JP2003094093A - Method for preventing malodor generation from sludge - Google Patents

Method for preventing malodor generation from sludge

Info

Publication number
JP2003094093A
JP2003094093A JP2001294867A JP2001294867A JP2003094093A JP 2003094093 A JP2003094093 A JP 2003094093A JP 2001294867 A JP2001294867 A JP 2001294867A JP 2001294867 A JP2001294867 A JP 2001294867A JP 2003094093 A JP2003094093 A JP 2003094093A
Authority
JP
Japan
Prior art keywords
sludge
storage tank
sludge storage
nitrite
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001294867A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oi
康裕 大井
Hidenobu Kojima
英順 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001294867A priority Critical patent/JP2003094093A/en
Publication of JP2003094093A publication Critical patent/JP2003094093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing malodor generation from sludge capable of effectively preventing malodor from hydrogen sulfide and so on generated by the sludge in a sewage disposal plant, or the like, and applicable to a large-scale facility operating dehydration continuously day and night as well as a small plant operating dehydration only in the daytime. SOLUTION: This method for preventing the malodor generation from the sludge in a sludge storage tank is achieved by allowing nitrite to exist in the sludge storage tank. The sludge is introduced into the sludge storage tank after mixing nitrite therewith at the outside of the sludge storage tank, sucked out of the sludge storage tank continuously day and night, and is dehydrated. An agitating period per day is not more than a half of an average retention period for the sludge in the sludge storage tank, and meanwhile one agitating period is within one hour, or alternatively, the sludge is sucked out of the sludge storage tank only in the daytime and is dehydrated. The agitation is stopped for more than two hours in operating the dehydration while one agitating period is within one hour.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、汚泥の臭気発生防
止方法に関する。さらに詳しくは、本発明は、下水処理
場、し尿処理場などの汚泥から発生する硫化水素、メチ
ルメルカプタン、アンモニア、アミンなどに由来する臭
気を効果的に防止することができ、昼夜連続して脱水運
転を行う大規模施設にも、昼間のみ脱水運転を行う小規
模施設にも適用し得る汚泥の臭気発生防止方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for preventing odor generation of sludge. More specifically, the present invention can effectively prevent odors derived from hydrogen sulfide, methyl mercaptan, ammonia, amines, etc., generated from sludge in sewage treatment plants, night soil treatment plants, etc. The present invention relates to a sludge odor prevention method that can be applied to both large-scale facilities that operate and small-scale facilities that perform dehydration operation only during the daytime.

【0002】[0002]

【従来の技術】下水処理場、し尿処理場や、食品工場、
紙パルプ工場などの有機性産業排水の処理工程などにお
いては、各種の汚泥が発生する。例えば、下水を最初沈
殿池で固液分離すると初沈生汚泥が発生し、最初沈殿池
の上澄水を曝気槽などを用いて浮遊生物方式により処理
すると、活性汚泥の量が増加する。曝気槽などで処理さ
れた水は最終沈殿池に導かれ、活性汚泥が分離され、そ
の一部は返送汚泥として曝気槽などに返送され、残余は
余剰汚泥とされる。初沈生汚泥と余剰汚泥は、汚泥濃縮
槽に導かれ、その後、汚泥貯留槽にいったん貯留され
る。汚泥貯留槽内の汚泥は、次いで脱水機により脱水さ
れ、得られた汚泥脱水ケーキは埋め立てや、焼却のため
に搬出される。汚泥貯留槽に貯留された汚泥は、腐敗に
より悪臭物質を発生する。下水処理場で発生する悪臭物
質として頻繁に検出される物質は、硫化水素、メチルメ
ルカプタンなどのイオウ化合物、アンモニア、トリメチ
ルアミンなどの窒素化合物、吉草酸、イソ酪酸などの低
級脂肪酸などである。これらの中で、含イオウ蛋白質の
分解により生成する硫化水素とメチルメルカプタンの量
が特に多い。汚泥貯留槽で発生した臭気は、その後の汚
泥の移動に伴って移動し、汚泥脱水工程、汚泥脱水ケー
キの処理工程などにおいて、作業環境の悪化や、自然環
境の悪化などの問題を引き起こす。汚泥脱水機は密閉系
とすることもできるが、汚泥脱水ケーキは開放系で運
搬、保管される場合が多いので、臭気対策は重要であ
る。また、最終埋め立て地においても、発生する臭気が
拡散し、付近の住民に不快感を与えるなど、環境に悪影
響を及ぼす。このために、汚泥貯留槽にまでさかのぼっ
て臭気防止対策を施す必要があり、従来よりさまざまな
臭気発生防止方法が提案されている。例えば、特開昭5
7−187099号公報には、微生物に基づく硫化水素
の発生を防止する方法として、微生物の生息環境に亜硝
酸イオンを存在させる方法が提案されている。また、本
発明者らは、汚泥処理プロセス全体の臭気発生を防止す
る方法として、汚泥貯留槽の汚泥に亜硝酸塩を断続的に
添加するとともに、添加終了時から1時間後の汚泥の残
留亜硝酸イオン濃度を20mg/L以上とすることによ
り、亜硝酸塩の添加量を同一かあるいは削減しても、硫
化水素とメチルメルカプタンの発生防止効果を安定して
持続することが可能となることを見いだした。しかし、
環境保全に対する要求は年とともに厳しくなることか
ら、より少量の薬剤を用いて、より効果的に汚泥の臭気
発生を防止し得る方法が求められている。
2. Description of the Related Art Sewage treatment plants, human waste treatment plants, food factories,
Various sludges are generated in the process of treating organic industrial wastewater such as pulp and paper factories. For example, solid-liquid separation of sewage in a first settling basin produces first settling sludge, and treatment of the supernatant of the first settling basin using an aeration tank or the like by a floating organism method increases the amount of activated sludge. The water treated in the aeration tank etc. is guided to the final settling basin, the activated sludge is separated, part of it is returned to the aeration tank etc. as return sludge, and the rest is made into excess sludge. The initial sludge and excess sludge are guided to a sludge thickening tank, and then temporarily stored in a sludge storage tank. The sludge in the sludge storage tank is then dehydrated by a dehydrator, and the obtained sludge dehydrated cake is carried out for landfill or incineration. The sludge stored in the sludge storage tank produces a foul-smelling substance due to decay. Substances often detected as malodorous substances generated in sewage treatment plants are hydrogen sulfide, sulfur compounds such as methyl mercaptan, nitrogen compounds such as ammonia and trimethylamine, and lower fatty acids such as valeric acid and isobutyric acid. Among these, the amounts of hydrogen sulfide and methyl mercaptan produced by the decomposition of the sulfur-containing protein are particularly large. The odor generated in the sludge storage tank moves along with the subsequent movement of the sludge, and causes problems such as deterioration of the working environment and deterioration of the natural environment in the sludge dewatering step, the sludge dewatering cake processing step, and the like. The sludge dewatering machine can be a closed system, but since the sludge dewatering cake is often transported and stored in an open system, odor control is important. In addition, even in the final landfill, the generated odor diffuses, causing unpleasant sensation to nearby residents, which adversely affects the environment. For this reason, it is necessary to take odor prevention measures back to the sludge storage tank, and various odor generation prevention methods have been proposed conventionally. For example, JP-A-5
As a method of preventing the generation of hydrogen sulfide based on microorganisms, Japanese Patent Publication No. 7-187099 proposes a method of allowing nitrite ions to exist in the habitat of the microorganisms. In addition, the inventors of the present invention, as a method for preventing the generation of odor in the entire sludge treatment process, intermittently add nitrite to the sludge in the sludge storage tank, and at the same time, leave the residual nitrite in the sludge one hour after the end of the addition. It has been found that by setting the ion concentration to 20 mg / L or more, the effect of preventing the generation of hydrogen sulfide and methyl mercaptan can be stably maintained even if the amount of nitrite added is the same or reduced. . But,
Since the demand for environmental protection becomes severe with the years, there is a demand for a method that can more effectively prevent the generation of odor of sludge by using a smaller amount of chemicals.

【0003】[0003]

【発明が解決しようとする課題】本発明は、下水処理
場、し尿処理場などの汚泥から発生する硫化水素、メチ
ルメルカプタン、アンモニア、アミンなどに由来する臭
気を効果的に防止することができ、昼夜連続して脱水運
転を行う大規模施設にも、昼間のみ脱水運転を行う小規
模施設にも適用し得る汚泥の臭気発生防止方法を提供す
ることを目的としてなされたものである。
The present invention can effectively prevent odors derived from hydrogen sulfide, methyl mercaptan, ammonia, amines, etc. generated from sludge at sewage treatment plants, night soil treatment plants, etc. The object of the present invention is to provide a method for preventing the generation of sludge odor that can be applied to both large-scale facilities that perform dehydration operation continuously during the day and night and small-scale facilities that perform dehydration operation only during the daytime.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、汚泥貯留槽外で
汚泥に亜硝酸塩を混合したのち汚泥貯留槽に導入し、汚
泥の分離防止のための最小限の撹拌にとどめることによ
り、臭気の発生を効果的に防止し得ることを見いだし、
この知見に基づいて本発明を完成するに至った。すなわ
ち、本発明は、(1)汚泥貯留槽に亜硝酸塩を存在させ
て汚泥貯留槽での汚泥の臭気発生を防止する方法であっ
て、汚泥貯留槽外で汚泥に亜硝酸塩を混合したのち汚泥
貯留槽に導入し、汚泥貯留槽から汚泥を昼夜連続して抜
き出して脱水し、1日の撹拌時間が汚泥貯留槽内におけ
る汚泥の平均滞留時間の1/2以下であり、かつ1回の
撹拌継続時間が1時間以内である撹拌を行うことを特徴
とする汚泥の臭気発生防止方法、及び、(2)汚泥貯留
槽に亜硝酸塩を存在させて汚泥貯留槽での汚泥の臭気発
生を防止する方法であって、汚泥貯留槽外で汚泥に亜硝
酸塩を混合したのち汚泥貯留槽に導入し、汚泥貯留槽か
ら汚泥を昼間のみ抜き出して脱水し、脱水運転中2時間
以上撹拌を停止し、かつ1回の撹拌継続時間が1時間以
内である撹拌を行うことを特徴とする汚泥の臭気発生防
止方法、を提供するものである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors mixed sludge with nitrite outside the sludge storage tank, and then introduced the sludge into the sludge storage tank. It was found that the generation of odor can be effectively prevented by keeping the amount of stirring to a minimum to prevent the separation of
The present invention has been completed based on this finding. That is, the present invention is (1) a method of preventing odor generation of sludge in a sludge storage tank by allowing nitrite to exist in the sludge storage tank, wherein sludge is mixed with nitrite outside the sludge storage tank It is introduced into the storage tank, sludge is continuously extracted from the sludge storage tank day and night, dehydrated, and the stirring time for one day is 1/2 or less of the average sludge retention time in the sludge storage tank, and one time stirring A method for preventing odor generation of sludge, which is characterized by stirring for a duration of less than 1 hour, and (2) preventing odor generation of sludge in the sludge storage tank by allowing nitrite to exist in the sludge storage tank. The method is to mix nitrite with sludge outside the sludge storage tank, then introduce the sludge into the sludge storage tank, extract the sludge from the sludge storage tank only in the daytime to dehydrate, and stop stirring for 2 hours or more during the dehydration operation, and The stirring is continued for 1 hour or less. Odor prevention methods sludge and performing, there is provided a.

【0005】[0005]

【発明の実施の形態】本発明の汚泥の臭気発生防止方法
の第一の態様は、汚泥貯留槽に亜硝酸塩を存在させて汚
泥貯留槽での汚泥の臭気発生を防止する方法であって、
汚泥貯留槽外で汚泥に亜硝酸塩を混合したのち汚泥貯留
槽に導入し、汚泥貯留槽から汚泥を昼夜連続して抜き出
して脱水し、1日の撹拌時間が汚泥貯留槽内における汚
泥の平均滞留時間の1/2以下であり、かつ1回の撹拌
継続時間が1時間以内である撹拌を行う。本発明方法の
第一の態様は、昼夜連続して脱水運転を行う主として大
規模な処理場に適用することができる。このような処理
場においては、原則として1日24時間連続して脱水運
転を行っているが、本発明方法の第一の態様は、設備の
保全などのために1日8時間以内の脱水運転の休止を伴
う処理場にも適用することができる。本発明の汚泥の臭
気発生防止方法の第二の態様は、汚泥貯留槽に亜硝酸塩
を存在させて汚泥貯留槽での汚泥の臭気発生を防止する
方法であって、汚泥貯留槽外で汚泥に亜硝酸塩を混合し
たのち汚泥貯留槽に導入し、汚泥貯留槽から汚泥を昼間
のみ抜き出して脱水し、脱水運転中2時間以上撹拌を停
止し、かつ1回の撹拌継続時間が1時間以内である撹拌
を行う。本発明方法の第二の態様は、昼間のみ脱水運転
を行う主として小規模な処理場に適用することができ
る。このような処理場においては、原則として正規の勤
務時間である8時間程度の脱水運転を行っているが、本
発明方法の第二の態様は、汚泥処理量の増大などのため
に、16時間未満までの延長運転を伴う処理場にも適用
することができる。なお、第一の態様、第二の態様とも
に、汚泥貯留槽内を撹拌せずに静置することを含む。ま
た、本発明で言う撹拌とは、汚泥が混合される撹拌のこ
とで、汚泥が混合されないような低速での撹拌は含まな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The first aspect of the method for preventing odor generation of sludge of the present invention is a method for preventing odor generation of sludge in a sludge storage tank by allowing nitrite to exist in the sludge storage tank,
After mixing nitrite with the sludge outside the sludge storage tank, it is introduced into the sludge storage tank, the sludge is continuously extracted from the sludge storage tank day and night, and dehydrated. Stirring is performed for half the time or less and for one stirring duration of 1 hour or less. The first aspect of the method of the present invention can be applied to a large-scale treatment plant in which dehydration operation is continuously performed day and night. In such a treatment plant, as a general rule, the dehydration operation is performed continuously for 24 hours a day, but the first aspect of the method of the present invention is that the dehydration operation is performed within 8 hours a day for maintenance of facilities. It can also be applied to a treatment plant that involves the suspension of The second aspect of the method for preventing odor generation of sludge of the present invention is a method for preventing the odor generation of sludge in the sludge storage tank by allowing nitrite to exist in the sludge storage tank, in which the sludge is stored outside the sludge storage tank. After mixing nitrite, it is introduced into the sludge storage tank, the sludge is extracted from the sludge storage tank only in the daytime and dehydrated, stirring is stopped for 2 hours or more during the dehydration operation, and one stirring duration is within 1 hour. Stir. The second aspect of the method of the present invention can be applied mainly to a small-scale treatment plant in which dehydration operation is performed only in the daytime. In such a treatment plant, as a general rule, the dehydration operation is carried out for about 8 hours which is a regular working time, but the second aspect of the method of the present invention is 16 hours because of an increase in the sludge treatment amount. It can also be applied to treatment plants with extended operation up to the maximum. It should be noted that both the first aspect and the second aspect include allowing the inside of the sludge storage tank to stand without stirring. The agitation referred to in the present invention means agitation in which sludge is mixed, and does not include agitation at a low speed such that sludge is not mixed.

【0006】亜硝酸イオンは、汚泥中の硫化水素などの
臭気成分を緩やかな速度で分解し、また、汚泥中の臭気
発生に係わる微生物活動を抑制して、汚泥からの新たな
臭気成分の発生を防止する効果を有する。これらの効果
の中で、特に微生物活動を抑制する効果は、汚泥の濃
度、臭気成分などの被酸化性物質の含有量、微生物活
性、汚泥のpHなどにより変動するが、多くの場合、亜硝
酸イオン濃度20mg/L以上の状態を1時間以上保持す
ることにより発現する。汚泥貯留槽には、汚泥の混合均
一化や、沈殿防止を目的として、通常は撹拌装置が設け
られている。特に、下水汚泥の処理施設については、下
水道事業団の設計指針に撹拌装置を設けることが明示さ
れている。しかし、亜硝酸塩をこのような汚泥貯留槽に
添加し、あるいは、汚泥貯留槽に導入される汚泥に添加
しても、満足すべき臭気防止効果は得られない。これ
は、汚泥貯留槽で汚泥を撹拌すると、汚泥に添加された
亜硝酸イオンが急速に消失するためであることが分かっ
た。撹拌が行われている汚泥貯留槽に亜硝酸イオンを添
加した場合、例えば、汚泥貯留槽の平均滞留時間が10
時間で、完全混合であると仮定すると、汚泥貯留槽に供
給される汚泥に亜硝酸イオンを100mg/L添加した場
合には、供給汚泥に添加された亜硝酸イオンの濃度は、
瞬時に供給汚泥に添加された濃度の1/10の10mg/
Lに希釈される。もし、汚泥貯留槽にそれまでに添加さ
れた亜硝酸イオンが存在していれば、その残留濃度がこ
れに加算されるが、亜硝酸イオン濃度が低いと、微生物
活動を抑制する効果が小さく、この結果、亜硝酸イオン
の微生物分解速度が低下せず、それ以前に添加していた
亜硝酸イオンは消失している。亜硝酸イオンの添加量が
少ないと、微生物活動抑制効果が見られないだけでな
く、逆に馴化現象のために亜硝酸イオンを分解する微生
物が著しく増加すると考えられるためである。この結
果、供給汚泥に高濃度の亜硝酸イオンを添加しても、亜
硝酸イオンは汚泥貯留槽内ですぐに希釈され、短時間の
うちに分解され、汚泥貯留槽内で亜硝酸イオンが検出さ
れない状態となり、臭気防止効果も発現されない状況と
なる。
Nitrite ion decomposes odorous components such as hydrogen sulfide in sludge at a slow rate and suppresses microbial activity related to odor generation in sludge to generate new odorous components from sludge. Has the effect of preventing. Among these effects, the effect of suppressing microbial activity varies depending on the concentration of sludge, the content of oxidizable substances such as odorous components, the microbial activity, and the pH of sludge. It develops by keeping the ion concentration of 20 mg / L or more for 1 hour or more. The sludge storage tank is usually provided with a stirring device for the purpose of uniform mixing of sludge and prevention of precipitation. Especially for sewage sludge treatment facilities, it is stipulated in the design guidelines of the Sewerage Agency that a stirrer is installed. However, even if nitrite is added to such a sludge storage tank or added to the sludge introduced into the sludge storage tank, a satisfactory odor prevention effect cannot be obtained. It was found that when the sludge was stirred in the sludge storage tank, the nitrite ions added to the sludge rapidly disappeared. When nitrite ions are added to the sludge storage tank that is being stirred, for example, the average retention time of the sludge storage tank is 10
Assuming complete mixing in time, when 100 mg / L of nitrite ion is added to the sludge supplied to the sludge storage tank, the concentration of nitrite ion added to the supplied sludge is
Instantly 10 mg / 1/10 of the concentration added to the supplied sludge
Dilute to L. If the nitrite ion added up to that time is present in the sludge storage tank, the residual concentration is added to this, but if the nitrite ion concentration is low, the effect of suppressing microbial activity is small, As a result, the microbial decomposition rate of nitrite ion did not decrease, and the nitrite ion added before that time disappeared. This is because if the amount of nitrite ion added is small, not only the effect of suppressing microbial activity is not observed, but conversely, the number of microorganisms that decompose nitrite ions due to the acclimation phenomenon is considered to increase significantly. As a result, even if a high concentration of nitrite ion is added to the supplied sludge, the nitrite ion is immediately diluted in the sludge storage tank, decomposed in a short time, and the nitrite ion is detected in the sludge storage tank. As a result, the odor prevention effect is not exhibited.

【0007】本発明方法においては、汚泥の分離防止な
どに必要な最小限の撹拌を行うので、汚泥貯留槽に順次
導入される汚泥は、その粘性もあることから、混じり合
うことが少ない。したがって、汚泥に添加された亜硝酸
イオンは、添加された濃度のまま汚泥に作用する。この
作用過程で、亜硝酸イオンは被酸化物の酸化及び微生物
分解により消費されるが、1時間程度と判断される微生
物活動抑制に必要な亜硝酸イオン接触時間と、20mg/
L程度と判断される微生物活動を低下させるために必要
な濃度を十分に確保することができる。また、従来のご
とく汚泥貯留槽の撹拌を行うと、次の2つの問題があっ
た。亜硝酸イオンの臭気成分を分解する効果の発現に
は、概ね1時間を要することから、汚泥貯留槽に導入さ
れる亜硝酸塩が添加された汚泥にすでに含まれる硫化水
素などの臭気成分は、亜硝酸イオンによる分解が完了す
る前に、撹拌に伴う汚泥攪乱により、大気中に硫化水素
などの臭気ガスとして放出されてしまう。本発明では、
この問題が解決できる。亜硝酸塩を汚泥に添加して臭
気防止を図る場合、亜硝酸イオンの分解生成物はほとん
ど窒素ガスであるが、ごく一部は一酸化窒素になり、こ
れが汚泥の撹拌により大気中に放出され、さらに一部は
空気酸化されて二酸化窒素になる。本発明方法により、
汚泥貯留槽の撹拌を停止すると、生成した一酸化窒素が
汚泥中で消費され、分解する時間が与えられ、また臭気
防止に必要な亜硝酸塩の量が大きく減少するために、一
酸化窒素及び二酸化窒素の大気中への放出も大きく減少
させることができる。
In the method of the present invention, the minimum agitation necessary for prevention of sludge separation and the like is performed, and thus the sludge successively introduced into the sludge storage tank is less likely to mix with each other because of its viscosity. Therefore, the nitrite ion added to the sludge acts on the sludge in the added concentration. In this process, nitrite ion is consumed by oxidation of oxidant and microbial decomposition, but nitrite ion contact time required for microbial activity suppression of about 1 hour and 20 mg /
It is possible to sufficiently secure the concentration necessary for reducing the microbial activity judged to be about L. Further, when the sludge storage tank is agitated as in the conventional case, there are the following two problems. Since it takes about 1 hour to develop the effect of decomposing the odorous components of nitrite ion, the odorous components such as hydrogen sulfide already contained in the sludge containing nitrite introduced into the sludge storage tank are Before the decomposition by nitrate ions is completed, sludge disturbance accompanied by stirring causes the emission of odorous gas such as hydrogen sulfide into the atmosphere. In the present invention,
This problem can be solved. When nitrite is added to sludge to prevent odor, most of the decomposition products of nitrite ions are nitrogen gas, but a small part becomes nitric oxide, which is released into the atmosphere by stirring sludge, Furthermore, a part is air-oxidized to nitrogen dioxide. According to the method of the present invention,
When the agitation of the sludge storage tank is stopped, the generated nitric oxide is consumed in the sludge, it is given time to decompose, and the amount of nitrite necessary for odor control is greatly reduced. The release of nitrogen into the atmosphere can also be greatly reduced.

【0008】汚泥貯留槽の撹拌を停止すると、汚泥の均
一化ができない他、亜硝酸イオンが分解して発生する窒
素ガスによって汚泥が浮上するなどの懸念が持たれる。
しかし、汚泥貯留槽に導入する前に汚泥を均一化するこ
とができ、また、1〜2日間の撹拌停止では、窒素ガス
による汚泥の浮上はほとんど生じない。ただし、例え
ば、1週間も撹拌を止めてしまうことは好ましくないの
で、昼夜連続して脱水運転を行う処理場においては、1
日の撹拌時間が汚泥貯留槽内における汚泥の平均滞留時
間の1/2以下であり、かつ1回の撹拌時間が1時間以
内である撹拌を行い、昼間のみ脱水運転を行う処理場に
おいては、脱水運転中2時間以上撹拌を停止し、かつ1
回の撹拌時間が1時間以内である撹拌を行う。例えば、
1〜数日に1回、あるいは、汚泥貯留槽の状態を確認し
て、適宜手動等などにより撹拌を行うことができる。ま
た、昼間のみ脱水運転を行う処理場においては、例え
ば、汚泥貯留槽から汚泥を抜き出し、脱水運転を開始す
る始業時間の2時間前に、タイマーを用いて、自動的に
30分間程度撹拌することもできる。本発明の汚泥の臭
気発生防止方法によれば、汚泥貯留槽外で汚泥に亜硝酸
塩を混合したのち汚泥貯留槽に導入し、汚泥貯留槽にお
いては、最小限の撹拌を行うという簡単な運転方法の変
更により、従来と同等又はより少量の亜硝酸塩を用い
て、効率的に悪臭源である硫化水素などの発生を抑制す
ることができる。
When the stirring of the sludge storage tank is stopped, there is a concern that the sludge cannot be made uniform and that the sludge is floated by the nitrogen gas generated by the decomposition of nitrite ions.
However, the sludge can be homogenized before being introduced into the sludge storage tank, and when the stirring is stopped for 1 to 2 days, the sludge is hardly floated by the nitrogen gas. However, for example, it is not preferable to stop the stirring for one week, so at the treatment plant where the dehydration operation is continuously performed day and night,
In a treatment plant in which the stirring time of day is 1/2 or less of the average residence time of sludge in the sludge storage tank, and the stirring time of one time is 1 hour or less, and the dehydration operation is performed only in the daytime, During the dehydration operation, stop stirring for 2 hours or more, and 1
Stirring is performed with a stirring time of 1 hour or less. For example,
It can be agitated manually or once every one to several days, or after confirming the state of the sludge storage tank. In a treatment plant that performs dehydration operation only in the daytime, for example, the sludge should be extracted from the sludge storage tank and stirred for about 30 minutes automatically using a timer two hours before the start of dehydration operation. You can also According to the method for preventing odor generation of sludge of the present invention, a simple operation method in which nitrite is mixed with sludge outside the sludge storage tank and then introduced into the sludge storage tank, and in the sludge storage tank, minimum stirring is performed. By changing the above, it is possible to efficiently suppress generation of hydrogen sulfide, which is a source of malodor, by using a nitrite that is equivalent to or smaller than the conventional one.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。図1は、比較例及び実施例にお
いて用いた処理場の工程系統図の一部である。各比較例
及び実施例において、処理場の設備規模の大小の差はあ
るが、いずれも本図に示す工程により汚泥を処理してい
る。汚泥は、汚泥送給管1により撹拌装置を備えた汚泥
貯留槽2に導入される。汚泥貯留槽の汚泥は、凝集反応
槽3に導かれ、高分子凝集剤が添加されて汚泥粒子を粗
大フロック化したのち、ベルトプレス脱水機4に投入さ
れる。比較例及び実施例においては、工程中の2か所に
おいて、硫化水素濃度を測定した。H2S濃度1は、汚
泥貯留槽から凝集反応槽に送られる汚泥50mLを図1の
aにおいて採取し、容量600mLの容器に入れて密閉
し、2分間振盪したのち、気相部について測定した硫化
水素の濃度である。H2S濃度2は、ベルトプレス脱水
機への汚泥投入管のベルト面の上50cmの位置bの気体
について測定した硫化水素の濃度である。硫化水素の濃
度は、ガステック(株)のガス検知管を用いて測定した。
また、ベルトプレス脱水機の脱水ろ液c中の亜硝酸イオ
ン濃度を、JIS K 0102 43.1にしたがって測
定した。 比較例1 下水処理場において、混合汚泥の脱水処理を行ってい
る。この下水処理場では、昼夜連続して汚泥貯留槽に汚
泥を導入し、汚泥の導入量に応じて、汚泥1Lに対して
亜硝酸ナトリウムの添加量が150mg、すなわち亜硝酸
イオンとして100mgになるように、汚泥貯留槽に亜硝
酸ナトリウムを連続的に添加し、汚泥貯留槽は連続して
撹拌している。汚泥は、汚泥貯留槽から昼夜連続して抜
き出され、ベルトプレス脱水機で脱水されている。第1
表は、平均的な1日の運転記録である。この表の時刻1
時の欄は、午前0時から午前1時の間に、汚泥貯留槽に
汚泥14.0m3が導入され、汚泥12.1m3が抜き出さ
れて脱水され、午前1時における汚泥の貯留量は122
3であり、午前0時から午前1時まで汚泥貯留槽は1
時間継続して撹拌され、午前1時におけるH2S濃度1
は80ppmであり、H2S濃度2は14ppmであり、脱水
ろ液中にNO2 -は検出されなかったことを示している。
この日は、1時間平均14.0m3、合計335.8m3
汚泥が汚泥貯留槽に導入され、1時間平均14.0m3
合計336.7m3の汚泥が汚泥貯留槽から抜き出されて
脱水され、汚泥貯留槽の平均貯留量は120m3、平均
滞留時間は8.6時間であり、汚泥貯留槽は連続して撹
拌されている。H2S濃度1の平均は100ppm、H2
濃度2の平均は12ppmであり、脱水ろ液中のNO2 -
オン濃度の平均は0.3mg/Lである。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. FIG. 1 is a part of a process system diagram of a treatment plant used in Comparative Examples and Examples. In each of the comparative examples and the examples, there is a difference in the size of the facility of the treatment plant, but in all cases, the sludge is treated by the process shown in this figure. The sludge is introduced into the sludge storage tank 2 equipped with a stirring device by the sludge supply pipe 1. The sludge in the sludge storage tank is introduced into the coagulation reaction tank 3, and a macromolecular coagulant is added to coarsen the sludge particles, and then the sludge is fed into the belt press dehydrator 4. In the comparative example and the example, the hydrogen sulfide concentration was measured at two points during the process. The H 2 S concentration of 1 was obtained by collecting 50 mL of sludge sent from the sludge storage tank to the flocculation reaction tank in FIG. 1A, placing it in a container having a volume of 600 mL, sealing it, shaking it for 2 minutes, and then measuring it in the gas phase part. It is the concentration of hydrogen sulfide. The H 2 S concentration 2 is the concentration of hydrogen sulfide measured for the gas at the position b 50 cm above the belt surface of the sludge feeding pipe to the belt press dehydrator. The concentration of hydrogen sulfide was measured using a gas detector tube manufactured by Gastec Corporation.
Further, the nitrite ion concentration in the dehydrated filtrate c of the belt press dehydrator was measured according to JIS K 0102 43.1. Comparative Example 1 A mixed sludge is dehydrated at a sewage treatment plant. In this sewage treatment plant, sludge is continuously introduced into the sludge storage tank day and night, and the addition amount of sodium nitrite is 150 mg to 1 L of sludge, that is, 100 mg as nitrite ion, depending on the amount of sludge introduced. In addition, sodium nitrite is continuously added to the sludge storage tank, and the sludge storage tank is continuously stirred. Sludge is continuously extracted from the sludge storage tank day and night and dehydrated by a belt press dehydrator. First
The table is an average daily driving record. Time 1 in this table
In the column of hour, sludge 14.0m 3 was introduced into the sludge storage tank from 12:00 am to 1 am, sludge 12.1 m 3 was extracted and dehydrated, and the storage amount of sludge at 1 am was 122
m 3 and the sludge storage tank is 1 from midnight to 1 am
H 2 S concentration 1 at 1 am
Is 80 ppm and H 2 S concentration 2 is 14 ppm, indicating that NO 2 was not detected in the dehydrated filtrate.
This day, 1 hour average 14.0 m 3, sludge total 335.8M 3 is introduced into the sludge storage tank, 1 hour average 14.0 m 3,
A total of 336.7 m 3 of sludge was extracted from the sludge storage tank and dehydrated, the average storage amount of the sludge storage tank was 120 m 3 , the average retention time was 8.6 hours, and the sludge storage tank was continuously stirred. ing. The average of H 2 S concentration 1 is 100 ppm, H 2 S
The average of concentration 2 is 12 ppm, and the average concentration of NO 2 ions in the dehydrated filtrate is 0.3 mg / L.

【0010】[0010]

【表1】 [Table 1]

【0011】実施例1 比較例1の下水処理場に、本発明方法を適用した。すな
わち、汚泥の導入量に応じて、汚泥1Lに対して亜硝酸
ナトリウムの添加量が112.5mg、すなわち亜硝酸イ
オンとして75mgになるように、汚泥送給管に亜硝酸ナ
トリウムを連続的に添加し、汚泥に亜硝酸ナトリウムが
混合された状態で汚泥貯留槽に導入した。汚泥貯留槽の
撹拌は、午前5時30分から午前6時までの30分間
と、午後5時30分から午後6時までの30分間の2
回、合計1時間だけ行い、残りの時間は汚泥貯留槽の撹
拌を行うことなく静置した。第2表は、平均的な1日の
運転記録である。この日は、1時間平均14.1m3、合
計337.8m3の汚泥が汚泥貯留槽に導入され、1時間
平均14.1m3、合計338.9m3の汚泥が汚泥貯留槽
から抜き出されて脱水され、汚泥貯留槽の平均貯留量は
123m3、平均滞留時間は8.7時間であり、汚泥貯留
槽は朝30分間、夕方30分間の2回だけ撹拌されてい
る。H2S濃度1の平均は1.8ppm、H2S濃度2の平均
は0.1ppmであり、脱水ろ液中のNO2 -イオン濃度の平
均は8.3mg/Lである。
Example 1 The method of the present invention was applied to the sewage treatment plant of Comparative Example 1. That is, depending on the amount of sludge introduced, sodium nitrite was continuously added to the sludge supply pipe so that the amount of sodium nitrite added was 112.5 mg per 1 L of sludge, that is, 75 mg as nitrite ions. Then, it was introduced into the sludge storage tank in a state where sodium nitrite was mixed with the sludge. The agitation of the sludge storage tank is from 30:30 from 5:30 am to 6:00 am and 30 minutes from 5:30 pm to 6:00 pm.
The sludge was held once for a total of 1 hour, and was left standing for the rest of the time without stirring the sludge storage tank. Table 2 shows an average daily driving record. This day, 1 hour average 14.1 m 3, a total 337.8M 3 of sludge is introduced into the sludge storage tank, 1 hour average 14.1 m 3, sludge total 338.9M 3 is withdrawn from the sludge storage tank The sludge storage tank has an average storage amount of 123 m 3 and an average residence time of 8.7 hours, and the sludge storage tank is agitated only twice, 30 minutes in the morning and 30 minutes in the evening. The average H 2 S concentration 1 is 1.8 ppm, the average H 2 S concentration 2 is 0.1 ppm, and the average NO 2 ion concentration in the dehydrated filtrate is 8.3 mg / L.

【0012】[0012]

【表2】 [Table 2]

【0013】比較例1及び実施例1の結果をまとめて、
第3表に示す。
Summarizing the results of Comparative Example 1 and Example 1,
It is shown in Table 3.

【0014】[0014]

【表3】 [Table 3]

【0015】第3表に見られるように、従来法の比較例
1に比べて、本発明方法を適用した実施例1において
は、亜硝酸ナトリウムの添加量を75%に減少したにも
かかわらず、硫化水素の濃度が100分の1ないし50
分の1に低減している。これは、比較例1においては、
脱水ろ液中に亜硝酸イオンがほとんど認められないのに
対して、実施例1では、脱水ろ液中に亜硝酸イオンが残
存していることから、汚泥貯留槽外で汚泥に亜硝酸塩を
混合し、汚泥貯留槽内では最小限の撹拌を行うという本
発明方法により、亜硝酸イオンの分解が抑制され、硫化
水素の分解と、硫化水素の発生防止に効果的に寄与して
いることが分かる。 比較例2 比較例1の下水処理場より小規模で、昼間のみ脱水運転
を行う下水処理場で、混合汚泥の脱水処理を行ってい
る。この下水処理場では、夜間は汚泥貯留槽への汚泥の
受け入れのみを行い、毎朝作業開始時に、夜間の汚泥受
け入れ量に応じて、汚泥1Lに対して亜硝酸ナトリウム
の添加量が200mg、すなわち亜硝酸イオンとして13
3mgになるように汚泥貯留槽に亜硝酸ナトリウムを一括
して添加し、昼間は汚泥貯留槽への汚泥の導入量に応じ
て、汚泥1Lに対して亜硝酸ナトリウムの添加量が20
0mg、すなわち亜硝酸イオンとして130mgになるよう
に、汚泥貯留槽に亜硝酸ナトリウムを連続的に添加し、
汚泥貯留槽は作業時間中のみ連続して撹拌している。第
4表は、平均的な1日の運転記録である。この日は、午
前6時から汚泥貯留槽の撹拌を開始し、午後4時まで撹
拌を継続した。午前9時から汚泥貯留槽からの汚泥の抜
き出しを開始し、合計71.0m3の汚泥の脱水処理を行
った。汚泥脱水運転中のH2S濃度1の平均は61ppm、
2S濃度2の平均は12ppmであり、脱水ろ液中のNO
2 -イオン濃度の平均は1.6mg/Lで、脱水運転7時間
中の1時間しか検出されなかった。
As can be seen from Table 3, in Example 1 to which the method of the present invention was applied, the amount of sodium nitrite added was reduced to 75% as compared with Comparative Example 1 of the conventional method. , The concentration of hydrogen sulfide is 1/50 to 50
It is reduced to one-third. This is because in Comparative Example 1,
Almost no nitrite ions are found in the dehydrated filtrate, whereas in Example 1, since nitrite ions remain in the dehydrated filtrate, nitrite is mixed with the sludge outside the sludge storage tank. However, by the method of the present invention of performing minimal stirring in the sludge storage tank, it is understood that the decomposition of nitrite ions is suppressed, effectively contributing to the decomposition of hydrogen sulfide and the prevention of hydrogen sulfide generation. . Comparative Example 2 The mixed sludge is dehydrated at a sewage treatment plant, which is smaller than the sewage treatment plant of Comparative Example 1 and performs dehydration operation only in the daytime. At this sewage treatment plant, only sludge is received in the sludge storage tank at night, and at the start of work every morning, the amount of sodium nitrite added to 1 L of sludge is 200 mg, that is, 13 as nitrate ion
Sodium nitrite was added all at once to the sludge storage tank so that it became 3 mg, and the amount of sodium nitrite added to 1 L of sludge was 20 during the day depending on the amount of sludge introduced into the sludge storage tank.
Sodium nitrite was continuously added to the sludge storage tank so that 0 mg, that is, 130 mg as nitrite ion,
The sludge storage tank is continuously stirred only during the working hours. Table 4 shows an average daily driving record. On this day, stirring of the sludge storage tank was started at 6 am and continued until 4 pm. The sludge extraction from the sludge storage tank was started at 9:00 am, and a total of 71.0 m 3 of sludge was dehydrated. The average H 2 S concentration 1 during sludge dewatering operation is 61 ppm,
The average H 2 S concentration 2 is 12 ppm, and NO in the dehydrated filtrate is
The average 2 - ion concentration was 1.6 mg / L, and it was detected only for 1 hour out of 7 hours of the dehydration operation.

【0016】[0016]

【表4】 [Table 4]

【0017】実施例2 比較例2の下水処理場に、本発明方法を適用した。すな
わち、汚泥の導入量に応じて、汚泥1Lに対して亜硝酸
ナトリウムの添加量が150mg、すなわち亜硝酸イオン
として100mgになるように、汚泥送給管に亜硝酸ナト
リウムを連続的に添加し、汚泥に亜硝酸ナトリウムが混
合された状態で汚泥貯留槽に導入した。第5表は、平均
的な1日の運転記録である。この日は、汚泥貯留槽の撹
拌は、タイマーを用いて午前5時30分から午前6時ま
での30分間だけ行い、残りの時間は汚泥貯留槽の撹拌
を行うことなく静置した。午前9時前から汚泥貯留槽か
らの汚泥の抜き出しを開始し、合計71.9m3の汚泥の
脱水処理を行った。汚泥脱水運転中のH2S濃度1の平
均は0.14ppm、H2S濃度2の平均は0.14ppmであ
り、脱水ろ液中のNO2 -イオン濃度の平均は9.0mg/
Lで、脱水運転7時間中の5時間で検出された。
Example 2 The method of the present invention was applied to the sewage treatment plant of Comparative Example 2. That is, depending on the amount of sludge introduced, sodium nitrite was continuously added to the sludge feed pipe so that the amount of sodium nitrite added to 1 L of sludge was 150 mg, that is, 100 mg as nitrite ions, The sludge was mixed with sodium nitrite and introduced into the sludge storage tank. Table 5 shows an average daily driving record. On this day, stirring of the sludge storage tank was performed for 30 minutes from 5:30 am to 6:00 am using a timer, and the rest of the sludge storage tank was allowed to stand without stirring. The sludge extraction from the sludge storage tank was started before 9 am, and a total of 71.9 m 3 of sludge was dehydrated. Average concentration of H 2 S 1 in the sludge dewatering operation is 0.14 ppm, the average of the concentration of H 2 S 2 is 0.14 ppm, NO in the dehydration filtrate 2 - average ion concentration 9.0 mg /
L was detected in 5 hours out of 7 hours in the dehydration operation.

【0018】[0018]

【表5】 [Table 5]

【0019】比較例2及び実施例2の結果をまとめて、
第6表に示す。
The results of Comparative Example 2 and Example 2 are summarized below.
It is shown in Table 6.

【0020】[0020]

【表6】 [Table 6]

【0021】第6表に見られるように、従来法の比較例
2に比べて、本発明方法を適用した実施例2において
は、亜硝酸ナトリウムの添加量を75%に減少したにも
かかわらず、硫化水素の濃度が約100分の1に低減し
ている。これは、比較例2においては、脱水ろ液中に亜
硝酸イオンの量が少ないのに対して、実施例2では、脱
水ろ液中に亜硝酸イオンが高濃度に残存していることか
ら、汚泥貯留槽外で汚泥に亜硝酸塩を混合し、汚泥貯留
槽内では最小限の撹拌を行うという本発明方法により、
亜硝酸イオンの分解が抑制され、硫化水素の分解と、硫
化水素の発生防止に効果的に寄与していることが分か
る。 比較例3 製紙工場の排水処理場において、凝集沈殿汚泥の脱水処
理を行っている。この排水処理場では、昼夜連続して汚
泥貯留槽に汚泥を導入し、汚泥の導入量に応じて、汚泥
1Lに対して亜硝酸ナトリウムの添加量が130mg、す
なわち亜硝酸イオンとして86.7mgになるように、汚
泥貯留槽に亜硝酸ナトリウムを連続的に添加し、汚泥貯
留槽は連続して撹拌している。汚泥は汚泥貯留槽から昼
夜連続して抜き出され、ベルトプレス脱水機で脱水され
ている。第7表は、平均的な1日の運転記録である。こ
の日は、1時間平均22.2m3、合計533m3の汚泥
が汚泥貯留槽に導入され、1時間平均21.8m3、合計
523m3の汚泥が汚泥貯留槽から抜き出されて脱水さ
れ、汚泥貯留槽の平均貯留量は49m3、平均滞留時間
は2.2時間であり、汚泥貯留槽は連続して撹拌されて
いる。H2S濃度1の平均は124ppm、H2S濃度2の
平均は17.5ppmであり、脱水ろ液中にはNO2 -イオン
は全く検出されていない。
As can be seen from Table 6, in Example 2 to which the method of the present invention was applied, the amount of sodium nitrite added was reduced to 75% as compared with Comparative Example 2 of the conventional method. , The concentration of hydrogen sulfide is reduced to about 1/100. This is because, in Comparative Example 2, the amount of nitrite ions in the dehydrated filtrate was small, whereas in Example 2, the nitrite ions remained in the dehydrated filtrate at a high concentration. By the method of the present invention of mixing nitrite with sludge outside the sludge storage tank, and performing minimum stirring in the sludge storage tank,
It can be seen that the decomposition of nitrite ions is suppressed, which effectively contributes to the decomposition of hydrogen sulfide and the prevention of hydrogen sulfide generation. Comparative Example 3 A coagulation sedimentation sludge is dehydrated at a wastewater treatment plant of a paper mill. In this wastewater treatment plant, sludge is continuously introduced into the sludge storage tank day and night, and the amount of sodium nitrite added is 130 mg per 1 L of sludge, that is, 86.7 mg as nitrite ion, depending on the amount of sludge introduced. Sodium nitrite is continuously added to the sludge storage tank, and the sludge storage tank is continuously stirred. Sludge is continuously extracted from the sludge storage tank day and night and dehydrated by a belt press dehydrator. Table 7 is an average daily driving record. On this day, an average of 22.2 m 3 per hour, a total of 533 m 3 of sludge was introduced into the sludge storage tank, and an average of 21.8 m 3 per hour, a total of 523 m 3 of sludge was extracted from the sludge storage tank and dehydrated, The sludge storage tank has an average storage amount of 49 m 3 and an average retention time of 2.2 hours, and the sludge storage tank is continuously stirred. The average of H 2 S concentration 1 was 124 ppm, the average of H 2 S concentration 2 was 17.5 ppm, and NO 2 ions were not detected at all in the dehydrated filtrate.

【0022】[0022]

【表7】 [Table 7]

【0023】実施例3 比較例3の排水処理場に、本発明方法を適用した。すな
わち、汚泥の導入量に応じて、汚泥1Lに対して亜硝酸
ナトリウムの添加量が130mg、すなわち亜硝酸イオン
として86.7mgになるように、汚泥送給管に亜硝酸ナ
トリウムを連続的に添加し、汚泥に亜硝酸ナトリウムが
混合された状態で汚泥貯留槽に導入した。汚泥貯留槽の
撹拌は、午前5時30分から午前6時までの30分間
と、午後5時30分から午後6時までの30分間の2
回、合計1時間だけ行い、残りの時間は汚泥貯留槽の撹
拌を行うことなく静置した。第8表は、平均的な1日の
運転記録である。この日は、1時間平均22.3m3、合
計535m3の汚泥が汚泥貯留槽に導入され、1時間平
均22.3m3、合計535m3の汚泥が汚泥貯留槽から
抜き出されて脱水され、汚泥貯留槽の平均貯留量は13
3m3、平均滞留時間は6.0時間であり、汚泥貯留槽は
朝30分間、夕方30分間の2回だけ撹拌されている。
2S濃度1の平均は3.6ppm、H2S濃度2の平均は
1.2ppmであり、脱水ろ液中のNO2 -イオン濃度の平均
は9.5mg/Lである。
Example 3 The method of the present invention was applied to the wastewater treatment plant of Comparative Example 3. That is, depending on the amount of sludge introduced, sodium nitrite was continuously added to the sludge feed pipe so that the amount of sodium nitrite added to 1 L of sludge was 130 mg, that is, 86.7 mg as nitrite ions. Then, it was introduced into the sludge storage tank in a state where sodium nitrite was mixed with the sludge. The agitation of the sludge storage tank is from 30:30 from 5:30 am to 6:00 am and 30 minutes from 5:30 pm to 6:00 pm.
The sludge was held once for a total of 1 hour, and was left standing for the rest of the time without stirring the sludge storage tank. Table 8 is an average daily driving record. On this day, an average of 22.3 m 3 per hour, a total of 535 m 3 of sludge was introduced into the sludge storage tank, and an average of 22.3 m 3 per hour, a total of 535 m 3 of sludge was extracted from the sludge storage tank and dehydrated, The average storage amount of sludge storage tank is 13
The average retention time is 3 m 3 , the average time is 6.0 hours, and the sludge storage tank is agitated only twice, 30 minutes in the morning and 30 minutes in the evening.
The average H 2 S concentration 1 is 3.6 ppm, the average H 2 S concentration 2 is 1.2 ppm, and the average NO 2 ion concentration in the dehydrated filtrate is 9.5 mg / L.

【0024】[0024]

【表8】 [Table 8]

【0025】比較例3及び実施例3の結果をまとめて、
第9表に示す。
The results of Comparative Example 3 and Example 3 are summarized below.
It is shown in Table 9.

【0026】[0026]

【表9】 [Table 9]

【0027】第3表に見られるように、従来法の比較例
3に比べて、本発明方法を適用した実施例3において
は、亜硝酸ナトリウムの添加量が同じであるにもかかわ
らず、硫化水素の濃度がほぼ30分の1ないし15分の
1に低減している。これは、比較例3においては、脱水
ろ液中に亜硝酸イオンが全く認められないのに対して、
実施例3では、脱水ろ液中に亜硝酸イオンが残存してい
ることから、汚泥貯留槽外で汚泥に亜硝酸塩を混合し、
汚泥貯留槽内では最小限の撹拌を行うという本発明方法
により、亜硝酸イオンの分解が抑制され、硫化水素の分
解と、硫化水素の発生防止に効果的に寄与していること
が分かる。
As can be seen from Table 3, in comparison with Comparative Example 3 of the conventional method, in Example 3 to which the method of the present invention was applied, the sulfurization was carried out even though the addition amount of sodium nitrite was the same. The hydrogen concentration is reduced to about 1/30 to 1/15. This is because, in Comparative Example 3, no nitrite ion was found in the dehydrated filtrate,
In Example 3, since nitrite ions remained in the dehydrated filtrate, nitrite was mixed with the sludge outside the sludge storage tank,
It can be seen that the method of the present invention in which a minimum amount of stirring is performed in the sludge storage tank suppresses the decomposition of nitrite ions and effectively contributes to the decomposition of hydrogen sulfide and the prevention of hydrogen sulfide generation.

【0028】[0028]

【発明の効果】本発明の汚泥の臭気発生防止方法によれ
ば、汚泥貯留槽外で汚泥に亜硝酸塩を混合したのち汚泥
貯留槽に導入し、汚泥貯留槽においては、最小限の撹拌
を行うという簡単な運転方法の変更により、従来と同等
又はより少量の亜硝酸塩を用いて、効率的に悪臭源であ
る硫化水素などの発生を抑制することができる。本発明
方法は、汚泥貯留槽外で亜硝酸塩を混合するための装置
を付設するだけで、大がかりな設備の改造を必要とせ
ず、さらに、撹拌動力を節減することができるので、経
済的に実施することができる。
According to the sludge odor generation preventing method of the present invention, the nitrite is mixed with the sludge outside the sludge storage tank and then introduced into the sludge storage tank, and the sludge storage tank performs minimum stirring. By simply changing the operating method, it is possible to effectively suppress the generation of malodorous hydrogen sulfide and the like by using a nitrite which is equivalent to or smaller than the conventional one. The method of the present invention can be economically carried out because it is possible to reduce the agitation power by simply adding a device for mixing nitrite outside the sludge storage tank without requiring a major modification of the equipment. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例において本発明方法を適用した
処理場の工程系統図の一部である。
FIG. 1 is a part of a process system diagram of a treatment plant to which the method of the present invention is applied in Examples.

【符号の説明】 1 汚泥送給管 2 汚泥貯留槽 3 凝集反応槽 4 ベルトプレス脱水機[Explanation of symbols] 1 Sludge supply pipe 2 Sludge storage tank 3 Aggregation reaction tank 4 Belt press dehydrator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D059 AA01 AA04 AA05 AA06 BE10 BE15 BE56 BK01 CB30 DA70 EB16    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D059 AA01 AA04 AA05 AA06 BE10                       BE15 BE56 BK01 CB30 DA70                       EB16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】汚泥貯留槽に亜硝酸塩を存在させて汚泥貯
留槽での汚泥の臭気発生を防止する方法であって、汚泥
貯留槽外で汚泥に亜硝酸塩を混合したのち汚泥貯留槽に
導入し、汚泥貯留槽から汚泥を昼夜連続して抜き出して
脱水し、1日の撹拌時間が汚泥貯留槽内における汚泥の
平均滞留時間の1/2以下であり、かつ1回の撹拌継続
時間が1時間以内である撹拌を行うことを特徴とする汚
泥の臭気発生防止方法。
1. A method for preventing odor generation of sludge in a sludge storage tank by allowing nitrite to exist in the sludge storage tank, which is introduced into the sludge storage tank after mixing nitrite with the sludge outside the sludge storage tank. Then, the sludge is continuously extracted from the sludge storage tank day and night and dehydrated, and the agitation time of one day is 1/2 or less of the average retention time of the sludge in the sludge storage tank, and the duration of one agitation is 1 time. A method for preventing the generation of odor in sludge, which comprises performing stirring within a period of time.
【請求項2】汚泥貯留槽に亜硝酸塩を存在させて汚泥貯
留槽での汚泥の臭気発生を防止する方法であって、汚泥
貯留槽外で汚泥に亜硝酸塩を混合したのち汚泥貯留槽に
導入し、汚泥貯留槽から汚泥を昼間のみ抜き出して脱水
し、脱水運転中2時間以上撹拌を停止し、かつ1回の撹
拌継続時間が1時間以内である撹拌を行うことを特徴と
する汚泥の臭気発生防止方法。
2. A method for preventing odor generation of sludge in a sludge storage tank by allowing nitrite to exist in the sludge storage tank, which is introduced into the sludge storage tank after mixing nitrite with the sludge outside the sludge storage tank. The sludge odor is characterized in that sludge is extracted from the sludge storage tank only during the daytime and dehydrated, stirring is stopped for 2 hours or more during the dehydration operation, and stirring is performed once within 1 hour. Prevention method.
JP2001294867A 2001-09-26 2001-09-26 Method for preventing malodor generation from sludge Pending JP2003094093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294867A JP2003094093A (en) 2001-09-26 2001-09-26 Method for preventing malodor generation from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294867A JP2003094093A (en) 2001-09-26 2001-09-26 Method for preventing malodor generation from sludge

Publications (1)

Publication Number Publication Date
JP2003094093A true JP2003094093A (en) 2003-04-02

Family

ID=19116389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294867A Pending JP2003094093A (en) 2001-09-26 2001-09-26 Method for preventing malodor generation from sludge

Country Status (1)

Country Link
JP (1) JP2003094093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230292A (en) * 2003-01-30 2004-08-19 Ebara Corp Method and device for preventing generation of odor
JP2008055324A (en) * 2006-08-31 2008-03-13 Hitachi Housetec Co Ltd Sewage cleaning tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185290A (en) * 1998-10-14 2000-07-04 Mitsubishi Gas Chem Co Inc Deodorizing method
JP2000202494A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Deodorant for dehydrated cake and deodorizing method thereof
JP2000351000A (en) * 1999-04-07 2000-12-19 Kurita Water Ind Ltd Deodorant for dewatered sludge cake and method for preventing generation of odor
JP2001340895A (en) * 2000-05-31 2001-12-11 Ebara Corp Method and apparatus for deodorizing sewage or sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185290A (en) * 1998-10-14 2000-07-04 Mitsubishi Gas Chem Co Inc Deodorizing method
JP2000202494A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Deodorant for dehydrated cake and deodorizing method thereof
JP2000351000A (en) * 1999-04-07 2000-12-19 Kurita Water Ind Ltd Deodorant for dewatered sludge cake and method for preventing generation of odor
JP2001340895A (en) * 2000-05-31 2001-12-11 Ebara Corp Method and apparatus for deodorizing sewage or sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230292A (en) * 2003-01-30 2004-08-19 Ebara Corp Method and device for preventing generation of odor
JP2008055324A (en) * 2006-08-31 2008-03-13 Hitachi Housetec Co Ltd Sewage cleaning tank

Similar Documents

Publication Publication Date Title
US4108771A (en) Elimination of odors from organic wastes
US20060273044A1 (en) Chemical treatment for control of sulfide odors in waste materials
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
JP2007196141A (en) Sludge treatment method
KR20150102949A (en) Method for treating sewage
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
JP2003094093A (en) Method for preventing malodor generation from sludge
JP4174757B2 (en) Odor control method of sludge dewatering cake
KR20130116244A (en) Method and device for anaerobically treating wastewater containing terephthalic acid
KR100254523B1 (en) Natural purification method and apparatus thereof
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor
JP2004041998A (en) Method and apparatus for removing/suppressing hydrogen sulfide using hydrogen sulfide removing agent
JP2004275541A (en) Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake
JP2796932B2 (en) Sludge deodorization method
AU2004205418B2 (en) The extraction and treatment of heavy metals
JP3900512B2 (en) Odor generation prevention method for dehydrated cake
JP3726851B2 (en) Sludge deodorization method
JP3736344B2 (en) Odor generation prevention method of sludge dewatering cake
JPS6021796B2 (en) Anaerobic treatment method for organic waste liquid
JP2001259675A (en) Sludge amount reducing method and its device
JP2007083094A (en) Deodorant for sulfur-based malodorous substance
JP3679531B2 (en) Deodorizing method for dewatered sludge cake
JPH09262600A (en) Deodorizing method in sewage sludge treatment
JPS62152593A (en) Treatment of organic waste water
JP2001286894A (en) Treatment method for sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111014