JP2003106817A - Method for evaluating liquid crystal display element - Google Patents

Method for evaluating liquid crystal display element

Info

Publication number
JP2003106817A
JP2003106817A JP2001306037A JP2001306037A JP2003106817A JP 2003106817 A JP2003106817 A JP 2003106817A JP 2001306037 A JP2001306037 A JP 2001306037A JP 2001306037 A JP2001306037 A JP 2001306037A JP 2003106817 A JP2003106817 A JP 2003106817A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
evaluating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001306037A
Other languages
Japanese (ja)
Inventor
Shinichi Miyata
慎一 宮田
Kazuhiro Jiyouten
一浩 上天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001306037A priority Critical patent/JP2003106817A/en
Publication of JP2003106817A publication Critical patent/JP2003106817A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve an evaluation method for calculating the cell gap in a reflection type liquid crystal display element. SOLUTION: A polarizer 1 is arranged between the liquid crystal element 2 and a light source 3. Light is applied from the light source 3 to the liquid crystal display element 2. A peak value in the spectral reflection characteristics in the liquid crystal display element 2 is measured by an optical detector. The peak value in the minimum value out of the measured peak values is obtained. The distance between both the substrates in the liquid crystal display element 2 is calculated from the peak value in the extreme value, thus evaluating the liquid crystal display element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子の評
価方法に関し、特に、液晶表示素子のセルギャップの評
価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a liquid crystal display device, and more particularly to a method for evaluating a cell gap of a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶表示素子の大容量化、高速応
答化、大量生産化へ向けての開発が進んでいる。液晶表
示素子のセルギャップは、液晶の複屈折率の積をとるこ
とで、その光学位相差距離を示し、液晶表示素子の特性
を示す指標として広く用いられている。
2. Description of the Related Art In recent years, liquid crystal display devices have been developed for large capacity, high speed response and mass production. The cell gap of a liquid crystal display element shows the optical phase difference distance by taking the product of the birefringence of liquid crystal, and is widely used as an index showing the characteristics of the liquid crystal display element.

【0003】ホモジニアス配向した液晶表示素子におい
て、直交偏光子間に液晶分子長軸方向が偏光方向に45
°となるように配置した場合、液晶の複屈折率をΔn、
入射光強度をI0、入射光波長をλとすると出射光強度
Iは、(式3)の相関で表される。(例えば、松本正
一、角田市良 :液晶の基礎と応用 第46頁 発行:
株式会社工業調査会)。
In a homogeneously aligned liquid crystal display device, the long axis direction of liquid crystal molecules is 45 between orthogonal polarizers in the polarization direction.
When arranged so that the birefringence of the liquid crystal is Δn,
When the incident light intensity is I0 and the incident light wavelength is λ, the emitted light intensity I is represented by the correlation of (Equation 3). (For example, Shoichi Matsumoto and Ichino Tsunoda: Basics and Applications of Liquid Crystals, page 46.
Industrial Research Institute Co., Ltd.).

【0004】[0004]

【数3】 [Equation 3]

【発明が解決しようとする課題】しかしながら、正また
は負の誘電異方性を持つ液晶を用いたSTN型電界効果
複屈折モードでは、基板に垂直な方向に捻れによる光の
旋光効果が加わり、上記式3の関係が成り立たない。そ
のため透過分光評価による液晶表示素子の評価方法とし
て、特開平09−113865号公報が開示されてい
る。これは、一対の基板間に誘電異方性を有する液晶を
教示してなるSTN型液晶表示素子を評価する方法であ
り、上記液晶表示素子と光源との間に、該液晶表示素子
の入射側の基板に対し配向軸方向と45°の角度に第1
の偏光子を配置し、該液晶表示素子と光検出器との間に
液晶表示素子の出射側の基板に対し配向軸方向と45°
の角度に第2の偏光子を配置して分光透過特性上のピー
ク値を測定し、その測定により求めたピーク値のうちの
極小値のピーク値から、上記液晶表示素子の上記両基板
間の距離を算出し、上記液晶表示素子の評価を行うもの
である。しかし、これは、反射層を有する反射型液晶表
示素子の測定において、入射する入射光が液晶層を2回
通過することになるため、該公報記載の方法では、反射
型液晶表示素子に適用することができなかった。
However, in the STN type field effect birefringence mode using a liquid crystal having a positive or negative dielectric anisotropy, the optical rotation effect due to the twist in the direction perpendicular to the substrate is added, and The relationship of Expression 3 does not hold. Therefore, Japanese Patent Laid-Open No. 09-113865 has been disclosed as a method for evaluating a liquid crystal display device by transmission spectral evaluation. This is a method for evaluating an STN type liquid crystal display device which teaches a liquid crystal having a dielectric anisotropy between a pair of substrates. The STN type liquid crystal display device has an incident side of the liquid crystal display device between the liquid crystal display device and a light source. At a 45 ° angle to the alignment axis with respect to the substrate
Is disposed between the liquid crystal display element and the photodetector, and the alignment axis direction is 45 ° with respect to the substrate on the emission side of the liquid crystal display element.
The second polarizer is arranged at an angle of 1 to measure the peak value on the spectral transmission characteristic, and from the peak value of the minimum value among the peak values obtained by the measurement, the peak value between the both substrates of the liquid crystal display device is measured. The distance is calculated and the liquid crystal display device is evaluated. However, this is applied to the reflective liquid crystal display element in the method described in the publication because incident light that enters is passed through the liquid crystal layer twice in the measurement of the reflective liquid crystal display element having the reflective layer. I couldn't.

【0005】本発明は、上記問題点を解消するためにな
されたものであり、簡単かつ再現性良く光学的に測定を
行うことができる反射型液晶表示素子の評価方法を提供
することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for evaluating a reflection type liquid crystal display device capable of performing optical measurement simply and with good reproducibility. To do.

【0006】[0006]

【課題を解決するための手段】本発明の液晶表示素子の
評価方法は、光源から可視光が入射される入射側基板
と、上記可視光を反射する反射層を有する反射側基板と
の間に、誘電異方性を有する液晶を狭持してなるSTN
型液晶表示素子を評価する方法において、その吸収軸角
度が上記入射側基板の配向軸方向と45°の角度をなす
よう、上記液晶表示素子と上記光源との間に偏光板を配
置し、上記光源から上記液晶表示素子に対し光を照射
し、該液晶表示素子の反射側基板にて反射された光を光
検出器により検出し、上記液晶表示素子の分光反射特性
上のピーク値を測定し、上記測定により求めたピーク値
のうちの極小値のピーク値から、上記液晶表示素子の上
記両基板間の距離を算出し、上記液晶表示素子の評価を
行うことを特徴とするものである。
A method for evaluating a liquid crystal display device according to the present invention comprises: an incident side substrate on which visible light is incident from a light source; and a reflection side substrate having a reflection layer for reflecting the visible light. , STN sandwiching liquid crystal having dielectric anisotropy
In the method for evaluating a liquid crystal display element, a polarizing plate is arranged between the liquid crystal display element and the light source so that the absorption axis angle forms an angle of 45 ° with the alignment axis direction of the incident side substrate, The liquid crystal display element is irradiated with light from a light source, the light reflected by the reflection side substrate of the liquid crystal display element is detected by a photodetector, and the peak value on the spectral reflection characteristic of the liquid crystal display element is measured. The distance between the substrates of the liquid crystal display element is calculated from the minimum peak value among the peak values obtained by the measurement, and the liquid crystal display element is evaluated.

【0007】これにより、簡単かつ再現性良く光学的
に、反射型液晶表示素子のセルギャップを評価すること
ができる。
Thus, the cell gap of the reflection type liquid crystal display element can be evaluated optically easily and with good reproducibility.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。なお、ここで示す実施
の形態はあくまでも一例であって、必ずしもこの実施の
形態に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The embodiment shown here is merely an example, and the present invention is not necessarily limited to this embodiment.

【0009】(実施の形態1)以下に、本発明の実施の
形態1による液晶表示素子の評価方法について図1、図
2、及び図3を用いて説明する。図1は、本実施の形態
1による液晶表示素子の評価手法の構成図を示すもので
ある。
(Embodiment 1) A method for evaluating a liquid crystal display element according to Embodiment 1 of the present invention will be described below with reference to FIGS. 1, 2 and 3. FIG. 1 is a configuration diagram of an evaluation method for a liquid crystal display element according to the first embodiment.

【0010】図1において、1は偏光子であり、例え
ば、NPF−G1225DU(日東電工株式会社製)を
使用する。1aは偏光子の吸収軸角度である。2は液晶
表示素子であり、光源3から可視光が入射される入射側
基板21と、上記可視光を反射する反射層を有する反射
側基板の間に正または負の誘電異方性を有する液晶、例
えば、ZLI−2293(メルク・ジャパン株式会社
製)を狭持してなるものである。2aは入射側基板21
の配向軸角度、2bは反射側基板23の配向軸角度を示
したものである。なお、偏光子1の吸収軸角度1aと入
射側基板21の配向軸方向は、45°の角度をなす。3
は光源であり、可視光を照射する。4は光検出器であ
り、光源3からの光で、液晶表示素子2を透過し、反射
板基板22の反射層にて反射された光の強度を検出す
る。
In FIG. 1, reference numeral 1 is a polarizer, and for example, NPF-G1225DU (manufactured by Nitto Denko Corporation) is used. 1a is the absorption axis angle of the polarizer. Reference numeral 2 denotes a liquid crystal display element, which is a liquid crystal having a positive or negative dielectric anisotropy between an incident side substrate 21 on which visible light is incident from the light source 3 and a reflective side substrate having a reflective layer for reflecting the visible light. , ZLI-2293 (manufactured by Merck Japan Co., Ltd.), for example. 2a is the incident side substrate 21
2b shows the orientation axis angle of the reflection side substrate 23. The absorption axis angle 1a of the polarizer 1 and the orientation axis direction of the incident side substrate 21 form an angle of 45 °. Three
Is a light source and emits visible light. Reference numeral 4 denotes a photodetector, which detects the intensity of the light from the light source 3, which is transmitted through the liquid crystal display element 2 and reflected by the reflection layer of the reflection plate substrate 22.

【0011】次に、液晶表示素子の評価方法について説
明する。光源3から可視光を入射させ、図1に示した評
価系を通した分光特性を光検出器4により測定する。測
定の結果、光検出器4は、図2のような光学分光特性を
示した。なお、この例では、ツイスト角ω=250°,
液晶の複屈折率Δn=0.171,実際のセルギャップ
0=4.9930μmの試料3Dを用いた。ここでの
実際のセルギャップは、特開平09−113865号公
報の評価方法による測定値である。図2において、可視
光領域に谷を示すピーク値はいくつか示されるが、最も
視感度が強いピーク値、ここでは2つ目の谷ピーク値を
用いることとする。また、極値の横座標がλrbであり、
この例では“492nm”の値を示している。
Next, a method of evaluating the liquid crystal display element will be described. Visible light is made incident from the light source 3, and the photodetector 4 measures the spectral characteristics that pass through the evaluation system shown in FIG. As a result of the measurement, the photodetector 4 showed the optical spectral characteristic as shown in FIG. In this example, the twist angle ω = 250 °,
A sample 3D having a liquid crystal birefringence Δn = 0.171 and an actual cell gap d 0 = 4.9930 μm was used. The actual cell gap here is a value measured by the evaluation method disclosed in Japanese Patent Laid-Open No. 09-113865. In FIG. 2, some peak values showing valleys in the visible light region are shown, but the peak value with the strongest visibility, that is, the second valley peak value is used here. Also, the abscissa of the extremum is λ rb ,
In this example, a value of "492 nm" is shown.

【0012】まず、λrb、ωの値を下記の(式1)に代
入し、さらに、(式1)の計算において得たλtbの値
と、Δnの値と、(式1)の結果とを(式2)に代入す
ると、d =4.9936μmという値を求めることがで
きる。これが評価で求められるセルギャップである。こ
のセルギャップdは、実際のセルギャップd0=4.9
930μmに近い値であり、この評価方法でセルギャッ
プを評価できることがわかる。
First, the values of λ rb and ω are substituted into the following (Equation 1), and further, the value of λ tb obtained in the calculation of (Equation 1), the value of Δn, and the result of (Equation 1) By substituting and into (Equation 2), a value of d = 4.9936 μm can be obtained. This is the cell gap required for evaluation. This cell gap d is the actual cell gap d 0 = 4.9.
Since the value is close to 930 μm, it can be seen that the cell gap can be evaluated by this evaluation method.

【0013】[0013]

【数4】 [Equation 4]

【数5】 ここで、(式1)及び(式2)において、Re(Retardati
on)は光学距離、λ1,λ2は測定試料の捻れによる旋光
性を補正するための定数、λtbは透過測定の場合のピー
ク極小値、λrbは反射測定の場合のピーク極小値、Δn
1,Δn2は複屈折率Δnから波長分散補正を行ったも
の、A1,A2は複屈折パラメータから光学距離を算出す
るための定数である。
[Equation 5] Here, in (Equation 1) and (Equation 2), Re (Retardati
on) is the optical distance, λ 1 and λ 2 are constants for correcting the optical activity due to the twist of the measurement sample, λ tb is the peak minimum value in the transmission measurement, λ rb is the peak minimum value in the reflection measurement, Δn
1, Δn 2 is a value obtained by correcting the wavelength dispersion from the birefringence Δn, and A 1 and A 2 are constants for calculating the optical distance from the birefringence parameter.

【0014】同様に評価を行ったものを図3に示した。
ここに示されるように、本発明の液晶表示素子の評価方
法による値dは、実際のセルギャップd0と非常に一致
した数値を示しており、非常に有用である。また、パラ
メータにおいても一致して図3に示されるように、様々
な試料において一致した評価が得られており、この点に
おいても有用であるといえる。
A similar evaluation is shown in FIG.
As shown here, the value d according to the evaluation method of the liquid crystal display element of the present invention shows a value that is very close to the actual cell gap d 0 and is very useful. In addition, the parameters are also consistent, and as shown in FIG. 3, consistent evaluations have been obtained in various samples, which can be said to be useful in this respect as well.

【0015】なお、本実施の形態において、Δnは0.
138〜0.171、TWISTは240°〜250
°、Δnd0の範囲は0.8538〜1.0432を評
価したが、複屈折率をもつ光学的測定であれば、本発明
を適用できることは言うまでもない。
In the present embodiment, Δn is 0.
138-0.171, TWIST is 240 ° -250
The range of ° and Δnd 0 was evaluated from 0.8538 to 1.0432, but it goes without saying that the present invention can be applied to any optical measurement having a birefringence.

【0016】このような実施の形態1による液晶表示素
子の評価方法では、光源3から可視光が入射される入射
側基板21と、上記可視光を反射する反射層を有する反
射側基板23の間に誘電異方性を有する液晶を狭持して
なる液晶表示素子2を評価するときに、吸収軸角度1a
が入射側基板21の配向軸方向2aと45°の角度をな
すよう、偏光子1を液晶表示素子2と光源3との間に配
置して、液晶表示素子の分光反射特性上のピーク値を光
検出器4により測定し、求めたピーク値のうちの極小値
のピーク値から液晶表示素子2の上記両基板間の距離を
算出し、液晶表示素子の評価を行うようにしたので、液
晶表示素子の光学距離を複屈折によるものと、捻れによ
る光の旋光効果と、反射分光によるズレの効果とに分け
て、セルギャップを測定することができ、その結果、簡
単かつ再現性良く光学的に反射型液晶表示素子のセルギ
ャップを評価できる。
In the liquid crystal display element evaluation method according to the first embodiment, between the incident-side substrate 21 on which visible light is incident from the light source 3 and the reflective-side substrate 23 having a reflective layer for reflecting the visible light. When evaluating a liquid crystal display element 2 formed by sandwiching a liquid crystal having dielectric anisotropy, the absorption axis angle 1a
The polarizer 1 is arranged between the liquid crystal display element 2 and the light source 3 so that an angle of 45 ° is formed with the alignment axis direction 2a of the incident side substrate 21, and the peak value on the spectral reflection characteristic of the liquid crystal display element is Since the distance between the two substrates of the liquid crystal display element 2 was calculated from the peak value of the minimum value of the measured peak values measured by the photodetector 4, the liquid crystal display element was evaluated. The cell gap can be measured by dividing the optical distance of the element into the birefringence, the optical rotation effect due to twisting, and the deviation effect due to reflection spectroscopy. The cell gap of a reflective liquid crystal display device can be evaluated.

【0017】[0017]

【発明の効果】以上のように、本発明の液晶表示素子の
評価方法によれば、光源から可視光が入射される入射側
基板と、上記可視光を反射する反射層を有する反射側基
板との間に、誘電異方性を有する液晶を狭持してなるS
TN型液晶表示素子を評価する方法において、その吸収
軸角度が上記入射側基板の配向軸方向と45°の角度を
なすよう、上記液晶表示素子と上記光源との間に偏光板
を配置し、上記光源から上記液晶表示素子に対し光を照
射し、該液晶表示素子の反射側基板にて反射された光を
光検出器により検出し、上記液晶表示素子の分光反射特
性上のピーク値を測定し、上記測定により求めたピーク
値のうちの極小値のピーク値から、上記液晶表示素子の
上記両基板間の距離を算出し、上記液晶表示素子の評価
を行うようにしたので、簡単かつ再現性良く光学的に反
射型液晶表示素子のセルギャップを評価することができ
る。
As described above, according to the method for evaluating a liquid crystal display element of the present invention, an incident side substrate on which visible light is incident from a light source, and a reflective side substrate having a reflective layer for reflecting the visible light are provided. S which is formed by sandwiching a liquid crystal having dielectric anisotropy between
In the method for evaluating a TN type liquid crystal display device, a polarizing plate is arranged between the liquid crystal display device and the light source so that the absorption axis angle forms an angle of 45 ° with the alignment axis direction of the incident side substrate, The liquid crystal display element is irradiated with light from the light source, the light reflected by the reflection side substrate of the liquid crystal display element is detected by a photodetector, and the peak value on the spectral reflection characteristic of the liquid crystal display element is measured. Then, from the peak value of the minimum value among the peak values obtained by the above measurement, the distance between the two substrates of the liquid crystal display element was calculated, and the liquid crystal display element was evaluated. The cell gap of the reflective liquid crystal display device can be evaluated optically with good performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による液晶表示素子の評
価方法の構成図である。
FIG. 1 is a configuration diagram of a method for evaluating a liquid crystal display element according to a first embodiment of the present invention.

【図2】本発明の評価方法による光学分光特性を示す図
である。
FIG. 2 is a diagram showing optical spectral characteristics according to the evaluation method of the present invention.

【図3】本発明の評価方法による評価値を示す図であ
る。
FIG. 3 is a diagram showing evaluation values according to the evaluation method of the present invention.

【符号の説明】[Explanation of symbols]

1 偏光子 1a 偏光子の吸収軸角度 2 液晶表示素子 2a 入射側基板の配向軸角度 2b 反射側基板の配向軸角度 3 光源 4 光検出器 21 入射側基板 22 反射側基板 1 Polarizer 1a Absorption axis angle of polarizer 2 Liquid crystal display element 2a Orientation axis angle of incident side substrate 2b Reflection side substrate orientation axis angle 3 light sources 4 Photodetector 21 incident side substrate 22 Reflection side substrate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA21 BB22 CC21 GG23 GG24 LL33 LL67 QQ25 QQ29 UU07 2G086 EE10 2H088 FA11 FA20 HA21 2H089 QA14 RA10 SA01 TA17 2H091 FA14Z FD11 GA08 KA04 LA12 LA18    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA21 BB22 CC21 GG23 GG24                       LL33 LL67 QQ25 QQ29 UU07                 2G086 EE10                 2H088 FA11 FA20 HA21                 2H089 QA14 RA10 SA01 TA17                 2H091 FA14Z FD11 GA08 KA04                       LA12 LA18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源から可視光が入射される入射側基板
と、上記可視光を反射する反射層を有する反射側基板と
の間に、誘電異方性を有する液晶を狭持してなるSTN
型液晶表示素子を評価する方法において、 その吸収軸角度が上記入射側基板の配向軸方向と45°
の角度をなすよう、上記液晶表示素子と上記光源との間
に偏光板を配置し、 上記光源から上記液晶表示素子に対し光を照射し、該液
晶表示素子の反射側基板にて反射された光を光検出器に
より検出し、上記液晶表示素子の分光反射特性上のピー
ク値を測定し、 上記測定により求めたピーク値のうちの極小値のピーク
値から、上記液晶表示素子の上記両基板間の距離を算出
し、上記液晶表示素子の評価を行う、 ことを特徴とする液晶表示素子の評価方法。
1. An STN in which a liquid crystal having dielectric anisotropy is sandwiched between an incident side substrate on which visible light is incident from a light source and a reflective side substrate having a reflective layer for reflecting the visible light.
In the method for evaluating a liquid crystal display element, the absorption axis angle is 45 ° with the alignment axis direction of the incident side substrate.
A polarizing plate is arranged between the liquid crystal display element and the light source so that the light source irradiates the liquid crystal display element with light, and the light is reflected by the reflection side substrate of the liquid crystal display element. The light is detected by a photodetector, the peak value on the spectral reflection characteristic of the liquid crystal display element is measured, and the minimum value of the peak values obtained by the above measurement is used to determine the minimum value of the peak values, and the both substrates of the liquid crystal display element A method for evaluating a liquid crystal display device, comprising: calculating a distance between the liquid crystal display devices and evaluating the liquid crystal display device.
【請求項2】 請求項1に記載の液晶表示素子の評価方
法において、 上記求めた極小値のピーク値を、下記(数1)式に代入
し、さらにその結果を(数2)式に代入して上記液晶表
示素子の基板間距離を求める、 ことを特徴とする液晶表示素子の評価方法。 【数1】 【数2】
2. The liquid crystal display element evaluation method according to claim 1, wherein the obtained peak value of the minimum value is substituted into the following equation (1), and the result is substituted into the equation (2). Then, the substrate-to-substrate distance of the liquid crystal display device is obtained, and a method for evaluating a liquid crystal display device is provided. [Equation 1] [Equation 2]
JP2001306037A 2001-10-02 2001-10-02 Method for evaluating liquid crystal display element Pending JP2003106817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306037A JP2003106817A (en) 2001-10-02 2001-10-02 Method for evaluating liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306037A JP2003106817A (en) 2001-10-02 2001-10-02 Method for evaluating liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2003106817A true JP2003106817A (en) 2003-04-09

Family

ID=19125739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306037A Pending JP2003106817A (en) 2001-10-02 2001-10-02 Method for evaluating liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2003106817A (en)

Similar Documents

Publication Publication Date Title
US6822737B2 (en) Pretilt angle measuring method and measuring instrument
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
JP2006243311A (en) Analysis method and analysis apparatus for optical characteristic of optical medium, and production monitor method
KR20100099662A (en) Method and apparatus for measuring tilt angle of reflective type liquid crystral cell
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
US6757062B2 (en) Method and device for measuring thickness of liquid crystal layer
US20060139639A1 (en) Apparatus and method for measuring phase retardation
JP2003106817A (en) Method for evaluating liquid crystal display element
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
JP3875116B2 (en) Method for measuring wavelength dispersion of birefringence of birefringent body, program, and recording medium
JP2898298B2 (en) Liquid crystal layer thickness measuring apparatus and liquid crystal layer thickness measuring method using the liquid crystal layer thickness measuring apparatus
JP2002311406A (en) Apparatus for detecting parameter of liquid crystal panel
JP2778935B2 (en) Method for measuring azimuthal anchoring energy of nematic liquid crystal device
JP3224124B2 (en) Evaluation method of liquid crystal display element
JP3944641B2 (en) Gap thickness measuring device, gap thickness measuring method, and liquid crystal device manufacturing method
JP3755303B2 (en) Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element
JP4013709B2 (en) Gap thickness measuring device, gap thickness measuring method, and liquid crystal device manufacturing method
JP3108938B2 (en) Method for measuring tilt angle of liquid crystal molecules
JP3787344B2 (en) Parameter detection method and detection apparatus for liquid crystal element
JPH11183371A (en) Method for discriminating spiral axis in cholesteric medium
JPH0894445A (en) Pretilt-angle measuring apparatus
JP2565147B2 (en) Method of measuring twist angle and cell gap
JPH0518859A (en) Method for measuring thickness of liquid crystal layer
JP2007248958A (en) Liquid cell for measuring azimuth angle anchoring energy
JP3792315B2 (en) Cell thickness measuring method, cell thickness measuring apparatus, and liquid crystal display manufacturing method