JP2003279592A - Piezo-resistive triaxial acceleration sensor - Google Patents

Piezo-resistive triaxial acceleration sensor

Info

Publication number
JP2003279592A
JP2003279592A JP2002083161A JP2002083161A JP2003279592A JP 2003279592 A JP2003279592 A JP 2003279592A JP 2002083161 A JP2002083161 A JP 2002083161A JP 2002083161 A JP2002083161 A JP 2002083161A JP 2003279592 A JP2003279592 A JP 2003279592A
Authority
JP
Japan
Prior art keywords
axis
piezoresistor
acceleration sensor
triaxial acceleration
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083161A
Other languages
Japanese (ja)
Other versions
JP3642054B2 (en
Inventor
Hiroyuki Hatano
弘之 秦野
Masakatsu Saito
正勝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002083161A priority Critical patent/JP3642054B2/en
Priority to US10/384,645 priority patent/US6763719B2/en
Priority to EP03006231A priority patent/EP1348967A3/en
Priority to CNB031082149A priority patent/CN100334453C/en
Priority to KR10-2003-0018405A priority patent/KR100508198B1/en
Priority to CNB2006100770261A priority patent/CN100422697C/en
Publication of JP2003279592A publication Critical patent/JP2003279592A/en
Application granted granted Critical
Publication of JP3642054B2 publication Critical patent/JP3642054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized, low-cost triaxial acceleration sensor having a small output difference of X-, Y- and Z-axes. <P>SOLUTION: Piezo resistors are disposed so that an interval of Z-axis piezo resistors is set large than an interval of X-axis piezo resistors on a flexible part mainly connected to an outer frame and a mass part, and a difference between the X-axis piezo resistors and the Z-axis piezo resistors is 0.4 L to 2.0 L of a length L in a longitudinal direction of the piezo resistors, or so that the interval of the Z-axis piezo resistors is smaller than the interval of the X-axis piezo resistors and the difference between the X-axis piezo resistors and the Z-axis piezo resistors is 1.0 L to 1.8 L. Thus, an output of the Z-axis can be lowered, and the difference of the outputs between the X-axis and the Z-axis can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、玩具、自動車、航
空機、携帯端末機器等に用いられる加速度検出用の半導
体加速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor for acceleration detection used in toys, automobiles, aircrafts, mobile terminal devices and the like.

【0002】[0002]

【従来の技術】従来のピエゾ抵抗型3軸加速度センサの
構造について詳細に説明する。加速度センサの平面図を
図7に、図7のA−A’線に沿った断面図を図8に示
す。シリコン単結晶基板(以下、Si単結晶基板と言
う)の厚肉部から成る質量部1とそれを取り囲むように
配された外枠部3と、該質量部1および外枠部3とを接
続するSi単結晶基板の薄肉部より成る2対の互いに直
交する梁状の可撓部21、21’、22、22’と該可
撓部上の2つの直交する方向(XとY)及び該可撓部2
1、21’、22、22’に垂直な方向(Z)に対応す
るように設けられた各軸複数のピエゾ抵抗体群51と5
1’、52と52’、61と61’、62と62’、7
1と71’、72と72’とから構成される。また、可
撓部21、21’、22、22’は図7に符号4で示し
たように薄肉部に貫通穴を設けることによって梁形状と
されており、変形しやすく、高感度化に向いた構造とな
っている。
2. Description of the Related Art The structure of a conventional piezoresistive triaxial acceleration sensor will be described in detail. FIG. 7 shows a plan view of the acceleration sensor, and FIG. 8 shows a sectional view taken along the line AA ′ of FIG. 7. A mass part 1 made of a thick part of a silicon single crystal substrate (hereinafter referred to as a Si single crystal substrate), an outer frame part 3 arranged so as to surround the mass part 1, and the mass part 1 and the outer frame part 3 are connected. Two pairs of beam-shaped flexible portions 21, 21 ′, 22, 22 ′ which are made of thin portions of the Si single crystal substrate and are orthogonal to each other, two orthogonal directions (X and Y) on the flexible portion, and Flexible part 2
Piezoresistor groups 51 and 5 for each axis provided so as to correspond to the direction (Z) perpendicular to 1, 21 ', 22, 22'
1 ', 52 and 52', 61 and 61 ', 62 and 62', 7
1 and 71 ', 72 and 72'. Further, the flexible portions 21, 21 ', 22, 22' are made into a beam shape by providing through holes in the thin portion as shown by reference numeral 4 in FIG. It has the same structure as before.

【0003】加速度の検出原理は、中央の質量部1が加
速度に比例した力を受けて変位したときの可撓部21、
21’、22、22’の撓みを、可撓部に形成されたピ
エゾ抵抗体群51と51’、52と52’、61と6
1’、62と62’、71と71’、72と72’の抵
抗値変化として検出することで3軸方向の加速度を検出
するものである。ここで、可撓部21、21’上の4つ
のピエゾ抵抗素子51、51’、52、52’はX軸方
向の加速度を、また、他の4つのピエゾ抵抗素子71、
71’、72、72’は素子面に垂直なZ軸方向の加速
度を検出し、また可撓部22、22’上の4つのピエゾ
抵抗素子61、61’、62、62’はX軸方向と直交
するY軸方向の加速度を検出するように、それぞれ各軸
4つのピエゾ抵抗素子は独立してブリッジ回路を構成す
るように結線されており、X軸においては51と51’
および52と52’をそれぞれピエゾ抵抗体対と呼び、
同様にY軸においては61と61’および62と6
2’、Z軸においては71と71’および72と72’
がピエゾ抵抗体対をなす。また、X,Y軸は出力検出原
理、結線方法およびピエゾ抵抗体の配置が同じであり、
それぞれ他方の軸と入れ替えることができるため、以
降、XおよびY軸を、特に断りの無い限りX軸と表記す
ることとする。
The principle of acceleration detection is that the central mass portion 1 is displaced when it receives a force proportional to the acceleration and is displaced,
The bending of 21 ', 22, 22' is controlled by the piezoresistor groups 51 and 51 ', 52 and 52', 61 and 6 formed in the flexible portion.
The accelerations in the three-axis directions are detected by detecting changes in the resistance values of 1 ', 62 and 62', 71 and 71 ', 72 and 72'. Here, the four piezoresistive elements 51, 51 ′, 52, 52 ′ on the flexible portions 21, 21 ′ accelerate the acceleration in the X-axis direction, and the other four piezoresistive elements 71,
71 ', 72, 72' detect acceleration in the Z-axis direction perpendicular to the element surface, and the four piezoresistive elements 61, 61 ', 62, 62' on the flexible portions 22, 22 'are in the X-axis direction. The four piezoresistive elements for each axis are individually connected so as to form a bridge circuit so as to detect the acceleration in the Y-axis direction that is orthogonal to, and 51 and 51 ′ for the X-axis.
And 52 and 52 'are called piezoresistor pairs,
Similarly, on the Y axis, 61 and 61 'and 62 and 6
2 ', 71 and 71' and 72 and 72 'in the Z-axis
Form a piezoresistor pair. The X and Y axes have the same output detection principle, wiring method, and piezoresistor layout,
Since each of them can be replaced with the other axis, hereinafter, the X and Y axes will be referred to as the X axis unless otherwise specified.

【0004】従来の3軸加速度センサにおけるピエゾ抵
抗体の配置について説明する。図9に示すように、X軸
用ピエゾ抵抗体対とZ軸用ピエゾ抵抗体対の片端が可撓
部と外枠部の境界および可撓部と質量部の境界と一致す
る構造となっていた。これは可撓部が加速度を受けて撓
んだとき、可撓部における外枠部および質量部近傍の部
位に応力集中するため、最大のセンサ出力が得られるた
めである。
The arrangement of the piezoresistors in the conventional triaxial acceleration sensor will be described. As shown in FIG. 9, one end of each of the X-axis piezoresistor pair and the Z-axis piezoresistor pair is aligned with the boundary between the flexible portion and the outer frame portion and the boundary between the flexible portion and the mass portion. It was This is because when the flexible portion bends due to acceleration, stress concentrates on a portion of the flexible portion near the outer frame portion and the mass portion, so that the maximum sensor output is obtained.

【0005】ピエゾ抵抗体が図9のように配置されてい
る場合にはX軸とZ軸の感度(加速度1G、駆動電圧1
Vに対する出力)には、図10に示すような関係がある
ことが一般に知られている。X軸方向に1Gの加速度が
加えられた場合には、可撓部に加わる曲げモーメント
は、可撓部21、21’、22、22’を通る平面から
質量部1の重心までの距離(s1とする)と質量部の質
量(mとする)の積で表される。従って質量部の厚さが
変化した場合、曲げモーメントはs1およびmに比例す
るため、X軸の感度は2次関数的に変化する。これに対
しZ軸方向に1Gの加速度が加えられた場合には、可撓
部に加わる曲げモーメントは、可撓部の長さ(s2とす
る)と質量部の質量mの積で表される。従って質量部の
厚さが変化した場合、曲げモーメントはmにのみ比例す
るため、Z軸の感度は1次関数的に変化する。
When the piezoresistors are arranged as shown in FIG. 9, the X-axis and Z-axis sensitivities (acceleration 1 G, drive voltage 1
It is generally known that (output with respect to V) has a relationship as shown in FIG. When an acceleration of 1 G is applied in the X-axis direction, the bending moment applied to the flexible portion is the distance (s1 from the plane passing through the flexible portions 21, 21 ', 22, 22' to the center of gravity of the mass portion 1). And the mass of the mass part (assumed to be m). Therefore, when the thickness of the mass portion changes, the bending moment is proportional to s1 and m, so that the X-axis sensitivity changes in a quadratic function. On the other hand, when an acceleration of 1 G is applied in the Z-axis direction, the bending moment applied to the flexible portion is represented by the product of the length of the flexible portion (denoted as s2) and the mass m of the mass portion. . Therefore, when the thickness of the mass portion changes, the bending moment is proportional only to m, so that the Z-axis sensitivity changes in a linear function.

【0006】図10から判るように、X軸とZ軸の出力
差をなくすためには質量部の厚さを800μm程度にす
れば良い。しかし、半導体等で使用されるSi単結晶基
板の厚みは、625μmと525μmが主流となってい
るため、約800μmのSi単結晶基板は特注となり、
高コストとなるだけでなく、納期が不安定となる問題が
あるため、質量部の厚さによって出力調整を行うのは好
ましい方法ではない。
As can be seen from FIG. 10, in order to eliminate the output difference between the X axis and the Z axis, the thickness of the mass portion may be set to about 800 μm. However, since the thicknesses of Si single crystal substrates used in semiconductors and the like are 625 μm and 525 μm, the Si single crystal substrates of about 800 μm are custom-made.
It is not a preferable method to adjust the output by adjusting the thickness of the mass part, because not only the cost becomes high but also the delivery time becomes unstable.

【0007】[0007]

【発明の解決しようとする課題】従来の加速度センサの
ピエゾ抵抗体の配置では、X軸の出力と比較してZ軸の
出力が大きくなってしまう。軸間の出力差が大きい場
合、出力増幅率が異なる増幅器を各軸毎に準備する必要
があり、コスト高になる欠点がある。
In the arrangement of the piezoresistor of the conventional acceleration sensor, the output of the Z axis becomes larger than the output of the X axis. When the output difference between the axes is large, it is necessary to prepare an amplifier having a different output amplification factor for each axis, which is disadvantageous in that the cost becomes high.

【0008】Z軸のピエゾ抵抗体群と他群の不純物濃度
を変え、ピエゾ特性を変化させZ軸の出力を下げてX軸
とY軸の出力を同等にすることは可能である。しかしピ
エゾ抵抗体を形成するときに不純物の打ち込みを、Z軸
だけ別に行う必要があり、工程増によるコスト高とな
る。またX軸用ピエゾ抵抗体とZ軸用ピエゾ抵抗体の温
度特性が異なってしまうという問題がある。
It is possible to change the impurity concentrations of the Z-axis piezoresistor group and other groups, change the piezo characteristics, and lower the Z-axis output to make the X-axis and Y-axis outputs equal. However, when the piezoresistor is formed, it is necessary to implant the impurities separately for the Z axis, which increases the cost due to the increased number of steps. There is also a problem that the temperature characteristics of the X-axis piezoresistor and the Z-axis piezoresistor differ.

【0009】Z軸用ピエゾ抵抗体対間隔を変えずにピエ
ゾ抵抗体対を可撓部長さ方向に対して平行移動させるこ
とによってもZ軸の出力は下げることはできるが、オフ
セット電圧(各軸に加速度が加わっていない状態のZ軸
の出力)および他軸感度(他の軸に加速度が加わった場
合のZ軸の出力)が悪化する問題がある。
The output of the Z-axis can be reduced by moving the piezoresistor pair in parallel with the length direction of the flexible portion without changing the Z-axis piezoresistor pair interval, but the offset voltage (each axis There is a problem that the Z-axis output in the state where no acceleration is applied) and the sensitivity to other axes (Z-axis output when acceleration is applied to another axis) are deteriorated.

【0010】Z軸のピエゾ抵抗体の形状を変えて、Z軸
の出力を下げることも可能だが、ピエゾ抵抗体の抵抗値
が変わり、ブリッジバランスをとることが難しくなるた
め、ピエゾ抵抗体はすべて同形状であることが好まし
い。
It is possible to reduce the output of the Z-axis by changing the shape of the Z-axis piezoresistor, but since the resistance value of the piezoresistor changes and bridge balancing becomes difficult, all piezoresistors are used. It is preferable that they have the same shape.

【0011】そこで、本発明ではX,Y,Zの3軸の出
力差が小さく、3軸のピエゾ抵抗体の抵抗値や温度特性
が同じで、小型薄型で製造コストが安い3軸加速度セン
サを提供することを目的とする。
Therefore, according to the present invention, a triaxial acceleration sensor having a small output difference between the three axes of X, Y, and Z, a triaxial piezoresistor having the same resistance value and temperature characteristics, and being small in size and low in manufacturing cost is provided. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】本発明のピエゾ抵抗型3
軸加速度センサは、平面方向および垂直方向の加速度を
ピエゾ抵抗体で検出する3軸加速度センサであって、そ
のピエゾ抵抗体の大部分は両端を外枠部と質量部に接続
された可撓部上に配されており、X軸およびY軸用のピ
エゾ抵抗体対間隔とZ軸用のピエゾ抵抗体対間隔が異な
っていることを特徴とする。
Piezoresistive type 3 of the present invention
The axial acceleration sensor is a three-axis acceleration sensor that detects accelerations in a planar direction and a vertical direction with a piezoresistor, and most of the piezoresistor is a flexible part whose both ends are connected to an outer frame part and a mass part. The piezoresistor pair interval for the X-axis and the Y-axis and the piezoresistor pair interval for the Z-axis are different from each other.

【0013】本発明のピエゾ抵抗型3軸加速度センサと
は、平面方向の加速度と垂直方向の加速度を検出するセ
ンサのことをいい、X軸とZ軸、ありはY軸とZ軸のみ
の検出機構を有するセンサ、またX,Y,Z3軸の検出
機構を有しているが、X軸とZ軸、あるいはY軸とZ軸
のみを用いるセンサも含まれるものである。
The piezoresistive three-axis acceleration sensor of the present invention is a sensor for detecting acceleration in the plane direction and acceleration in the vertical direction, and detects only the X-axis and Z-axis or the Y-axis and Z-axis. A sensor having a mechanism and a detection mechanism for the X, Y, and Z axes are included, but a sensor using only the X axis and the Z axis or the Y axis and the Z axis is also included.

【0014】ピエゾ抵抗体対の配置は、出力を最大限に
得るために3軸とも、可撓部上でピエゾ抵抗体の片端が
応力集中する可撓部の端部と一致させるように形成され
ていた。しかしこの構造ではX軸の出力と比較してZ軸
の出力が大きくなってしまうため、X軸用ピエゾ抵抗体
対間隔に対してZ軸用ピエゾ抵抗体対間隔が異なるよう
にピエゾ抵抗体を配し、X軸とY軸の出力レベルを保
ち、Z軸の出力レベルを下げることでX軸とZ軸の出力
差を小さくしたものである。ここで言う、ピエゾ抵抗体
対間隔とは可撓部上に形成されたそれぞれの軸における
一対のピエゾ抵抗体の可撓部長さ方向に対する中心間距
離のことである。
The arrangement of the piezoresistor pair is formed such that one end of the piezoresistor is aligned with the end of the flexible portion on which stress is concentrated on all three axes in order to maximize the output. Was there. However, in this structure, the output of the Z-axis becomes larger than the output of the X-axis. The output levels of the X-axis and the Y-axis are maintained and the output level of the Z-axis is lowered to reduce the output difference between the X-axis and the Z-axis. The piezoresistor pair spacing referred to here is the center-to-center distance in the length direction of the flexible portion of the pair of piezoresistors on each axis formed on the flexible portion.

【0015】本発明のピエゾ抵抗型3軸加速度センサ
は、Z軸用ピエゾ抵抗体対間隔が、X軸用ピエゾ抵抗体
対間隔より大きく、Z軸用ピエゾ抵抗体の少なくとも一
部が外枠部と質量部上に配されていることが望ましい。
In the piezoresistive triaxial acceleration sensor of the present invention, the Z-axis piezoresistor pair interval is larger than the X-axis piezoresistor pair interval, and at least a part of the Z-axis piezoresistor is the outer frame portion. It is desirable to be placed on the mass part.

【0016】Z軸用ピエゾ抵抗体対間隔がX軸用ピエゾ
抵抗体対間隔より大きく、Z軸用ピエゾ抵抗体の少なく
とも一部が外枠部と質量部上に配置されている。これは
ピエゾ抵抗体の一部を可撓部外に配することによりピエ
ゾ抵抗体に不感領域を発生させ、ピエゾ抵抗体の感度を
下げるものである。
The Z-axis piezoresistor pair interval is larger than the X-axis piezoresistor pair interval, and at least a part of the Z-axis piezoresistor is arranged on the outer frame part and the mass part. This is to arrange a part of the piezoresistor outside the flexible portion to generate an insensitive area in the piezoresistor and reduce the sensitivity of the piezoresistor.

【0017】本発明のピエゾ抵抗型3軸加速度センサ
は、Z軸用ピエゾ抵抗体対間隔をX軸用ピエゾ抵抗体対
間隔より大きく、Z軸用ピエゾ抵抗体対間隔とX軸用ピ
エゾ抵抗体対間隔の差が、ピエゾ抵抗体の長手方向の長
さLに対し、0.4L以上1.2L以下であることが望
ましい。同間隔の差を0.6L以上1.0L以下とする
ことがより望ましい。
In the piezoresistive triaxial acceleration sensor of the present invention, the Z-axis piezoresistor pair interval is larger than the X-axis piezoresistor pair interval, and the Z-axis piezoresistor pair interval and the X-axis piezoresistor pair interval. It is desirable that the difference between the pair distances is 0.4 L or more and 1.2 L or less with respect to the length L of the piezoresistor in the longitudinal direction. It is more desirable that the difference between the same intervals be 0.6 L or more and 1.0 L or less.

【0018】本発明のピエゾ抵抗型3軸加速度センサは
Z軸用ピエゾ抵抗体対間隔が、X軸用ピエゾ抵抗体対の
間隔より小さく、Z軸用ピエゾ抵抗体が可撓部上に配さ
れていることが望ましい。
In the piezoresistive triaxial acceleration sensor of the present invention, the Z-axis piezoresistor pair interval is smaller than the X-axis piezoresistor pair interval, and the Z-axis piezoresistor is arranged on the flexible portion. Is desirable.

【0019】Z軸用ピエゾ抵抗体対間隔がX軸用ピエゾ
抵抗体対間隔より小さく、Z軸用ピエゾ抵抗体は可撓部
上に配され、Z軸用ピエゾ抵抗体の片端が可撓部と外枠
部の境界もしくは可撓部と質量部の境界と距離を有す
る。X軸用ピエゾ抵抗体は出力を最大限に得るために応
力集中する外枠部および質量部との接続境界部にピエゾ
抵抗体の片端が配されているのに対し、Z軸用ピエゾ抵
抗体は応力集中領域の寄与が少ない位置に配すること
で、Z軸用ピエゾ抵抗体の感度を下げるものである。
The Z-axis piezoresistor pair spacing is smaller than the X-axis piezoresistor pair spacing, the Z-axis piezoresistor is disposed on the flexible portion, and one end of the Z-axis piezoresistor is flexible. And a boundary between the outer frame portion and a boundary between the flexible portion and the mass portion. In the X-axis piezoresistor, one end of the piezoresistor is arranged at the boundary between the outer frame part and the mass part where stress is concentrated in order to maximize the output, whereas the Z-axis piezoresistor is arranged. Is to reduce the sensitivity of the Z-axis piezoresistor by arranging it in a position where the stress concentration region contributes little.

【0020】本発明のピエゾ抵抗型3軸加速度センサ
は、Z軸用ピエゾ抵抗体対間隔をX軸用ピエゾ抵抗体対
間隔より小さく、Z軸用ピエゾ抵抗体対間隔とX軸用ピ
エゾ抵抗体対間隔の差が、ピエゾ抵抗体の長手方向の長
さLに対し、1.0L以上1.8L以下であることが望
ましい。同間隔の差を1.2L以上1.6L以下とする
ことがより望ましい。
In the piezoresistive triaxial acceleration sensor of the present invention, the Z-axis piezoresistor pair interval is smaller than the X-axis piezoresistor pair interval, and the Z-axis piezoresistor pair interval and the X-axis piezoresistor pair interval. It is desirable that the difference between the pair distances is 1.0 L or more and 1.8 L or less with respect to the length L of the piezoresistor in the longitudinal direction. It is more desirable that the difference between the same intervals is 1.2 L or more and 1.6 L or less.

【0021】本発明のピエゾ抵抗型3軸加速度センサ
は、次の主な工程を経て作製される。Si単結晶基板に
ピエゾ抵抗体群を形成する工程。ピエゾ抵抗体はSi単
結晶基板にボロンを不純物としてイオン打込み法により
作製される。ピエゾ抵抗体群の位置を形状はパターニン
グに使用するフォトマスクのマスクパターンによって決
められ、可撓部上のX軸とZ軸のピエゾ抵抗体対の間隔
が異なるようにしておく。ピエゾ抵抗体群を保護する保
護膜を形成し、ピエゾ抵抗体群とアルミ配線を導通させ
るためのコンタクトホールをウエットエッチング等によ
って形成する工程。可撓部上のピエゾ抵抗体群が3軸そ
れぞれブリッジ回路を構成するようにアルミ配線を形成
する工程。可撓部が薄い梁形状となるようにSi単結晶
基板を表裏面からドライエッチングする工程。Si単結
晶基板を切断して、ピエゾ抵抗型3軸加速度センサ素子
を得る工程。ピエゾ抵抗型3軸加速度センサ素子を、パ
ッケージに入れ配線等を行う組立て工程を経て、ピエゾ
抵抗型3軸加速度センサを得る。尚、本明細書では、ピ
エゾ抵抗型3軸加速度センサ素子をピエゾ抵抗型3軸加
速度センサと表記している。
The piezoresistive triaxial acceleration sensor of the present invention is manufactured through the following main steps. A step of forming a piezoresistor group on a Si single crystal substrate. The piezoresistor is produced by ion implantation on a Si single crystal substrate with boron as an impurity. The shape of the position of the piezoresistor group is determined by the mask pattern of the photomask used for patterning, and the intervals between the X-axis and Z-axis piezoresistor pairs on the flexible portion are made different. A step of forming a protective film for protecting the piezoresistor group and forming a contact hole for conducting the piezoresistor group and the aluminum wiring by wet etching or the like. A step of forming aluminum wiring so that the piezoresistor group on the flexible portion constitutes a bridge circuit for each of the three axes. A step of dry etching the Si single crystal substrate from the front and back surfaces so that the flexible portion has a thin beam shape. A step of cutting the Si single crystal substrate to obtain a piezoresistive triaxial acceleration sensor element. A piezoresistive triaxial acceleration sensor is obtained through an assembly process in which a piezoresistive triaxial acceleration sensor element is put in a package and wiring is performed. In this specification, the piezoresistive triaxial acceleration sensor element is referred to as a piezoresistive triaxial acceleration sensor.

【0022】[0022]

【発明の実施の形態】本発明のピエゾ抵抗型3軸加速度
センサの実施例について図1、2を用いて説明する。図
1は本発明のピエゾ抵抗型3軸加速度センサの平面図で
あり、図2は可撓部上に配されたX軸およびZ軸のピエ
ゾ抵抗体の配置を表した部分拡大平面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a piezoresistive type triaxial acceleration sensor of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a piezoresistive triaxial acceleration sensor of the present invention, and FIG. 2 is a partially enlarged plan view showing an arrangement of X-axis and Z-axis piezoresistors arranged on a flexible portion. .

【0023】本実施例の加速度センサは、ピエゾ抵抗体
の長さを110μm、可撓部の長さを500μm、幅を
100μm、厚さを7μm、質量部および外枠部の厚さ
を550μmとした。ピエゾ抵抗体は、Si単結晶に不
純物であるボロンを、表面不純物濃度で2×1018
toms/cmとなるように条件設定した。X軸用ピ
エゾ抵抗体の片端は可撓部端部と一致させて配置した。
X軸とZ軸用ピエゾ抵抗体対間隔の差を、ピエゾ抵抗体
の長手方向の長さLに対して0.2Lから2.4Lま
で、0.2Lピッチで変化させた。比較のために従来形
状の差なしも作製し、X軸とZ軸の出力比を測定した。
Z軸用ピエゾ抵抗体対は、可撓部の長さ方向に垂直な二
等分線に対して対称に配置されているので、Z軸用ピエ
ゾ抵抗体71′、72の一部が外枠部に、71’、7
2’の一部が質量部上に配される図2の構造となる。
In the acceleration sensor of this embodiment, the length of the piezoresistor is 110 μm, the length of the flexible portion is 500 μm, the width is 100 μm, the thickness is 7 μm, and the thickness of the mass portion and the outer frame portion is 550 μm. did. The piezoresistor contains boron, which is an impurity, in Si single crystal at a surface impurity concentration of 2 × 10 18 a.
The conditions were set so as to be toms / cm 3 . One end of the piezoresistor for the X axis was arranged so as to match the end of the flexible portion.
The difference between the X-axis and Z-axis piezoresistor pair spacing was changed at 0.2L pitch from 0.2L to 2.4L with respect to the length L of the piezoresistor in the longitudinal direction. For comparison, a conventional type having no difference was also manufactured, and the output ratio of the X axis and the Z axis was measured.
Since the Z-axis piezoresistor pair is arranged symmetrically with respect to the bisector perpendicular to the length direction of the flexible portion, a part of the Z-axis piezoresistors 71 'and 72 is an outer frame. 71 ', 7
The structure of FIG. 2 has a part of 2'disposed on the mass part.

【0024】X軸とZ軸の出力比(Z/X)を図3に示
す。比較に入れた従来構造の出力比はピエゾ抵抗体対間
隔とZ軸用ピエゾ抵抗体対間隔の差は0であったため、
出力比は1.5である。Z軸ピエゾ抵抗体対間隔とX軸
ピエゾ抵抗体対間隔の差が大きくなるに従ってZ軸の出
力が下がり、その差が約0.8LでX軸とZ軸の出力差
がなくなり、さらに差を大きくするとZ軸の出力がX軸
より低くなってしまった。この事から、差を0.8L近
傍とすることでX軸とZ軸の出力比をほぼ1とすること
ができる。
The output ratio (Z / X) of the X-axis and the Z-axis is shown in FIG. The output ratio of the conventional structure included in the comparison is 0 because the difference between the piezoresistor pair interval and the Z-axis piezoresistor pair interval is 0.
The output ratio is 1.5. As the difference between the Z-axis piezoresistor pair spacing and the X-axis piezoresistor pair spacing increases, the Z-axis output decreases, and when the difference is about 0.8L, the X-axis and Z-axis output difference disappears. When it is increased, the output of Z axis is lower than that of X axis. From this fact, the output ratio of the X axis and the Z axis can be made approximately 1 by setting the difference to be near 0.8L.

【0025】本発明の他の実施例について図4、5を用
いて説明する。図4はピエゾ抵抗型3軸加速度センサの
平面図で、図5は可撓部上に配されたX軸およびZ軸の
ピエゾ抵抗体の配置を表した部分拡大平面図である。
Another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a plan view of the piezoresistive triaxial acceleration sensor, and FIG. 5 is a partially enlarged plan view showing the arrangement of the X-axis and Z-axis piezoresistors arranged on the flexible portion.

【0026】本実施例の加速度センサは、ピエゾ抵抗体
の長さを110μm、可撓部の長さを500μm、幅を
100μm、厚さを7μm、質量部および外枠部の厚さ
を550μmとした。ピエゾ抵抗体は、Si単結晶に不
純物であるボロンを、表面不純物濃度で2×1018
toms/cmとなるように条件設定した。X軸用ピ
エゾ抵抗体の片端は可撓部端部と一致させて配置した。
X軸とZ軸用ピエゾ抵抗体対間隔の差を、ピエゾ抵抗体
の長手方向の長さLに対して0.2Lから2.4Lま
で、0.2Lピッチで変化させた。比較のために従来形
状の差なしも作製し、X軸とZ軸の出力比を測定した。
Z軸用ピエゾ抵抗体対は、可撓部の長さ方向に垂直な二
等分線に対して対称に配置されており、Z軸用ピエゾ抵
抗体71、72は可撓部上に配された図5の構造とな
る。
In the acceleration sensor of this embodiment, the length of the piezoresistor is 110 μm, the length of the flexible portion is 500 μm, the width is 100 μm, the thickness is 7 μm, and the thickness of the mass portion and the outer frame portion is 550 μm. did. The piezoresistor contains boron, which is an impurity, in Si single crystal at a surface impurity concentration of 2 × 10 18 a.
The conditions were set so as to be toms / cm 3 . One end of the piezoresistor for the X axis was arranged so as to match the end of the flexible portion.
The difference between the X-axis and Z-axis piezoresistor pair spacing was changed at 0.2L pitch from 0.2L to 2.4L with respect to the length L of the piezoresistor in the longitudinal direction. For comparison, a conventional type having no difference was also manufactured, and the output ratio of the X axis and the Z axis was measured.
The Z-axis piezoresistor pairs are arranged symmetrically with respect to the bisector perpendicular to the length direction of the flexible portion, and the Z-axis piezoresistors 71 and 72 are arranged on the flexible portion. The structure shown in FIG. 5 is obtained.

【0027】X軸とZ軸の出力比(Z/X)を図6に示
す。比較に入れた従来構造の出力比は1.5である。Z
軸用ピエゾ抵抗体対間隔とX軸用ピエゾ抵抗体対間隔の
差が大きくなるに従ってZ軸の出力が下がり、その差が
約1.4LでX軸とZ軸の出力差がなくなり、さらに差
を大きくするとZ軸の出力がX軸より低くなってしまっ
た。この事から、差を1.4L近傍とすることでX軸と
Z軸の出力比をほぼ1とすることができる。
The output ratio (Z / X) of the X-axis and the Z-axis is shown in FIG. The output ratio of the conventional structure included in the comparison is 1.5. Z
The Z-axis output decreases as the difference between the axial piezoresistor pair spacing and the X-axis piezoresistor pair spacing increases, and when the difference is about 1.4L, the X-axis and Z-axis output difference disappears. When is increased, the output of Z axis is lower than that of X axis. From this fact, the output ratio of the X-axis and the Z-axis can be made approximately 1 by setting the difference in the vicinity of 1.4L.

【0028】本発明のピエゾ抵抗型3軸加速度センサは
従来のピエゾ抵抗型3軸加速度センサと比較して、従来
X軸の出力に対して50%あったX軸とZ軸の出力差を
小さくすることができた。特にX軸とZ軸用ピエゾ抵抗
体対間隔の差を、ピエゾ抵抗体の長手方向の長さLに対
して、0.6L以上1.0L以下の範囲で、Z軸用ピエ
ゾ抵抗体対間隔をX軸用ピエゾ抵抗体対間隔より大き
く、また、1.2L以上1.6L以下の範囲でZ軸用ピ
エゾ抵抗体対間隔をX軸用ピエゾ抵抗体対間隔より小さ
くすることで、X軸とZ軸の出力差を20%以下に改善
することができた。
The piezoresistive triaxial acceleration sensor of the present invention has a smaller output difference between the X-axis and Z-axis, which is 50% of the conventional X-axis output, as compared with the conventional piezoresistive triaxial acceleration sensor. We were able to. In particular, the difference between the X-axis and Z-axis piezoresistor pair spacing is set within the range of 0.6L or more and 1.0L or less with respect to the length L of the piezoresistor in the longitudinal direction. Is larger than the X-axis piezoresistor pair interval, and the Z-axis piezoresistor pair interval is smaller than the X-axis piezoresistor pair interval in the range of 1.2L or more and 1.6L or less, thereby And the output difference of the Z axis could be improved to 20% or less.

【0029】[0029]

【発明の効果】以上説明したように、X軸用ピエゾ抵抗
体対間隔とZ軸用ピエゾ抵抗体対間隔が異なるようにピ
エゾ抵抗体を配することで、Z軸の出力を下げ3軸の出
力差を20%以下にすることができた。ピエゾ抵抗体の
抵抗値や温度特性が同じとなるので、軸毎に増幅器を準
備する必要もないため小型で安価なピエゾ抵抗型3軸加
速度センサを提供できるようになった。
As described above, the Z-axis output is reduced by arranging the piezoresistors so that the X-axis piezoresistor pair interval and the Z-axis piezoresistor pair interval are different. The output difference could be reduced to 20% or less. Since the resistance values and temperature characteristics of the piezoresistors are the same, it is not necessary to prepare an amplifier for each axis, so that a small and inexpensive piezoresistive triaxial acceleration sensor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のピエゾ抵抗型3軸加速度センサの平面
FIG. 1 is a plan view of a piezoresistive triaxial acceleration sensor of the present invention.

【図2】本発明のピエゾ抵抗型3軸加速度センサの部分
拡大平面図
FIG. 2 is a partially enlarged plan view of a piezoresistive triaxial acceleration sensor of the present invention.

【図3】本発明のピエゾ抵抗型3軸加速度センサのX軸
とZ軸の出力比を示すグラフ
FIG. 3 is a graph showing the output ratio of the X-axis and the Z-axis of the piezoresistive triaxial acceleration sensor of the present invention.

【図4】本発明の他のピエゾ抵抗型3軸加速度センサの
平面図
FIG. 4 is a plan view of another piezoresistive triaxial acceleration sensor of the present invention.

【図5】本発明の他のピエゾ抵抗型3軸加速度センサの
部分拡大平面図
FIG. 5 is a partially enlarged plan view of another piezoresistive triaxial acceleration sensor of the present invention.

【図6】本発明のピエゾ抵抗型3軸加速度センサのX軸
とZ軸の出力比を示すグラフ
FIG. 6 is a graph showing the output ratio of the X-axis and the Z-axis of the piezoresistive triaxial acceleration sensor of the present invention.

【図7】従来のピエゾ抵抗型3軸加速度センサの平面図FIG. 7 is a plan view of a conventional piezoresistive triaxial acceleration sensor.

【図8】従来のピエゾ抵抗型3軸加速度センサのA−
A’断面図
FIG. 8 A- of a conventional piezoresistive triaxial acceleration sensor
A'cross section

【図9】従来のピエゾ抵抗型3軸加速度センサの部分拡
大平面図
FIG. 9 is a partially enlarged plan view of a conventional piezoresistive triaxial acceleration sensor.

【図10】従来の加速度センサの質量部厚さとX軸およ
びZ軸の感度の関係を示すグラフ
FIG. 10 is a graph showing the relationship between the mass portion thickness of a conventional acceleration sensor and the X-axis and Z-axis sensitivities.

【符号の説明】[Explanation of symbols]

1 質量部、21, 21’ 22 22’ 可撓部、
3 外枠部、4 貫通穴、51 51’ 52 52’
X軸のピエゾ抵抗体群、61 61’ 62 62’
Y軸のピエゾ抵抗体群、71 71’ 72 72’
Z軸のピエゾ抵抗体群。
1 mass part, 21, 21 '22 22' flexible part,
3 outer frame part, 4 through holes, 51 51 '52 52'
X-axis piezoresistor group, 61 61 '62 62'
Y-axis piezoresistor group, 71 71 '72 72'
Z-axis piezoresistor group.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加速度をピエゾ抵抗体で検出する3軸加
速度センサであって、そのピエゾ抵抗体の大部分の領域
は両端を外枠部と質量部に接続された可撓部上に配され
ており、X軸およびY軸用のピエゾ抵抗体対間隔とZ軸
用のピエゾ抵抗体対間隔が異なっていることを特徴とす
るピエゾ抵抗型3軸加速度センサ。
1. A triaxial acceleration sensor for detecting acceleration with a piezoresistor, wherein most of the area of the piezoresistor is arranged on a flexible part whose both ends are connected to an outer frame part and a mass part. The piezoresistive triaxial acceleration sensor is characterized in that the X-axis and Y-axis piezoresistor pair intervals are different from the Z-axis piezoresistor pair intervals.
【請求項2】 Z軸用ピエゾ抵抗体対間隔が、Xおよび
Y軸用ピエゾ抵抗体対間隔より大きく、Z軸用ピエゾ抵
抗体の少なくとも一部が、外枠部と質量部上に配されて
いることを特徴とする請求項1に記載のピエゾ抵抗型3
軸加速度センサ。
2. A Z-axis piezoresistor pair interval is larger than an X- and Y-axis piezoresistor pair interval, and at least a part of the Z-axis piezoresistor is arranged on the outer frame part and the mass part. The piezoresistive type 3 according to claim 1, characterized in that
Axial acceleration sensor.
【請求項3】 Z軸用ピエゾ抵抗体対間隔とXもしくは
Y軸用ピエゾ抵抗体対間隔の差がピエゾ抵抗体の長さL
に対し、0.4L以上1.2以下であることを特徴とす
る請求項1および2に記載のピエゾ抵抗型3軸加速度セ
ンサ。
3. The difference between the Z-axis piezoresistor pair spacing and the X or Y-axis piezoresistor pair spacing is the length L of the piezoresistor.
On the other hand, it is 0.4 L or more and 1.2 or less, and the piezoresistance type triaxial acceleration sensor according to claim 1 or 2.
【請求項4】 Z軸用ピエゾ抵抗体対間隔が、Xおよび
Y軸用ピエゾ抵抗体対間隔より小さく、Z軸用ピエゾ抵
抗体が可撓部上に配されていることを特徴とする請求項
1に記載のピエゾ抵抗型3軸加速度センサ。
4. The Z-axis piezoresistor pair interval is smaller than the X- and Y-axis piezoresistor pair interval, and the Z-axis piezoresistor is arranged on the flexible portion. Item 3. A piezoresistive triaxial acceleration sensor according to Item 1.
【請求項5】 Z軸用ピエゾ抵抗体対間隔とXもしくは
Y軸用ピエゾ抵抗体対間隔の差がピエゾ抵抗体の長さL
に対し、1.0L以上1.8L以下であることを特徴と
する請求項1および4に記載のピエゾ抵抗型3軸加速度
センサ。
5. The difference between the Z-axis piezoresistor pair spacing and the X or Y-axis piezoresistor pair spacing is the length L of the piezoresistor.
On the other hand, it is 1.0 L or more and 1.8 L or less, and the piezoresistive triaxial acceleration sensor according to claim 1 or 4.
JP2002083161A 2002-03-25 2002-03-25 Piezoresistive 3-axis acceleration sensor Expired - Fee Related JP3642054B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002083161A JP3642054B2 (en) 2002-03-25 2002-03-25 Piezoresistive 3-axis acceleration sensor
US10/384,645 US6763719B2 (en) 2002-03-25 2003-03-11 Acceleration sensor
EP03006231A EP1348967A3 (en) 2002-03-25 2003-03-20 Acceleration sensor
CNB031082149A CN100334453C (en) 2002-03-25 2003-03-25 Acceleration transducer
KR10-2003-0018405A KR100508198B1 (en) 2002-03-25 2003-03-25 Acceleration sensor
CNB2006100770261A CN100422697C (en) 2002-03-25 2003-03-25 Acceleration transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083161A JP3642054B2 (en) 2002-03-25 2002-03-25 Piezoresistive 3-axis acceleration sensor

Publications (2)

Publication Number Publication Date
JP2003279592A true JP2003279592A (en) 2003-10-02
JP3642054B2 JP3642054B2 (en) 2005-04-27

Family

ID=29231058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083161A Expired - Fee Related JP3642054B2 (en) 2002-03-25 2002-03-25 Piezoresistive 3-axis acceleration sensor

Country Status (2)

Country Link
JP (1) JP3642054B2 (en)
CN (1) CN100422697C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177823A (en) * 2004-12-22 2006-07-06 Oki Electric Ind Co Ltd Acceleration sensor
US7222536B2 (en) 2004-09-30 2007-05-29 Hitachi Metals, Ltd. Semiconductor acceleration sensor
US7331230B2 (en) 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
US7360426B2 (en) 2004-11-09 2008-04-22 Fujitsu Media Devices Limited Acceleration sensor
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408089A (en) * 2010-09-20 2012-04-11 利顺精密科技股份有限公司 Micro electronmechanical sensor capable of simultaneously measuring acceleration and pressure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010118A1 (en) * 1989-12-28 1991-07-11 Wacoh Corporation Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus
JPH04339266A (en) * 1991-02-08 1992-11-26 Tokai Rika Co Ltd Acceleration sensor and its manufacture
DE4340664C2 (en) * 1993-11-30 1999-02-11 Helmut Dipl Ing Dr Crazzolara Piezoresistive accelerometer
JPH08285883A (en) * 1995-04-14 1996-11-01 Matsushita Electric Works Ltd Acceleration sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331230B2 (en) 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
US7222536B2 (en) 2004-09-30 2007-05-29 Hitachi Metals, Ltd. Semiconductor acceleration sensor
EP1643255A3 (en) * 2004-09-30 2009-03-11 Hitachi Metals, Ltd. Semiconductor acceleration sensor
US7360426B2 (en) 2004-11-09 2008-04-22 Fujitsu Media Devices Limited Acceleration sensor
JP2006177823A (en) * 2004-12-22 2006-07-06 Oki Electric Ind Co Ltd Acceleration sensor
US7281427B2 (en) 2004-12-22 2007-10-16 Oki Electric Industry Co., Ltd. Acceleration sensor
US7500395B2 (en) 2004-12-22 2009-03-10 Oki Semiconductor Co., Ltd. Acceleration sensor
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor

Also Published As

Publication number Publication date
JP3642054B2 (en) 2005-04-27
CN100422697C (en) 2008-10-01
CN1841072A (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US5295386A (en) Apparatus for detecting acceleration and method for testing this apparatus
US5744718A (en) Sensor using a resistance element
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
JP5965934B2 (en) Tilt mode accelerometer with improved offset and noise performance
US20040025591A1 (en) Accleration sensor
KR100656698B1 (en) Semiconductor acceleration sensor
KR20060071840A (en) Acceleration sensor
KR100499970B1 (en) Acceleration sensor
JPH10177033A (en) Acceleration measuring instrument
US5239870A (en) Semiconductor acceleration sensor with reduced cross axial sensitivity
KR100508198B1 (en) Acceleration sensor
JP2003172745A (en) Semiconductor acceleration sensor
JPH11101816A (en) Angular acceleration sensor and method for detecting angular acceleration
JP3985214B2 (en) Semiconductor acceleration sensor
JP3642054B2 (en) Piezoresistive 3-axis acceleration sensor
JP2004177357A (en) Semiconductor acceleration sensor
JP3985215B2 (en) Semiconductor acceleration sensor
JP2006098323A (en) Semiconductor-type three-axis acceleration sensor
WO2010146818A1 (en) Three-dimensional acceleration sensor
JPH01287470A (en) Semiconductor acceleration sensor
JP2003294781A (en) Piezoresistance type tri-axial acceleration sensor
JP5401820B2 (en) Sensor
JP2008309667A (en) Triaxial acceleration sensor
JPH08160067A (en) Acceleration sensor
JPH03269370A (en) Semiconductor two-dimensional acceleration sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees