JP2003105525A - Nitriding treatment method - Google Patents

Nitriding treatment method

Info

Publication number
JP2003105525A
JP2003105525A JP2001294271A JP2001294271A JP2003105525A JP 2003105525 A JP2003105525 A JP 2003105525A JP 2001294271 A JP2001294271 A JP 2001294271A JP 2001294271 A JP2001294271 A JP 2001294271A JP 2003105525 A JP2003105525 A JP 2003105525A
Authority
JP
Japan
Prior art keywords
nitriding
salt bath
metal material
treated
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001294271A
Other languages
Japanese (ja)
Inventor
Yoshihisa Serizawa
義久 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001294271A priority Critical patent/JP2003105525A/en
Publication of JP2003105525A publication Critical patent/JP2003105525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of nitriding a metal material, by which the nitriding efficiency can be further enhanced beyond the conventional maximum efficiency hitherto realized by various improvements. SOLUTION: In the method for nitriding the metal material by supplying activated nitrogen to the metal material from a nitriding environment while holding the metal material in the nitriding environment, vibrations by ultrasonic waves are applied to the metal material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化性環境中に金
属材料を保持し、該窒化性環境から該金属材料への活性
窒素供給により該金属材料を窒化処理する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of holding a metallic material in a nitriding environment, and nitriding the metallic material by supplying active nitrogen to the metallic material from the nitriding environment.

【0002】[0002]

【従来の技術】従来、鋼に代表される金属材料の耐摩耗
性や疲労強度の向上のための表面硬化法として窒化法が
広く行われている。金属材料の窒化処理方法として、塩
浴窒化法(例えばタフトライド法)、ガス窒化法、プラ
ズマ(イオン)窒化法が一般的に行われている。窒化法は
一般に500〜600℃程度の比較的低温で行われ、窒
化後も焼入れ等の熱処理を必要としないため、熱歪みが
極めて少ないことが大きな利点である。
2. Description of the Related Art Conventionally, a nitriding method has been widely used as a surface hardening method for improving the wear resistance and fatigue strength of metal materials represented by steel. As a nitriding method of a metal material, a salt bath nitriding method (for example, a tuftride method), a gas nitriding method, and a plasma (ion) nitriding method are generally performed. Since the nitriding method is generally performed at a relatively low temperature of about 500 to 600 ° C. and does not require heat treatment such as quenching after nitriding, it is a great advantage that thermal strain is extremely small.

【0003】窒化による表面硬化層(窒化層)は、最表
層の金属窒化物層と、その下の拡散層とから構成されて
いる。表面硬化特性の向上、生産性および生産コストの
向上のために、より短時間でより深い硬化層を形成して
窒化効率を向上させることが重要である。そのため、こ
れまでに上記の各窒化処理方法において種々の改良がな
されてきた。
The surface hardened layer (nitrided layer) formed by nitriding is composed of an outermost metal nitride layer and a diffusion layer thereunder. In order to improve surface hardening characteristics, productivity and production cost, it is important to form a deeper hardened layer in a shorter time to improve nitriding efficiency. Therefore, various improvements have been made in the above nitriding methods.

【0004】しかし、従来の改良による窒化効率の向上
は既に技術的に限界に達しており、更に窒化効率を高め
るための新たな方法が求められていた。
However, the improvement of the nitriding efficiency by the conventional improvement has already reached the technical limit, and a new method for further increasing the nitriding efficiency has been demanded.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の種々
の改良の限界を超えて、窒化効率を更に高めることがで
きる金属材料の窒化処理方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for nitriding a metal material, which is capable of further increasing the nitriding efficiency beyond the limits of various conventional improvements.

【0006】[0006]

【課題を解決するための手段】上記の目的は、本発明に
よれば、窒化性環境中に金属材料を保持し、該窒化性環
境から該金属材料への活性窒素供給により該金属材料を
窒化処理する方法において、該金属材料に超音波振動を
印加することを特徴とする窒化処理方法によって達成さ
れる。
According to the present invention, the above object is to hold a metal material in a nitriding environment and to nitride the metal material by supplying active nitrogen from the nitriding environment to the metal material. In the method for treating, a nitriding treatment method is characterized in that ultrasonic vibration is applied to the metal material.

【0007】本発明において、窒化処理中に被処理物で
ある金属材料に超音波振動を印加することにより、下記
の機構によって短時間で深い表面硬化層(窒化層)が得
られる。
In the present invention, by applying ultrasonic vibration to the metallic material which is the object to be treated during the nitriding treatment, a deep surface hardened layer (nitrided layer) can be obtained in a short time by the following mechanism.

【0008】窒化層形成を促進するためには、塩浴窒化
法、ガス窒化法、プラズマ窒化法(イオン窒化法)のい
ずれにおいても、(1)被処理材である金属材料の表面
に存在する活性窒素の生成を促進すること、および
(2)被処理材内部への窒素の拡散を促進することが重
要である。これらは、超音波振動のエネルギーにより下
記のように促進される。
In order to promote the formation of the nitrided layer, in any of salt bath nitriding method, gas nitriding method and plasma nitriding method (ion nitriding method), (1) it exists on the surface of the metal material to be treated. It is important to promote the generation of active nitrogen and (2) promote the diffusion of nitrogen into the material to be treated. These are promoted by the energy of ultrasonic vibration as described below.

【0009】(1)被処理材表面での活性窒素生成の促
進 被処理材表面での原料ガスあるいは塩浴の分解が促進さ
れ、活性窒素の生成が促進される。この作用は、塩浴窒
化法における塩浴の分解について特に顕著である。
(1) Promotion of generation of active nitrogen on the surface of the material to be treated Decomposition of the raw material gas or salt bath on the surface of the material to be treated is promoted, and generation of active nitrogen is promoted. This effect is particularly remarkable for the decomposition of the salt bath in the salt bath nitriding method.

【0010】(2)被処理材内部への窒素拡散の促進 被処理材内部における窒素(原子またはイオン)の拡散
を促進すると同時に、被処理材内部の窒素濃度上昇に伴
う拡散速度の低下を防止する。
(2) Promotion of diffusion of nitrogen into the material to be treated While promoting diffusion of nitrogen (atoms or ions) inside the material to be treated, at the same time, preventing decrease in diffusion rate due to increase in nitrogen concentration inside the material to be treated. To do.

【0011】[0011]

【発明の実施の形態】本発明において用いる超音波振動
とは、20kHz以上の振動を言う。これにより、窒化
性環境を構成する窒素ガスまたは塩浴の分解による活性
窒素の生成に必要なエネルギーが供給される。一般に、
20〜30kHzの超音波振動を用いることが適当であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The ultrasonic vibration used in the present invention means a vibration of 20 kHz or more. As a result, the energy required to generate active nitrogen by the decomposition of the nitrogen gas or the salt bath that constitutes the nitriding environment is supplied. In general,
It is suitable to use ultrasonic vibration of 20 to 30 kHz.

【0012】本発明の方法は、窒化性環境として窒素含
有塩浴を用いる塩浴窒化法、窒素含有ガスを用いるガス
窒化法、窒素含有プラズマを用いるプラズマ(イオン)
窒化法のいずれにも適用できる。
The method of the present invention includes a salt bath nitriding method using a nitrogen-containing salt bath as a nitriding environment, a gas nitriding method using a nitrogen-containing gas, and a plasma (ion) using a nitrogen-containing plasma.
It can be applied to any of the nitriding methods.

【0013】被処理物である金属材料への超音波振動の
印加は、一般的には金属材料に直接印加することにより
行うが、窒化性環境として塩浴を用いる場合には、超音
波振動を直接には塩浴に印加し、この塩浴を介して間接
的に金属材料に印加することもできる。
The application of ultrasonic vibration to the metallic material to be treated is generally carried out by directly applying it to the metallic material. However, when a salt bath is used as the nitriding environment, ultrasonic vibration is applied. It is also possible to apply directly to the salt bath and indirectly to the metal material via this salt bath.

【0014】本発明の窒化処理法により処理する金属材
料は、代表的には鋼であるが、これに限定する必要はな
く、チタンあるいはチタン合金、アルミニウムあるいは
アルミニウム合金、マグネシウムあるいはマグネシウム
合金等、窒化処理の対象とし得る金属材料であればよ
い。
The metal material treated by the nitriding method of the present invention is typically steel, but the invention is not limited to this, and titanium, titanium alloy, aluminum or aluminum alloy, magnesium or magnesium alloy, etc. are nitrided. Any metal material that can be treated can be used.

【0015】[0015]

【実施例】〔実施例1〕図1を参照して、本発明を塩浴
窒化法に適用した場合の窒化処理装置の構成例を説明す
る。
[Embodiment 1] With reference to FIG. 1, a constitutional example of a nitriding apparatus when the present invention is applied to a salt bath nitriding method will be described.

【0016】まず、図1(1)に示した例は、超音波振
動を被処理材に直接印加する構成である。図示した塩浴
窒化装置10は、塩浴槽11と超音波印加源12とを備
えており、超音波印加源12から塩浴槽11の内部へ超
音波印加端子13が延びている。
First, the example shown in FIG. 1 (1) has a structure in which ultrasonic vibration is directly applied to the material to be treated. The illustrated salt bath nitriding apparatus 10 includes a salt bath 11 and an ultrasonic wave application source 12, and an ultrasonic wave application terminal 13 extends from the ultrasonic wave application source 12 into the salt bath 11.

【0017】窒化処理を行うには、超音波印加端子13
の先端に被処理材14を保持し、塩浴槽11内に所定組
成の塩浴15を満たして所定の窒化処理温度に維持した
状態で、超音波印加源12を起動し、超音波印加端子1
3を介して超音波振動を被処理材14に直接印加する。
To perform the nitriding treatment, the ultrasonic wave applying terminal 13 is used.
With the material 14 to be treated held at the tip of the ultrasonic bath, the salt bath 11 is filled with a salt bath 15 having a predetermined composition and maintained at a predetermined nitriding temperature, the ultrasonic wave application source 12 is activated, and the ultrasonic wave application terminal 1
Ultrasonic vibration is directly applied to the material to be processed 14 via 3.

【0018】被処理材14から塩浴15に伝達された超
音波エネルギーにより、塩浴15内での窒化性成分の分
解による活性窒素の生成が促進されると共に、被処理材
14内部における窒素の拡散も超音波エネルギーにより
促進される。
The ultrasonic energy transmitted from the material to be treated 14 to the salt bath 15 promotes the generation of active nitrogen due to the decomposition of the nitriding component in the salt bath 15, and the nitrogen in the material to be treated 14 is generated. Diffusion is also facilitated by ultrasonic energy.

【0019】次に、図1(2)に示した例は、超音波振
動を塩浴を介して被処理材に印加する構成である。図示
した塩浴窒化装置20は、塩浴槽21と超音波印加源2
2とを備えており、超音波印加源22から延びた超音波
印加端子23の先端が塩浴槽21の外壁に接続してい
る。
Next, the example shown in FIG. 1 (2) has a structure in which ultrasonic vibration is applied to the material to be treated through a salt bath. The illustrated salt bath nitriding device 20 includes a salt bath 21 and an ultrasonic wave application source 2
2 and the tip of the ultrasonic wave application terminal 23 extending from the ultrasonic wave application source 22 is connected to the outer wall of the salt bath 21.

【0020】窒化処理を行うには、塩浴槽21の所定位
置に被処理材24を保持し、塩浴槽21内に所定組成の
塩浴25を満たして所定の窒化処理温度に維持した状態
で、超音波印加源22を起動し、超音波印加端子23お
よび塩浴槽21を介して塩浴25に超音波振動を印加す
る。
To perform the nitriding treatment, the material to be treated 24 is held at a predetermined position in the salt bath 21, and the salt bath 21 is filled with a salt bath 25 having a predetermined composition and maintained at a predetermined nitriding temperature. The ultrasonic wave application source 22 is activated to apply ultrasonic vibration to the salt bath 25 via the ultrasonic wave application terminal 23 and the salt bath 21.

【0021】塩浴25に印加された超音波エネルギーに
より、塩浴25内での窒化性成分の分解による活性窒素
の生成が促進されると共に、塩浴25から被処理材24
に伝達された超音波エネルギーにより被処理材14内部
における窒素の拡散も促進される。
The ultrasonic energy applied to the salt bath 25 promotes the generation of active nitrogen due to the decomposition of the nitriding component in the salt bath 25, and at the same time, the material 24 to be treated from the salt bath 25.
Diffusion of nitrogen inside the material 14 to be processed is also promoted by the ultrasonic energy transmitted to the material 14.

【0022】〔実施例2〕図2を参照して、本発明をガ
ス窒化法あるいはプラズマ(イオン)窒化法に適用した
場合の窒化処理装置の構成例を説明する。
[Embodiment 2] With reference to FIG. 2, a structural example of a nitriding apparatus when the present invention is applied to a gas nitriding method or a plasma (ion) nitriding method will be described.

【0023】図示した窒化処理装置30は、窒化処理チ
ャンバ31と超音波印加源32とを備えており、超音波
印加源32からチャンバ31の内部へ超音波印加端子3
3が延びている。
The illustrated nitriding apparatus 30 includes a nitriding chamber 31 and an ultrasonic wave application source 32, and the ultrasonic wave application terminal 3 extends from the ultrasonic wave application source 32 into the chamber 31.
3 is extended.

【0024】窒化処理を行うには、超音波印加端子33
の先端に被処理材34を保持し、チャンバ31内を所定
の窒化性雰囲気35および所定の窒化処理温度に維持し
た状態で、超音波印加源32を起動し、超音波印加端子
33を介して超音波振動を被処理材34に直接印加す
る。
To perform the nitriding treatment, the ultrasonic wave applying terminal 33 is used.
With the material 34 to be processed held at the tip of the chamber 31 and the inside of the chamber 31 being maintained at a predetermined nitriding atmosphere 35 and a predetermined nitriding treatment temperature, the ultrasonic wave application source 32 is activated and the ultrasonic wave application terminal 33 is used. Ultrasonic vibration is directly applied to the material 34 to be processed.

【0025】被処理材34から窒化処理雰囲気35に伝
達された超音波エネルギーにより、窒化処理雰囲気35
内の窒化性成分の分解による活性窒素の生成が促進され
ると共に、被処理材34内部における窒素の拡散も超音
波エネルギーにより促進される。
The nitriding atmosphere 35 is generated by the ultrasonic energy transmitted from the material 34 to be treated into the nitriding atmosphere 35.
The generation of active nitrogen by the decomposition of the nitriding component in the inside is promoted, and the diffusion of nitrogen inside the material to be treated 34 is also promoted by the ultrasonic energy.

【0026】図3に、窒化処理後の被処理材の表層部断
面組織を模式的に示す。被処理材Sは、最表層に金属の
窒化物から成る窒化物層Cが、その内側に窒素が拡散し
て固溶状態にある拡散層Dが形成されており、更に内側
の芯部は組成上窒化処理の影響を受けていない元々の金
属材料Mから成る。窒化物層Cと拡散層Dが表面硬化層
(便宜的に「窒化層」と呼ばれる)を構成している。
FIG. 3 schematically shows the cross-sectional structure of the surface layer of the material to be treated after the nitriding treatment. In the material S to be treated, a nitride layer C made of a metal nitride is formed on the outermost surface, and a diffusion layer D in a solid solution state in which nitrogen is diffused is formed inside the material. It is made of the original metal material M that is not affected by the upper nitriding treatment. The nitride layer C and the diffusion layer D form a surface hardened layer (for convenience, referred to as a “nitrided layer”).

【0027】本発明により超音波振動を印加すると、被
処理材表面での活性窒素ポテンシャルの上昇により、最
表層の窒化物層Cおよびその内側の拡散層Dの成長が促
進されるので、短時間で深い窒化層が形成される。特
に、被処理材Sの内部における窒素の拡散が促進される
ため、拡散層Dの成長が顕著に促進される。
When ultrasonic vibrations are applied according to the present invention, the growth of the active nitrogen potential on the surface of the material to be treated promotes the growth of the outermost nitride layer C and the diffusion layer D inside the outermost layer, so that the growth time is short. Forms a deep nitride layer. In particular, since the diffusion of nitrogen inside the material S to be processed is promoted, the growth of the diffusion layer D is significantly promoted.

【0028】[0028]

【発明の効果】本発明によれば、従来の種々の改良の限
界を超えて、窒化効率を更に高めることができる金属材
料の窒化処理方法が提供される。
According to the present invention, there is provided a method for nitriding a metal material, which is capable of further increasing the nitriding efficiency, overcoming the limits of various conventional improvements.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明を塩浴窒化法に適用した場合の
窒化処理装置の構成例を示す断面図である。(1)は超
音波印加源から被処理材に超音波振動を直接印加する場
合、(2)は超音波印加源から塩浴を介して被処理材に
超音波振動を印加する場合を示す。
FIG. 1 is a cross-sectional view showing a configuration example of a nitriding apparatus when the present invention is applied to a salt bath nitriding method. (1) shows the case where ultrasonic vibration is directly applied to the material to be treated from the ultrasonic wave application source, and (2) shows the case where ultrasonic vibration is applied to the material to be treated from the ultrasonic wave application source through the salt bath.

【図2】図2は、本発明をガス窒化法あるいはプラズマ
(イオン)窒化法に適用した場合の窒化処理装置の構成
例を示す断面図である。
FIG. 2 is a sectional view showing a configuration example of a nitriding apparatus when the present invention is applied to a gas nitriding method or a plasma (ion) nitriding method.

【図3】図3は、窒化処理後の被処理材の表層部断面組
織を模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a cross-sectional structure of a surface layer portion of a material to be treated after nitriding treatment.

【符号の説明】[Explanation of symbols]

10、20…塩浴窒化装置 11、21…塩浴槽 12、22…超音波印加源 13、23…超音波印加端子 14、24…被処理材 15、25…塩浴 30…ガス窒化装置またはプラズマ(イオン)窒化装置 31…窒化処理チャンバ 32…超音波印加源 33…超音波印加端子 34…被処理材 35…窒化性雰囲気 S…被処理材 C…窒化物層 D…拡散層 M…芯部(金属材料) 10, 20 ... Salt bath nitriding equipment 11, 21 ... Salt bath 12, 22 ... Ultrasonic wave application source 13, 23 ... Ultrasonic wave application terminal 14, 24 ... Material to be treated 15, 25 ... salt bath 30 ... Gas nitriding device or plasma (ion) nitriding device 31 ... Nitriding chamber 32 ... Ultrasonic wave application source 33 ... Ultrasonic wave application terminal 34 ... Material to be treated 35 ... Nitriding atmosphere S: Material to be treated C ... Nitride layer D ... Diffusion layer M: Core (metal material)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化性環境中に金属材料を保持し、該窒
化性環境から該金属材料への活性窒素供給により該金属
材料を窒化処理する方法において、 該金属材料に超音波振動を印加することを特徴とする窒
化処理方法。
1. A method of holding a metal material in a nitriding environment and nitriding the metal material by supplying active nitrogen from the nitriding environment to the metal material, wherein ultrasonic vibration is applied to the metal material. A nitriding method characterized by the above.
【請求項2】 該窒化性環境が窒素含有塩浴、窒素含有
ガス、または窒素含有プラズマから成り、該超音波振動
を該金属材料に直接印加することを特徴とする請求項1
記載の方法。
2. The nitriding environment comprises a nitrogen-containing salt bath, a nitrogen-containing gas, or a nitrogen-containing plasma, and the ultrasonic vibration is directly applied to the metallic material.
The method described.
【請求項3】 該窒化性環境が塩浴から成り、該超音波
振動を該塩浴を介して該金属材料に印加することを特徴
とする請求項1記載の方法。
3. The method of claim 1, wherein the nitriding environment comprises a salt bath and the ultrasonic vibrations are applied to the metallic material through the salt bath.
JP2001294271A 2001-09-26 2001-09-26 Nitriding treatment method Pending JP2003105525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294271A JP2003105525A (en) 2001-09-26 2001-09-26 Nitriding treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294271A JP2003105525A (en) 2001-09-26 2001-09-26 Nitriding treatment method

Publications (1)

Publication Number Publication Date
JP2003105525A true JP2003105525A (en) 2003-04-09

Family

ID=19115908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294271A Pending JP2003105525A (en) 2001-09-26 2001-09-26 Nitriding treatment method

Country Status (1)

Country Link
JP (1) JP2003105525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117988A (en) * 2004-10-20 2006-05-11 Furukawa Co Ltd Magnesium alloy surface treatment method
JP2008115422A (en) * 2006-11-02 2008-05-22 Parker Netsu Shori Kogyo Kk Plasma nitriding device and nitriding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117988A (en) * 2004-10-20 2006-05-11 Furukawa Co Ltd Magnesium alloy surface treatment method
JP4541100B2 (en) * 2004-10-20 2010-09-08 古河機械金属株式会社 Magnesium alloy surface treatment method
JP2008115422A (en) * 2006-11-02 2008-05-22 Parker Netsu Shori Kogyo Kk Plasma nitriding device and nitriding method

Similar Documents

Publication Publication Date Title
US6855217B2 (en) Method of baking treatment of steel product parts
JP2003105525A (en) Nitriding treatment method
JP4575450B2 (en) Ion nitriding method
JP3114973B1 (en) Gas nitriding method for maraging steel
KR101742685B1 (en) Low-Temperature Vacuum Carburizing Method
JP5944797B2 (en) Iron-based alloy material and method for producing the same
JP2004043962A (en) Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
RU2562185C1 (en) Modification method of surface of items from titanium alloys in vacuum
JP2008115422A (en) Plasma nitriding device and nitriding method
JP2006028588A (en) Nitriding treatment method
JP3745972B2 (en) Steel material manufacturing method
JP5798463B2 (en) Carburizing method and carburizing apparatus
JPS5662958A (en) Hardening method for surface of aluminum alloy
WO2002075013A1 (en) Steel material and method for preparation thereof
RU2558320C1 (en) Surface hardening of titanium alloys in vacuum
KR100333199B1 (en) Carburizing Treatment Method
KR20180050443A (en) Carburizing Method in Low-Pressure Range
JPH0516066A (en) Piano wire for wire-saw and manufacture thereof
JP3849742B2 (en) Gas carbonitriding method
JP3745971B2 (en) Steel material
CN101405425A (en) Nitrogen treatment method for iron group alloy base material
RU2562187C1 (en) Method of modification of surface of products from titanic alloys in glow discharge
JP2009270155A (en) Nitriding quenching method and nitrided quenched part
JP5650569B2 (en) Apparatus and method for surface hardening of ferrous material
JPS5881963A (en) Vacuum carburization method