JP2006318824A - Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell - Google Patents

Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell Download PDF

Info

Publication number
JP2006318824A
JP2006318824A JP2005141712A JP2005141712A JP2006318824A JP 2006318824 A JP2006318824 A JP 2006318824A JP 2005141712 A JP2005141712 A JP 2005141712A JP 2005141712 A JP2005141712 A JP 2005141712A JP 2006318824 A JP2006318824 A JP 2006318824A
Authority
JP
Japan
Prior art keywords
catalyst
membrane
fuel cell
slurry
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005141712A
Other languages
Japanese (ja)
Inventor
Kazunori Yamaguchi
和徳 山口
Hiromi Totsuka
博己 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2005141712A priority Critical patent/JP2006318824A/en
Publication of JP2006318824A publication Critical patent/JP2006318824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry capable of forming a catalyst membrane for a solid polymer type fuel cell in which the power generation capability of the fuel cell can be enhanced, and a power generation capability cannot be degraded easily even if it is operated for a long time; a catalyst membrane for a solid polymer fuel cell a membrane-electrode assembly and a solid polymer type fuel cell, in which power generation capability cannot be degraded easily even if it is operated for a long time with a high power generation capability. <P>SOLUTION: In this slurry for forming the catalyst membrane; a graphite, a water-repellent resin, catalyst particle, and ion conductivity resin are dispersed into water and/or alcohol. This catalyst membrane for the solid polymer fuel cell is applied by the slurry for forming the catalyst membrane and formed. This membrane-electrode assembly 2 has an electrolyte layer 20, and catalyst membranes for the solid polymer fuel cell which are laminated on the both surfaces of the electrolyte layer 20. The one or both catalyst membranes 10a and 10b for the solid polymer fuel cells are the catalyst membrane for the solid polymer fuel cells. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用触媒膜を形成するための触媒膜形成用スラリーに関する。また、固体高分子型燃料電池用触媒膜並びにその製造方法、膜−電極接合体及び固体高分子型燃料電池に関する。   The present invention relates to a catalyst film forming slurry for forming a catalyst film for a polymer electrolyte fuel cell. The present invention also relates to a catalyst membrane for a polymer electrolyte fuel cell, a production method thereof, a membrane-electrode assembly, and a polymer electrolyte fuel cell.

燃料電池は、燃料と酸化剤とを連続的に供給し、これらが反応したときの化学エネルギーを電力として取り出す発電システムである。燃料電池の種類は、これに用いる電解質の種類によって、動作温度が比較的低いアルカリ型、リン酸型、固体高分子型と、高温で動作する溶融炭酸塩型、固体酸化物電解質型とに大別される。
これらの中で、固体高分子型燃料電池は、イオン伝導性のある電解質層の両面に触媒膜を配し、更に触媒膜の外側に多孔質体からなるガス拡散層を配して5層構造のMEA(Membrane Electrode Assembly)とし、更にガス拡散層の外側にセパレータを配した単セルを有するものが一般的である。この固体高分子型燃料電池においては、電解質層の一方の側が燃料極になり、他方の側が酸化剤極になり、両方のガス拡散層同士が外部負荷回路を介して電気的に接続されている。
そして、固体高分子型燃料電池における触媒膜は、電気化学的な反応を生じさせる機能と、燃料と酸化剤との反応によって生成する水の排水又は保水する機能とを兼ね備える必要があり、固体高分子型燃料電池において特に重要な構成である。
A fuel cell is a power generation system that continuously supplies fuel and an oxidant and extracts chemical energy as electric power when they react. Depending on the type of electrolyte used, there are two types of fuel cells: alkaline type, phosphoric acid type, and solid polymer type, which have relatively low operating temperatures, and molten carbonate type and solid oxide electrolyte type that operate at high temperatures. Separated.
Among these, the polymer electrolyte fuel cell has a five-layer structure in which a catalyst membrane is disposed on both surfaces of an ion conductive electrolyte layer, and a gas diffusion layer made of a porous material is disposed outside the catalyst membrane. It is common to have a single cell in which a MEA (Membrane Electrode Assembly) is used and a separator is disposed outside the gas diffusion layer. In this polymer electrolyte fuel cell, one side of the electrolyte layer is a fuel electrode, the other side is an oxidant electrode, and both gas diffusion layers are electrically connected via an external load circuit. .
The catalyst film in the polymer electrolyte fuel cell must have a function of causing an electrochemical reaction and a function of draining or retaining water generated by the reaction between the fuel and the oxidant. This is a particularly important configuration in a molecular fuel cell.

従来、MEA(膜−電極接合体)は、触媒成分又は触媒成分とこれを担持する炭素材料とからなる触媒粒子が分散した塗液を電解質層の両面に塗工し、その上にガス拡散層を貼り合わせることにより製造されていた。このような製造方法によれば、製造効率を高くできる反面、塗液中の分散媒を乾燥除去する際に、電解質層にシワが発生しやすくなるため、平滑な触媒膜を形成することが困難であった(例えば、特許文献1参照)。
そこで、カーボンペーパーなどからなる多孔質体のガス拡散層上に塗液を塗工する方法が提案されている(例えば、特許文献2参照)。この方法における塗液は、触媒担持カーボン、イオン伝導性樹脂(例えば、デュポン社製の商品名:ナフィオン)及び分散媒からなり、イオン伝導性樹脂を触媒粒子の結着剤として用いる。
特開平5−29005号公報 特開平7−130376号公報
Conventionally, an MEA (membrane-electrode assembly) has been applied to both surfaces of an electrolyte layer with a coating liquid in which catalyst particles comprising a catalyst component or a catalyst component and a carbon material supporting the catalyst component are dispersed, and a gas diffusion layer thereon. It was manufactured by pasting together. According to such a production method, the production efficiency can be increased, but when the dispersion medium in the coating liquid is removed by drying, wrinkles are easily generated in the electrolyte layer, so that it is difficult to form a smooth catalyst film. (For example, see Patent Document 1).
Thus, a method of applying a coating liquid on a porous gas diffusion layer made of carbon paper or the like has been proposed (see, for example, Patent Document 2). The coating liquid in this method is composed of catalyst-supporting carbon, an ion conductive resin (for example, trade name: Nafion manufactured by DuPont) and a dispersion medium, and the ion conductive resin is used as a binder for the catalyst particles.
JP-A-5-29005 JP-A-7-130376

しかし、多孔質体のガス拡散層上に塗液を塗工した場合には、多孔質体の孔中に触媒粒子が浸入してしまうため、均一な触媒膜を形成することが困難であった。また、塗工により形成された触媒膜においては、触媒粒子が結着剤中に埋没しやすいため、電気化学反応を生じさせる電極材−電解質−触媒からなるいわゆる三相界面が効率的に配置されていなかった。すなわち、特許文献2の方法では、触媒膜内部における触媒成分の配置が最適化されておらず、電気化学的な効率が低いため、触媒成分を多量に使用する必要があった。特に、メタノールやエタノール等を直接燃料として用いる固体高分子型燃料電池においては、触媒成分による燃料からの水素イオンの分離効率が低いために、より多くの触媒成分量が必要となっていた。したがって、触媒成分を効率的に利用して水素を高効率でイオン化でき、燃料電池の発電能力を高くできる触媒膜が求められていた。
また、上記のような、イオン伝導性樹脂で結着された触媒担持カーボンは多孔質構造を有しているものの、その孔径は1μm以下と小さいため、生成水や供給水が凝縮して孔が閉塞することがあった。そのため、長時間稼動させると、発電能力が低下することがあった。
However, when a coating liquid is applied onto the gas diffusion layer of the porous body, it is difficult to form a uniform catalyst film because the catalyst particles enter the pores of the porous body. . In addition, in the catalyst film formed by coating, since the catalyst particles are easily embedded in the binder, a so-called three-phase interface composed of an electrode material-electrolyte-catalyst that causes an electrochemical reaction is efficiently arranged. It wasn't. That is, in the method of Patent Document 2, the arrangement of the catalyst component inside the catalyst film is not optimized, and the electrochemical efficiency is low, so that it is necessary to use a large amount of the catalyst component. In particular, in a polymer electrolyte fuel cell using methanol, ethanol, or the like as a direct fuel, since the separation efficiency of hydrogen ions from fuel by the catalyst component is low, a larger amount of catalyst component is required. Therefore, there has been a demand for a catalyst membrane that can efficiently use hydrogen as a catalyst component and ionize hydrogen with high efficiency and increase the power generation capability of the fuel cell.
In addition, although the catalyst-carrying carbon bound with the ion conductive resin as described above has a porous structure, the pore diameter is as small as 1 μm or less, so that the generated water and the feed water are condensed to form pores. There was a case of obstruction. For this reason, the power generation capacity may decrease when operated for a long time.

本発明は、前記課題を解決するためになされたものであり、触媒成分を高効率で利用でき、燃料電池の発電能力を高くできる上に、長時間稼動させても発電能力が低下しにくい固体高分子型燃料電池用触媒膜を形成できる触媒膜形成用スラリーを提供することを目的とする。また、触媒成分を高効率で利用でき、発電能力が高い上に、長時間稼動させても発電能力が低下しにくい固体高分子型燃料電池用触媒膜並びにその製造方法、膜−電極接合体及び固体高分子型燃料電池を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and the catalyst component can be used with high efficiency, the power generation capacity of the fuel cell can be increased, and the power generation capacity is not easily lowered even when operated for a long time. It is an object of the present invention to provide a slurry for forming a catalyst film that can form a catalyst film for a polymer fuel cell. In addition, the catalyst component can be used with high efficiency, the power generation capacity is high, and the power generation capacity is not easily lowered even if the catalyst is operated for a long time, and the production method thereof, the membrane-electrode assembly, and An object of the present invention is to provide a polymer electrolyte fuel cell.

本発明の触媒膜形成用スラリーは、水及び/又はアルコールに、黒鉛と撥水性樹脂と触媒粒子とイオン伝導性樹脂とが分散されていることを特徴とする。
本発明の触媒膜形成用スラリーにおいては、前記撥水性樹脂がフッ素系樹脂であることが好ましい。
本発明の触媒膜形成用スラリーにおいては、前記フッ素系樹脂が、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVDF)、ポリヘキサフルオロプロピレン(PHFP)、エチレン・テトラフルオロエチレンコポリマー(ETFE)、およびこれらの共重合体から選択される少なくとも1種であることが好ましい。
本発明の触媒膜形成用スラリーにおいては、前記黒鉛が鱗状、鱗片状黒鉛、薄片状黒鉛及び膨張黒鉛から選ばれる1種以上であることが好ましい。
本発明の触媒膜形成用スラリーは、導電助剤がさらに分散されていることが好ましい。
その際、前記導電助剤が、カーボンブラック及び/又は炭素繊維であることが好ましく、さらに、前記炭素繊維がカーボンナノチューブであることが好ましい。
本発明の固体高分子型燃料電池用触媒膜は、上述した触媒膜形成用スラリーが塗布されて形成されたことを特徴とする。
本発明の固体高分子型燃料電池用触媒膜は、多孔質構造を有することが好ましい。
多孔質構造を有する場合には、前記多孔質構造が、黒鉛によって形成されていることが好ましい。
本発明の固体高分子型燃料電池用触媒膜においては、前記撥水性樹脂と前記触媒粒子と前記イオン伝導性樹脂とが、前記黒鉛表面に保持されていることが好ましい。
また、触媒膜形成用スラリーが導電助剤を含む場合には、本発明の固体高分子型燃料電池用触媒膜は、触媒膜形成用スラリーが塗布されて形成され、前記撥水性樹脂と前記触媒粒子と前記イオン伝導性樹脂と前記導電助剤とが、前記黒鉛表面に保持されていることが好ましい。
本発明の固体高分子型燃料電池用触媒膜の製造方法は、上述した触媒膜形成用スラリーを基材上に塗工して塗工フィルムを形成するフィルム形成工程と、前記塗工フィルムを乾燥する乾燥工程とを有することを特徴とする。
本発明の膜−電極接合体は、電解質層と、該電解質層の両方の面上に積層された固体高分子型燃料電池用触媒膜とを具備する膜−電極接合体であって、
一方又は両方の固体高分子型燃料電池用触媒膜が、上述した固体高分子型燃料電池用触媒膜であることを特徴とする。
本発明の固体高分子型燃料電池は、上述した膜−電極接合体を具備することを特徴とする。
The slurry for forming a catalyst film of the present invention is characterized in that graphite, a water repellent resin, catalyst particles, and an ion conductive resin are dispersed in water and / or alcohol.
In the slurry for forming a catalyst film of the present invention, the water repellent resin is preferably a fluororesin.
In the slurry for forming a catalyst film of the present invention, the fluororesin is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (PHFP), ethylene-tetrafluoroethylene copolymer (ETFE). And at least one selected from these copolymers.
In the slurry for forming a catalyst film of the present invention, the graphite is preferably at least one selected from scale-like, flaky graphite, flaky graphite, and expanded graphite.
In the slurry for forming a catalyst film of the present invention, it is preferable that a conductive additive is further dispersed.
In that case, it is preferable that the said conductive support agent is carbon black and / or carbon fiber, Furthermore, it is preferable that the said carbon fiber is a carbon nanotube.
The catalyst membrane for a polymer electrolyte fuel cell of the present invention is formed by applying the above-described slurry for forming a catalyst membrane.
The catalyst membrane for a polymer electrolyte fuel cell of the present invention preferably has a porous structure.
When it has a porous structure, it is preferable that the porous structure is formed of graphite.
In the catalyst membrane for a polymer electrolyte fuel cell of the present invention, the water repellent resin, the catalyst particles, and the ion conductive resin are preferably held on the graphite surface.
When the catalyst film-forming slurry contains a conductive additive, the catalyst film for a polymer electrolyte fuel cell of the present invention is formed by applying the catalyst film-forming slurry, and the water-repellent resin and the catalyst It is preferable that the particles, the ion conductive resin, and the conductive auxiliary agent are held on the graphite surface.
The method for producing a catalyst membrane for a polymer electrolyte fuel cell according to the present invention includes a film forming step of coating the above-described catalyst film-forming slurry on a substrate to form a coating film, and drying the coating film. And a drying step.
The membrane-electrode assembly of the present invention is a membrane-electrode assembly comprising an electrolyte layer and a catalyst membrane for a polymer electrolyte fuel cell laminated on both surfaces of the electrolyte layer,
One or both of the polymer membranes for a polymer electrolyte fuel cell are the aforementioned polymer membranes for a polymer electrolyte fuel cell.
The polymer electrolyte fuel cell of the present invention is characterized by comprising the membrane-electrode assembly described above.

本発明の触媒膜形成用スラリーによれば、触媒成分が高効率で利用され、燃料電池の発電能力を高くできる上に、長時間稼動させても発電能力が低下しにくい固体高分子型燃料電池用触媒膜を形成できる。
本発明の固体高分子型燃料電池用触媒膜は、触媒成分が高効率で利用され、燃料電池の発電能力を高くできる上に、長時間稼動させても発電能力が低下しにくい。
本発明の固体高分子型燃料電池用触媒膜の製造方法によれば、触媒成分を高効率で利用でき、燃料電池の発電能力を高くできる上に、長時間稼動させても発電能力が低下しにくい触媒膜を製造できる。
本発明の膜−電極接合体及び固体高分子型燃料電池は、触媒成分が高効率で利用され、発電能力が高い上に、長時間稼動させても発電能力が低下しにくい。
According to the slurry for forming a catalyst film of the present invention, the catalyst component is used with high efficiency, the power generation capacity of the fuel cell can be increased, and the power generation capacity is not easily lowered even if operated for a long time. A catalyst membrane can be formed.
The catalyst membrane for a polymer electrolyte fuel cell of the present invention uses a catalyst component with high efficiency, can increase the power generation capability of the fuel cell, and does not easily decrease the power generation capability even if operated for a long time.
According to the method for producing a catalyst membrane for a polymer electrolyte fuel cell of the present invention, the catalyst component can be used with high efficiency, the power generation capability of the fuel cell can be increased, and the power generation capability is reduced even if operated for a long time. A difficult catalyst membrane can be produced.
In the membrane-electrode assembly and the polymer electrolyte fuel cell of the present invention, the catalyst component is used with high efficiency, the power generation capacity is high, and the power generation capacity is not easily lowered even when operated for a long time.

以下、本発明の好ましい実施の形態について説明する。
<触媒膜形成用スラリー>
本発明の触媒膜形成用スラリーは、分散媒である水及び/又はアルコールに、黒鉛と撥水性樹脂と触媒粒子とイオン伝導性樹脂とが分散されているものである。
触媒膜形成用スラリーは、分散媒として水が好ましく、水の中でもイオン交換水がより好ましい。分散媒がイオン交換水であれば不純物が少ない上に、黒鉛、撥水性樹脂、触媒粒子、導電助剤の分散性をより高くできる。また、分散媒が水系であれば環境にも良い。
また、分散媒として使用されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノールなどが挙げられる。
Hereinafter, preferred embodiments of the present invention will be described.
<Slurry for forming a catalyst film>
The slurry for forming a catalyst film of the present invention is one in which graphite, a water repellent resin, catalyst particles, and an ion conductive resin are dispersed in water and / or alcohol as a dispersion medium.
The catalyst film forming slurry is preferably water as a dispersion medium, and more preferably ion-exchanged water. If the dispersion medium is ion-exchanged water, there are few impurities, and the dispersibility of graphite, water-repellent resin, catalyst particles, and conductive additive can be increased. If the dispersion medium is aqueous, it is good for the environment.
Examples of the alcohol used as the dispersion medium include methanol, ethanol, propanol, butanol and the like.

[黒鉛]
黒鉛としては特に制限されないが、鱗片状黒鉛、薄片状黒鉛、膨張黒鉛から選ばれるいずれか1種以上であることが好ましい。黒鉛が鱗片状黒鉛、薄片状黒鉛、膨張黒鉛であれば、多孔質構造の触媒膜をより容易に形成できるため、触媒粒子の利用効率をより高くできる。その結果、集電性がより高い触媒膜を形成でき、発電能力がより高い固体高分子型燃料電池を製造することが可能になる。
[graphite]
Although it does not restrict | limit especially as graphite, It is preferable that it is any 1 or more types chosen from flaky graphite, flaky graphite, and expanded graphite. If the graphite is flaky graphite, flaky graphite, or expanded graphite, a catalyst film having a porous structure can be formed more easily, and the utilization efficiency of catalyst particles can be further increased. As a result, it is possible to form a catalyst film with higher current collecting ability and to manufacture a polymer electrolyte fuel cell with higher power generation capacity.

黒鉛の平均粒径としては、0.1〜200μmであることが好ましい。黒鉛の平均粒径が0.1μm未満であると、黒鉛間の接触抵抗が増加して導電性が低下する傾向にあり、200μmより大きいと、塗料化や製膜化が困難になる傾向にある。   The average particle size of graphite is preferably 0.1 to 200 μm. If the average particle size of the graphite is less than 0.1 μm, the contact resistance between the graphite tends to increase and the conductivity tends to decrease, and if it exceeds 200 μm, it tends to be difficult to form a paint or film. .

[撥水性樹脂]
撥水性樹脂としては、水酸基、カルボキシ基、アミノ基、アミド基などの親水基を有さず、ハイドロカーボンやハロゲンを有する樹脂、中でも撥水性の高いフッ素系樹脂などが好ましい。フッ素系樹脂の中でも、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVDF)、ポリヘキサフルオロプロピレン(HFP)、エチレン・テトラフルオロエチレンコポリマー(ETFE)、及びこれらの共重合体が安定性、経済性の面で好ましい。これらの樹脂を単独であるいは2種以上混合して用いることもできる。なお、これらの樹脂は、粉末状(微粒子状)のものが用いられる。
[Water repellent resin]
As the water repellent resin, a resin having no hydrophilic group such as a hydroxyl group, a carboxy group, an amino group, and an amide group and having a hydrocarbon or halogen, particularly a fluorine resin having high water repellency is preferable. Among fluororesins, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (HFP), ethylene-tetrafluoroethylene copolymer (ETFE), and copolymers thereof are stable. It is preferable in terms of economy. These resins can be used alone or in admixture of two or more. These resins are used in the form of powder (fine particles).

[触媒粒子]
触媒粒子としては、触媒成分のみからなる粒子であってもよいし、炭素材料に触媒成分が担持された粒子であってもよいが、触媒成分をさらに高い効率で利用できることから、炭素材料に触媒成分が担持された粒子が好ましい。
触媒成分としては、燃料極側の触媒膜を形成する場合には、水素イオンを高効率で生成できることから、白金とルテニウムからなる合金触媒が好ましい。また、酸化剤極側の触媒膜を形成する場合には、酸素イオンを高い効率で生成できることから、白金触媒が好ましい。
[Catalyst particles]
The catalyst particles may be particles composed only of the catalyst component or may be particles in which the catalyst component is supported on the carbon material. However, since the catalyst component can be used with higher efficiency, Particles carrying components are preferred.
As the catalyst component, when a catalyst film on the fuel electrode side is formed, an alloy catalyst made of platinum and ruthenium is preferable because hydrogen ions can be generated with high efficiency. In the case of forming the catalyst film on the oxidant electrode side, a platinum catalyst is preferable because oxygen ions can be generated with high efficiency.

触媒粒子が、炭素材料に触媒成分が担持された粒子である場合、炭素材料としては、炭素原子を主成分とし、導電性を有する無機材料であって、酸化雰囲気に耐性があるものであれば特に制限されない。具体的な炭素材料としては、ファーネスブラックやチャネルブラックなどのカーボンブラックを用いることができる。
カーボンブラックとしては、比表面積や粒子径の大きさによらずいずれのグレードのものも使用可能であるが、触媒膜の性能と生産性の両立の点では、比表面積が大きく、かつ二次凝集粒子の大きさが大きい高ストラクチャーのものが好ましい。高ストラクチャーのカーボンブラックとしては、例えば、ライオンアクゾ社製商品名:ケッチェンEC、キャボット社製商品名:VulcanXC72Rなどが挙げられる。これらの高ストラクチャーのカーボンブラックは、塗液中での分散性の高さと触媒膜に用いた場合の抵抗の低さからも、好ましく用いられる。
また、カーボンブラック以外の炭素材料としては、例えば、アセチレンブラック、黒鉛のほか、炭素繊維、フラーレンなどが挙げられる。なお、炭素繊維の中には、カーボンナノチューブも含まれる。
When the catalyst particles are particles in which a catalyst component is supported on a carbon material, the carbon material is an inorganic material having carbon atoms as a main component and having conductivity, and having resistance to an oxidizing atmosphere. There is no particular limitation. As a specific carbon material, carbon black such as furnace black or channel black can be used.
Any grade of carbon black can be used regardless of the specific surface area and particle size, but it has a large specific surface area and secondary agglomeration in terms of both catalyst membrane performance and productivity. A high structure having a large particle size is preferred. Examples of the high-structure carbon black include Lion Akzo's trade name: Ketchen EC, Cabot's trade name: Vulcan XC72R, and the like. These high structure carbon blacks are preferably used because of their high dispersibility in the coating liquid and low resistance when used in the catalyst film.
Examples of carbon materials other than carbon black include acetylene black and graphite, as well as carbon fibers and fullerenes. The carbon fiber includes carbon nanotubes.

[イオン伝導性樹脂]
イオン伝導性樹脂としては、例えば、プロトン(水素イオン)交換基を有するものなどが挙げられる。ここで、プロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などが挙げられる。イオン伝導性樹脂の中でも、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖から構成されるプロトン交換基を有する樹脂、例えば、デュポン社製商品名:ナフィオン等が好ましい。
[Ion conductive resin]
Examples of the ion conductive resin include those having a proton (hydrogen ion) exchange group. Here, examples of the proton exchange group include a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group. Among the ion conductive resins, a resin having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, for example, a product name: Nafion manufactured by DuPont is preferable.

[導電助剤]
触媒膜形成用スラリーにおいては、発電能力をより高くできることから、導電助剤がさらに分散されていることが好ましい。
導電助剤としては、炭素原子を主成分とし、導電性を有する無機材料であって、酸化雰囲気に耐性があるものであれば特に制限されない。すなわち、触媒粒子に使用される炭素材料と同様のものを使用できる。上記炭素材料の中でも、黒鉛同士間の導電性がより高くなり、発電特性がより向上することから、カーボンブラック、炭素繊維が好ましく、特に、導電性の高いカーボンナノチューブがより好ましい。
[Conductive aid]
In the slurry for forming the catalyst film, it is preferable that the conductive additive is further dispersed because the power generation capacity can be further increased.
The conductive auxiliary agent is not particularly limited as long as it is an inorganic material having carbon atoms as a main component and having conductivity and resistance to an oxidizing atmosphere. That is, the same carbon material used for the catalyst particles can be used. Among the carbon materials, carbon black and carbon fiber are preferable, and carbon nanotubes with high conductivity are more preferable because the conductivity between graphites is higher and the power generation characteristics are further improved.

[濃度]
触媒膜形成スラリーの濃度は、目的の特性、例えば機械強度、塗工のしやすさ等を考慮して適宜選択することができる。例えば、膜厚を薄くしたい場合には濃度を低くし、厚くしたい場合には濃度を高くすることが好ましい。
[concentration]
The concentration of the catalyst film-forming slurry can be appropriately selected in consideration of target characteristics such as mechanical strength and ease of coating. For example, it is preferable to lower the concentration when it is desired to reduce the film thickness and to increase the concentration when it is desired to increase the thickness.

[調製方法]
触媒膜形成用スラリーの調製方法としては、例えば、水及び/又はアルコールに、イオン伝導性樹脂を含む溶液、黒鉛、撥水性樹脂、触媒粒子を添加、分散する方法などが挙げられる。添加の順序としては特に限定されないが、まず、水及び/又はアルコールとイオン伝導性樹脂を含む溶液とを混合して樹脂スラリーを得てから、その樹脂スラリーに黒鉛、撥水性樹脂を添加して炭素スラリーを得た後、その炭素スラリーに触媒粒子を添加することが好ましい。この順序であれば、触媒膜表面に触媒粒子が保持されやすく、触媒成分の利用効率をより向上させることができる。
分散の際には、市販のミキサーを用いることができ、例えば、ホモミキサー、ハイブリッドミキサー等が好適に用いられる。
[Preparation method]
Examples of the method for preparing the slurry for forming a catalyst film include a method of adding and dispersing a solution containing ion conductive resin, graphite, water-repellent resin, and catalyst particles in water and / or alcohol. The order of addition is not particularly limited, but first, water and / or alcohol and a solution containing an ion conductive resin are mixed to obtain a resin slurry, and then graphite and water repellent resin are added to the resin slurry. After obtaining the carbon slurry, it is preferable to add catalyst particles to the carbon slurry. In this order, the catalyst particles are easily held on the surface of the catalyst film, and the utilization efficiency of the catalyst component can be further improved.
In the dispersion, a commercially available mixer can be used. For example, a homomixer, a hybrid mixer, or the like is preferably used.

以上説明した触媒膜形成用スラリーは、黒鉛、撥水性樹脂、イオン伝導性樹脂を含んでいるため、多孔質で三相界面が効率的に形成されている。その結果、触媒成分が高効率で利用され、発電能力が高い固体高分子型燃料電池用触媒膜を形成できる。また、撥水性を有し、供給水や生成水による閉塞を防止できるため、長時間稼動させても発電能力が低下しにくい固体高分子型燃料電池用触媒膜を形成できる。
また、分散媒として水及び/又はアルコールを用いているため、黒鉛、撥水性樹脂、イオン伝導性樹脂、導電助剤の分散性を高くすることができる。高分散のスラリーであれば、触媒粒子の分散性が高い触媒膜を形成できる。この点も発電能力を高くできる要因である。
Since the slurry for forming a catalyst film described above contains graphite, water repellent resin, and ion conductive resin, it is porous and a three-phase interface is efficiently formed. As a result, it is possible to form a catalyst film for a polymer electrolyte fuel cell that uses the catalyst component with high efficiency and has high power generation capacity. In addition, since it has water repellency and can be prevented from being blocked by supply water or generated water, it is possible to form a catalyst film for a polymer electrolyte fuel cell in which the power generation capacity is not easily lowered even when operated for a long time.
In addition, since water and / or alcohol is used as the dispersion medium, the dispersibility of graphite, water repellent resin, ion conductive resin, and conductive additive can be increased. If the slurry is highly dispersed, a catalyst film with high dispersibility of catalyst particles can be formed. This is another factor that can increase power generation capacity.

<固体高分子型燃料電池用触媒膜>
図1に、本発明の固体高分子型燃料電池用触媒膜(以下、「触媒膜」と略す。)の一実施形態例を示す。
本実施形態例の触媒膜10は、上記触媒膜形成用スラリーが塗布されて形成されたものであって、多孔質構造を有する黒鉛11と、黒鉛11の表面に保持された撥水性樹脂12と、触媒粒子13と、イオン伝導性樹脂14と、導電助剤15とを有するものである。
<Catalyst membrane for polymer electrolyte fuel cell>
FIG. 1 shows an embodiment of the catalyst membrane for a polymer electrolyte fuel cell (hereinafter abbreviated as “catalyst membrane”) of the present invention.
The catalyst film 10 of the present embodiment is formed by applying the catalyst film-forming slurry, and has a graphite 11 having a porous structure, and a water-repellent resin 12 held on the surface of the graphite 11. The catalyst particles 13, the ion conductive resin 14, and the conductive assistant 15 are included.

[触媒膜の成分割合]
触媒膜10中の各成分の含有量(質量)は、イオン伝導性樹脂14の配合量(質量)を100%とした際に、黒鉛11が250〜750%、撥水性樹脂12が25〜250%、触媒粒子13が25〜250%、導電助剤15が25〜250%であることが好ましい。
黒鉛11が250%より少ないと導電性が低下する傾向にあり、750%より多いと塗料化や製膜化が困難になる傾向にある。
撥水性樹脂12は、25%より少ないと撥水性が不足する傾向にあり、250%を超えると撥水性樹脂12が孔を塞いでしまい、触媒膜としての性能を低下させる傾向にある。
触媒粒子13が25%より少ないと、燃料からのプロトンの生成が不十分になる傾向にあり、250%より多いとプロトンの生成量が飽和するので不経済である。
導電助剤15は、25%より少ないと、導電性向上効果が不充分になることがあり、250%より多いと塗料化や製膜化が困難になる傾向にある。
また、イオン伝導性樹脂14が、他の成分に対して少なすぎると水素イオンの伝達が不充分になることがあり、多すぎると黒鉛11表面上に保持されている触媒粒子13を完全に覆ってしまうため、触媒能を低下させ、発電特性を低下させる傾向にある。
[Composition ratio of catalyst membrane]
The content (mass) of each component in the catalyst membrane 10 is 250 to 750% for graphite 11 and 25 to 250 for water repellent resin 12 when the blending amount (mass) of the ion conductive resin 14 is 100%. %, The catalyst particles 13 are preferably 25 to 250%, and the conductive assistant 15 is preferably 25 to 250%.
When the amount of graphite 11 is less than 250%, the conductivity tends to decrease, and when it is more than 750%, it tends to be difficult to form a paint or a film.
When the water repellent resin 12 is less than 25%, the water repellency tends to be insufficient. When the water repellent resin 12 exceeds 250%, the water repellent resin 12 closes the pores and tends to deteriorate the performance as a catalyst film.
If the catalyst particle 13 is less than 25%, proton generation from the fuel tends to be insufficient, and if it exceeds 250%, the proton generation amount is saturated, which is uneconomical.
If the amount of the conductive assistant 15 is less than 25%, the effect of improving the conductivity may be insufficient, and if it is more than 250%, it tends to be difficult to form a paint or a film.
If the ion conductive resin 14 is too small relative to the other components, hydrogen ion transmission may be insufficient. If it is too much, the catalyst particles 13 held on the surface of the graphite 11 are completely covered. Therefore, there is a tendency to reduce the catalytic performance and power generation characteristics.

[触媒膜の孔径]
触媒膜10の孔径は1μm以上であることが好ましく、5μm以上であることがより好ましい。孔径が1μm以上と大きく、触媒膜10が高空隙率である場合には、流体抵抗が小さくなり、燃料や生成水がより容易に透過するため、発電能力の低下をより防止できる。また、触媒膜10の孔径が1μm以上であれば、アルコールなどの液体燃料から水素イオンを取り出す際に使用する触媒成分量を非常に少なくできる。
[Catalyst membrane pore size]
The pore diameter of the catalyst membrane 10 is preferably 1 μm or more, and more preferably 5 μm or more. When the pore diameter is as large as 1 μm or more and the catalyst membrane 10 has a high porosity, the fluid resistance becomes small and the fuel and generated water can more easily permeate, so that the power generation capacity can be further prevented from decreasing. Further, if the pore diameter of the catalyst membrane 10 is 1 μm or more, the amount of the catalyst component used when taking out hydrogen ions from the liquid fuel such as alcohol can be greatly reduced.

[触媒膜の厚さ]
触媒膜10の厚さは1〜400μmであることが好ましく、5〜200μmであることがより好ましく、10〜150μmであることが特に好ましい。触媒膜10の厚さが1μm未満であると、触媒粒子13量が少なくなるため、発電特性が低くなることがある。また、触媒膜10の厚さが400μmを超えると、電気的な接触抵抗が大きくなるほか、燃料流体の通過距離が長くなるため、燃料供給が滞りやすくなる上に、生成水の排出効率が低下し、しかも膜の弾性が低下して破損しやすくなる傾向にある。
[Catalyst film thickness]
The thickness of the catalyst film 10 is preferably 1 to 400 μm, more preferably 5 to 200 μm, and particularly preferably 10 to 150 μm. When the thickness of the catalyst film 10 is less than 1 μm, the amount of the catalyst particles 13 is reduced, so that the power generation characteristics may be lowered. In addition, when the thickness of the catalyst film 10 exceeds 400 μm, the electrical contact resistance increases and the passage distance of the fuel fluid becomes long, so that the fuel supply is likely to be delayed and the discharge efficiency of the generated water is reduced. In addition, the elasticity of the film tends to be lowered and easily broken.

以上説明した触媒膜10は黒鉛11を含んでおり、多孔質構造を容易に形成する上に、その多孔質の黒鉛11の表面に触媒粒子及びイオン伝導性樹脂14が保持されており、触媒粒子13及びイオン伝導性樹脂14の配置が最適化されている。このような構造の触媒膜10によれば、触媒成分と燃料との接触効率が高くなるとともに、触媒成分の作用で燃料から生成した水素イオンが高効率で伝送される。したがって、触媒成分の利用効率が高く、集電性が高いので、発電能力が高い。また、触媒膜10は撥水性樹脂12を含有し、撥水性を有するため、生成水や供給水によって多孔質構造体の孔が閉塞することを防止でき、発電能力の低下を防止できる。
さらに、この触媒膜10では、燃料電池を製造する際に触媒粒子13が脱落しにくいという利点も有する。
The catalyst film 10 described above includes graphite 11 and easily forms a porous structure. Further, the catalyst particles and the ion conductive resin 14 are held on the surface of the porous graphite 11. 13 and the arrangement of the ion conductive resin 14 are optimized. According to the catalyst film 10 having such a structure, the contact efficiency between the catalyst component and the fuel is increased, and hydrogen ions generated from the fuel by the action of the catalyst component are transmitted with high efficiency. Therefore, since the utilization efficiency of the catalyst component is high and the current collecting property is high, the power generation capacity is high. Further, since the catalyst film 10 contains the water-repellent resin 12 and has water repellency, the pores of the porous structure can be prevented from being blocked by generated water or supplied water, and the power generation capacity can be prevented from being lowered.
Further, the catalyst film 10 has an advantage that the catalyst particles 13 are not easily dropped when the fuel cell is manufactured.

<固体高分子型燃料電池用触媒膜の製造方法>
本発明の固体高分子型燃料電池用触媒膜の製造方法は、上記触媒膜形成用スラリーを基材上に塗工して塗工フィルムを形成するフィルム形成工程と、前記塗工フィルムを乾燥する乾燥工程とを有する方法である。
<Method for producing catalyst membrane for polymer electrolyte fuel cell>
The method for producing a catalyst membrane for a polymer electrolyte fuel cell of the present invention comprises a film forming step of coating the catalyst film-forming slurry on a substrate to form a coating film, and drying the coating film. And a drying step.

[フィルム形成工程]
フィルム形成工程において使用される基材としては、塗工フィルムを乾燥させた後に塗工フィルムから剥離できるものが好ましい。好ましい基材としては、例えば、ポリエチレンテレフタレート、ポリ四フッ化エチレン、ポリイミド、ポリエチレンナフタレート(PEN)等からなるフィルムが挙げられる。また、表面が離型処理された樹脂フィルムを用いることもできる。
触媒膜と電解質層とを一体化させる際には触媒膜に積層された基材側から熱プレスして転写することから、上記好ましい基材の中でも、耐熱性が高いものが好ましい。具体的には、PENフィルム、ポリイミドフィルムが好ましい。
[Film forming process]
As a base material used in a film formation process, what can peel from a coating film after drying a coating film is preferable. As a preferable base material, for example, a film made of polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethylene naphthalate (PEN), or the like can be given. Moreover, the resin film by which the surface was mold release-processed can also be used.
When the catalyst film and the electrolyte layer are integrated, heat transfer is performed from the side of the base material laminated on the catalyst film, and therefore, among the above preferable base materials, those having high heat resistance are preferable. Specifically, a PEN film and a polyimide film are preferable.

塗工方法としては特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等を採ることができる。また、触媒膜形成用スラリーの粘度によって、塗工方法を適宜選択することが好ましい。   The coating method is not particularly limited, and for example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like can be adopted. Moreover, it is preferable to select a coating method as appropriate depending on the viscosity of the slurry for forming the catalyst film.

[乾燥工程]
乾燥工程の乾燥は、自然乾燥であってもよいし、ドライヤー等を用いた強制乾燥であってもよい。
[Drying process]
Drying in the drying step may be natural drying or forced drying using a dryer or the like.

以上説明した触媒膜10の製造方法によれば、黒鉛によって多孔質構造が形成され、黒鉛表面に触媒粒子及びイオン伝導性樹脂が保持された触媒膜を製造できる。したがって、この製造方法によれば、触媒成分を高効率で利用できて発電能力が高い上に、長時間稼動させても発電能力が低下しにくい触媒膜を製造できる。
また、この製造方法では塗工法を適用するので、触媒膜の膜厚を容易に制御できる。さらに、生産性を高くでき、また、安価に生産を大型化できる。
According to the manufacturing method of the catalyst film 10 described above, a catalyst film in which a porous structure is formed of graphite and the catalyst particles and the ion conductive resin are held on the graphite surface can be manufactured. Therefore, according to this production method, it is possible to produce a catalyst film that can use the catalyst components with high efficiency and has high power generation capability, and that is less likely to have lower power generation capability even when operated for a long time.
In addition, since the coating method is applied in this manufacturing method, the thickness of the catalyst film can be easily controlled. Further, productivity can be increased and production can be enlarged at a low cost.

<膜−電極接合体、固体高分子型燃料電池>
本発明の膜−電極接合体及び固体高分子型燃料電池の一実施形態例について説明する。
図2に、本実施形態例の膜−電極接合体及び固体高分子型燃料電池を示す。本実施形態例の膜−電極接合体2は、電解質層20と、電解質層20の両面に積層された触媒膜10a,10bと、その触媒膜10a,10b上にそれぞれ積層されたガス拡散層30a,30bとを具備し、それらが一体状に接合されたものである。すなわち、ガス拡散層30a−触媒膜10a−電解質層20−触媒膜10b−ガス拡散層30bの5層接合体である。
この膜−電極接合体2では、一方のガス拡散層30a側が燃料極、他方のガス拡散層30b側が酸化剤極である。
本実施形態例の固体高分子型燃料電池1は、膜−電極接合体2と、膜−電極接合体2の各ガス拡散層30a,30bの外側に設けられたセパレータ3,3とを具備するものである。そして、この固体高分子型燃料電池1では、両方の触媒膜10a,10bが外部負荷回路40を介して電気的に接続されている。
<Membrane-electrode assembly, polymer electrolyte fuel cell>
One embodiment of the membrane-electrode assembly and polymer electrolyte fuel cell of the present invention will be described.
FIG. 2 shows a membrane-electrode assembly and a polymer electrolyte fuel cell according to this embodiment. The membrane-electrode assembly 2 of this embodiment includes an electrolyte layer 20, catalyst films 10a and 10b stacked on both surfaces of the electrolyte layer 20, and gas diffusion layers 30a stacked on the catalyst films 10a and 10b, respectively. , 30b, which are joined together. That is, it is a five-layer assembly of gas diffusion layer 30a-catalyst membrane 10a-electrolyte layer 20-catalyst membrane 10b-gas diffusion layer 30b.
In this membrane-electrode assembly 2, one gas diffusion layer 30a side is a fuel electrode, and the other gas diffusion layer 30b side is an oxidant electrode.
A polymer electrolyte fuel cell 1 according to this embodiment includes a membrane-electrode assembly 2 and separators 3, 3 provided outside the gas diffusion layers 30 a, 30 b of the membrane-electrode assembly 2. Is. In the polymer electrolyte fuel cell 1, both catalyst films 10 a and 10 b are electrically connected via an external load circuit 40.

膜−電極接合体2の電解質層20としては、固体高分子電解質からなるものを用いることができ、例えば、デュポン社製 商品名:ナフィオン117、ナフィオン112等が挙げられる。
ガス拡散層30a,30bとしては、例えば、カーボンペーパー、カーボンクロスなどが挙げられる。
また、セパレータ3としては、例えば、黒鉛製、金属製のものなどが挙げられる。
As the electrolyte layer 20 of the membrane-electrode assembly 2, one made of a solid polymer electrolyte can be used, and examples thereof include trade names: Nafion 117, Nafion 112, etc. manufactured by DuPont.
Examples of the gas diffusion layers 30a and 30b include carbon paper and carbon cloth.
Examples of the separator 3 include those made of graphite and metal.

膜−電極接合体2は、触媒膜10a−電解質層20−触媒膜10bの3層積層体を作製し、3層積層体の両面にガス拡散層30a,30bを積層することにより得られる。3層積層体の製造方法としては、例えば、電解質層20の両面に触媒膜10a,10bを重ねて熱プレス等によって圧着させる方法、電解質層20の両面に上記触媒膜形成用スラリーを塗布する方法などが挙げられる。   The membrane-electrode assembly 2 is obtained by preparing a three-layer laminate of catalyst membrane 10a-electrolyte layer 20-catalyst membrane 10b and laminating gas diffusion layers 30a, 30b on both sides of the three-layer laminate. As a method for producing a three-layer laminate, for example, a method in which the catalyst films 10a and 10b are stacked on both surfaces of the electrolyte layer 20 and pressure-bonded by hot pressing or the like, and a method in which the catalyst film forming slurry is applied on both surfaces of the electrolyte layer 20 Etc.

この固体高分子型燃料電池による発電方法の一例について説明する。まず、燃料極側のガス拡散層30aに燃料である水素を供給して燃料極側の触媒膜10aに導入すると共に、酸化剤極側のガス拡散層30bに酸化剤である酸素を供給して酸化剤極側の触媒膜10bに導入する。燃料極側の触媒膜10aに導入された水素は、白金などの触媒成分によって水素イオンと電荷に分離された後、水素イオンは電解質層20を通って酸化剤極側の触媒膜10bに導かれる。一方、電荷は、外部負荷回路40を通って、酸化剤極側の触媒膜10bに導かれる。また、酸化剤極側の触媒膜10bに導入された酸素は、上記水素イオン及び電荷と結合して水を生成する。
このように、水素と酸素とを反応させることにより、外部負荷回路40に電荷を通すことができるので、電池として機能することができる。
An example of a power generation method using this polymer electrolyte fuel cell will be described. First, hydrogen as a fuel is supplied to the gas diffusion layer 30a on the fuel electrode side and introduced into the catalyst film 10a on the fuel electrode side, and oxygen as an oxidant is supplied to the gas diffusion layer 30b on the oxidant electrode side. The catalyst is introduced into the catalyst film 10b on the oxidant electrode side. Hydrogen introduced into the fuel electrode-side catalyst membrane 10a is separated into hydrogen ions and charges by a catalyst component such as platinum, and then the hydrogen ions are guided to the oxidant electrode-side catalyst membrane 10b through the electrolyte layer 20. . On the other hand, the charge is guided to the catalyst film 10b on the oxidant electrode side through the external load circuit 40. Further, oxygen introduced into the catalyst film 10b on the oxidant electrode side combines with the hydrogen ions and charges to generate water.
Thus, by reacting hydrogen and oxygen, charge can be passed through the external load circuit 40, so that it can function as a battery.

以上説明した膜−電極接合体2及び固体高分子型燃料電池1は、上述した触媒膜10a、10bを具備するので、触媒成分を高効率で利用できて発電能力が高い上に、長時間稼動させても発電能力が低下しにくい。
このような固体高分子型燃料電池1は、単位触媒量あたりの発電能力が高く、コストを上げずに長寿命の燃料電池を実現できるので、電気自動車用、パーソナルコンピュータ用等に適用することができる。
Since the membrane-electrode assembly 2 and the polymer electrolyte fuel cell 1 described above include the catalyst membranes 10a and 10b described above, the catalyst components can be used with high efficiency, the power generation capacity is high, and the operation is continued for a long time. The power generation capacity is unlikely to decrease even if it is used.
Since such a polymer electrolyte fuel cell 1 has a high power generation capacity per unit catalyst amount and can realize a long-life fuel cell without increasing costs, it can be applied to electric vehicles, personal computers, and the like. it can.

なお、本発明の固体高分子型燃料電池は上述した実施形態例に限定されない。例えば、上述した触媒膜はガス拡散層の機能も発揮できるため、本発明の膜−電極接合体はガス拡散層を具備していなくてもよい。すなわち、触媒膜−電解質層−触媒膜の3層積層体を具備していればよい。その場合には、各触媒膜の外側にセパレータを配置する。上記のように、膜−電極接合体がガス拡散層を具備しなければ、部材を簡略化でき、コストを低減できる。
また、両方の触媒膜が本発明の触媒膜である必要はなく、いずれか一方が本発明の触媒膜であればよい。燃料極側に本発明の触媒膜を設置すれば、燃料の供給性が向上し、酸化剤極側に設置すれば、生成した水の排出効率に優れるものとなる。
The polymer electrolyte fuel cell of the present invention is not limited to the above-described embodiment example. For example, since the catalyst membrane described above can also exhibit the function of a gas diffusion layer, the membrane-electrode assembly of the present invention may not include the gas diffusion layer. That is, what is necessary is just to have comprised the 3 layer laminated body of the catalyst membrane-electrolyte layer-catalyst membrane. In that case, a separator is disposed outside each catalyst membrane. As described above, if the membrane-electrode assembly does not include the gas diffusion layer, the member can be simplified and the cost can be reduced.
Moreover, it is not necessary for both catalyst membranes to be the catalyst membrane of the present invention, and either one may be the catalyst membrane of the present invention. If the catalyst membrane of the present invention is installed on the fuel electrode side, the fuel supply performance is improved, and if it is installed on the oxidant electrode side, the generated water is excellently discharged.

<実施例1>
(燃料極用触媒膜の製造)
まず、水20gとイオン伝導性樹脂を含む溶液(デュポン社製 商品名:ナフィオン 20質量%溶液)10gとを混合して樹脂スラリーを得た。次いで、樹脂スラリーに、鱗片状の黒鉛8g、PTFE粒子1g及び導電助剤としてカーボンブラック1gを添加して炭素スラリーを得た。続いて、炭素スラリーに触媒粒子である触媒担持カーボンブラック2g(田中貴金属工業社製;触媒として白金・ルテニウム54質量%をカーボンブラック46質量%に担持した粒子)を添加して触媒膜形成用スラリーAを調製した。
<Example 1>
(Manufacture of fuel electrode catalyst membrane)
First, 20 g of water and 10 g of a solution containing an ion conductive resin (trade name: Nafion 20 mass% solution manufactured by DuPont) were mixed to obtain a resin slurry. Next, 8 g of scaly graphite, 1 g of PTFE particles, and 1 g of carbon black as a conductive assistant were added to the resin slurry to obtain a carbon slurry. Subsequently, 2 g of catalyst-supported carbon black (produced by Tanaka Kikinzoku Kogyo Co., Ltd .; particles in which 54% by mass of platinum / ruthenium was supported on 46% by mass of carbon black as a catalyst) was added to the carbon slurry to form a catalyst film-forming slurry A was prepared.

得られた触媒膜形成用スラリーAをPENフィルムにアプリケーターを用いて塗工して塗工フィルムを得た。その後、塗工フィルムを乾燥させて厚さ50μmの触媒膜Aを得た。この触媒膜Aを、燃料電池における燃料極用触媒膜とした。   The obtained slurry A for forming a catalyst film was applied to a PEN film using an applicator to obtain a coated film. Thereafter, the coated film was dried to obtain a catalyst film A having a thickness of 50 μm. This catalyst film A was used as a fuel electrode catalyst film in a fuel cell.

触媒粒子として、触媒担持カーボンブラック(田中貴金属工業社製;触媒として白金46質量%をカーボンブラック54質量%に担持した粒子)を用いたこと以外は触媒膜形成用スラリーAの調製方法と同様にして、触媒膜形成用スラリーBを調製した。そして、その触媒膜形成用スラリーBを用いて、触媒膜Aの形成方法と同様にして厚さ50μmの触媒膜Bを得た。この触媒膜Bを燃料電池における酸素極用触媒膜とした。   Except that catalyst-supported carbon black (manufactured by Tanaka Kikinzoku Kogyo; particles in which 46% by mass of platinum was supported on 54% by mass of carbon black) was used as the catalyst particles, the same procedure as in the preparation of slurry A for forming a catalyst film was used. Thus, a slurry B for forming a catalyst film was prepared. Then, using the catalyst film forming slurry B, a catalyst film B having a thickness of 50 μm was obtained in the same manner as the method for forming the catalyst film A. This catalyst film B was used as a catalyst film for an oxygen electrode in a fuel cell.

(触媒膜の観察)
得られた燃料極用触媒膜及び酸素極用触媒膜の断面の細部構造を、走査型電子顕微鏡(SEM)を用いて観察したところ、各触媒膜は、図1に示すように黒鉛11によって多孔質構造が形成され、黒鉛11表面に撥水性樹脂12、触媒粒子13、イオン伝導性樹脂14、導電助剤15が保持されていることが確認された。
(Observation of catalyst membrane)
When the detailed structures of the cross sections of the obtained fuel electrode catalyst film and oxygen electrode catalyst film were observed using a scanning electron microscope (SEM), each catalyst film was porous by graphite 11 as shown in FIG. It was confirmed that the water-repellent resin 12, the catalyst particles 13, the ion conductive resin 14, and the conductive auxiliary agent 15 are held on the surface of the graphite 11.

<実施例2>
実施例1の導電助剤であるカーボンブラックをカーボンナノチューブに変更したこと以外は実施例1と同様にして燃料極用触媒膜(厚さ;50μm)、酸素極用触媒膜(厚さ;50μm)をそれぞれ得た。
<Example 2>
A fuel electrode catalyst film (thickness: 50 μm) and an oxygen electrode catalyst film (thickness: 50 μm) were the same as in Example 1 except that the carbon black as the conductive auxiliary agent in Example 1 was changed to carbon nanotubes. Respectively.

<比較例1>
実施例1において使用した白金・ルテニウム合金を担持した触媒担持カーボンブラック2gを用意し、これを酢酸ブチル20gに混合し、超音波洗浄機にて10分間分散して、燃料極用触媒分散液を22g得た。次いで、燃料極用触媒分散液22gに対して、イオン伝導性樹脂を含む溶液(デュポン社製 商品名:ナフィオン 5質量%溶液)8gを混合して、更に超音波洗浄機で30分間分散して、黒鉛を含有していない触媒膜形成用スラリーCを調製した。この触媒膜形成用スラリーCを電解質層(デュポン社製 商品名:ナフィオン117)の一方の面にアプリケーターを用いて塗工し、乾燥させて、厚さ50μmの燃料極用触媒膜を形成した。
また、触媒担持カーボンブラックの代わりに白金合金を担持した触媒担持カーボンブラックを用いたこと以外は触媒膜形成用スラリーCの調製方法と同様にして触媒膜形成用スラリーDを調製した。この触媒膜形成用スラリーDを電解質層(デュポン社製 商品名:ナフィオン117)の他方の面にアプリケーターを用いて塗工し、乾燥させて、厚さ50μmの酸素極用触媒膜を形成した。
各触媒膜断面をSEMにより観察したところ、触媒膜は多孔質を有していなかった。
<Comparative Example 1>
2 g of catalyst-supported carbon black supporting the platinum-ruthenium alloy used in Example 1 was prepared, mixed with 20 g of butyl acetate, and dispersed for 10 minutes with an ultrasonic cleaner to prepare a fuel electrode catalyst dispersion. 22 g was obtained. Next, 8 g of a solution containing an ion conductive resin (trade name: Nafion 5 mass% solution manufactured by DuPont) is mixed with 22 g of the fuel electrode catalyst dispersion, and further dispersed for 30 minutes with an ultrasonic cleaner. A slurry C for forming a catalyst film containing no graphite was prepared. This catalyst film-forming slurry C was applied to one surface of an electrolyte layer (trade name: Nafion 117, manufactured by DuPont) using an applicator and dried to form a fuel electrode catalyst film having a thickness of 50 μm.
Further, a catalyst film forming slurry D was prepared in the same manner as the catalyst film forming slurry C except that a catalyst supporting carbon black supporting a platinum alloy was used instead of the catalyst supporting carbon black. The catalyst film-forming slurry D was applied to the other surface of the electrolyte layer (trade name: Nafion 117, manufactured by DuPont) using an applicator and dried to form a catalyst film for an oxygen electrode having a thickness of 50 μm.
When the cross section of each catalyst film was observed by SEM, the catalyst film was not porous.

<比較例2>
PTFE粒子を添加しなかったこと以外は実施例1と同様にして燃料極用触媒膜、酸素極用触媒膜をそれぞれ得た。
<Comparative Example 2>
A fuel electrode catalyst membrane and an oxygen electrode catalyst membrane were obtained in the same manner as in Example 1 except that the PTFE particles were not added.

次に、実施例1,2及び比較例1,2の触媒膜を、下記のように電解質層の燃料極側及び酸素極側の両面に配備して固体高分子型燃料電池を製造した。
<実施例3>
実施例1の燃料極用触媒膜及び酸素極用触媒膜をイオン交換膜(デュポン社製商品名:ナフィオン117)からなる電解質層の両面に積層した後、各触媒膜上にガス拡散層としてカーボンペーパーを積層し、熱プレス(120℃)によりこれらを一体化して膜−電極接合体を得た。次に、この膜−電極接合体を単セルに組み込んで固体高分子型燃料電池を得た。
Next, the polymer membranes of Examples 1 and 2 and Comparative Examples 1 and 2 were provided on both the fuel electrode side and the oxygen electrode side of the electrolyte layer as described below to produce solid polymer fuel cells.
<Example 3>
The fuel electrode catalyst membrane and the oxygen electrode catalyst membrane of Example 1 were laminated on both surfaces of an electrolyte layer made of an ion exchange membrane (trade name: Nafion 117 manufactured by DuPont), and then carbon as a gas diffusion layer on each catalyst membrane. Paper was laminated and these were integrated by hot pressing (120 ° C.) to obtain a membrane-electrode assembly. Next, this membrane-electrode assembly was incorporated into a single cell to obtain a polymer electrolyte fuel cell.

<実施例4>
実施例3におけるガス拡散層の積層を省略して3層積層体の膜−電極接合体を得た後、この膜−電極接合体を単セルに組み込んで固体高分子型燃料電池を得た。
<実施例5>
実施例2の燃料極用触媒膜及び酸素用触媒膜を用いたこと以外は実施例3と同様にして固体高分子型燃料電池を得た。
<実施例6>
実施例2の燃料極用触媒膜及び酸素用触媒膜を用いたこと以外は実施例4と同様にして固体高分子型燃料電池を得た。
<Example 4>
After the lamination of the gas diffusion layer in Example 3 was omitted to obtain a membrane-electrode assembly of a three-layer laminate, the membrane-electrode assembly was incorporated into a single cell to obtain a polymer electrolyte fuel cell.
<Example 5>
A polymer electrolyte fuel cell was obtained in the same manner as in Example 3, except that the fuel electrode catalyst film and the oxygen catalyst film of Example 2 were used.
<Example 6>
A polymer electrolyte fuel cell was obtained in the same manner as in Example 4 except that the fuel electrode catalyst film and the oxygen catalyst film of Example 2 were used.

<比較例3>
比較例1の燃料極用触媒膜及び酸素用触媒膜を用いたこと以外は実施例3と同様にして燃料電池を得た。
<比較例4>
比較例2の燃料極用触媒膜及び酸素用触媒膜を用いたこと以外は実施例3と同様にして燃料電池を得た。
<比較例5>
比較例2の燃料極用触媒膜及び酸素用触媒膜を用いたこと以外は実施例4と同様にして燃料電池を得た。
<Comparative Example 3>
A fuel cell was obtained in the same manner as in Example 3 except that the fuel electrode catalyst film and the oxygen catalyst film of Comparative Example 1 were used.
<Comparative example 4>
A fuel cell was obtained in the same manner as in Example 3 except that the fuel electrode catalyst film and the oxygen catalyst film of Comparative Example 2 were used.
<Comparative Example 5>
A fuel cell was obtained in the same manner as in Example 4 except that the fuel electrode catalyst film and the oxygen catalyst film of Comparative Example 2 were used.

<燃料電池発電特性>
実施例3〜6及び比較例3〜5の燃料電池の発電特性を以下のようにして評価した。まず、バブリングにより加湿した水素及び酸素(各供給圧2.5気圧(2.53×10Pa))を固体高分子型燃料電池に供給し、温度を80℃に保持して固体高分子型燃料電池を稼動させた。そして、5時間後、500時間後及び1000時間運転後に、電流密度が1A/cmになる電圧を測定した。その結果を表1に示す。
<Fuel cell power generation characteristics>
The power generation characteristics of the fuel cells of Examples 3 to 6 and Comparative Examples 3 to 5 were evaluated as follows. First, hydrogen and oxygen humidified by bubbling (each supply pressure 2.5 atm (2.53 × 10 5 Pa)) are supplied to a solid polymer fuel cell, and the temperature is maintained at 80 ° C. The fuel cell was activated. Then, after 5 hours, after 500 hours and after 1000 hours of operation, the voltage at which the current density was 1 A / cm 2 was measured. The results are shown in Table 1.

Figure 2006318824
Figure 2006318824

表1から明らかなように、黒鉛と撥水性樹脂と触媒粒子とイオン伝導性樹脂とを含む触媒膜を用いた実施例3〜6の燃料電池は、いずれも長時間稼動させても電圧低下が抑えられていた。また、実施例3〜6の燃料電池は撥水性が高いため、フラッディングが抑制されており、電圧が高かった。
これに対し、黒鉛と撥水性樹脂を含まない比較例3の燃料電池は、電圧が低い上に、長時間稼動させた際に電圧が低下した。また、撥水性樹脂を含まない比較例4,5の燃料電池は、電圧が低かった。
As is clear from Table 1, the fuel cells of Examples 3 to 6 using the catalyst film containing graphite, water-repellent resin, catalyst particles, and ion conductive resin all have a voltage drop even when operated for a long time. It was suppressed. Moreover, since the fuel cells of Examples 3 to 6 had high water repellency, flooding was suppressed and the voltage was high.
In contrast, the fuel cell of Comparative Example 3 containing no graphite and water-repellent resin had a low voltage, and the voltage decreased when operated for a long time. Further, the fuel cells of Comparative Examples 4 and 5 that did not contain the water repellent resin had a low voltage.

また、実施例3〜6及び比較例3〜5の燃料電池について、燃料として水によるメタノール希釈液(メタノール5質量%)を用いたこと以外は、燃料として水素を用いた際と同様にして発電特性を評価した。結果を表2に示す。   For the fuel cells of Examples 3 to 6 and Comparative Examples 3 to 5, power generation was performed in the same manner as when hydrogen was used as the fuel, except that a methanol dilution with water (5% by mass of methanol) was used as the fuel. Characteristics were evaluated. The results are shown in Table 2.

Figure 2006318824
Figure 2006318824

表2から明らかなように、燃料がメタノール液系であっても、実施例3〜6の燃料電池は電圧が高く、電圧低下が防がれていた。これに対し、比較例3の燃料電池は電圧が低い上に、長時間稼動させた際に電圧が低下した。また、比較例4,5の燃料電池は、電圧が低かった。   As is clear from Table 2, even when the fuel was a methanol liquid system, the fuel cells of Examples 3 to 6 had a high voltage, and the voltage drop was prevented. On the other hand, the voltage of the fuel cell of Comparative Example 3 was low and the voltage dropped when operated for a long time. Moreover, the voltage of the fuel cells of Comparative Examples 4 and 5 was low.

本発明の固体高分子型燃料電池用触媒膜の一実施形態例を示す断面図である。1 is a cross-sectional view showing an embodiment of a catalyst membrane for a polymer electrolyte fuel cell of the present invention. 本発明の固体高分子型燃料の一実施形態例を模式的に示す図である。It is a figure showing typically an example of an embodiment of a polymer electrolyte fuel of the present invention.

符号の説明Explanation of symbols

1 固体高分子型燃料電池
2 膜−電極接合体
10,10a,10b 触媒膜(固体高分子型燃料電池用触媒膜)
11 黒鉛
12 撥水性樹脂
13 触媒粒子
14 イオン伝導性樹脂
15 導電助剤
20 電解質層
30a,30b ガス拡散層
40 外部負荷回路
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte fuel cell 2 Membrane-electrode assembly 10, 10a, 10b Catalyst membrane (catalyst membrane for polymer electrolyte fuel cell)
11 Graphite 12 Water repellent resin 13 Catalyst particles 14 Ion conductive resin 15 Conductive aid 20 Electrolyte layer 30a, 30b Gas diffusion layer 40 External load circuit

Claims (15)

水及び/又はアルコールに、黒鉛と撥水性樹脂と触媒粒子とイオン伝導性樹脂とが分散されていることを特徴とする触媒膜形成用スラリー。   A slurry for forming a catalyst film, characterized in that graphite, a water-repellent resin, catalyst particles, and an ion conductive resin are dispersed in water and / or alcohol. 前記撥水性樹脂がフッ素系樹脂であることを特徴とする請求項1に記載の触媒膜形成用スラリー。   The slurry for forming a catalyst film according to claim 1, wherein the water-repellent resin is a fluororesin. 前記フッ素系樹脂が、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVDF)、ポリヘキサフルオロプロピレン(PHFP)、エチレン・テトラフルオロエチレンコポリマー(ETFE)、およびこれらの共重合体から選択される少なくとも1種であることを特徴とする請求項2に記載の触媒膜形成用スラリー。   The fluororesin is selected from polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (PHFP), ethylene-tetrafluoroethylene copolymer (ETFE), and copolymers thereof. The slurry for forming a catalyst film according to claim 2, wherein the slurry is at least one kind. 前記黒鉛が鱗状、鱗片状黒鉛、薄片状黒鉛及び膨張黒鉛から選ばれる1種以上であることを特徴とする請求項1〜3のいずれかに記載の触媒膜形成用スラリー。   The catalyst film forming slurry according to any one of claims 1 to 3, wherein the graphite is at least one selected from scale-like, scale-like graphite, flaky graphite, and expanded graphite. 導電助剤がさらに分散されていることを特徴とする請求項1〜4のいずれかに記載の触媒膜形成用スラリー。   The catalyst film-forming slurry according to any one of claims 1 to 4, wherein a conductive additive is further dispersed. 前記導電助剤が、カーボンブラック及び/又は炭素繊維であることを特徴とする請求項5に記載の触媒膜形成用スラリー。   6. The slurry for forming a catalyst film according to claim 5, wherein the conductive additive is carbon black and / or carbon fiber. 前記炭素繊維がカーボンナノチューブであることを特徴とする請求項6に記載の触媒膜形成用スラリー。   The slurry for forming a catalyst film according to claim 6, wherein the carbon fibers are carbon nanotubes. 請求項1〜7のいずれかに記載の触媒膜形成用スラリーが塗布されて形成されたことを特徴とする固体高分子型燃料電池用触媒膜。   A catalyst film for a polymer electrolyte fuel cell, which is formed by applying the slurry for forming a catalyst film according to any one of claims 1 to 7. 多孔質構造を有することを特徴とする請求項8に記載の固体高分子型燃料電池用触媒膜。   The catalyst membrane for a polymer electrolyte fuel cell according to claim 8, which has a porous structure. 前記多孔質構造が、黒鉛によって形成されていることを特徴とする請求項9に記載の固体高分子型燃料電池用触媒膜。   The catalyst membrane for a polymer electrolyte fuel cell according to claim 9, wherein the porous structure is made of graphite. 前記撥水性樹脂と前記触媒粒子と前記イオン伝導性樹脂とが、前記黒鉛表面に保持されていることを特徴とする請求項8〜10のいずれかに記載の固体高分子型燃料電池用触媒膜。   The catalyst film for a polymer electrolyte fuel cell according to any one of claims 8 to 10, wherein the water-repellent resin, the catalyst particles, and the ion conductive resin are held on the surface of the graphite. . 請求項5〜7のいずれかに記載の触媒膜形成用スラリーが塗布されて形成され、前記撥水性樹脂と前記触媒粒子と前記イオン伝導性樹脂と前記導電助剤とが、前記黒鉛表面に保持されていることを特徴とする固体高分子型燃料電池用触媒膜。   The slurry for forming a catalyst film according to claim 5 is applied and formed, and the water-repellent resin, the catalyst particles, the ion conductive resin, and the conductive auxiliary agent are held on the graphite surface. A catalyst membrane for a polymer electrolyte fuel cell, wherein 請求項1〜7のいずれかに記載の触媒膜形成用スラリーを基材上に塗工して塗工フィルムを形成するフィルム形成工程と、
前記塗工フィルムを乾燥する乾燥工程とを有することを特徴とする固体高分子型燃料電池用触媒膜の製造方法。
A film forming step of coating the slurry for forming a catalyst film according to any one of claims 1 to 7 on a substrate to form a coated film;
A method for producing a catalyst membrane for a polymer electrolyte fuel cell, comprising: a drying step of drying the coated film.
電解質層と、該電解質層の両方の面上に積層された固体高分子型燃料電池用触媒膜とを具備する膜−電極接合体であって、
一方又は両方の固体高分子型燃料電池用触媒膜が、請求項8〜12のいずれかに記載の固体高分子型燃料電池用触媒膜であることを特徴とする膜−電極接合体。
A membrane-electrode assembly comprising an electrolyte layer and a catalyst membrane for a polymer electrolyte fuel cell laminated on both surfaces of the electrolyte layer,
A membrane-electrode assembly, wherein one or both of the polymer membranes for a polymer electrolyte fuel cell is the catalyst membrane for a polymer electrolyte fuel cell according to any one of claims 8 to 12.
請求項14に記載の膜−電極接合体を具備することを特徴とする固体高分子型燃料電池。



A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 14.



JP2005141712A 2005-05-13 2005-05-13 Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell Pending JP2006318824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141712A JP2006318824A (en) 2005-05-13 2005-05-13 Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141712A JP2006318824A (en) 2005-05-13 2005-05-13 Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2006318824A true JP2006318824A (en) 2006-11-24

Family

ID=37539301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141712A Pending JP2006318824A (en) 2005-05-13 2005-05-13 Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2006318824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002444A (en) * 2019-06-20 2021-01-07 株式会社豊田中央研究所 Granular material, water-repellent layer, and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106915A (en) * 1994-10-04 1996-04-23 Fuji Electric Co Ltd Electrode of solid polymer fuel cell and manufacture of fuel cell
JP2001126737A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
WO2001092151A1 (en) * 2000-05-31 2001-12-06 Showa Denko K.K. Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
JP2002110178A (en) * 2000-09-29 2002-04-12 Sony Corp Method for fabricating gas-diffusion electrode and method for fabricating electrochemical device
JP2003132900A (en) * 2001-10-22 2003-05-09 Ube Ind Ltd Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
JP2004158359A (en) * 2002-11-08 2004-06-03 Hitachi Ltd Electrode catalyst, and fuel cell using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106915A (en) * 1994-10-04 1996-04-23 Fuji Electric Co Ltd Electrode of solid polymer fuel cell and manufacture of fuel cell
JP2001126737A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
WO2001092151A1 (en) * 2000-05-31 2001-12-06 Showa Denko K.K. Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
JP2002110178A (en) * 2000-09-29 2002-04-12 Sony Corp Method for fabricating gas-diffusion electrode and method for fabricating electrochemical device
JP2003132900A (en) * 2001-10-22 2003-05-09 Ube Ind Ltd Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
JP2004158359A (en) * 2002-11-08 2004-06-03 Hitachi Ltd Electrode catalyst, and fuel cell using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002444A (en) * 2019-06-20 2021-01-07 株式会社豊田中央研究所 Granular material, water-repellent layer, and manufacturing method thereof
JP7293901B2 (en) 2019-06-20 2023-06-20 株式会社豊田中央研究所 Granule, water-repellent layer and method for producing the same

Similar Documents

Publication Publication Date Title
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
CN101136480B (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system comprising same
KR101201816B1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
WO2005106994A1 (en) Membrane-electrode assembly for fuel cell and fuel cell using same
JP5188872B2 (en) Direct oxidation fuel cell
WO2012172993A1 (en) Gas diffusion layer for fuel cell and method for producing same
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
JP5693208B2 (en) Membrane-electrode assembly for fuel cell, manufacturing method of membrane-electrode assembly for fuel cell, fuel cell system, and stack for fuel cell
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2007095582A (en) Manufacturing method of membrane electrode assembly
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
WO2011040061A1 (en) Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell equipped with same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2008027811A (en) Membrane/electrode assembly for fuel cell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP5885007B2 (en) Manufacturing method of electrode sheet for fuel cell
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly
JP2006318824A (en) Slurry for forming catalyst membrane, catalyst membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell
JP2006294267A (en) Catalyst ink for fuel cell electrode formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102