JP2003106695A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JP2003106695A
JP2003106695A JP2001293678A JP2001293678A JP2003106695A JP 2003106695 A JP2003106695 A JP 2003106695A JP 2001293678 A JP2001293678 A JP 2001293678A JP 2001293678 A JP2001293678 A JP 2001293678A JP 2003106695 A JP2003106695 A JP 2003106695A
Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
condenser
temperature
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001293678A
Other languages
Japanese (ja)
Inventor
Hajime Yatsuhashi
元 八橋
Shiro Yakushiji
史朗 薬師寺
Tatsuki Takase
達己 高瀬
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001293678A priority Critical patent/JP2003106695A/en
Publication of JP2003106695A publication Critical patent/JP2003106695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve COP in an absorption type refrigerator. SOLUTION: This absorption type refrigerator is provided with a condenser C, an absorber A, an evaporator E, a plurality of regenerators Gn to G1 having different operation temperatures from a high temperature side to a low temperature side, and a plurality of solution heat exchangers Hn to Hn-1 corresponding to each regenerator Gn to G1 to introduce refrigerant vapor generated in the regenerators Gn, Gn-1 on the high temperature side into the regenerators Gn-1 , G1 on the low temperature side sequentially and utilize it as a heating source of each regenerator Gn-1 , G1 on the low temperature side. A flash space Fb for turning refrigerant drain Rd generated in the regenerators Gn-1 , G1 on the low temperature side into vapor again is provided in a drain passage for supplying the refrigerant drain Rd generated in the regenerators Gn-1 , G1 on the low temperature side into the condenser C to reduce a temperature of the supplied refrigerant drain Rd below a refrigerant saturation temperature of the condenser C by vaporization latent heat when flashing the refrigerant drain in the flash space Fb. As a result, COP of the whole system is improved, and performance of this absorption type refrigerator is further improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、高温側から低温
側に順次作動温度の異なる複数の再生器、溶液熱交換器
を備えてなる吸収式冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system including a plurality of regenerators having different operating temperatures from a high temperature side to a low temperature side and a solution heat exchanger.

【0002】[0002]

【従来の技術】一般に、吸収式冷凍装置は、凝縮器、蒸
発器、吸収器、再生器、溶液熱交換器を構成要素とし、
これら各構成要素を溶液配管と冷媒配管により順次循環
作動可能に接続して、吸収式冷凍サイクルを構成してい
る。
2. Description of the Related Art Generally, an absorption refrigeration system has a condenser, an evaporator, an absorber, a regenerator, and a solution heat exchanger as constituent elements,
An absorption refrigeration cycle is configured by sequentially connecting these components through a solution pipe and a refrigerant pipe so that they can be circulated.

【0003】このような吸収式冷凍装置では、上記吸収
器において生成された希溶液を上記再生器で加熱濃縮し
て吸収液(濃溶液)に再生し、これを上記吸収器に還流
させる一方、上記再生器での希溶液の加熱濃縮によって
生成された冷媒蒸気を上記凝縮器で凝縮させて液冷媒と
するとともに、この液冷媒を上記蒸発器において蒸発さ
せ、ここで発生した冷媒蒸気を、再び上記吸収器で濃溶
液に吸収させて希溶液を生成させる。そして、これを繰
り返すことで、上記吸収溶液と冷媒との循環サイクルが
実現される。
In such an absorption type refrigerating apparatus, the dilute solution produced in the absorber is heated and concentrated in the regenerator to be regenerated into an absorbing solution (concentrated solution), which is refluxed to the absorber. Refrigerant vapor generated by heating and condensing the dilute solution in the regenerator is condensed in the condenser to form a liquid refrigerant, the liquid refrigerant is evaporated in the evaporator, the refrigerant vapor generated here, again, The concentrated solution is absorbed in the absorber to form a dilute solution. Then, by repeating this, a circulation cycle of the absorbing solution and the refrigerant is realized.

【0004】そして、上記蒸発器における冷媒の蒸発熱
を冷房等所用の冷熱源として利用する。
Then, the heat of vaporization of the refrigerant in the evaporator is used as a cold heat source for places such as cooling.

【0005】ところで、該吸収式冷凍装置において、そ
の省エネ性能の向上を図る1手法として、例えば高温側
から低温側に順次作動温度の異なる再生器を複数台設
け、高温で作動する高温側再生器の加熱によって生成さ
れる冷媒蒸気を、低温で作動する低温側再生器に順次導
入し、これを低温側再生器の加熱源として利用するよう
にしたものがある。
By the way, as one method for improving the energy saving performance of the absorption refrigeration system, for example, a plurality of regenerators having different operating temperatures are sequentially provided from a high temperature side to a low temperature side, and a high temperature side regenerator operating at a high temperature There is one in which the refrigerant vapor generated by the heating of (1) is sequentially introduced into a low temperature side regenerator that operates at a low temperature, and this is used as a heating source of the low temperature side regenerator.

【0006】このような構成によれば、吸収作用完了後
の吸収液(希溶液)を、冷媒蒸気の温度を利用し、かつ
多段階に分けて極めて熱効率良く濃縮することができ、
再生器での所要加熱量を有効に低減することができ、省
エネとなる。
According to such a constitution, the absorbing liquid (dilute solution) after completion of the absorbing action can be concentrated extremely efficiently by utilizing the temperature of the refrigerant vapor and dividing it into multiple stages.
The required heating amount in the regenerator can be effectively reduced, resulting in energy saving.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記のよう
な吸収式冷凍装置の場合、装置としてのCOP向上のた
めには、上記凝縮器から蒸発器へ送る冷媒の温度はでき
るだけ低くすべきであり、同冷媒の温度は、少なくとも
上記凝縮器の飽和温度以下であることが望ましい。
In the case of the absorption refrigeration system as described above, the temperature of the refrigerant sent from the condenser to the evaporator should be as low as possible in order to improve the COP of the system. The temperature of the refrigerant is preferably at least equal to or lower than the saturation temperature of the condenser.

【0008】ところが、上記凝縮器へ入ってくる再生器
加熱終了後の冷媒ドレンの温度は、上記凝縮器の冷媒飽
和温度よりも相当に高い問題がある。
However, there is a problem that the temperature of the refrigerant drain after the heating of the regenerator that has entered the condenser is considerably higher than the refrigerant saturation temperature of the condenser.

【0009】そこで、本願発明は、そのような高温の冷
媒がそのまま凝縮器から蒸発器に行かないように、上記
凝縮器への冷媒ドレン経路にフラッシュ空間を設け、同
フラッシュ空間内で冷媒ドレンをフラッシュさせて再蒸
気化することにより、その気化潜熱で冷媒の温度を上記
凝縮器の冷媒飽和温度以下まで低下させ得るようにした
吸収式冷凍装置を提供することを目的とするものであ
る。
Therefore, in the present invention, a flash space is provided in the refrigerant drain path to the condenser so that such a high-temperature refrigerant does not go from the condenser to the evaporator as it is, and the refrigerant drain is provided in the flash space. It is an object of the present invention to provide an absorption refrigeration system in which the temperature of the refrigerant can be lowered to the refrigerant saturation temperature of the condenser or lower by the latent heat of vaporization by flashing and re-vaporizing.

【0010】[0010]

【課題を解決するための手段】本願発明は、該目的を達
成するために、次のような課題解決手段を備えて構成さ
れている。
In order to achieve the object, the present invention comprises the following problem solving means.

【0011】(1) 請求項1の発明 この発明の吸収式冷凍装置は、凝縮器C、吸収器Aおよ
び蒸発器Eと、高温側から低温側に各々作動温度を異に
する複数台の再生器Gn〜G1と、これら各再生器Gn
〜G1に対応する複数台の溶液熱交換器Hn〜Hn-1
を備え、上記高温側の再生器Gn,Gn-1で発生した冷
媒蒸気を順次低温側の再生器Gn-1,G 1に導入して、
当該低温側各再生器Gn-1,G1の加熱源として利用す
るようにした吸収式冷凍装置において、上記低温側再生
器Gn-1,G1で発生した冷媒ドレンRdを上記凝縮器
Cに供給するドレン経路に、上記低温側の再生器G
-1,G 1で発生した冷媒ドレンRdを再蒸気化させる
フラッシュ空間Fbを設け、該フラッシュ空間Fb内に
おける冷媒ドレンフラッシュ時の気化潜熱によって、上
記供給される冷媒ドレンRdの温度を上記凝縮器Cの冷
媒飽和温度以下まで下げるようにしたことを特徴として
いる。
(1) The invention of claim 1 The absorption refrigerating apparatus of the present invention includes a condenser C, an absorber A and
And evaporator E, and the operating temperature differs from the high temperature side to the low temperature side.
Multiple regenerators Gn to G1And each of these regenerators Gn
~ G1Solution heat exchangers Hn to Hn corresponding to-1When
And the high temperature side regenerators Gn, Gn-1Cold generated in
Regenerator Gn for low temperature side-1, G 1Introduced to
Each low temperature side regenerator Gn-1, G1Used as a heating source for
In the absorption refrigeration system configured to
Bowl Gn-1, G1Refrigerant drain Rd generated in the above condenser
In the drain path supplied to C, the regenerator G on the low temperature side
n-1, G 1Refrigerant drain Rd generated at
A flash space Fb is provided, and in the flash space Fb
The latent heat of vaporization during the drain flash of the refrigerant
The temperature of the supplied refrigerant drain Rd is set to the temperature of the condenser C
Characterized by lowering the temperature below the saturation temperature
There is.

【0012】このように、凝縮器Cに入る冷媒ドレン経
路にフラッシュ空間Fbを設け、同フラッシュ空間Fb
内で冷媒ドレンRdを十分にフラッシュさせて再蒸気化
するようにすると、その気化潜熱で冷媒ドレンRdの温
度を、上記凝縮器Cの冷媒飽和温度以下まで有効に低下
させることができ、その上で、上記凝縮器Cに供給でき
るようになる。
As described above, the flash space Fb is provided in the refrigerant drain path entering the condenser C, and the flash space Fb is provided.
When the refrigerant drain Rd is sufficiently flushed in the inside to be re-vaporized, the temperature of the refrigerant drain Rd can be effectively lowered to the refrigerant saturation temperature of the condenser C or lower by the latent heat of vaporization, and Then, it becomes possible to supply to the condenser C.

【0013】その結果、蒸発器Eに供給される凝縮器C
内の液冷媒Rcの温度も、上記凝縮器Cの冷媒飽和温度
以下のものとなり、装置COPの有効な向上を図ること
が可能となる。
As a result, the condenser C supplied to the evaporator E
The temperature of the liquid refrigerant Rc therein also becomes lower than the refrigerant saturation temperature of the condenser C, and it is possible to effectively improve the device COP.

【0014】(2) 請求項2の発明 この発明の吸収式冷凍装置は、上記請求項1の発明の構
成において、上記凝縮器Cの冷媒ドレン導入口Ca部分
に、所定容積のフラッシュチャンバーFが設けられ、フ
ラッシュ空間Fbは、該フラッシュチャンバーF内に形
成されていることを特徴としている。
(2) Invention of Claim 2 In the absorption refrigerating apparatus of the present invention, in the configuration of the invention of Claim 1, a flash chamber F of a predetermined volume is provided in the refrigerant drain inlet Ca portion of the condenser C. The flash space Fb provided is characterized by being formed in the flash chamber F.

【0015】このような構成によると、上記フラッシュ
チャンバーF内のフラッシュ空間Fbによって、上述の
冷媒ドレンRdのフラッシュ作用が有効に実現される。
With such a configuration, the flash space Fb in the flash chamber F effectively realizes the flash action of the refrigerant drain Rd.

【0016】(3) 請求項3の発明 この発明の吸収式冷凍装置は、上記請求項1又は2の発
明の構成において、上記複数台の再生器Gn-1は、高温
用、中温用、低温用の3台の再生器G3,G2,G1であ
ることを特徴としている。
(3) Invention of Claim 3 In the absorption type refrigerating apparatus of the present invention, in the constitution of the invention of Claim 1 or 2, the plurality of regenerators Gn -1 are for high temperature, medium temperature and low temperature. It is characterized in that there are three regenerators G 3 , G 2 , G 1 for use.

【0017】したがって、このような構成では、上記吸
収作用完了後の吸収液(希溶液)Laを高温段から、中
温段、低温段の3段階に分けて熱効率良く濃縮すること
ができるようになり、再生器への所要加熱量を有効に低
減することができる。また、その結果、有効な省エネ作
用を得ることができる。
Therefore, in such a structure, the absorbing liquid (diluted solution) La after the completion of the absorbing action can be concentrated with high thermal efficiency by dividing it into three stages of a high temperature stage, an intermediate temperature stage and a low temperature stage. Therefore, the required heating amount for the regenerator can be effectively reduced. Further, as a result, an effective energy saving effect can be obtained.

【0018】[0018]

【発明の効果】以上の結果、本願発明の吸収式冷凍装置
によると、再生器の再生効率が高く、省エネ性能、CO
P性能が共に高い高性能の吸収式冷凍装置を低コストに
提供することが可能となる。
As a result of the above, according to the absorption type refrigerating apparatus of the present invention, the regeneration efficiency of the regenerator is high, the energy saving performance and the CO
It is possible to provide a high-performance absorption refrigeration system having high P performance at low cost.

【0019】[0019]

【実施の形態】次に図1および図2を参照して、本願発
明の実施の形態に係る吸収式冷凍装置の構成を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the structure of an absorption refrigerating apparatus according to an embodiment of the present invention will be described with reference to FIGS.

【0020】この実施の形態に係る吸収式冷凍装置は、
例えば水を冷媒、臭化リチウム(LiBr)を吸収液と
し、さらに吸収作用後の同吸収液(希溶液)を多段階
(例えば3段階)に分けて効率良く濃縮することによ
り、再生器への所要加熱量を有効に低減し得るようにし
た吸収式冷凍装置を構成しており、以下の例では、少な
くとも1台の凝縮器Cと、少なくとも1台の吸収器A、
少なくとも1台の蒸発器Eに対し、高温、中温、低温の
作動温度を異にする3台の再生器G3,G2,G1を段階
的に接続して冷媒Rと吸収液Lとの循環サイクル(吸収
式冷凍サイクル)を構成している。
The absorption refrigerating apparatus according to this embodiment is
For example, by using water as a refrigerant and lithium bromide (LiBr) as an absorption liquid, and further concentrating the absorption liquid (dilute solution) after the absorption action in multiple stages (for example, three stages), it is possible to An absorption type refrigeration system is configured so that the required heating amount can be effectively reduced, and in the following example, at least one condenser C and at least one absorber A,
To at least one evaporator E, three regenerators G 3 , G 2 and G 1 having different operating temperatures of high temperature, medium temperature and low temperature are connected in stages to connect the refrigerant R and the absorbing liquid L. It constitutes a circulation cycle (absorption type refrigeration cycle).

【0021】そして、その場合において、特に高温の冷
媒がそのまま蒸発器Eに行かないように、上記凝縮器C
に入る冷媒ドレン経路にフラッシュ空間を設け、凝縮器
Cの手前で十分に冷媒ドレンをフラッシュさせて、その
温度を凝縮器冷媒飽和温度以下まで低下させて再蒸気化
した蒸気と残余の冷媒ドレンを凝縮器Cに供給するよう
にしている。
Then, in that case, the condenser C is prevented so that particularly high temperature refrigerant does not go to the evaporator E as it is.
A flush space is provided in the entering refrigerant drain path to sufficiently flush the refrigerant drain in front of the condenser C, reduce the temperature to below the condenser refrigerant saturation temperature, and revaporize the vapor and the remaining refrigerant drain. It is supplied to the condenser C.

【0022】先ず最初に、図1に基いて、該吸収式冷凍
装置の基本的な構成および作用を説明する。上記蒸発器
Eは、容器Etの中に、被冷却液(利用水)Weを通す
熱交換部Ecと、該熱交換部Ec上に冷媒(水)Reを
散布する冷媒散布器Esとを有し、被冷却液配管Ueか
ら流入して、当該蒸発器E内の熱交換部Ecを通過する
被冷却液(利用水)Weを冷却する。なお、上記蒸発器
E底部内の冷媒Reは、冷媒配管10を介し、その下方
側の冷媒ポンプRPにより、上方側の冷媒散布器Es側
に順次汲み上げられて、上記熱交換部Ec上に散布され
る。
First, the basic structure and operation of the absorption refrigerating apparatus will be described with reference to FIG. The evaporator E has, in a container Et, a heat exchange part Ec for passing a liquid to be cooled (utilized water) We and a refrigerant sprayer Es for spraying a refrigerant (water) Re on the heat exchange part Ec. Then, the liquid to be cooled (use water) We flowing from the liquid to be cooled Ue and passing through the heat exchange section Ec in the evaporator E is cooled. In addition, the refrigerant Re in the bottom of the evaporator E is sequentially pumped up to the refrigerant distributor Es on the upper side by the refrigerant pump RP on the lower side through the refrigerant pipe 10 and sprayed on the heat exchange section Ec. To be done.

【0023】吸収器Aは、上記蒸発器Eと連通して該蒸
発器Eから流入する低温(温度Ta)の気化冷媒(水蒸
気)Raを吸収液中に吸収させる作用をするもので、容
器At内に、吸収液(濃溶液)Lgを散布する吸収液散
布器Asと同吸収器A内で発生する吸収熱を除去するた
めの熱交換部(冷却コイル)Acとを備えて構成されて
いる。
The absorber A has a function of absorbing the low temperature (temperature Ta) vaporized refrigerant (water vapor) Ra which is in communication with the evaporator E and flows from the evaporator E into the absorbent At. It is configured to include therein an absorbent spreader As for spraying the absorbent (concentrated solution) Lg and a heat exchange unit (cooling coil) Ac for removing the absorption heat generated in the absorber A. .

【0024】熱交換部Acには、冷却水配管Uaから冷
却水Waが供給されて、上記吸収器A内で発生する吸収
熱を除去する。なお、この冷却水Waは、同熱交換部A
cから、さらに後述する凝縮器C側の熱交換部Ccに供
給されて凝縮熱の回収にも利用される。
Cooling water Wa is supplied to the heat exchange section Ac from the cooling water pipe Ua to remove the absorbed heat generated in the absorber A. In addition, this cooling water Wa is the same heat exchange part A.
It is further supplied from c to the heat exchange section Cc on the side of the condenser C, which will be described later, and is also used for recovery of condensation heat.

【0025】一方、この吸収式冷凍装置で使用されてい
る上記第1〜第3の3台の再生器G 3,G2,G1は、そ
れぞれ上記吸収作用完了後の冷媒を含む希溶液Laを高
温、中温、低温の第1〜第3の3段階に分けて加熱濃縮
することによって、順次高濃度の濃溶液(濃度ξ3<ξ2
<ξ1)とし、再生器における所要加熱量を可及的に節
約して、省エネ効果を得るためのもので、同吸収液の希
溶液は、上記吸収器Aから、図示のように希溶液配管1
1を通って、溶液ポンプLPにより、先ず最も高温側の
第1の再生器(高温再生器)G3に導入される。なお、
後述するように上記希溶液配管11の途中には、同希溶
液配管11中の希溶液を低温側から高温側に段階的に加
熱する第1〜第3の溶液熱交換器H1〜H3が設けられて
いる。
On the other hand, it is used in this absorption refrigeration system.
The above-mentioned first to third three regenerators G 3, G2, G1Is that
The diluted solution La containing the refrigerant after completion of the above-described absorption is increased in each case.
Concentrate by heating in three stages of warm, medium and low temperature
By sequentially increasing the concentration of the concentrated solution (concentration ξ32
1) And reduce the required heating amount in the regenerator as much as possible.
This is for the purpose of obtaining energy saving effect by
From the absorber A, the solution is diluted with the diluted solution pipe 1 as shown in the figure.
1 through the solution pump LP, first of the highest temperature side
First regenerator (high temperature regenerator) G3Will be introduced to. In addition,
As will be described later, in the middle of the dilute solution pipe 11, the dilute solution pipe
The dilute solution in the liquid pipe 11 is gradually added from the low temperature side to the high temperature side.
First to third solution heat exchangers H for heating1~ H3Is provided
There is.

【0026】上記第1の再生器G3は、一例として、ガ
ス燃焼方式による加熱方法が採用されており、その容器
3t内の所定の熱交換器(炉筒)に対応して、所定の
加熱手段(例えばガスバーナー)Bを有し、その火炎J
により、上記吸収器Aで生成された希溶液Laを、当該
容器G3t内の上記所定の熱交換器(炉筒)外周に導入
して加熱濃縮する。そして、それにより第1の濃度ξ3
(%)の濃溶液L3を生成するとともに、第1の温度T3
(℃)の冷媒蒸気R3を生成する。この最高温側の第1
の再生器G3で生成された第1の濃度ξ3(%)の濃溶液
3は、次に高温溶液配管23を通って次段の第2の再
生器(中温再生器)G2に導入される。
As an example, the first regenerator G 3 employs a heating method based on a gas combustion system, and a predetermined heat exchanger (a furnace tube) in a container G 3 t thereof has a predetermined heat exchanger. The heating means (for example, gas burner) B of the flame J
Thus, the diluted solution La produced in the absorber A is introduced into the outer periphery of the predetermined heat exchanger (furnace cylinder) in the container G 3 t and is heated and concentrated. Then, as a result, the first concentration ξ 3
(%) Of a concentrated solution L 3 is generated and at the first temperature T 3
(° C.) refrigerant vapor R 3 is generated. The first on this warm side
The concentrated solution L 3 having the first concentration ξ 3 (%) generated in the regenerator G 3 of the next step passes through the high temperature solution pipe 23 to the second regenerator (medium temperature regenerator) G 2 of the next stage. be introduced.

【0027】この第2の再生器G2は、その容器G2t内
に溶液加熱器K2(第1の再生器G3で生成された第1の
温度T3(℃)の冷媒蒸気R3を第1の冷媒蒸気配管(高
温蒸気配管)33を介して導入し、熱源とする)を有
し、同溶液加熱器K2によって、上記第1の再生器G3
ら導入される第1の濃度ξ3(%)の溶液を第2段階と
して加熱濃縮する。そして、それにより上記第1の濃度
ξ3(%)よりも濃度が高い第2の濃度ξ2(%)の濃溶
液L2を生成するとともに、上記第1の温度T3(℃)よ
りも低い第2の温度T2(℃)の冷媒蒸気R2を生成す
る。この第2の再生器G2で生成された第2の濃度ξ
2(%)の濃溶液L2は、中温溶液配管22を通って、さ
らに最終段の第3の再生器(低温再生器)G1に導入さ
れる。
This second regenerator G 2 has a solution heater K 2 (refrigerant vapor R at a first temperature T 3 (° C.) generated by the first regenerator G 3) in its container G 2 t. 3 is introduced through the first refrigerant vapor pipe (high-temperature vapor pipe) 33 as a heat source) and is introduced from the first regenerator G 3 by the solution heater K 2 . The solution having a concentration of ξ 3 (%) is heated and concentrated as the second step. As a result, a concentrated solution L 2 having a second concentration ξ 2 (%) higher than the first concentration ξ 3 (%) is generated, and the concentration L 2 is higher than the first temperature T 3 (° C.). The refrigerant vapor R 2 having a low second temperature T 2 (° C.) is generated. The second concentration ξ produced by this second regenerator G 2
The 2 (%) concentrated solution L 2 is introduced into the third regenerator (low temperature regenerator) G 1 at the final stage through the medium temperature solution pipe 22.

【0028】この第3の再生器G1は、その容器G1t内
に溶液加熱器K1(第2の再生器G2で生成された第2の
温度T2の冷媒蒸気R2を第2の冷媒蒸気配管(中温蒸気
配管)32を介して導入し、熱源とする)を有し、同溶
液加熱器K2によって、上記第2の再生器G2から導入さ
れる第2の濃度ξ2(%)の希溶液を第3段階(最終段
階)として加熱濃縮する。そして、それにより上記第2
の濃度ξ2(%)よりも高い第3の濃度ξ1(%)の濃溶
液L1を生成するとともに、第3の温度T1(℃)の冷媒
蒸気R1を生成する。
The third regenerator G 1 is provided with a solution heater K 1 (refrigerant vapor R 2 of the second temperature T 2 generated by the second regenerator G 2 in the container G 1 t). The second concentration ξ introduced from the second regenerator G 2 by the same solution heater K 2 The diluted solution of 2 (%) is heated and concentrated as the third step (final step). And thereby the second
To generate a concentrated solution L 1 of the concentration ξ 2 (%) higher third concentration than ξ 1 (%), to produce a refrigerant vapor R 1 of the third temperature T 1 (℃).

【0029】この第3の再生器G1で生成された上記第
2の濃度ξ2(%)よりも高い第3の濃度ξ1(%)の濃
溶液L1は、吸収液Lgとして、低温溶液配管21を通
して、再び上記吸収器A内上部へ導入され、上記吸収液
散布器Asから散布される。
The concentrated solution L 1 of the third regenerator G 1 the second concentration xi] 2 produced in (%) higher than the third concentration xi] 1 (%) as the absorbing liquid Lg, cold It is again introduced into the upper part of the absorber A through the solution pipe 21 and is sprayed from the absorbent sprayer As.

【0030】吸収器A内では、同吸収液散布器Asから
散布される最高濃度の吸収液Lg中に、上記蒸発器Eか
ら導入される低温(温度Ta℃)の冷媒蒸気Raを吸収
させる。その結果、上記吸収液Lgは再び冷媒を含んだ
希溶液Laとなって、同吸収器Aの容器Atの底部に貯
留される。そして、この吸収器A内では上記吸収液Lg
が冷媒蒸気Raを吸収する際に吸収熱が発生するが、こ
の吸収熱は、上述のように熱交換部Acに供給される冷
却水Waとの熱交換によって冷却され、その熱は必要に
応じて外部に回収される。また同冷却水Waは、上述の
ように吸収器Aの熱交換部Acを通過した後、さらに凝
縮器Cにも供給される。
In the absorber A, the low-temperature (temperature Ta ° C.) refrigerant vapor Ra introduced from the evaporator E is absorbed in the absorption liquid Lg having the highest concentration sprayed from the absorbent sprayer As. As a result, the absorbing liquid Lg becomes a dilute solution La containing the refrigerant again and is stored in the bottom portion of the container At of the absorber A. Then, in the absorber A, the absorbing liquid Lg
Absorbed heat is generated when the refrigerant vapor Ra is absorbed, this absorbed heat is cooled by heat exchange with the cooling water Wa supplied to the heat exchange section Ac as described above, and the heat is absorbed as necessary. Be collected outside. The cooling water Wa is also supplied to the condenser C after passing through the heat exchange section Ac of the absorber A as described above.

【0031】凝縮器Cは、容器Ct内に、第3の冷媒蒸
気配管31を介して上記最終段の第3の再生器G1から
導入される冷媒蒸気R1を冷却凝縮させて液冷媒Rcを
生成させるようになっており、その容器Ct内には、同
冷媒蒸気R1を冷却して凝縮させるための凝縮用熱交換
部Ccが設けられている。この凝縮用熱交換部Ccに
は、冷却水配管Ucを介して上記吸収器Aを通過して所
定値温度が高くなった冷却水が供給される。そして、そ
れによって上記第3の再生器G1からの冷媒蒸気R1を液
化させ、液冷媒Reとする。また、このとき生ずる凝縮
熱で冷却水を加熱する。
The condenser C cools and condenses the refrigerant vapor R 1 introduced from the third regenerator G 1 at the final stage through the third refrigerant vapor pipe 31 into the container Ct to cool and condense the liquid refrigerant Rc. In the container Ct, there is provided a condensing heat exchange section Cc for cooling and condensing the refrigerant vapor R 1 . The condensing heat exchange section Cc is supplied with the cooling water having a predetermined temperature increased by passing through the absorber A through the cooling water pipe Uc. And, thereby to liquefy the refrigerant vapor R 1 from the regenerator G 1 of the third, and the liquid refrigerant Re. Further, the cooling water is heated by the heat of condensation generated at this time.

【0032】ところで、上記第2の再生器G2の溶液加
熱器K2に第1の冷媒蒸気配管33を介して導入された
冷媒蒸気R3および第3の再生器G1の溶液加熱器K1
第2の冷媒蒸気配管32を介して導入された冷媒蒸気R
2は、共に冷媒ドレンとなる。そして、上記第2の再生
器G2の溶液加熱器K2からの冷媒ドレンRdは、第1の
ドレン配管34を介して最終段側第3の再生器G1の溶
液加熱器K1からの第2のドレン配管40部分で合流し
たあと、上述した凝縮器Cの容器Ct内の底部に送られ
る。
By the way, the refrigerant heater R 3 introduced into the solution heater K 2 of the second regenerator G 2 through the first refrigerant vapor pipe 33 and the solution heater K of the third regenerator G 1. Refrigerant vapor R introduced into 1 through the second refrigerant vapor pipe 32
2 is a refrigerant drain. Then, the second coolant drain Rd from the solution heater K 2 regenerator G 2 is, from a solution heater K 1 in the final stage third regenerator G 1 through the first drain pipe 34 After joining at the second drain pipe 40 portion, it is sent to the bottom of the container Ct of the condenser C described above.

【0033】そして、本実施の形態の場合、該第2のド
レン配管40の下流側凝縮器Cのドレン導入口(容器C
tのドレン導入口)Caの直前部分には、上記合流され
て供給される冷媒ドレンRdをフラッシュさせて再蒸気
化するフラッシュ空間Fbを有するフラッシュチャンバ
ーFが設けられており、上記冷媒ドレンRdは、該フラ
ッシュチャンバーF内のフラッシュ空間Fbを介して再
蒸気化された後に凝縮器Cの容器Ct内に供給されるよ
うになっている。
In the case of the present embodiment, the drain inlet of the downstream condenser C of the second drain pipe 40 (container C
At a portion immediately before the drain introduction port Ca of t, a flash chamber F having a flash space Fb for flashing and re-vaporizing the combined and supplied refrigerant drain Rd is provided, and the refrigerant drain Rd is After being re-vaporized through the flash space Fb in the flash chamber F, it is supplied into the container Ct of the condenser C.

【0034】このフラッシュチャンバーFは、上記フラ
ッシュ効果(再蒸気化効果)を得るに十分なフラッシュ
空間容積を有する一方、凝縮器Cの容器Ct内に対し
て、その開口部Fa側を同容器Ctの液面位よりも低い
位置に設けたドレン導入口Caと上記液面位よりも高い
位置に設けた蒸気導入口Cbを介して連通させるように
接続して一体化されている。そして、そのフラッシュ空
間Fbの上流側部分に、上記ドレン配管40の下流側端
部40aが開口されている。該ドレン配管40の下流側
端部40aは、図2のように、単に等径の配管端部をそ
のまま開口させたものでも、また同配管端部の開口径を
漏斗状に拡大させ、フラッシュ効果を可及的に向上させ
るようにしたものでもよい。
The flash chamber F has a flash space volume sufficient to obtain the above-mentioned flash effect (revaporization effect), while the opening Fa side of the container Ct of the condenser C is the same as the container Ct. The drain introduction port Ca provided at a position lower than the liquid level and the vapor introduction port Cb provided at a position higher than the liquid level are connected and integrated. The downstream end 40a of the drain pipe 40 is opened at the upstream side of the flash space Fb. As shown in FIG. 2, the downstream end 40a of the drain pipe 40 may be formed by simply opening the pipe end having the same diameter as it is, or by expanding the opening diameter of the end of the pipe in a funnel shape, the flash effect. May be improved as much as possible.

【0035】本実施の形態のような吸収式冷凍装置の場
合、装置としてのCOP向上のためには、上記凝縮器C
から蒸発器Eへ送る冷媒Rcの温度はできるだけ低くす
べきであり、同冷媒Rcの温度は、少なくとも凝縮器C
の飽和温度以下であることが望ましい。ところが、上記
凝縮器Cへ入ってくる再生器加熱終了後の冷媒ドレンR
dの温度は、上記凝縮器Cの冷媒飽和温度よりも高い。
In the case of the absorption type refrigeration system of this embodiment, the condenser C is used to improve the COP of the system.
The temperature of the refrigerant Rc sent from the evaporator to the evaporator E should be as low as possible, and the temperature of the refrigerant Rc should be at least the condenser C.
It is desirable that the temperature is equal to or lower than the saturation temperature. However, the refrigerant drain R flowing into the condenser C after the heating of the regenerator is finished
The temperature of d is higher than the refrigerant saturation temperature of the condenser C.

【0036】そこで、そのような高温の冷媒がそのまま
蒸発器Eに行かないように、上記凝縮器Cに入る冷媒ド
レン経路に有効なフラッシュ空間Fbを有するフラッシ
ュチャンバーFを設け、同フラッシュチャンバーF内の
フラッシュ空間Fb内で冷媒ドレンRdを十分にフラッ
シュさせて再蒸気化することにより、その気化潜熱で冷
媒温度を凝縮器冷媒飽和温度以下まで効率良く低下させ
た上で、残った冷媒ドレンをドレン導入口Caを介し
て、また気化した冷媒蒸気を蒸気導入口Cbを介して、
それぞれ区分して凝縮器C内に供給するようにしてい
る。
Therefore, in order to prevent such high-temperature refrigerant from going to the evaporator E as it is, a flash chamber F having an effective flash space Fb is provided in the refrigerant drain path into the condenser C, and the inside of the flash chamber F is provided. In the flash space Fb, the refrigerant drain Rd is sufficiently flushed to be re-vaporized, so that the refrigerant temperature is efficiently lowered to the condenser refrigerant saturation temperature or lower by the latent heat of vaporization, and the remaining refrigerant drain is drained. Via the inlet Ca, and vaporized refrigerant vapor through the vapor inlet Cb,
Each is divided and supplied into the condenser C.

【0037】その結果、蒸発器Eに供給される凝縮器C
内の液冷媒Rcの温度が、上記冷媒の飽和温度以下のも
のとなり、装置COPの有効な向上が可能となる。
As a result, the condenser C supplied to the evaporator E
The temperature of the liquid refrigerant Rc therein becomes equal to or lower than the saturation temperature of the refrigerant, and the device COP can be effectively improved.

【0038】そして、このようにして同凝縮器C内で生
成された上記飽和温度以下の温度の液冷媒Rcは、液冷
媒配管41を経て上述の蒸発器Eの底部に供給される。
The liquid refrigerant Rc having a temperature equal to or lower than the saturation temperature generated in the condenser C in this manner is supplied to the bottom of the evaporator E via the liquid refrigerant pipe 41.

【0039】また、上記吸収器Aから上記第1の再生器
3に至る希溶液配管11の途中には、第1〜第3の3
台の溶液熱交換器H1,H2,H3が設けられている。こ
れらの各溶液熱交換器H1,H2,H3は、各々上記第3
〜第1の再生器G1,G2,G3で生成される低温溶液
1、中温溶液L2及び高温溶液L3と、上記吸収器Aか
らの低温の吸収液Laとを低温側から高温側に3段階で
可及的有効に熱交換させるためのもので、最も低温側の
第1の溶液熱交換器(低温溶液熱交換器)H1には低温
溶液配管21を介して上記第3の再生器(低温再生器)
1からの低温溶液L1が導入され、また中間の第2の溶
液熱交換器(中温溶液熱交換器)H2には中温溶液配管
22を介して上記第2の再生器(中温再生器)G2から
の中温溶液が導入され、さらに最も高温側の第3の溶液
熱交換器(高温溶液熱交換器)H3には高温溶液配管2
3を介して上記第1の再生器(高温再生器)G3からの
高温溶液L3が導入される。そして、それによって、上
記吸収器Aからの低温の吸収液Laが可及的有効に加熱
され、サイクル効率の向上が図られる。
In addition, in the middle of the dilute solution pipe 11 from the absorber A to the first regenerator G 3 , the first to third three pipes are provided.
The solution heat exchangers H 1 , H 2 and H 3 of the table are provided. These solution heat exchangers H 1 , H 2 and H 3 respectively have the above-mentioned third
From the low temperature side, the low temperature solution L 1 , the medium temperature solution L 2 and the high temperature solution L 3 generated in the first regenerators G 1 , G 2 and G 3 and the low temperature absorption liquid La from the absorber A are In order to exchange heat to the high temperature side in three stages as effectively as possible, the first solution heat exchanger (low temperature solution heat exchanger) H 1 on the lowest temperature side is connected to the first solution heat exchanger 21 via the low temperature solution pipe 21. 3 regenerator (low temperature regenerator)
Introduces cold solution L 1 from G 1, while the second solution heat exchanger of the intermediate (medium-temperature solution heat exchanger) is in H 2 via a medium-temperature solution pipe 22 the second regenerator (medium temperature regenerator ) The medium temperature solution from G 2 is introduced, and the high temperature solution pipe 2 is connected to the third solution heat exchanger (high temperature solution heat exchanger) H 3 on the highest temperature side.
3 through the first regenerator hot solution L 3 from (the high temperature generator) G 3 is introduced. Then, as a result, the low temperature absorption liquid La from the absorber A is heated as effectively as possible, and the cycle efficiency is improved.

【0040】なお、上述した図1の吸収式冷凍サイクル
は、一般にシリーズフローと呼ばれるものであるが、上
記本願発明を適用、実施するに当っては、決して同サイ
クルに限定されるものでないことはもちろんであり、そ
の他の各種吸収式冷凍サイクルを用いて実施しても、上
述のものと同様の作用効果を得ることができる。
The absorption refrigeration cycle shown in FIG. 1 described above is generally called a series flow, but in applying and implementing the invention of the present application, it is by no means limited to the cycle. Of course, even if it is carried out using other various absorption refrigeration cycles, the same effects as those described above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施の形態に係る吸収式冷凍装置の
構成を示すフローシート図である。
FIG. 1 is a flow sheet diagram showing a configuration of an absorption refrigeration system according to an embodiment of the present invention.

【図2】同装置の再生器側ドレン配管から凝縮器にかけ
て設けられた冷媒ドレンのフラッシュチャンバー部分の
構成を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a configuration of a flash chamber portion of a refrigerant drain provided from the regenerator-side drain pipe of the apparatus to the condenser.

【符号の説明】[Explanation of symbols]

21は低温溶液配管、22は中温溶液配管、23は高温
溶液配管、31は第3の冷媒蒸気配管、32は第2の冷
媒蒸気配管、33は第1の冷媒蒸気配管、34は第1の
ドレン配管、40は第2のドレン配管、40aは第2の
ドレン配管40の下流側端部、41は液冷媒配管、Aは
吸収器、Cは凝縮器、Eは蒸発器、Fはフラッシュチャ
ンバー、Fbはフラッシュ空間、G1は第3の再生器
(低温再生器)、G2は第2の再生器(中温再生器)、
3は第1の再生器(高温再生器)、H1〜H3は第1〜
第3の溶液熱交換器である。
21 is a low temperature solution pipe, 22 is a medium temperature solution pipe, 23 is a high temperature solution pipe, 31 is a third refrigerant vapor pipe, 32 is a second refrigerant vapor pipe, 33 is a first refrigerant vapor pipe, and 34 is a first refrigerant vapor pipe. Drain pipe, 40 is a second drain pipe, 40a is a downstream end of the second drain pipe 40, 41 is a liquid refrigerant pipe, A is an absorber, C is a condenser, E is an evaporator, and F is a flash chamber. , Fb is a flash space, G 1 is a third regenerator (low temperature regenerator), G 2 is a second regenerator (medium temperature regenerator),
G 3 is the first regenerator (high temperature regenerator), H 1 to H 3 are the first to the first
It is a third solution heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 達己 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 安田 賢二 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 Fターム(参考) 3L093 AA01 BB00 BB11 BB16 MM02 MM03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsumi Takase             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory (72) Inventor Kenji Yasuda             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory F term (reference) 3L093 AA01 BB00 BB11 BB16 MM02                       MM03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 凝縮器(C)、吸収器(A)および蒸発
器(E)と、高温側から低温側に各々作動温度を異にす
る複数台の再生器(Gn〜G1)と、これら各再生器
(Gn〜G1)に対応する複数台の溶液熱交換器(Hn
〜Hn-1)とを備え、上記高温側の再生器(Gn,Gn
-1)で発生した冷媒蒸気を順次低温側の再生器(G
-1,G1)に導入して、当該低温側各再生器(G
-1,G1)の加熱源として利用するようにした吸収式
冷凍装置において、上記低温側再生器(Gn -1,G1
で発生した冷媒ドレン(Rd)を上記凝縮器(C)に供
給するドレン経路に、上記低温側の再生器(Gn-1,G
1)で発生した冷媒ドレン(Rd)を再蒸気化させるフ
ラッシュ空間(Fb)を設け、該フラッシュ空間(F
b)内における冷媒ドレンフラッシュ時の気化潜熱によ
って、上記供給される冷媒ドレン(Rd)の温度を上記
凝縮器(C)の冷媒飽和温度以下まで下げるようにした
ことを特徴とする吸収式冷凍装置。
1. Condenser (C), absorber (A) and evaporation
The operating temperature from the high temperature side to the low temperature side, respectively.
Multiple regenerators (Gn-G1) And each of these regenerators
(Gn ~ G1) Solution heat exchangers (Hn
~ Hn-1) And the high temperature side regenerator (Gn, Gn
-1) In the regenerator (G
n-1, G1), Each low temperature side regenerator (G
n-1, G1) Absorption formula designed to be used as a heat source
In the refrigeration system, the low temperature side regenerator (Gn -1, G1)
Refrigerant drain (Rd) generated in the above is supplied to the condenser (C).
The low temperature side regenerator (Gn-1, G
1) To re-vaporize the refrigerant drain (Rd) generated in
Rush space (Fb) is provided, and the flash space (F
b) due to the latent heat of vaporization during the drain flash of the refrigerant
The temperature of the supplied refrigerant drain (Rd) is
The temperature was lowered below the saturation temperature of the refrigerant in the condenser (C).
An absorption type refrigeration system characterized by the above.
【請求項2】 凝縮器(C)の冷媒ドレン導入口(C
a)部分に、所定容積のフラッシュチャンバー(F)が
設けられ、フラッシュ空間(Fb)は、該フラッシュチ
ャンバー(F)内に形成されていることを特徴とする請
求項1記載の吸収式冷凍装置。
2. The refrigerant drain inlet (C) of the condenser (C)
The absorption refrigerating apparatus according to claim 1, wherein a flash chamber (F) having a predetermined volume is provided in the portion (a), and the flash space (Fb) is formed in the flash chamber (F). .
【請求項3】 複数台の再生器(Gn〜Gn-1)は、高
温用、中温用、低温用の3台の再生器(G3,G2
1)であることを特徴とする請求項1又は2記載の吸
収式冷凍装置。
3. A plurality of regenerators (Gn to Gn −1 ) are three regenerators for high temperature, medium temperature, and low temperature (G 3 , G 2 ,
G 1 ) The absorption type refrigerating apparatus according to claim 1 or 2, wherein
JP2001293678A 2001-09-26 2001-09-26 Absorption type refrigerator Pending JP2003106695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293678A JP2003106695A (en) 2001-09-26 2001-09-26 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293678A JP2003106695A (en) 2001-09-26 2001-09-26 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JP2003106695A true JP2003106695A (en) 2003-04-09

Family

ID=19115422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293678A Pending JP2003106695A (en) 2001-09-26 2001-09-26 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JP2003106695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336714A (en) * 2019-08-30 2020-06-26 同方节能工程技术有限公司 Novel absorption type water chilling and heating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336714A (en) * 2019-08-30 2020-06-26 同方节能工程技术有限公司 Novel absorption type water chilling and heating unit
CN111336714B (en) * 2019-08-30 2024-04-12 同方节能工程技术有限公司 Absorption type cold and warm water unit

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
JP2002147885A (en) Absorption refrigerating machine
JP2004324977A (en) Absorption type refrigerating machine
KR102165443B1 (en) Absoption chiller
JP2003106695A (en) Absorption type refrigerator
JP2003106702A (en) Absorption refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
KR20080094985A (en) Hot-water using absorption chiller
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4266697B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP2003343939A (en) Absorption refrigerating machine
JP2005282968A (en) Absorption type refrigerating machine
JPS6122225B2 (en)
JP4260095B2 (en) Single double effect absorption refrigerator
JP4278609B2 (en) Absorption refrigerator
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JP4682493B2 (en) Absorption refrigeration system
JP2003106711A (en) Absorption refrigerating machine
JP4596683B2 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP2003121021A (en) Double effect absorption refrigerating machine