JP2003101033A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JP2003101033A
JP2003101033A JP2001293525A JP2001293525A JP2003101033A JP 2003101033 A JP2003101033 A JP 2003101033A JP 2001293525 A JP2001293525 A JP 2001293525A JP 2001293525 A JP2001293525 A JP 2001293525A JP 2003101033 A JP2003101033 A JP 2003101033A
Authority
JP
Japan
Prior art keywords
axis
pattern
weight body
lead
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001293525A
Other languages
Japanese (ja)
Other versions
JP3985215B2 (en
Inventor
Masakatsu Saito
正勝 斎藤
Shigenori Tanaka
茂徳 田中
Yoshio Ikeda
由夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001293525A priority Critical patent/JP3985215B2/en
Publication of JP2003101033A publication Critical patent/JP2003101033A/en
Application granted granted Critical
Publication of JP3985215B2 publication Critical patent/JP3985215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in a conventional three-axis semiconductor acceleration sensor having, respectively four piezo-resistance devices on the respective axes of a flexible part, that since the resistance values of respective parts of lead-out electrodes are not taken into account in pattern design, the zero-point output voltage of the Z-axis, in particular, is as high as several mV. SOLUTION: The design of the electrode pattern of a lead-out electrode, connected to a piezo-resistance device provided on a center weight side, and an electrode pattern of the lead-out electrode, with which the piezo-resistance device provided on a fixed part side is connected to an external connection terminal, is worked out fully, to make the resistance values of both lead-out electrodes approximately equal to the resistance value of the electrode pattern on a beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は可撓部に形成したピ
エゾ抵抗素子の抵抗変化を検出する3軸の半導体型加速
度センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triaxial semiconductor type acceleration sensor for detecting a resistance change of a piezoresistive element formed in a flexible portion.

【0002】[0002]

【従来の技術】従来の3軸の半導体型加速度センサーと
しては、例えば、特開昭63−266359に記載され
ているものがあり、Si単結晶基板の薄肉部から成る互
いに直交する2対の梁構造の可撓部を有し、Si単結晶
基板の厚肉部から成る中央の重錘体と周辺の固定部とは
該可撓部で接続され、X軸方向とZ軸方向とを同一の梁
上に、また、Y軸方向をこれと直交する他の梁上に形成
したピエゾ抵抗素子で検出するように、該梁上には各軸
のピエゾ抵抗素子が形成されてなる基本構造が示さ
れている。同従来例では引き出し電極や外部との電極接
続端子の配置については記載されていないが、従来の引
き出し電極のパターン幅は一定で、その配線抵抗につい
ては考慮されていなかった。従来の考え方で、上記従来
の3軸加速度センサー構造に引き出し電極や外部接続端
子を配置した場合の全体構造例を図7に、図8に図7の
XおよびZ軸の点線枠部の拡大図、また図9にはZ−Z
軸方向の一部の断面図を示す。以下に、小型で高性能な
3軸加速度センサーの実現には、引き出し電極の抵抗値
や外部接続端子の配置も重要なポイントであることを説
明する。
2. Description of the Related Art As a conventional triaxial semiconductor type acceleration sensor, for example, there is one described in Japanese Patent Laid-Open No. 63-266359, and two pairs of beams which are made of a thin portion of a Si single crystal substrate and are orthogonal to each other. The flexible structure has a flexible portion, and the central weight body made of the thick portion of the Si single crystal substrate and the peripheral fixed portion are connected by the flexible portion, and the X-axis direction and the Z-axis direction are the same. on the beam, also to detect other piezoresistive element formed on the beam orthogonal to the Y-axis direction to this, the basic structure formed by piezoresistive elements for each axis 4 Ke is formed on the beams It is shown. Although the conventional example does not describe the arrangement of the extraction electrode or the electrode connection terminal to the outside, the pattern width of the conventional extraction electrode is constant and the wiring resistance thereof is not taken into consideration. FIG. 7 is an enlarged view of the X- and Z-axis dotted line frame portions of FIG. 7 in which the extraction electrodes and external connection terminals are arranged in the conventional 3-axis acceleration sensor structure based on the conventional concept. , And ZZ in FIG.
A partial sectional view in the axial direction is shown. It will be explained below that the resistance value of the extraction electrode and the arrangement of the external connection terminals are also important points in realizing a compact and high-performance triaxial acceleration sensor.

【0003】まず、全体構造について説明する。これは
Si単結晶基板の厚肉部から成る中央重錘体2とそれを
取り囲むように配置した固定部1と、該重錘体2および
固定部1とを連結するSi単結晶基板の薄肉部より成る
2対の互いに直交する梁状の可撓部3a、3b、3c、
3dと該可撓部上の2つの方向(XとY)及び該可撓部
に垂直な方向(Z)に対応するように設けられた各軸4
のピエゾ抵抗素子11〜34とから構成される。
First, the overall structure will be described. This is a central weight body 2 composed of a thick portion of a Si single crystal substrate, a fixed portion 1 arranged so as to surround the central weight body 2, and a thin portion of the Si single crystal substrate connecting the weight body 2 and the fixed portion 1. Two pairs of beam-shaped flexible portions 3a, 3b, 3c, which are orthogonal to each other,
3d and each axis 4 provided so as to correspond to two directions (X and Y) on the flexible portion and a direction (Z) perpendicular to the flexible portion.
And piezoresistive elements 11 to 34.

【0004】また、図8、9より、該ピエゾ抵抗素子の
上にはSiOやSiNなどの薄膜から成る保護膜41
が形成され、その上にピエゾ抵抗素子の両端にスルーホ
ール40aを介して接続されたアルミニウムなどの金属
薄膜からなる引き出し電極40が形成され、該引出し電
極群は、周辺の固定部1上に設けた外部電極端子42群
につながって成る構造をしている。
From FIGS. 8 and 9, a protective film 41 made of a thin film of SiO 2 or SiN is formed on the piezoresistive element.
Is formed, and lead-out electrodes 40 made of a metal thin film such as aluminum connected to both ends of the piezoresistive element via through holes 40a are formed thereon. The lead-out electrode group is provided on the peripheral fixed portion 1. The external electrode terminals 42 are connected to each other.

【0005】この従来例は、3軸の加速度を検出する
が、その検出原理は、中央の重錘体2が加速度による力
を受けて変位したときの可撓部のたわみを該可撓部に形
成されたピエゾ抵抗素子11〜34の抵抗値変化として
検出することで3軸方向の加速度を検出するものであ
る。その原理を図を用いて詳しく説明する。
This conventional example detects triaxial acceleration. The principle of detection is that the deflection of the flexible portion when the center weight body 2 is displaced by receiving the force due to the acceleration is applied to the flexible portion. By detecting the change in the resistance value of the formed piezoresistive elements 11 to 34, the acceleration in the three axis directions is detected. The principle will be described in detail with reference to the drawings.

【0006】図10および11を用いて加速度の検出原
理を説明する。X方向とY方向とは同じなので、これら
の図では、代表してX方向とZ方向とを示す。図10
(a)は、X方向の加速度による可撓部3a、3cの変
形の様子を模式的に示す断面図で、ピエゾ抵抗素子Rx
1、Rx3には引っ張り応力が、Rx2、Rx4には圧
縮応力が加わり、この時、ピエゾ抵抗素子Rx1、Rx
3及びRx2、Rx4の抵抗値はそれぞれ増加および減
少する。また、図11に、各軸のブリッジの組み方およ
び検出回路を示す。図10(a)において、X方向の加
速度により重錘体にFxの力を受けた時、ピエゾ抵抗R
x1およびRx3はその値が増加し、Rx2およびRx
4は減少するが、この変化により図11(a)に示す検
出回路により、X方向には電圧が出力されるが、Z方向
の電圧は、X方向とブリッジの抵抗の接続が異なるため
に各々の抵抗値の増減は相殺され電圧は零である。逆
に、図10(b)に示したようにZ方向の加速度により
Fzの力を受けた時には、ピエゾ抵抗Rz1およびRz
4はその値が増加し、Rz2およびRz3は減少する
が、この変化により図11(b)に示す検出回路によ
り、Z方向には電圧が出力されるが、X方向の電圧は、
Z方向とブリッジの抵抗の接続が異なるために各々の抵
抗値の増減は相殺され電圧は零である。このようにして
3軸の加速度を検出できる。
The principle of acceleration detection will be described with reference to FIGS. Since the X direction and the Y direction are the same, the X direction and the Z direction are representatively shown in these drawings. Figure 10
(A) is a cross-sectional view schematically showing how the flexible portions 3a, 3c are deformed by acceleration in the X direction, and shows a piezoresistive element Rx.
A tensile stress is applied to Rx1 and Rx3, and a compressive stress is applied to Rx2 and Rx4. At this time, piezoresistive elements Rx1 and Rx are applied.
The resistance values of 3 and Rx2 and Rx4 increase and decrease, respectively. Further, FIG. 11 shows how to assemble the bridge of each axis and the detection circuit. In FIG. 10 (a), when the force of Fx is applied to the weight body by the acceleration in the X direction, the piezo resistance R
x1 and Rx3 increase in value, and Rx2 and Rx
4 decreases, but due to this change, the detection circuit shown in FIG. 11A outputs a voltage in the X direction, but the voltage in the Z direction is different because the connection of the resistance of the bridge is different from that of the X direction. The increase or decrease in the resistance value of is canceled out and the voltage is zero. On the contrary, as shown in FIG. 10B, when the force of Fz is applied by the acceleration in the Z direction, the piezo resistances Rz1 and Rz are
4 increases its value and decreases Rz2 and Rz3. Due to this change, the detection circuit shown in FIG. 11B outputs a voltage in the Z direction, but the voltage in the X direction is
Since the connection of the resistance of the bridge is different from that of the Z direction, the increase and decrease of each resistance value is offset and the voltage is zero. In this way, triaxial acceleration can be detected.

【0007】[0007]

【発明の解決しようとする課題】上述したように、ピエ
ゾ抵抗型加速度センサーはブリッジ回路の非平衡電圧を
検出するものであるが、実際のブリッジ回路には、ピエ
ゾ抵抗以外に、図7で説明した引き出し電極パターン4
0の抵抗も入ってくる。各軸4のピエゾ抵抗素子は同
一パターン形状に設計されると同じように、一般に各軸
の引き出し電極パターン40も1対の梁毎に点対称ある
いは線対称となるパターン形状に設計され、該引き出し
電極の各部の同一パターン形状部分の抵抗値もほぼ等し
くなるため、以下の説明では、それぞれの引き出し電極
の各部のパターン部分には同じ符号を付し、その抵抗値
も同じ記号で表記することにする。
As described above, the piezoresistive acceleration sensor detects the unbalanced voltage of the bridge circuit. However, in the actual bridge circuit, other than the piezoresistor, the explanation will be given with reference to FIG. Extracted electrode pattern 4
Zero resistance comes in. Piezoresistive elements of each shaft 4 Ke is designed in the same way, generally the extraction electrode pattern 40 is also point symmetric or line-symmetric to each beam of a pair of each axis pattern shape when it is designed in the same pattern, the Since the resistance value of the same pattern shape part of each part of the extraction electrode is also substantially equal, in the following description, the pattern part of each part of each extraction electrode is given the same symbol, and its resistance value is also described by the same symbol. To

【0008】まず、図7において、X軸の2つの梁上に
あるピエゾ抵抗素子11、12と13、14の引き出し
電極パターン40をそれぞれ4分割し、40ax、40
bx、40cx、440dxと同一の符号を付し、それ
ぞれに対応する抵抗値もRax、Rbx、Rcx、Rd
xと同一の記号で表す。同様に、Y軸の引き出し電極パ
ターン40を40ay、40by、40cy、40dy
と4分割しその各部の抵抗値をRay、Rby、Rc
y、Rdy、また、Z軸の引き出し電極パターン40を
40az、40bz、40cz、40dzと4分割しそ
の各部の抵抗値をRaz、Rbz、Rcz、Rdzとす
る。ここで、40bx、40by、40bzは、各軸2
つの梁の中央にあって、2つのピエゾ抵抗素子(例え
ば、X軸は11と12および13と14)を接続するそ
れぞれX軸、Y軸およびZ軸の引き出し電極パターン4
0の一部分、40ax、40ay、40azは、固定部
1上に配置した外部電極端子42から各軸の梁中央の引
き出し電極パターン部分40bx、40by、40bz
に接続されるまでのそれぞれX軸、Y軸およびZ軸の引
き出し電極パターン40の一部分、40cx、40c
y、40czは、固定部1上に配置した外部電極端子4
2から、固定部1側に位置する各軸のピエゾ抵抗素子
(例えばX軸はピエゾ抵抗素子11および14)の固定
部側の接続部までを繋ぐそれぞれX軸、Y軸およびZ軸
の引き出し電極パターン40の一部分、40dxは、X
軸の中央重錘体部2側に位置するX軸の2つのピエゾ抵
抗素子12および13の接続部から、それぞれ中央重錘
体2と梁3b上および中央重錘体2と梁3d上を通って
固定部1上に配置した外部接続端子42まで繋がる引き
出し電極パターン40の一部分、40dyは、中央重錘
体部2側に位置するY軸の2つのピエゾ抵抗素子22、
23の接続部から、中央重錘体2とそれぞれ梁3dおよ
び3b上を通って、固定部1上に配置した外部接続端子
42まで繋がる引き出し電極パターン40の一部分、4
0dzは、中央重錘体部2側に位置するZ軸の2つのピ
エゾ抵抗素子32、33の接続部から中央重錘体2と梁
3dおよび3b上を通って、固定部1上に配置した外部
接続端子42まで繋がる引き出し電極パターン40の一
部分、を指している。以下、X軸とY軸は同様であるの
でX軸とZ軸で代表して説明する。これらの引き出し電
極パターン40の4分割した各部の配線抵抗値を考慮し
てブリッジ回路を書き直すと図12のようになる。同図
(a)はX軸、(b)はZ軸の検出回路を示している。
First, in FIG. 7, the lead-out electrode patterns 40 of the piezoresistive elements 11, 12 and 13, 14 on the two beams of the X axis are divided into four parts, 40ax, 40ax.
The same reference numerals as bx, 40cx, 440dx are attached, and the resistance values corresponding to the respective are also Rax, Rbx, Rcx, Rd.
It is represented by the same symbol as x. Similarly, the Y-axis lead electrode pattern 40 is set to 40ay, 40by, 40cy, 40dy.
And divide the resistance value of each part into Ray, Rby, Rc
The y-axis, Rdy-axis, and Z-axis extraction electrode patterns 40 are divided into 40az, 40bz, 40cz, and 40dz, and the resistance values of the respective portions are set as Raz, Rbz, Rcz, and Rdz. Here, 40bx, 40by, and 40bz are each axis 2
Lead-out electrode patterns 4 for the X-axis, Y-axis, and Z-axis, which are located in the center of one beam and connect two piezoresistive elements (for example, X-axis is 11 and 12 and 13 and 14), respectively.
A part of 0, 40ax, 40ay, 40az, is an extraction electrode pattern part 40bx, 40by, 40bz at the center of the beam of each axis from the external electrode terminal 42 arranged on the fixed part 1.
A part of the X-axis, Y-axis, and Z-axis lead-out electrode patterns 40, 40cx, 40c until they are connected to
y and 40 cz are external electrode terminals 4 arranged on the fixed portion 1.
X-axis, Y-axis, and Z-axis lead-out electrodes that connect from 2 to the connection part on the fixed part side of each axis piezoresistive element (for example, X-axis is piezoresistive elements 11 and 14) located on the fixed part 1 side. Part of the pattern 40, 40dx is X
From the connecting portion of the two piezoresistive elements 12 and 13 of the X axis located on the side of the central weight body portion 2 of the axis, pass through the central weight body 2 and the beam 3b and the central weight body 2 and the beam 3d, respectively. A part of the extraction electrode pattern 40 connected to the external connection terminal 42 arranged on the fixed part 1 and 40 dy are two Y-axis piezoresistive elements 22 located on the side of the central weight body part 2;
A part of the extraction electrode pattern 40 that extends from the connection portion 23 to the external connection terminal 42 disposed on the fixed portion 1 through the central weight body 2 and the beams 3d and 3b, respectively.
0dz is arranged on the fixed portion 1 from the connecting portion of the two Z-axis piezoresistive elements 32 and 33 located on the side of the central weight body portion 2 through the central weight body 2 and the beams 3d and 3b. It refers to a part of the extraction electrode pattern 40 that is connected to the external connection terminal 42. Hereinafter, since the X axis and the Y axis are the same, the X axis and the Z axis will be representatively described. When the bridge circuit is rewritten in consideration of the wiring resistance value of each of the four divided parts of the extraction electrode pattern 40, it becomes as shown in FIG. In the figure, (a) shows an X-axis detection circuit, and (b) shows a Z-axis detection circuit.

【0009】まず、X軸について見ると、引き出し電極
パターンの抵抗値Rax、Rbx、Rcx、Rdxが加
わっても、4のピエゾ抵抗は初期値としては同じ値に
設計されているため、ブリッジの結線の仕方から全体の
抵抗バランスは保たれ、零点出力には影響しないことが
わかる。Y軸についても同様である。次に、Z軸につい
て見ると、先に図11で検出原理を説明したようにZ軸
では結線の仕方がXおよびY軸とは異なるため、図12
(b)より明らかなように、RczとRdzが入れ替わ
ってブリッジ回路の中に入ってしまう。
[0009] First, looking at the X-axis, the resistance value Rax lead electrode pattern, Rbx, RCX, even subjected to any Rdx, 4 for piezoresistive Ke is designed to the same value as the initial value, the bridge It can be seen from the connection method that the overall resistance balance is maintained and the zero point output is not affected. The same applies to the Y axis. Next, looking at the Z-axis, the way of connecting the Z-axis is different from that of the X-axis and the Y-axis as described above with reference to FIG.
As is clear from (b), Rcz and Rdz are exchanged and enter the bridge circuit.

【0010】したがって、このRczとRdzの値によ
っては、零点出力に影響することがわかる。上述の定義
から、Rczは固定部1側のピエゾ抵抗素子31、34
から外部接続端子42までの引き出し電極パターン40
czの抵抗値、また、Rdzは、中央重錘体2側のピエ
ゾ抵抗素子32、33の引き出し電極パターン40dz
の抵抗値である。つまり、40czの長さは40dzに
比べて非常に短く、したがって、抵抗値も小さい。例え
ば、引き出し電極パターンに0.3μmぐらいのアルミ
薄膜を使った場合、Rczが1Ω弱、Rdzが5Ωほど
にもなり、かなり差が大きく、このときには、零点出力
は、ピエゾ抵抗値をいくつに設定するかで異なるが、数
mVにもなってしまう。零点出力の仕様も5mV以下と
いった値が要求されるようになってきており、この引き
出し電極の抵抗値の零点出力への影響が無視できなくな
ってきた。また、加速度センサーのニーズとしても、一
層の小型、高感度なものが要求されてきており、これに
応えるには、梁幅をできるだけ狭く、かつ長くすること
が必要で、その為には引き出し電極もできるだけ微細な
パターンとなっていかざるを得ない。つまり、小型化、
高感度化への要求に対しては、引き出し電極の抵抗値が
大きくなり零点出力も大きくなっていく傾向にある。
Therefore, it can be seen that the zero point output is affected depending on the values of Rcz and Rdz. From the above definition, Rcz is the piezoresistive element 31, 34 on the fixed portion 1 side.
To the external connection terminal 42 to the extraction electrode pattern 40
The resistance value of cz, or Rdz, is the extraction electrode pattern 40dz of the piezoresistive elements 32 and 33 on the side of the central weight body 2.
Is the resistance value of. That is, the length of 40 cz is much shorter than that of 40 dz, and therefore the resistance value is also small. For example, when an aluminum thin film of about 0.3 μm is used for the extraction electrode pattern, Rcz is slightly less than 1 Ω and Rdz is about 5 Ω, and the difference is quite large. At this time, the zero output is set to any piezo resistance value. Depending on how you do it, it will be several mV. The specification of the zero-point output has come to be required to have a value of 5 mV or less, and the influence of the resistance value of the extraction electrode on the zero-point output cannot be ignored. Further, as the needs of the acceleration sensor, further smaller size and higher sensitivity are required, and in order to meet this, it is necessary to make the beam width as narrow and long as possible. There is no choice but to make the pattern as fine as possible. In other words, downsizing,
To meet the demand for higher sensitivity, the resistance value of the extraction electrode tends to increase and the zero-point output tends to increase.

【0011】したがって、従来は、チップサイズが大き
く引き出し電極のパターン幅も広かったため問題になら
なかった引き出し電極の抵抗値の非平衡によるZ軸の零
点出力が、小型化、高感度化の要求によって大きな課題
となってきた。本発明は、このような事情に鑑みてなさ
れたものであり、零点出力電圧の小さい、小型・高感度
な半導体3軸加速度センサーを提供することを目的とす
る。
Therefore, the Z-axis zero-point output due to the imbalance of the resistance value of the extraction electrode, which has not been a problem because the chip size is large and the pattern width of the extraction electrode is wide, has been demanded by miniaturization and high sensitivity. It has become a big issue. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a small-sized and highly sensitive semiconductor triaxial acceleration sensor having a small zero-point output voltage.

【0012】[0012]

【課題を解決するための手段】本願第1の発明は、少な
くともZ軸の引き出し電極に関して、重錘体部側に配置
されたピエゾ抵抗素子に接続され、一旦重錘体部に引き
出された後、梁上を通って周辺の固定部の外部接続端子
に接続される引き出し電極パターンにおいて、梁上の引
き出し電極パターン部分を除いた部分、すなわち重錘体
部にある引き出し電極パターン部分と固定部にある引き
出し電極パターン部分のパターン幅を梁上の引き出し電
極パターン部分より2倍以上、好ましくは4倍以上に広
く取ることで、当該引き出し電極全体の抵抗値がほぼ梁
上の引き出し電極パターン部分で決まるようにし、かつ
固定部側に配置されたピエゾ抵抗素子から外部接続端子
までをつなぐ引出し電極の抵抗値を、上述の重錘体部側
にあるピエゾ抵抗素子に接続される引き出し電極の梁上
のパターン部分の抵抗値に略等しくしたことである。こ
のように本発明では抵抗値を調整する方法として、パタ
ーン形状で行ったが、他に引き出し電極の厚さを変える
方法も考えられるが、その場合には、各部の引き出し電
極の厚さを変える必要があり、電極薄膜の形成、フォト
エッチング工程を複数回繰り返すことになり製造プロセ
スが複雑になってしまい好ましくない。
According to a first aspect of the present invention, at least the Z-axis lead-out electrode is connected to a piezoresistive element disposed on the weight body side, and after it is once drawn out to the weight body section. In the extraction electrode pattern that is connected to the external connection terminals of the peripheral fixed part through the beam, the part except the extraction electrode pattern part on the beam, that is, the extraction electrode pattern part and the fixed part in the weight body part, By making the pattern width of a certain extraction electrode pattern portion wider than the extraction electrode pattern portion on the beam by 2 times or more, preferably 4 times or more, the resistance value of the entire extraction electrode is substantially determined by the extraction electrode pattern portion on the beam. The resistance value of the extraction electrode that connects the piezoresistive element arranged on the fixed part side to the external connection terminal as described above. It is that in which substantially equal to the resistance value of the pattern portion on the beam extraction electrode which is connected to the child. As described above, in the present invention, the method of adjusting the resistance value is performed by using the pattern shape. However, a method of changing the thickness of the extraction electrode may be considered. In that case, the thickness of the extraction electrode of each part is changed. It is necessary to repeat the process of forming the electrode thin film and the photoetching process a plurality of times, which complicates the manufacturing process, which is not preferable.

【0013】本願第2の発明は、本願第1の発明におい
て、固定部側に配置されたピエゾ抵抗素子から外部接続
端子までをつなぐ引出し電極形状について、その幅は上
述の重錘体部側のピエゾ抵抗素子に接続される引き出し
電極の梁上のパターン幅より細く、必要に応じて複数回
の折り返しを持つ形状を有し、当該電極パターン部分の
抵抗値を重錘体部側のピエゾ抵抗素子に接続される引き
出し電極の梁上のパターン部分の抵抗値に略等しくした
ことである。
The second invention of the present application is the same as the first invention of the present application, with regard to the shape of the extraction electrode for connecting the piezoresistive element arranged on the fixed portion side to the external connection terminal, the width of which is on the weight body side. The lead electrode connected to the piezoresistive element has a shape narrower than the pattern width on the beam, and has a shape in which it is folded several times as necessary, and the resistance value of the electrode pattern portion is the piezoresistive element on the weight body side. That is, the resistance value of the pattern portion on the beam of the extraction electrode connected to is approximately equal to the resistance value.

【0014】本願第3の発明は、本願第1および第2の
発明において、1対の梁上に配置されたX軸(またはY
軸)とZ軸の重錘体部側に位置する合計4のピエゾ抵
抗素子に接続され、重錘体部上に引き出された4本の引
き出し電極パターンは、Y軸(またはX軸)の2方向に
2本づつ分けて引き出すようにし、X軸(またはY軸)
およびZ軸は梁幅方向に均等な位置に配置したことであ
る。
A third invention of the present application is the X-axis (or Y) arranged on a pair of beams in the first and second inventions of the present application.
It is connected to a total of 4 Ke piezoresistive element axis) to be located to the weight body portion side of the Z-axis, the four lead-out electrode patterns drawn to the weight body on the, Y-axis (or X-axis) The X-axis (or Y-axis) can be pulled out separately in two directions.
And the Z axis is arranged at an equal position in the beam width direction.

【0015】[0015]

【作用】第1の発明によれば、重錘体部側に配置された
ピエゾ抵抗素子に接続され、一旦重錘体部に引き出され
た後、梁上を通って周辺の固定部の外部接続端子に接続
される引き出し電極パターン形状および固定部側に配置
されたピエゾ抵抗素子から外部接続端子までをつなぐ引
出し電極パターン形状について、最も検出感度に配慮し
た設計をしなければならない梁形状を基準にして、両者
のパターン形状を決定できるようになり容易に高感度で
低零点出力を達成できる効果がある。すなわち、長さが
大幅に異なる両者の抵抗値を略等しくするために、加速
度センサーとして最も重要な特性パラメータである検出
感度を犠牲にせず、またチップサイズを大きくすること
なしに容易に零点出力を小さく出来る効果がある。
According to the first aspect of the invention, after being connected to the piezoresistive element arranged on the weight body side and once being pulled out to the weight body section, it is passed through the beam and externally connected to the peripheral fixed portion. The lead-out electrode pattern shape connected to the terminal and the lead-out electrode pattern shape that connects the piezoresistive element arranged on the fixed side to the external connection terminal are based on the beam shape that must be designed with the most consideration for detection sensitivity. As a result, the pattern shapes of both can be determined, and there is an effect that a low-zero output can be easily achieved with high sensitivity. In other words, in order to make the resistance values of the two with greatly different lengths substantially equal, the detection sensitivity, which is the most important characteristic parameter as an acceleration sensor, is not sacrificed, and zero-point output can be easily performed without increasing the chip size. There is an effect that can be reduced.

【0016】第2の発明によれば、固定部側に配置され
たピエゾ抵抗素子から外部接続端子までをつなぐ引出し
電極パターンの幅を梁上の電極パターン幅より細くし、
必要に応じて複数回の折り返しを持つ形状とすることに
よって、梁長さを長くしても引き出し電極パターンの抵
抗バランスを簡単に取ることが可能となり、第1の発明
よりチップサイズをキープしたまま零点出力を一層低減
できる、あるいはより小型でも高感度で零点出力を低減
できる効果がある。また、外部接続端子のレイアウトの
自由度をあげる事ができ、例えば零点出力を小さいま
ま、外部接続端子をチップの2辺にまとめることも可能
である。
According to the second invention, the width of the lead-out electrode pattern for connecting the piezoresistive element arranged on the fixed portion side to the external connection terminal is made narrower than the width of the electrode pattern on the beam.
By adopting a shape with multiple turns as necessary, it is possible to easily balance the resistance of the extraction electrode pattern even if the beam length is increased, and while maintaining the chip size compared to the first invention. There is an effect that the zero-point output can be further reduced, or the zero-point output can be reduced with high sensitivity even with a smaller size. Further, the degree of freedom in layout of the external connection terminals can be increased, and it is possible to combine the external connection terminals on two sides of the chip while keeping the zero-point output small.

【0017】第3の発明によれば、1対の梁上にX軸
(またはY軸)とZ軸の2つの検出軸を配置しても、梁
幅を狭く出来るため零点出力を小さくし、かつ小型で高
感度化し易いという効果がある。
According to the third invention, even if the two detection axes of the X-axis (or Y-axis) and the Z-axis are arranged on the pair of beams, the beam width can be narrowed, so that the zero-point output is reduced. Moreover, there is an effect that the size is small and the sensitivity is easily increased.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施例を用いて詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to Examples.

【0019】第1の発明になる実施例を図1に示す。本
実施例は、図6で説明した従来例の3軸の基本構造に本
発明を適用した例である。従来技術の3軸の半導体型加
速度センサーとは、Z軸の中央重錘体部側の引き出し電
極の外部接続端子の配置が異なっている。図1ではわか
り易くするため、図6と同一部分は同じ符号で示した。
上記したように基本構造は、中央重錘体2とそれを取り
囲むように配置した固定部1と、該重錘体2および固定
部1とを連結するSi単結晶基板の薄肉部よりなる梁状
の可撓部3a、3b、3c、3dと該可撓部上の2つの
方向(XとY)及び該可撓部に垂直な方向(Z)に対応
するように設けられた各軸4のピエゾ抵抗素子群11
〜34とから構成される。ピエゾ抵抗素子群から外部接
続端子へのXおよびY軸の引き出し電極40は、重錘体
部2を中心とする点対称な形状でそのパターン幅は一定
とし、Z軸の引き出し電極に本発明を適用し各部の抵抗
値を考慮したパターン設計とした。すなわち、X軸とY
軸に関しては、従来例同様に2つの梁方向の各部の電極
パターンは形状が等しいのでその抵抗値も同じく、零点
出力電圧には影響しない。
An embodiment according to the first invention is shown in FIG. The present embodiment is an example in which the present invention is applied to the triaxial basic structure of the conventional example described in FIG. This is different from the conventional triaxial semiconductor acceleration sensor in the arrangement of the external connection terminal of the lead electrode on the Z-axis central weight body side. In FIG. 1, the same parts as those in FIG. 6 are denoted by the same reference numerals for the sake of clarity.
As described above, the basic structure is a beam-like structure including a central weight body 2 and a fixing portion 1 arranged so as to surround the central weight body 2, and a thin portion of a Si single crystal substrate connecting the weight body 2 and the fixing portion 1. flexible portion 3a of, 3b, 3c, 2 two directions on 3d and the movable flexure (X and Y) and movable flexure axes 4 Quai provided so as to correspond to the direction (Z) perpendicular to the Piezoresistive element group 11
To 34. The X- and Y-axis lead-out electrodes 40 from the piezoresistive element group to the external connection terminals have a point-symmetrical shape with the weight body portion 2 as the center and have a constant pattern width, and the present invention is applied to the Z-axis lead-out electrodes. The pattern was designed by applying the resistance value of each part. That is, X axis and Y
Regarding the axis, as in the conventional example, the electrode patterns of the respective portions in the two beam directions have the same shape, and therefore their resistance values also do not affect the zero-point output voltage.

【0020】Z軸について詳細に説明する。Z軸のピエ
ゾ抵抗素子11と外部接続端子42を接続する引き出し
電極パターンを40cz、ピエゾ抵抗素子11と12お
よび13と14とを接続する引き出し電極パターンを4
0bz、外部接続端子42と梁中央部の電極パターン4
0bzとを接続する電極パターンを40az、ピエゾ抵
抗素子12と13の重錘体側接続部に繋がる引き出し電
極パターンを40dzとし、引き出し電極40dzは、
Z軸の検出軸がある梁3c、3bを通って固定部1上の
外部接続端子42まで引き出した。図12で説明したよ
うに、電極パターン40czと40dzとの抵抗値が等
しくないと零点出力に影響する。本実施例では、電極パ
ターン40czと40dzは、後述の製造方法で述べる
ようなパターン形状とすることによって、その抵抗値を
略同等にでき、零点出力は実用上問題無いレベルまで小
さく抑える事ができた。
The Z axis will be described in detail. The lead electrode pattern connecting the Z-axis piezoresistive element 11 and the external connection terminal 42 is 40 cz, and the lead electrode pattern connecting the piezoresistive elements 11 and 12 and 13 and 14 is 4.
0bz, the external connection terminal 42 and the electrode pattern 4 at the center of the beam
The electrode pattern connecting 0bz is 40az, the extraction electrode pattern connected to the weight side connection portion of the piezoresistive elements 12 and 13 is 40dz, and the extraction electrode 40dz is
It was pulled out to the external connection terminal 42 on the fixed portion 1 through the beams 3c and 3b having the Z-axis detection axis. As described with reference to FIG. 12, if the resistance values of the electrode patterns 40cz and 40dz are not equal, the zero-point output is affected. In the present embodiment, the electrode patterns 40cz and 40dz can be made to have substantially the same resistance value by having a pattern shape as described in the manufacturing method described later, and the zero-point output can be suppressed to a level where there is no practical problem. It was

【0021】次に本実施例の製造方法について説明す
る。図2は、主要工程を説明するためのX−X方向断面
の一部を示している。なお、本製造プロセスの説明にお
いては、可撓部3の厚さを高精度に制御できるようにS
OIウェーハを用いた例で説明する。SOIとはSil
icon On Inshulatorのことであり、
N型のSiを使った。SOIウェーハとは図2に符号を
つけたように、Siのベース基板60、Si活性層であ
る表面のSOI層80および両者の間にあり、エッチン
グストッパーーとして使われるSiO層70とで構成
されたSi半導体基板である。それぞれの厚さとして
は、例えば、高感度な加速度センサー用としては、ベー
ス基板は500〜625μm、SiOは1μmそして
SOI層は10μm前後としている。
Next, the manufacturing method of this embodiment will be described. FIG. 2 shows a part of the cross section in the XX direction for explaining the main steps. In the description of this manufacturing process, the thickness S of the flexible portion 3 is controlled so that it can be controlled with high precision.
An example using an OI wafer will be described. What is SOI Sil
It is an icon on insulator,
N type Si was used. As shown in FIG. 2, the SOI wafer is composed of a Si base substrate 60, a surface SOI layer 80 which is an Si active layer, and a SiO 2 layer 70 which is between them and is used as an etching stopper. It is a manufactured Si semiconductor substrate. The thickness of each is, for example, 500 to 625 μm for the base substrate, 1 μm for SiO 2, and 10 μm for the SOI layer for a high-sensitivity acceleration sensor.

【0022】製造プロセスの最初は、まず、SOI層8
0の表面に、フォトレジストあるいは熱酸化SiO
などをマスクとして所定形状のパターンを作り、イオン
打ち込みなどの不純物拡散工程によってボロンを拡散し
たピエゾ抵抗体11、12を作る(図2(a))。表面
不純物濃度としては、温度特性および感度の両方の観点
から、約2x1018付近を選んだ。
At the beginning of the manufacturing process, first, the SOI layer 8
A pattern of a predetermined shape is formed on the surface of 0 using a photoresist or a thermally oxidized SiO 2 film as a mask, and boron-diffused piezoresistors 11 and 12 are formed by an impurity diffusion process such as ion implantation (FIG. 2A). ). As the surface impurity concentration, about 2 × 10 18 was selected from the viewpoint of both temperature characteristics and sensitivity.

【0023】次にピエゾ抵抗体11、12の保護を目的
として、保護膜41を作製する(図2(b))。保護膜
41としては、一般に半導体で使われているSiO
PSG(Phosphorous Silicated
Glass)の多層膜を使い可動イオンのゲッタリン
グ効果を持たせている。SiOとPSGの2層膜の代
わりにSiOとSiNの2層膜を使ってもよい。保護
膜41の厚さは、できるだけ薄くして応力を小さくした
方が高感度化の点では好ましく、0.3〜0.5μmと
した。
Next, a protective film 41 is formed for the purpose of protecting the piezoresistors 11 and 12 (FIG. 2B). As the protective film 41, SiO 2 and PSG (Phosphorus Silicated) which are generally used in semiconductors are used.
A glass multilayer film is used to provide a gettering effect for mobile ions. Instead of the two-layer film of SiO 2 and PSG, a two-layer film of SiO 2 and SiN may be used. The thickness of the protective film 41 is preferably as thin as possible to reduce the stress in order to improve the sensitivity, and is set to 0.3 to 0.5 μm.

【0024】次にピエゾ抵抗体11、12の両端部上の
保護膜41に電極接続用のスルーホール40aをフッ酸
を主体にした湿式エッチングにより形成した(図2
(c))。
Next, through holes 40a for connecting electrodes are formed in the protective films 41 on both ends of the piezoresistors 11 and 12 by wet etching mainly using hydrofluoric acid (FIG. 2).
(C)).

【0025】次に、電極配線を作るために、まずスパッ
タによりアルミニウム合金(アルミニウム、銅、Siな
どが主組成)を成膜する。厚さは、0.3〜0.5μm
ほどとしたが、この厚さもできるだけ応力は小さい方が
好ましく薄い方が良い。フォトエッチングにより引き出
し電極40を形成した(図2(d))。この時に、Xお
よびY軸の引き出し電極は、従来例と同様に各部のパタ
ーン幅は全て一定とし、形状は重錘体部2を中心とする
点対称とした。これによって引き出し電極の各部の電極
40ax、40bx、40cx、40dxおよび40a
y、40by、40cy、40dyは2つの梁方向で略
同一とでき、零点出力への影響はでない。一方Z軸の引
き出し電極については、重錘体部2側に配置したピエゾ
抵抗素子32、33からの引き出し電極40dzは、重
錘体部上および固定部上の電極パターン部分の幅を、梁
上の電極パターン部分の幅の略5倍とし、梁上の電極パ
ターン幅はXおよびY軸と同じとした。また、固定部側
に配置したピエゾ抵抗素子31、34の引き出し電極4
0czの幅および長さを上記引き出し電極40dzの梁
上の電極パターン部分とほぼ同じとした。
Next, in order to form the electrode wiring, first, an aluminum alloy (a main composition of which is aluminum, copper, Si, etc.) is formed by sputtering. Thickness is 0.3-0.5 μm
However, it is preferable that the stress is as small as possible, and the thickness is preferably thin. The extraction electrode 40 was formed by photoetching (FIG. 2D). At this time, the X and Y axis lead-out electrodes had the same pattern width in each part as in the conventional example, and the shape was point-symmetrical about the weight body part 2. Thereby, the electrodes 40ax, 40bx, 40cx, 40dx and 40a of the respective portions of the extraction electrode are formed.
y, 40by, 40cy, and 40dy can be made substantially the same in the two beam directions, and there is no influence on the zero point output. On the other hand, with respect to the Z-axis lead electrode, the lead electrode 40dz from the piezoresistive elements 32 and 33 disposed on the weight body 2 side has the width of the electrode pattern portion on the weight body portion and the fixed portion on the beam. The width of the electrode pattern portion was about 5 times, and the width of the electrode pattern on the beam was the same as the X and Y axes. In addition, the extraction electrodes 4 of the piezoresistive elements 31 and 34 arranged on the fixed portion side.
The width and length of 0 cz were made substantially the same as the electrode pattern portion on the beam of the extraction electrode 40dz.

【0026】次に、図2には表現できないが、図2
(a)に示したSOI層800をドライエッチング法等
によりエッチングして、図1に示したSOI層800へ
の貫通パターン5を形成する。
Next, although not shown in FIG.
The SOI layer 800 shown in (a) is etched by a dry etching method or the like to form a penetrating pattern 5 to the SOI layer 800 shown in FIG.

【0027】次に裏面のベース基板60に、両面アライ
ナー装置を用いて表面のピエゾ抵抗素子11、12や上
記SOI層800への貫通パターン5等との位置をあわ
せて重錘体2および固定部1の形状にフォトレジストマ
スクを形成し、ドライエッチング法でSiベース基板6
0をエッチングし、更にエッチングストッパーのSiO
層70を湿式エッチングで除去した(図2(e))。
この工程で可撓部3a、3b、3c、3dが形成される
が、エッチングストッパーのSiO層70を除去せず
残した方が、全体の応力バランスをとるのに良い場合も
あり、エッチングストッパーのSiO層70を一部残
す方法も適用可能である。その後に、ウェーハ上に形成
した多数の加速度センサー素子をダイサー等を用い、チ
ップ切断し、パッケージ等の組み立て工程を経て、加速
度センサーを完成させた。
Next, the base substrate 60 on the back surface is aligned with the piezoresistive elements 11 and 12 on the front surface and the penetrating pattern 5 to the SOI layer 800 by using a double-side aligner device, and the weight body 2 and the fixing portion are aligned. 1. Form a photoresist mask in the shape of 1 and dry-etch the Si base substrate 6
Etching 0, and SiO as an etching stopper
The two layers 70 were removed by wet etching (FIG. 2 (e)).
In this step, the flexible portions 3a, 3b, 3c, 3d are formed. However, it may be better to leave the SiO 2 layer 70 of the etching stopper without removing it in order to balance the entire stress. The method of leaving a part of the SiO 2 layer 70 is also applicable. After that, a large number of acceleration sensor elements formed on the wafer were cut into chips using a dicer or the like, and an acceleration sensor was completed through a process of assembling a package or the like.

【0028】このように本実施例では、電極パターン4
0dzについては、重錘体部上および固定部上のパター
ン部分の幅を梁上のパターン幅の約5倍ほどとし、ま
た、電極パターン40czに関しては、その幅および長
さを電極パターン40dzの梁上のパターン部分の幅お
よび長さと略同じにしたことによって、両者の抵抗値を
ほぼ同じにでき、抵抗の非平衡分による零点出力電圧は
0.5mV以下と十分に小さい値を得ることができた。
電極パターン40dzの抵抗値を下げるには、アルミニ
ウム薄膜の厚さを変える方法も考えられるが、その場合
には、アルミニウム薄膜の成膜およびフォトエッチング
の工程を複数回繰り返すことになり、製造プロセスが長
くなってしまい好ましくない。
As described above, in this embodiment, the electrode pattern 4
For 0 dz, the width of the pattern portion on the weight body portion and the fixed portion is set to about 5 times the pattern width on the beam, and for the electrode pattern 40 cz, the width and length of the electrode pattern 40 dz are set to the beam of the electrode pattern 40 dz. By making the width and length of the upper pattern portion approximately the same, the resistance values of both can be made substantially the same, and the zero-point output voltage due to the unbalanced portion of the resistance can be obtained to be a sufficiently small value of 0.5 mV or less. It was
In order to reduce the resistance value of the electrode pattern 40dz, a method of changing the thickness of the aluminum thin film may be considered, but in that case, the steps of forming the aluminum thin film and photoetching are repeated a plurality of times, and the manufacturing process is It becomes long and is not desirable.

【0029】次に第2および第3の発明になる実施例を
図3、図4および図5に示す。本実施例は、第1の発明
に成る実施例の図1と同じ基本構造に第2の発明を適用
したもので、図3は第2および第3の発明になる実施例
を示す正面図、図4は図3のXおよびZ軸の外部接続端
子近傍の拡大図で第2の発明を説明するための図、また
図5は同じく図3のXおよびZ軸の1つの梁部の拡大図
で、第2の発明を説明するための図であり、図1と同一
部分は同符号を付した。
Next, embodiments according to the second and third inventions are shown in FIGS. 3, 4 and 5. In this embodiment, the second invention is applied to the same basic structure as that of the embodiment of the first invention shown in FIG. 1. FIG. 3 is a front view showing an embodiment of the second and third inventions. 4 is an enlarged view of the vicinity of the external connection terminals of the X and Z axes of FIG. 3 for explaining the second invention, and FIG. 5 is an enlarged view of one beam portion of the X and Z axes of FIG. 2 is a diagram for explaining the second invention, and the same portions as those in FIG. 1 are denoted by the same reference numerals.

【0030】最初に第2の発明について図3、図4およ
び図5により説明する。第1の発明の説明同様に零点出
力についてはZ軸が問題であるから、以下の説明ではZ
軸に絞って述べる。重錘体側のピエゾ抵抗素子32、3
3からの引き出し電極40dzはY軸の梁3d、3b上
を通って固定部1上の外部接続端子42に接続した。こ
の引き出し電極40dzの形状に関しては、重錘体部1
および固定部2上の電極パターン部分は、Y軸の梁上の
電極パターン部分より最小で約3倍と広くしてあり、該
引き出し電極40dzの抵抗値はほとんど梁上のパター
ン部分の抵抗値で決まるようにした。また、固定部側の
ピエゾ抵抗素子31、34の引き出し電極40czの幅
は梁上の電極パターン部分の幅の約70%とし、かつ3
回の折り返しを設けた形状とすることによって、その抵
抗値を引き出し電極40dzの梁上のパターン部分の抵
抗値と略同等にでき、かつ外部接続端子は上記ピエゾ抵
抗素子31、34に最も近接して配置することができ
た。つまり、引き出し電極40dzと40czの抵抗値
の差が最も大きくなる外部接続端子42のレイアウトで
あっても両者の抵抗値をほぼ揃えることができ、したが
って抵抗値の非平衡に起因する零点出力分は0.5mV
未満とほとんど無視し得るほど小さく出来た。また、本
発明の変形として、固定部側の引き出し電極40czを
上記のような形状にした上、更にその先の幅を梁上の電
極パターン部分の幅の10倍以上のように十分に広いパ
ターンとすることで、外部接続端子の配置を任意の位置
に配置することが可能となる効果がある。例えば、図3
ではチップの4辺に合計18の外部接続端子を配置し
たが、零点出力電圧を悪化させずに2辺にまとめること
も可能である。その一例を図6に示す。引き出し電極の
パターン形状については、上記で十分説明したので、同
図では省略した。本例では、Y軸の合計8をXおよび
Z軸方向に割り振り、左右9づつ外部接続端子42を
配置した。
First, the second invention will be described with reference to FIGS. 3, 4 and 5. Similarly to the description of the first aspect of the invention, the Z-axis is a problem for zero-point output, so in the following description, Z
I will focus on the axis. Piezoresistive elements 32, 3 on the weight side
The extraction electrode 40dz from 3 passed through the beams 3d and 3b of the Y axis and was connected to the external connection terminal 42 on the fixed portion 1. Regarding the shape of the lead electrode 40dz, the weight body portion 1
The electrode pattern portion on the fixed portion 2 is wider than the electrode pattern portion on the Y-axis beam by a minimum of about three times, and the resistance value of the extraction electrode 40dz is almost the same as the resistance value of the pattern portion on the beam. I decided. Further, the width of the extraction electrode 40cz of the piezoresistive elements 31 and 34 on the fixed portion side is set to about 70% of the width of the electrode pattern portion on the beam, and 3
By providing a shape with a number of turns, the resistance value can be made substantially equal to the resistance value of the pattern portion on the beam of the extraction electrode 40dz, and the external connection terminal is closest to the piezoresistive elements 31 and 34. I was able to place it. That is, even in the layout of the external connection terminal 42 in which the difference between the resistance values of the extraction electrodes 40dz and 40cz is the largest, the resistance values of the both can be substantially equalized, and therefore, the zero point output due to the imbalance of the resistance values is 0.5 mV
It was so small that it was almost negligible. Further, as a modification of the present invention, the extraction electrode 40cz on the fixed portion side is formed into the above-described shape, and the width beyond that is sufficiently wide such that the width is 10 times or more the width of the electrode pattern portion on the beam. With this, there is an effect that the external connection terminals can be arranged at arbitrary positions. For example, in FIG.
In arranging the external connection terminals in total 18 Ke the four sides of the chip, but it is also possible to put together the two sides without deteriorating the zero point output voltage. An example thereof is shown in FIG. Since the pattern shape of the extraction electrode has been sufficiently described above, it is omitted in FIG. In the present example, allocates eight Ke of the Y-axis in the X and Z-axis direction, and arranged left and right 9 Ke increments external connection terminal 42.

【0031】次に第3の発明について図3により説明す
る。本実施例では、X軸およびZ軸の梁3c上の重錘体
部側に位置するピエゾ抵抗素子12、32からの2本の
引き出し電極40はY軸の梁3d上を通って固定部側に
引き出し、また、X軸およびZ軸の梁3d上のピエゾ抵
抗素子13、33からの2本の引き出し電極40はY軸
の梁3b上を通って固定部側の外部接続端子42まで引
き出したもので、外部接続端子数は、XおよびZ軸方向
にはそれぞれ4、Y軸方向にはそれぞれ5を配置し
た。また、XおよびZ軸は梁3a、3cの幅方向に均等
な位置に配置し梁幅を狭くし易い構造とした。従来X軸
とY軸とは、互いに一方の梁のねじれが特性に影響する
ことから、図7の従来例に示したように両者は梁の幅方
向の中心に配置されていた。しかし、本実施例のように
X軸は梁幅の中心よりも端部よりに、Y軸は梁幅の中心
に配置した構造とした場合でも、感度向上のため梁幅を
200μm以下ぐらいに狭くした場合、XおよびY軸の
検出感度および他軸感度等の特性に大きな差はなく、逆
に梁幅を狭く設計しやすく感度的には有利なことがわか
った。なお、XおよびZ軸の重錘体部上の引き出し電極
40dxおよび40dzを同一の梁3b、3d方向に引
き出したが、図7に示した従来例のように、X軸とZ軸
とを別々に分けても良い。
Next, the third invention will be described with reference to FIG. In the present embodiment, the two lead electrodes 40 from the piezoresistive elements 12 and 32 located on the weight body side on the X-axis and Z-axis beams 3c pass on the Y-axis beam 3d and the fixed portion side. Further, two lead electrodes 40 from the piezoresistive elements 13 and 33 on the X-axis and Z-axis beams 3d pass through on the Y-axis beams 3b to the external connection terminals 42 on the fixed portion side. but, the number of external connection terminals, respectively to the X and Z-axis directions 4 Ke, respectively 5 Ke in the Y-axis direction is arranged. Further, the X and Z axes are arranged at equal positions in the width direction of the beams 3a and 3c so that the beam width can be easily narrowed. In the conventional X-axis and the Y-axis, since the twist of one beam affects the characteristics, both of them are arranged at the center of the beam width direction as shown in the conventional example of FIG. However, even if the X-axis is arranged closer to the end than the center of the beam width and the Y-axis is arranged closer to the center of the beam width as in the present embodiment, the beam width is narrowed to about 200 μm or less to improve the sensitivity. In such a case, there was no great difference in the characteristics such as the detection sensitivity of the X and Y axes and the sensitivity of the other axes, and conversely, it was found that the beam width was easily designed and the sensitivity was advantageous. Note that the lead-out electrodes 40dx and 40dz on the X- and Z-axis weight bodies are led out in the same beam 3b, 3d direction. However, as in the conventional example shown in FIG. 7, the X-axis and the Z-axis are separated. It may be divided into

【0032】更に本実施例によると以下のような付随効
果もある。XおよびY軸の引き出し電極40について
も、Z軸の引き出し電極40と同様に、それらの抵抗値
はほぼ梁上の電極パターン部分で決まるように設計し
た。これによって、各軸の同一の配置にあるピエゾ抵抗
素子に接続される引き出し電極の各部での電圧降下がほ
ぼ等しい、すなわちピエゾ抵抗素子に印加される実効的
な駆動電圧を全てのピエゾ抵抗素子で略同等にできた。
また、上記X、YおよびZ軸の引き出し電極は重錘体部
2および固定部1の梁近傍のパターン面積を大きくして
おり放熱効果を改善する効果がある。したがって、本実
施例では、これらの付随効果により通電変動などの安定
性を従来より改善できる効果があった。
Further, according to this embodiment, there are the following attendant effects. The X- and Y-axis extraction electrodes 40 were also designed so that their resistance values were substantially determined by the electrode pattern portion on the beam, similarly to the Z-axis extraction electrode 40. As a result, the voltage drop in each part of the extraction electrode connected to the piezoresistive element in the same arrangement on each axis is almost equal, that is, the effective drive voltage applied to the piezoresistive element is applied to all piezoresistive elements. It was almost equal.
Further, the X, Y, and Z axis lead-out electrodes increase the pattern area in the vicinity of the beams of the weight body portion 2 and the fixed portion 1 and have an effect of improving the heat radiation effect. Therefore, in the present embodiment, there was an effect that the stability such as the energization fluctuation can be improved as compared with the conventional case due to these accompanying effects.

【0033】[0033]

【発明の効果】以上、本発明によれば、小型、高感度で
零点出力電圧の小さい3軸の半導体型加速度センサーを
容易に製造できる。
As described above, according to the present invention, a triaxial semiconductor type acceleration sensor which is small in size, highly sensitive, and has a small zero-point output voltage can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる第1の実施例を示す正面図。FIG. 1 is a front view showing a first embodiment according to the present invention.

【図2】本発明になる加速度センサーの製造方法を示す
工程断面図。
FIG. 2 is a process sectional view showing a method of manufacturing an acceleration sensor according to the present invention.

【図3】本発明になる第2および第3の実施例を示す正
面図。
FIG. 3 is a front view showing second and third embodiments of the present invention.

【図4】図2のXおよびZ軸の外部接続端子近傍の拡大
図。
FIG. 4 is an enlarged view of the vicinity of external connection terminals on the X and Z axes of FIG.

【図5】図2のXおよびZ軸の梁び一部の拡大図。5 is an enlarged view of a part of the X- and Z-axis beams and FIG.

【図6】第2の発明の他の実施例である外部接続端子の
配置を示す正面図
FIG. 6 is a front view showing an arrangement of external connection terminals which is another embodiment of the second invention.

【図7】従来の半導体加速度センサーの構造を示す正面
図。
FIG. 7 is a front view showing the structure of a conventional semiconductor acceleration sensor.

【図8】図5のXおよびZ軸の一方の梁部の拡大正面
図。
8 is an enlarged front view of one of the X-axis and Z-axis beam portions of FIG.

【図9】図6のZ軸の断面図。9 is a sectional view taken along the Z-axis of FIG.

【図10】従来の半導体加速度センサーのXおよびZ軸
方向に加速度が加わった場合の状態を示す断面図。
FIG. 10 is a cross-sectional view showing a state of a conventional semiconductor acceleration sensor when acceleration is applied in the X and Z axis directions.

【図11】従来の加速度センサーのブリッジ回路図。FIG. 11 is a bridge circuit diagram of a conventional acceleration sensor.

【図12】3軸加速度センサーの引き出し電極の抵抗分
を考慮した実際のブリッジ回路図。
FIG. 12 is an actual bridge circuit diagram in which the resistance of the extraction electrode of the triaxial acceleration sensor is taken into consideration.

【符号の説明】 1 固定部、2 重錘体、3 可撓部、40 引出し電
極、41 保護膜、42 電極端子、11 12 13
14 21 22 23 24 3132 33 3
4 ピエゾ抵抗素子、3a〜3d 可撓部、5 SOI
層800にエッチングで設けた貫通パターン
[Explanation of reference numerals] 1 fixing part, 2 weight body, 3 flexible part, 40 extraction electrode, 41 protective film, 42 electrode terminal, 11 12 13
14 21 22 23 24 24 3132 33 3
4 piezoresistive elements, 3a to 3d flexible parts, 5 SOI
Penetration pattern etched into layer 800

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M112 AA02 BA01 CA23 CA26 CA27 CA33 DA03 DA04 DA10 DA12 EA02 EA06 EA10 EA11 EA13 FA01 FA03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4M112 AA02 BA01 CA23 CA26 CA27                       CA33 DA03 DA04 DA10 DA12                       EA02 EA06 EA10 EA11 EA13                       FA01 FA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si単結晶基板の厚肉部から成る中央重
錘体部と、該重錘体部を取り囲むように配置した固定部
と、該重錘体部と固定部とを連結するSi単結晶基板の
薄肉部から成るダイヤフラム状または複数対の梁状の可
撓部と、該可撓部上にある2つの直交する検出軸(Xと
Y軸)および該可撓部に垂直な1つの検出軸(Z軸)に
対応して、該可撓部上に設置した各軸それぞれ4のピ
エゾ抵抗素子群とからなり、該各軸4のピエゾ抵抗素
子はブリッジ検出回路を構成するように薄膜の引き出し
電極で接続されてなる半導体加速度センサーであって、
少なくともZ軸方向のピエゾ抵抗素子の引き出し電極に
ついて、 a)重錘体部側に配置されたピエゾ抵抗素子に接続され
る引き出し電極の重錘体部および固定部上のパターン部
分の幅は梁上の該引き出し電極パターン部分よりも2倍
以上の幅を有し、かつ、 b)固定部側に配置されたピエゾ抵抗素子から外部接続
端子までを繋ぐ引き出し電極の抵抗値を上記重錘体部側
のピエゾ抵抗素子に接続される引き出し電極の梁上のパ
ターン部分の抵抗値に略等しくした、ことを特徴とする
半導体加速度センサー。
1. A central weight body portion formed of a thick portion of a Si single crystal substrate, a fixing portion arranged so as to surround the weight body portion, and Si connecting the weight body portion and the fixing portion. A diaphragm-shaped or a plurality of pairs of beam-shaped flexible portions formed of a thin portion of a single crystal substrate, two orthogonal detection axes (X and Y axes) on the flexible portions, and one perpendicular to the flexible portions. One of in response to the detection axis (Z axis), consists of a piezo-resistive element group of each of axes installed on the movable flexure 4 Ke, piezoresistors of the respective shaft 4 Ke constitute a bridge detection circuit A semiconductor acceleration sensor that is connected by thin-film extraction electrodes like
At least for the lead-out electrode of the piezoresistive element in the Z-axis direction, a) The width of the pattern portion on the weight body portion and the fixed portion of the lead-out electrode connected to the piezoresistive element arranged on the weight body portion side is on the beam. Of the lead-out electrode pattern portion, and b) the resistance value of the lead-out electrode that connects the piezoresistive element arranged on the fixed portion side to the external connection terminal with the weight body portion side. The semiconductor acceleration sensor, wherein the resistance value of the pattern portion on the beam of the extraction electrode connected to the piezoresistive element is substantially equal to the resistance value.
【請求項2】 請求項1項記載の半導体加速度センサー
であって、固定部側に配置されたピエゾ抵抗素子から外
部接続端子までつなぐ引き出し電極に関して、そのパタ
ーン幅は重錘体部側に配置されたピエゾ抵抗素子に接続
される引き出し電極の梁上のパターン幅よりも細く、必
要に応じて複数回の折り返し形状を有し、当該電極パタ
ーン部分の抵抗値が上記重錘体部側に配置されたピエゾ
抵抗素子に接続される引き出し電極の梁上のパターン部
分の抵抗値に略等しいことを特徴とする半導体加速度セ
ンサー。
2. The semiconductor acceleration sensor according to claim 1, wherein the lead electrode for connecting the piezoresistive element arranged on the fixed portion side to the external connection terminal has a pattern width arranged on the weight body portion side. The width of the pattern of the lead-out electrode connected to the piezoresistive element is smaller than the pattern width on the beam, and the electrode pattern part has a folded shape a plurality of times when necessary, and the resistance value of the electrode pattern part is arranged on the weight body part side. A semiconductor acceleration sensor having a resistance value substantially equal to a resistance value of a pattern portion on a beam of an extraction electrode connected to a piezoresistive element.
【請求項3】 請求項1項および2項記載の半導体加速
度センサーであって、1対の梁上に配置されたX軸(ま
たはY軸)とZ軸の重錘体部側に位置する合計4のピ
エゾ抵抗素子の引き出し電極をY軸(またはX軸)の2
つの方向に2本づつに分けて引き出し、X軸(またはY
軸)およびZ軸を梁の幅方向に均等な位置に配置したこ
とを特徴とする半導体加速度センサー。
3. The semiconductor acceleration sensor according to claim 1, wherein the X-axis (or Y-axis) and the Z-axis arranged on the pair of beams are located on the weight body side. Set the extraction electrodes of the four piezoresistive elements to the Y-axis (or X-axis) 2
It is divided into two in each direction and pulled out, and the X-axis (or Y
Axis) and the Z axis are arranged at even positions in the width direction of the beam.
JP2001293525A 2001-09-26 2001-09-26 Semiconductor acceleration sensor Expired - Fee Related JP3985215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293525A JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293525A JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JP2003101033A true JP2003101033A (en) 2003-04-04
JP3985215B2 JP3985215B2 (en) 2007-10-03

Family

ID=19115294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293525A Expired - Fee Related JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3985215B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146757A1 (en) 2007-05-24 2008-12-04 Asahi Kasei Emd Corporation Physical amount measuring device and physical amount measuring method
US7644602B2 (en) 2004-03-31 2010-01-12 National Institute Of Advanced Industrial Science And Technology Method of measuring transverse sensitivity of sensor for detecting acceleration and acceleration measuring method
US7653507B2 (en) 2004-08-12 2010-01-26 Asahi Kasei Emd Corporation Acceleration measuring device
JP2010122144A (en) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd Acceleration sensor and semiconductor device using the same
US7881900B2 (en) 2006-01-05 2011-02-01 Asahi Kasei Emd Corporation Acceleration measuring device
JP2011066429A (en) * 2010-09-30 2011-03-31 Dainippon Printing Co Ltd Sensor device and production method thereof
US8421240B2 (en) 2009-04-07 2013-04-16 Dai Nippon Printing Co., Ltd. Sensor device and method of manufacturing the sensor device
JP2015206799A (en) * 2015-06-26 2015-11-19 大日本印刷株式会社 semiconductor acceleration sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768649B2 (en) 2008-11-20 2014-07-01 Asahi Kasei Microdevices Corporation Physical amount measuring device and physical amount measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7644602B2 (en) 2004-03-31 2010-01-12 National Institute Of Advanced Industrial Science And Technology Method of measuring transverse sensitivity of sensor for detecting acceleration and acceleration measuring method
US7653507B2 (en) 2004-08-12 2010-01-26 Asahi Kasei Emd Corporation Acceleration measuring device
US7881900B2 (en) 2006-01-05 2011-02-01 Asahi Kasei Emd Corporation Acceleration measuring device
WO2008146757A1 (en) 2007-05-24 2008-12-04 Asahi Kasei Emd Corporation Physical amount measuring device and physical amount measuring method
EP2543961A1 (en) 2007-05-24 2013-01-09 Asahi Kasei EMD Corporation Physical amount measuring device and physical amount measuring method
JP2010122144A (en) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd Acceleration sensor and semiconductor device using the same
US8421240B2 (en) 2009-04-07 2013-04-16 Dai Nippon Printing Co., Ltd. Sensor device and method of manufacturing the sensor device
JP2011066429A (en) * 2010-09-30 2011-03-31 Dainippon Printing Co Ltd Sensor device and production method thereof
JP2015206799A (en) * 2015-06-26 2015-11-19 大日本印刷株式会社 semiconductor acceleration sensor

Also Published As

Publication number Publication date
JP3985215B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US6662659B2 (en) Acceleration sensor
US20040025591A1 (en) Accleration sensor
JPH1151967A (en) Multi-axis acceleration sensor and its manufacture
JP3985214B2 (en) Semiconductor acceleration sensor
US6763719B2 (en) Acceleration sensor
JP2003172745A (en) Semiconductor acceleration sensor
JP3985215B2 (en) Semiconductor acceleration sensor
JP4589605B2 (en) Semiconductor multi-axis acceleration sensor
JP2008032704A (en) Semiconductor acceleration sensor
JP2008008672A (en) Acceleration sensor
JP3265641B2 (en) Semiconductor acceleration sensor
JP5336617B2 (en) Semiconductor acceleration sensor
JP5093070B2 (en) Acceleration sensor and semiconductor device using the same
JP2003279592A (en) Piezo-resistive triaxial acceleration sensor
JP2010008172A (en) Semiconductor device
EP2138851A1 (en) Micro electro mechanical systems element for measuring three-dimensional vectors
JP5146097B2 (en) MEMS
JP4466344B2 (en) Acceleration sensor
JP5401820B2 (en) Sensor
TWI291027B (en) Acceleration sensor
JP5067295B2 (en) Sensor and manufacturing method thereof
JP5069410B2 (en) Sensor element
JP2008244174A (en) Method of manufacturing sensor element
JP4000170B2 (en) Chip size package
JP2003294781A (en) Piezoresistance type tri-axial acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees