト錯体の水/メタノール混合(重量比
1:1)溶媒に溶解すること、好ましくは、濃度が0.
1〜5重量%の前駆体溶液で作製することができる。
The above-mentioned metal precursor solution is dissolved in, for example, a water / methanol mixed solvent (weight ratio 1: 1) of the platinum acetylacetonato complex, preferably, the concentration is 0.1.
It can be prepared with a precursor solution of 1 to 5% by weight.

【0032】上記不活性ガス雰囲気下での熱処理は、好
ましくは、180〜1000℃の温度で行なう。
The heat treatment in the above inert gas atmosphere is preferably carried out at a temperature of 180 to 1000.degree.

【0033】本発明の上記金属分散炭素膜構造体は、燃
料電池用電極として好適に用いることができる。
The metal-dispersed carbon membrane structure of the present invention can be suitably used as an electrode for fuel cells.

【0034】上記燃料電池用電極は、例えば、白金を分
散した該炭素膜構造体を市販のナフィオン溶液[デュポ
ン社製パーフルオロカーボンスルホン酸樹脂溶液[ナフ
ィオン5012:樹脂濃度;5wt%、溶媒;メタノー
ル+イソプロパノール+水]]に浸漬することで製造する
ことができる。本発明の電極は微細な連通孔を多数持っ
ているので、広く均一に分散した電池反応の反応場を提
供することができる高性能燃料電池の電極として好適な
ものである。
In the fuel cell electrode, for example, the carbon membrane structure in which platinum is dispersed is a commercially available Nafion solution [DuPont perfluorocarbon sulfonic acid resin solution [Nafion 5012: resin concentration; 5 wt%, solvent: methanol + It can be produced by immersing in isopropanol + water]]. Since the electrode of the present invention has a large number of fine communication holes, it is suitable as an electrode of a high-performance fuel cell that can provide a reaction field for cell reaction that is widely and uniformly dispersed.

【0035】本発明の上記燃料電池用電極を構成要素と
して持つ、電解質膜−燃料電池用ガス拡散電極接合体を
好適に製造することができる。上記電極接合体は、通常
の方法で製造することができる。例えば、上記の電極と
市販のナフィオン膜(デュポン社製ナフィオン117)
を120〜150℃で熱プレスすることで電解質膜−燃
料電池用ガス拡散電極接合体を作製することが出来る。
The electrolyte membrane-fuel cell gas diffusion electrode assembly having the fuel cell electrode of the present invention as a constituent element can be suitably produced. The above electrode assembly can be manufactured by a usual method. For example, the above electrode and a commercially available Nafion membrane (Nafion 117 manufactured by DuPont)
By hot pressing at 120 to 150 ° C., an electrolyte membrane-fuel cell gas diffusion electrode assembly can be produced.

【0036】本発明の上記電解質膜−燃料電池用ガス拡
散電極接合体を構成要素として含む燃料電池を好適に製
造することができる。
A fuel cell containing the above electrolyte membrane-gas diffusion electrode assembly for a fuel cell of the present invention as a constituent element can be suitably manufactured.

【0037】上記燃料電池は、通常の方法で製造するこ
とができる。例えば、上記接合体を、炭素板の片面に燃
料ガスの流路を形成した一般的な燃料電池用セパレータ
で挟み込むことで、固体高分子型燃料電池を製造するこ
とが出来る。
The above fuel cell can be manufactured by a usual method. For example, a polymer electrolyte fuel cell can be manufactured by sandwiching the above-mentioned joined body with a general fuel cell separator in which a fuel gas channel is formed on one surface of a carbon plate.

【0038】[0038]

【実施例】次に、本発明について、高耐熱性ポリマーと
して好適な芳香族ポリイミドを使用した場合につての実
施例で説明する。但し、本発明は以下の実施例に限定さ
れるものではない。尚、本発明において、透気度、空孔
率、平均孔径、黒鉛化率、燃料電池の性能評価は次の方
法によって測定した。
EXAMPLES Next, the present invention will be described with reference to examples in which an aromatic polyimide suitable as a high heat resistant polymer is used. However, the present invention is not limited to the following examples. In the present invention, air permeability, porosity, average pore diameter, graphitization rate, and performance evaluation of fuel cells were measured by the following methods.

【0039】透気度 JIS P8117に準じて測定した。測定装置として
B型ガーレーデンソメーター(東洋精機社製)を使用し
た。試料の膜を直径28.6mm、面積645mm2
円孔に締付け、内筒重量567gにより、筒内の空気を
試験円孔部から筒外へ通過させる。空気100ccが通
過する時間を測定し、透気度(ガーレー値)とした。
Air permeability Measured according to JIS P8117. A B-type Gurley Densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The film of the sample is clamped in a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 , and the air in the cylinder is passed from the test circular hole portion to the outside of the cylinder by the inner cylinder weight of 567 g. The time taken for 100 cc of air to pass was measured and was taken as the air permeability (Gurley value).

【0040】空孔率 所定の大きさに切取った膜の膜厚、面積及び重量を測定
し、目付重量から次式により空孔率を求めた。次式のS
は膜面積、dは膜厚、wは測定した重量、Dは密度であ
りポリイミドは1.34、炭素膜構造体については後述
する方法で求めた黒鉛化率を考慮して試料ごとに密度を
算出した。 空孔率=(1−W/(S×d×D))×100
Porosity The film thickness, area and weight of a film cut into a predetermined size were measured, and the porosity was calculated from the weight per unit area by the following formula. S of the following formula
Is the film area, d is the film thickness, w is the measured weight, D is the density, polyimide is 1.34, and for the carbon film structure, the density is determined for each sample in consideration of the graphitization ratio obtained by the method described below. It was calculated. Porosity = (1-W / (S * d * D)) * 100

【0041】平均孔径 膜表面の走査型電子顕微鏡写真を撮り、50点以上の開
口部について孔面積を測定し、該孔面積の平均値から次
式に従って孔形状が真円であるとした際の平均直径を計
算より求めた。次式のSaは孔面積の平均値を意味す
る。 平均孔径=2×(Sa/π)1/2
Average Pore Size A scanning electron micrograph of the surface of the membrane was taken, the pore area was measured for 50 or more openings, and the average pore area was determined to be a perfect circle according to the following formula: The average diameter was calculated. Sa in the following equation means the average value of the pore area. Average pore size = 2 x (Sa / π) 1/2

【0042】黒鉛化率 X線回折を測定しRuland法により求めた。Graphitization rate The X-ray diffraction was measured and determined by the Ruland method.

【0043】燃料電池評価 燃料電池の動作温度を70℃、燃料ガスとして湿度70
%の水素及び空気を用いて、燃料ガスの供給、排出差圧
を0.1kgf/cm2として電流−電位特性を測定し
た。測定は燃料電池を定常状態で1時間運転して充分安
定動作することを確認してから行なった。
Evaluation of fuel cell The operating temperature of the fuel cell is 70 ° C., and the humidity is 70 as fuel gas.
% Of hydrogen and air, the current-potential characteristics were measured at a fuel gas supply / discharge pressure difference of 0.1 kgf / cm 2 . The measurement was performed after the fuel cell was operated in a steady state for 1 hour to confirm that the fuel cell was sufficiently stable.

【0044】炭素膜構造体に分散した金属微粒子の大き
さは、TEM及びSEM観察によって評価した。
The size of the metal fine particles dispersed in the carbon film structure was evaluated by TEM and SEM observation.

【0045】多孔質ポリイミド膜の製造 (参考例1)テトラカルボン酸成分として3,3’,
4,4’−ビフェニルテトラカルボン酸二無水物(以
下、s−BPDAと略すこともある)を、ジアミン成分
としてパラフェニレンジアミン(以下、PPDと略すこ
ともある)を用い、S−BPDAに対するPPDのモル
比が0.999で且つ該モノマー成分の含有量が8.5
重量%になるようにN−メチル−2−ピロリドン(以
下、NMPと略すことがある)に溶解し、温度40℃、
15時間重合をおこなってポリイミド前駆体であるポリ
アミック酸溶液を得た。このポリアミック酸溶液の溶液
粘度(温度25度、E型回転粘度計)は600ポイズで
あった。
Production of Porous Polyimide Membrane (Reference Example 1) 3,3 ′ as a tetracarboxylic acid component,
Using 4,4′-biphenyltetracarboxylic dianhydride (hereinafter, sometimes abbreviated as s-BPDA) and paraphenylenediamine (hereinafter, sometimes abbreviated as PPD) as a diamine component, PPD for S-BPDA Has a molar ratio of 0.999 and a content of the monomer component of 8.5.
It is dissolved in N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP) so that the weight% thereof becomes 40 ° C.,
Polymerization was carried out for 15 hours to obtain a polyamic acid solution as a polyimide precursor. The solution viscosity of this polyamic acid solution (temperature: 25 degrees, E-type rotational viscometer) was 600 poises.

【0046】前記ポリアミック酸溶液を、鏡面研磨され
たステンレス板上に厚みが約100μmになるように流
延し、そのポリアミック酸溶液の流延膜表面を、溶媒置
換速度調整材である透気度550秒/100ccのポリ
オレフィン微多孔膜(宇部興産(株)製ユーポアUP2
015)で表面にシワが生じないように覆った。該積層
物を1−プロパノール中に7分間浸漬し、溶媒置換速度
調整材を介して溶媒置換をおこなうことで、微細な連通
孔を有する多孔質構造を持ち開放孔以外の表面が平滑な
ポリアミック酸膜を析出させた。
The polyamic acid solution was cast on a mirror-polished stainless steel plate to a thickness of about 100 μm, and the surface of the cast film of the polyamic acid solution was permeated by a solvent replacement rate adjusting material. 550 seconds / 100 cc polyolefin microporous membrane (Upore UP2 manufactured by Ube Industries, Ltd.)
The surface was covered with 015) so as not to cause wrinkles. By immersing the laminate in 1-propanol for 7 minutes and performing solvent substitution through a solvent substitution rate adjusting material, a polyamic acid having a porous structure having fine communicating pores and having a smooth surface other than open pores. The film was deposited.

【0047】次いで、前記ポリアミック酸膜を水中に1
0分間浸漬したあとで、ステンレス板から剥離し、ピン
テンターに固定した状態で、空気中にて温度400℃、
20分間熱処理をおこなった。得られた多孔性ポリイミ
ド膜のイミド化率は70%であり、膜厚27μm、透気
度360秒/100cc、空孔率51%、平均孔径0.
17μmであった。
Then, the polyamic acid film is submerged in water.
After soaking for 0 minutes, peel it off from the stainless steel plate, fix it on a pin tenter, and in the air at a temperature of 400 ° C.
Heat treatment was performed for 20 minutes. The imidation ratio of the obtained porous polyimide film was 70%, the film thickness was 27 μm, the air permeability was 360 seconds / 100 cc, the porosity was 51%, and the average pore size was 0.
It was 17 μm.

【0048】上記の多孔質ポリイミドフィルムを不活性
ガス気流下で10℃/分の速度で1400まで昇温し、
1.5時間保持することで炭素化し、多孔質炭素膜構造
体を得た。これを、白金アセチルアセトナト錯体の水/
メタノール混合(重量比1:1)溶媒に溶解することで
作製した1重量%の白金前駆体溶液に浸漬し、そのまま
室温乾燥することで白金前駆体を担持した。続いて、不
活性ガス雰囲気下で1100℃の熱処理を施すことで白
金前駆体を還元し、その後純水とメタノールの混合溶媒
で充分洗浄、乾燥を行なうことで白金担持多孔質炭素膜
構造体を得た。SEM及びTEM観察の結果、白金微粒
子が担持されていることが確認した。ICPによる元素
分析、及び多孔質炭素の膜厚み等から、1平方cm辺り
の白金量は0.02mgと算出された。
The above porous polyimide film was heated to 1400 at a rate of 10 ° C./min under an inert gas stream,
It was carbonized by holding it for 1.5 hours to obtain a porous carbon membrane structure. Add this to water of platinum acetylacetonato complex /
The platinum precursor was supported by immersing it in a 1 wt% platinum precursor solution prepared by dissolving it in a solvent mixed with methanol (weight ratio 1: 1), and then drying it at room temperature. Subsequently, the platinum precursor is reduced by performing a heat treatment at 1100 ° C. in an inert gas atmosphere, and then sufficiently washed with a mixed solvent of pure water and methanol and dried to obtain a platinum-supporting porous carbon membrane structure. Obtained. As a result of SEM and TEM observation, it was confirmed that platinum fine particles were supported. From the elemental analysis by ICP, the film thickness of the porous carbon, and the like, the amount of platinum per square cm was calculated to be 0.02 mg.

【0049】この白金担持多孔質炭素膜構造体を市販の
ナフィオン溶液[デュポン社製パーフルオロカーボンス
ルホン酸樹脂溶液[ナフィオン5012:樹脂濃度;5
wt%、溶媒;メタノール+イソプロパノール+水]]に
浸漬、乾燥することでナフィオン薄膜を多孔質炭素の表
面にコーティングすることで電極とした。さらに、この
電極を市販のナフィオン117膜(デュポン社製)と1
10〜150℃の温度で熱プレスすることで接合し、電
解質膜−電極接合体を得た。これを燃料電池に組み上げ
て電流−電位特性を測定した。
A commercially available Nafion solution [Perfluorocarbon sulfonic acid resin solution manufactured by DuPont [Nafion 5012: resin concentration; 5
wt%, solvent: methanol + isopropanol + water]] and dried to coat the Nafion thin film on the surface of the porous carbon to form an electrode. Further, this electrode was combined with a commercially available Nafion 117 membrane (manufactured by DuPont)
Bonding was performed by hot pressing at a temperature of 10 to 150 ° C. to obtain an electrolyte membrane-electrode assembly. This was assembled into a fuel cell and the current-potential characteristics were measured.

【0050】(比較例1)市販の20重量%白金担持炭
素微粉末と市販の5重量%ナフィオン溶液及びポリテト
ラフルオロエチレン(PTFE)ディスパーションを、
重量比で4:3:2の比率で混合し、ペーストを作製し
た。このペーストを市販のナフィオン117膜の両面に
1平方cm辺りの白金量が0.5mgになるように均一
に塗付し110℃で乾燥することで、電解質膜−電極接
合体を得た。これを実施例1に使用したものと同様の部
材を用いて燃料電池に組み上げ、電流−電位特性を測定
した。
Comparative Example 1 Commercially available 20% by weight platinum-supported carbon fine powder, commercially available 5% by weight Nafion solution and polytetrafluoroethylene (PTFE) dispersion were used.
The mixture was mixed at a weight ratio of 4: 3: 2 to prepare a paste. This paste was uniformly applied to both sides of a commercially available Nafion 117 membrane so that the amount of platinum per square cm was 0.5 mg, and dried at 110 ° C. to obtain an electrolyte membrane-electrode assembly. This was assembled into a fuel cell using the same members as those used in Example 1, and the current-potential characteristics were measured.

【0051】(実施例2)実施例1及び比較例1で作製
した電解質膜−電極接合体を燃料電池に組み込んで電流
−電位特性を測定した。その結果、実施例1のものは、
0.35Vで80mA/cm2、比較例1のものでは
0.35Vで430mA/cm2の出力を得た。これを
単位白金触媒量当りの電流値に換算すると、実施例1で
は4000A/g、比較例1では860A/gとなり、
実施例1における白金触媒の単位量辺りの見かけの活性
は比較例1の4.5倍以上と見積もることが出来た。
(Example 2) The electrolyte membrane-electrode assembly produced in Example 1 and Comparative Example 1 was incorporated into a fuel cell and the current-potential characteristics were measured. As a result, in Example 1,
An output of 80 mA / cm @ 2 at 0.35 V and an output of 430 mA / cm @ 2 at 0.35 V were obtained in Comparative Example 1. Converting this into a current value per unit amount of platinum catalyst, 4000 A / g in Example 1 and 860 A / g in Comparative Example 1,
The apparent activity per unit amount of the platinum catalyst in Example 1 could be estimated to be 4.5 times or more that of Comparative Example 1.

【0052】[0052]

【発明の効果】本発明により、電子、プロトン、燃料ガ
スの経路が確実に確保されることで電極反応部位が3次
元化された膜−電極接合体を作製することが出来、高価
な貴金属触媒の見かけの活性を大幅に向上することが出
来る。また、単位面積当たりの発電効率の高い固体高分
子型燃料電池を実現する事が出来る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to produce a membrane-electrode assembly in which the electrode reaction sites are three-dimensionalized by reliably securing the paths of electrons, protons and fuel gas, and an expensive precious metal catalyst. The apparent activity of can be significantly improved. Further, it is possible to realize a polymer electrolyte fuel cell with high power generation efficiency per unit area.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の燃料電池用電極基材の代表的な
一例の表面の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of the surface of a typical example of an electrode base material for a fuel cell of the present invention.

【図2】図2は本発明の燃料電池用電極基材の代表的な
一例の断面の走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron microscope photograph of a cross section of a typical example of the electrode substrate for a fuel cell of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB05 BB06 BB07 BB13 BB17 CC06 DD08 EE02 EE03 EE05 EE10 EE17 EE18 HH01 HH04 5H026 AA06 CC03 CX04 EE02 EE05 EE08 HH01 HH04    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS01 BB01 BB03 BB05                       BB06 BB07 BB13 BB17 CC06                       DD08 EE02 EE03 EE05 EE10                       EE17 EE18 HH01 HH04                 5H026 AA06 CC03 CX04 EE02 EE05                       EE08 HH01 HH04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】微細な連通孔を有する多孔質構造を持ち、
平均孔径が0.05〜10μmで空孔率が25〜85%
である炭素膜構造体に、少なくとも1種類の金属ないし
合金の微粒子が分散した構造体からなる金属分散炭素膜
構造体。
1. A porous structure having fine communication holes,
Average pore size is 0.05-10μm and porosity is 25-85%
A metal-dispersed carbon film structure comprising a structure in which fine particles of at least one kind of metal or alloy are dispersed in the carbon film structure.
【請求項2】該金属微粒子の大きさの平均が1〜10n
mであることを特徴とする請求項1に記載の金属分散炭
素膜構造体。
2. The average size of the fine metal particles is 1 to 10 n.
The metal dispersed carbon film structure according to claim 1, wherein the metal dispersed carbon film structure is m.
【請求項3】該金属微粒子の少なくても1種類が貴金属
ないしは貴金属元素を含む合金であることを特徴とする
請求項1〜2のいずれかに記載の金属分散炭素膜構造
体。
3. The metal dispersed carbon film structure according to claim 1, wherein at least one kind of the metal fine particles is a noble metal or an alloy containing a noble metal element.
【請求項4】請求項1〜3に記載の金属分散炭素膜構造
体を用いることを特徴とする燃料電池用電極。
4. A fuel cell electrode comprising the metal-dispersed carbon membrane structure according to any one of claims 1 to 3.
【請求項5】請求項4に記載の燃料電池用電極を構成要
素として持つ、電解質膜−燃料電池用ガス拡散電極接合
体。
5. An electrolyte membrane-fuel cell gas diffusion electrode assembly having the fuel cell electrode according to claim 4 as a constituent element.
【請求項6】請求項4に記載の燃料電池用電極を構成要
素として含む、燃料電池。
6. A fuel cell comprising the fuel cell electrode according to claim 4 as a constituent element.
JP2001322927A 2001-03-19 2001-10-22 Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell Pending JP2003132900A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001322927A JP2003132900A (en) 2001-10-22 2001-10-22 Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
EP02005354A EP1244165A3 (en) 2001-03-19 2002-03-14 Electrode base material for fuel cell
AU26168/02A AU784328B2 (en) 2001-03-19 2002-03-18 Electrode base material for fuel cell
US10/098,426 US20020132159A1 (en) 2001-03-19 2002-03-18 Electrode base material for fuel cell
CN02107457A CN1375886A (en) 2001-03-19 2002-03-19 Electrode base material for fuel cell
KR1020020014742A KR20020074422A (en) 2001-03-19 2002-03-19 Electrode base material for fuel cell
US11/636,440 US20070082805A1 (en) 2001-03-19 2006-12-11 Electrode base material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322927A JP2003132900A (en) 2001-10-22 2001-10-22 Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006340720A Division JP2007123284A (en) 2006-12-19 2006-12-19 Metal dispersed carbon film structure, electrode for fuel cell, electrode assembly, and fuel cell

Publications (1)

Publication Number Publication Date
JP2003132900A true JP2003132900A (en) 2003-05-09

Family

ID=19139891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322927A Pending JP2003132900A (en) 2001-03-19 2001-10-22 Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell

Country Status (1)

Country Link
JP (1) JP2003132900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318824A (en) * 2005-05-13 2006-11-24 Tomoegawa Paper Co Ltd Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell
JP2009518817A (en) * 2005-12-12 2009-05-07 ビーワイディー カンパニー リミテッド Method for producing catalyst-coated membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217193A (en) * 1985-07-13 1987-01-26 Shirakawa Seisakusho:Kk Gas permeable membrane
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2003109608A (en) * 2001-09-28 2003-04-11 Noritake Co Ltd Electrode material and application of electrode material to fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217193A (en) * 1985-07-13 1987-01-26 Shirakawa Seisakusho:Kk Gas permeable membrane
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2003109608A (en) * 2001-09-28 2003-04-11 Noritake Co Ltd Electrode material and application of electrode material to fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318824A (en) * 2005-05-13 2006-11-24 Tomoegawa Paper Co Ltd Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell
JP2009518817A (en) * 2005-12-12 2009-05-07 ビーワイディー カンパニー リミテッド Method for producing catalyst-coated membrane

Similar Documents

Publication Publication Date Title
AU784328B2 (en) Electrode base material for fuel cell
US20200358106A1 (en) Fuel Cells Constructed From Self-Supporting Catalyst Layers and/or Self-Supporting Microporous Layers
Kim et al. Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer
JP2000513480A (en) Gas diffusion electrodes for polymer electrolyte membrane fuel cells
JP2003317729A (en) Fuel cell electrode using porous graphite film, film- electrode bonded body and fuel cell
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2012519929A (en) Improved membrane electrode assembly
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
WO2003036655A1 (en) Polymer electrolyte solution for manufacturing electrode for fuel cell
JP2002170574A (en) Electrode substrate for fuel cell
JP2003128409A (en) Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP5011610B2 (en) Inorganic material composite polymer membrane and method for producing the same
US9444106B2 (en) Simultaneous coating of fuel cell components
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
WO2011154811A1 (en) Method for the production of an electrochemical cell
KR20140118914A (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
KR101127343B1 (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP2003317728A (en) Fuel cell electrode using porous carbon film, film- electrode bonded body and fuel cell
JP2004164854A (en) Polymer electrolyte solution for forming electrode for fuel cell
JP2003132900A (en) Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
WO2004095614A2 (en) Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
JP2010209157A (en) Grafted polyimide electrolyte
JP2005093217A (en) Fuel cell electrode, its manufacturing method, membrane-electrode jointed body, and fuel cell
CN116391277A (en) Carbon material for solid polymer fuel cell catalyst support, catalyst layer for solid polymer fuel cell, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024