JP2003092112A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell

Info

Publication number
JP2003092112A
JP2003092112A JP2001280472A JP2001280472A JP2003092112A JP 2003092112 A JP2003092112 A JP 2003092112A JP 2001280472 A JP2001280472 A JP 2001280472A JP 2001280472 A JP2001280472 A JP 2001280472A JP 2003092112 A JP2003092112 A JP 2003092112A
Authority
JP
Japan
Prior art keywords
water
oxidant gas
porous layer
polymer electrolyte
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001280472A
Other languages
Japanese (ja)
Other versions
JP4610815B2 (en
Inventor
Michio Hori
美知郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba International Fuel Cells Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba International Fuel Cells Corp filed Critical Toshiba International Fuel Cells Corp
Priority to JP2001280472A priority Critical patent/JP4610815B2/en
Publication of JP2003092112A publication Critical patent/JP2003092112A/en
Application granted granted Critical
Publication of JP4610815B2 publication Critical patent/JP4610815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell uniformly keeping humidity distribution in a solid polymer electrolyte membrane and an oxidizing agent catalyst layer along the flow direction of oxidizing agent gas and in the direction from the inlet side to the outlet side. SOLUTION: This solid polymer fuel cell has a water evaporation control porous layer 30 between the oxidizing agent catalyst layer 29 and an oxidizing gas diffusion layer 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子膜を電
解質層として用い、その両側の一方に燃料電極を配置
し、その他方に酸化剤電極を配置し、各電極に燃料ガス
と酸化剤ガスとのそれぞれを供給して電気化学反応によ
り電気エネルギを得る固体高分子形燃料電池に係り、特
に、酸化剤電極に改良を加えた固体高分子形燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a solid polymer membrane as an electrolyte layer, a fuel electrode is disposed on one of both sides of the electrolyte layer, and an oxidant electrode is disposed on the other side, and a fuel gas and an oxidant are disposed on each electrode. The present invention relates to a polymer electrolyte fuel cell that supplies electric energy to each gas to obtain electric energy by an electrochemical reaction, and more particularly to a polymer electrolyte fuel cell having an improved oxidizer electrode.

【0002】[0002]

【従来の技術】電解質として、例えばプロトン伝導性を
備える固体高分子電解質膜を用いる燃料電池は、形状を
コンパクトにすることができ、電気出力が高出力密度で
あり、さらにシステムを簡素化させて運転ができるの
で、定置用分散電源のほかに携帯用、車両用などの電源
として幅広い分野への適用が注目されている。
2. Description of the Related Art A fuel cell using, for example, a solid polymer electrolyte membrane having proton conductivity as an electrolyte can have a compact shape, has a high power output, and further simplifies the system. Since it can be operated, it is drawing attention as a power source for portable and vehicle applications in a wide range of fields in addition to stationary distributed power sources.

【0003】このように、注目度の高い固体高分子形燃
料電池は、図12に示すように、中央部に配置する固体
高分子電解質膜1と、この固体高分子電解質膜1の両側
のうち、一側に燃料触媒層2および燃料ガス拡散層3を
備える燃料電極4と、その他側に酸化剤触媒層5および
酸化剤ガス拡散層6を備える酸化剤電極7とを配置する
とともに、各電極4,7の外側に燃料ガス流通溝8を備
える燃料セパレータ9と、酸化剤ガス流通溝10を備え
る酸化剤セパレータ11とをそれぞれ配置して単電池
(単セル)12を構成している。
Thus, as shown in FIG. 12, the solid polymer electrolyte fuel cell, which has received a great deal of attention, has a solid polymer electrolyte membrane 1 arranged in the center and both sides of the solid polymer electrolyte membrane 1. , A fuel electrode 4 provided with a fuel catalyst layer 2 and a fuel gas diffusion layer 3 on one side, and an oxidant electrode 7 provided with an oxidant catalyst layer 5 and an oxidant gas diffusion layer 6 on the other side, and each electrode A fuel cell 9 having a fuel gas flow groove 8 and a oxidant separator 11 having an oxidant gas flow groove 10 are arranged outside the fuel cells 4, 7 to form a single cell (single cell) 12.

【0004】このような構成を備える固体高分子形燃料
電池は、一つの単電池12の起電力が1V以下と低いの
で、図13に示すように、燃料セパレータ9および酸化
剤セパレータ11を介して数十枚から数百枚の単電池1
2を積層して燃料電池積層体13を構成するとともに、
各電極4,7の発熱反応の際、燃料電池積層体13の昇
温を抑制する必要上、図12に示すように、冷却剤流通
溝14を備える冷却板15を単セル毎または複数セル毎
に挿通させている。
In the polymer electrolyte fuel cell having such a structure, the electromotive force of one unit cell 12 is as low as 1 V or less, and therefore, as shown in FIG. Dozens to hundreds of cells 1
2 are stacked to form the fuel cell stack 13, and
Since it is necessary to suppress the temperature rise of the fuel cell stack 13 during the exothermic reaction of each of the electrodes 4 and 7, as shown in FIG. 12, the cooling plate 15 provided with the coolant circulation groove 14 is provided for each single cell or each plurality of cells. Has been inserted into.

【0005】一方、固体高分子電解質膜1は、例えばプ
ロトン交換膜であるパーフルオロカーボンスルホン酸
(例えば米国デュポン社製ナフィオン膜)が多く用いら
れている。この膜は、分子中に水素イオンの交換基を持
ち、飽和状態に含水させることによりイオン伝導性の電
解質として機能するとともに、燃料ガスと酸化剤ガスと
を分離する機能も備えている。このため、高い電池特性
を得るには、固体高分子電解質膜1を飽和状態あるいは
飽和に近い状態に含水させることが重要とされている。
On the other hand, as the solid polymer electrolyte membrane 1, for example, perfluorocarbon sulfonic acid (for example, Nafion membrane manufactured by DuPont, USA) which is a proton exchange membrane is often used. This membrane has a hydrogen ion exchange group in the molecule and functions as an ion-conducting electrolyte when it is saturated with water, and also has a function of separating the fuel gas and the oxidant gas. Therefore, in order to obtain high battery characteristics, it is important to make the solid polymer electrolyte membrane 1 contain water in a saturated state or a state close to saturation.

【0006】他方、燃料電極4および酸化剤電極7は、
図12に示すように、いずれも触媒活性を備える物質を
含む燃料触媒層2および酸化剤触媒層5と、反応ガスの
各触媒層2,5への拡散を促す燃料ガス拡散層3および
酸化剤ガス拡散層6とを備えている。各拡散層3,6
は、例えばカーボン繊維を含む布状あるいは板状が用い
られている。板状の各拡散層3,6は、触媒層を支持す
る機能を持っている。また、カーボン製のガス拡散層
は、導電性もよく、集電体としての機能も持っている。
On the other hand, the fuel electrode 4 and the oxidant electrode 7 are
As shown in FIG. 12, a fuel catalyst layer 2 and an oxidant catalyst layer 5 each containing a substance having a catalytic activity, a fuel gas diffusion layer 3 and an oxidant that promote diffusion of a reaction gas into each catalyst layer 2, 5. The gas diffusion layer 6 is provided. Each diffusion layer 3, 6
For example, a cloth shape or a plate shape containing carbon fibers is used. Each of the plate-shaped diffusion layers 3 and 6 has a function of supporting the catalyst layer. The carbon gas diffusion layer has good conductivity and also has a function as a current collector.

【0007】また、別の構成を備える固体高分子形燃料
電池には、図14に示すように、燃料触媒層2および酸
化剤触媒層5と燃料ガス拡散層3および酸化剤ガス拡散
層6とのそれぞれの間に燃料ガス多孔層16および酸化
剤ガス多孔層17を介装させたものもある(詳しくは米
国特許USP−5620807号公報参照)。
In a polymer electrolyte fuel cell having another structure, as shown in FIG. 14, a fuel catalyst layer 2 and an oxidant catalyst layer 5, a fuel gas diffusion layer 3 and an oxidant gas diffusion layer 6 are provided. There is also one in which a fuel gas porous layer 16 and an oxidant gas porous layer 17 are interposed between each of these (for details, see US Pat. No. 5,620,807).

【0008】この実施形態では、燃料ガス拡散層3およ
び酸化剤ガス拡散層6とは気孔率の異なる少なくとも一
層からなる各多孔層16,17を備えることにより、燃
料ガスの燃料電極4への移動および酸化剤ガスの酸化剤
電極7への移動、あるいは電極反応の際の酸化剤電極7
に生成される水の酸化剤ガス流通溝10への排出を容易
にし、その結果、高電流密度域での起電力向上を意図し
たものである。
In this embodiment, the fuel gas diffusion layer 3 and the oxidant gas diffusion layer 6 are provided with respective porous layers 16 and 17 each having a different porosity, so that the fuel gas is moved to the fuel electrode 4. And migration of oxidant gas to oxidant electrode 7, or oxidant electrode 7 during electrode reaction
It is intended to facilitate the discharge of the water generated in the above into the oxidant gas flow groove 10, and as a result, to improve the electromotive force in the high current density region.

【0009】また、この実施形態に改良を加えた別の発
明には、例えば特開2001−93544号公報に見ら
れるように、酸化剤ガス多孔層17にイオン交換樹脂を
備える被覆層を設けたものや、例えば特開平9−245
800号公報に見られるように、酸化剤ガス拡散層6を
親水性とし、酸化剤ガス拡散層6に接する酸化剤触媒層
5の表面に撥水性物質をコーティングしたものがあり、
いずれも保水性の向上を図ったものである。
Further, in another invention which is an improvement of this embodiment, a coating layer provided with an ion exchange resin is provided on the oxidant gas porous layer 17 as seen in, for example, Japanese Patent Laid-Open No. 2001-93544. For example, Japanese Patent Laid-Open No. 9-245
As can be seen in Japanese Patent Publication No. 800, there is one in which the oxidant gas diffusion layer 6 is made hydrophilic and the surface of the oxidant catalyst layer 5 in contact with the oxidant gas diffusion layer 6 is coated with a water-repellent substance.
Both are intended to improve water retention.

【0010】一方、燃料セパレータ9は、燃料ガスを燃
料電極4に流す燃料ガス流通溝8を、さらに、酸化剤セ
パレータ11は、酸化剤ガスを酸化剤電極7に流す酸化
剤ガス流通溝10をそれぞれ備えており、電極反応の
際、酸化剤電極7で生成する酸化剤ガス流通溝10を介
して外部に排出させるようになっている。
On the other hand, the fuel separator 9 has a fuel gas flow groove 8 for flowing the fuel gas to the fuel electrode 4, and the oxidant separator 11 has an oxidant gas flow groove 10 for flowing the oxidant gas to the oxidant electrode 7. They are provided respectively, and are discharged to the outside through the oxidant gas flow groove 10 generated in the oxidant electrode 7 during the electrode reaction.

【0011】なお、両セパレータ9,11は、導電性、
気密性、耐熱性、加工性、強度等に優れていることが求
められているので、例えば耐蝕処理を行った金属板、高
密度のカーボン板、あるいはカーボンと樹脂との複合板
などのいずれかが用いられる。
Both separators 9 and 11 are electrically conductive,
Since it is required to have excellent airtightness, heat resistance, workability, strength, etc., for example, either a corrosion-resistant metal plate, a high-density carbon plate, or a composite plate of carbon and resin is used. Is used.

【0012】次に、従来の固体高分子形燃料電池の作用
を説明する。
Next, the operation of the conventional polymer electrolyte fuel cell will be described.

【0013】単電池12を積層して構成する燃料電池積
層体13に、燃料ガスとして、例えば炭化水素系燃料を
改質して得られる水素含有ガスを燃料ガス流通溝8を介
して燃料電極4に供給するとともに、酸化剤ガスとし
て、例えば空気を酸化剤ガス流通溝10を介して酸化剤
電極7に供給し、外部回路より電流を取り出すと、両極
4,7は、下記の化学反応式に基づいて反応が生じる。
A hydrogen-containing gas obtained by reforming a hydrocarbon-based fuel, for example, is used as a fuel gas in a fuel cell stack 13 formed by stacking the unit cells 12 through a fuel gas flow groove 8 and a fuel electrode 4. When air is supplied to the oxidant electrode 7 through the oxidant gas flow groove 10 as an oxidant gas and an electric current is taken out from an external circuit, the both electrodes 4 and 7 have the following chemical reaction formula. A reaction occurs on the basis of this.

【0014】[0014]

【化1】 [Chemical 1]

【0015】このように、燃料電極4で、水素はプロト
ン(H)となり、水を伴って固体高分子電解質膜1中
を燃料電極4側から酸化剤電極7側に向って移動し、酸
化剤電極7で酸素と反応して水を生成する。このことか
ら、固体高分子形燃料電池では、固体高分子電解質膜1
を飽和状態に含水させることにより、固体高分子電解質
膜1の比抵抗が小さくなり、プロトン導電性電解質とし
て機能させている。そして、単電池12の起動電力を高
めて、発電効率を高く維持させるためには、反応ガスを
加湿して湿度を高めてから燃料電池に供給したり、反応
ガスと一緒に液体状態の水を加えて電池内部で反応熱に
よって水を蒸発させたりすることで、固体高分子電解質
膜1からの水の蒸発を抑え、膜の乾燥を防止している。
As described above, at the fuel electrode 4, hydrogen becomes protons (H + ), and moves along with water in the solid polymer electrolyte membrane 1 from the fuel electrode 4 side toward the oxidizer electrode 7 side to be oxidized. The agent electrode 7 reacts with oxygen to generate water. From this, in the polymer electrolyte fuel cell, the polymer electrolyte membrane 1
Is saturated with water, the specific resistance of the solid polymer electrolyte membrane 1 is reduced, and the solid polymer electrolyte membrane 1 functions as a proton conductive electrolyte. Then, in order to increase the starting power of the unit cell 12 and maintain high power generation efficiency, the reaction gas is humidified to increase the humidity and then supplied to the fuel cell, or liquid water is supplied together with the reaction gas. In addition, by evaporating water by the heat of reaction inside the battery, evaporation of water from the solid polymer electrolyte membrane 1 is suppressed and the membrane is prevented from drying.

【0016】他方、酸化剤電極7の酸化剤触媒層5内に
おいて、電極反応によって生成される水は、余剰の反応
ガスとともに、燃料ガス流通溝8および酸化剤ガス流通
溝10を流れて電池の外部に排出される。その際、酸化
剤ガス中に含まれる水分量は、図15(a)に示すよう
に、入口側で、酸化剤ガスの湿度を高めて電池内に供給
すると、出口側での湿度が飽和蒸気圧を超えて過飽和に
なり、水が酸化剤電極7を塞ぐ。その結果、酸化剤触媒
層5へのガスの拡散が阻害され、電池反応が妨げられ、
起電力の低下を招く。
On the other hand, in the oxidant catalyst layer 5 of the oxidant electrode 7, the water produced by the electrode reaction flows in the fuel gas flow groove 8 and the oxidant gas flow groove 10 together with the surplus reaction gas and flows into the battery. It is discharged to the outside. At that time, as shown in FIG. 15 (a), the amount of water contained in the oxidant gas is such that when the humidity of the oxidant gas is increased and supplied into the battery on the inlet side, the humidity on the outlet side becomes saturated vapor. The pressure is exceeded and supersaturation occurs, and water blocks the oxidizer electrode 7. As a result, the diffusion of gas into the oxidant catalyst layer 5 is hindered, the cell reaction is hindered,
This causes a decrease in electromotive force.

【0017】このような問題点の解決手段として、図1
6に示すように、酸化剤セパレータ11に形成され、酸
化剤ガス入口部18と酸化剤ガス出口部19とを接続さ
せる酸化剤ガス流通溝10を蛇行状に形成するととも
に、酸化剤ガス流通溝10の流路断面積を小さくし、酸
化剤ガス流速を高くし、電池内に生成される過剰の水を
外部に吹き飛ばす提案がなされている(米国特許USP
−4988583号公報、米国特許USP−51088
49号公報)。なお、符号20は燃料ガス入口部であ
り、符号21は燃料ガス出口部である。
As a means for solving such a problem, FIG.
As shown in FIG. 6, the oxidant gas flow groove 10 formed in the oxidizer separator 11 and connecting the oxidant gas inlet portion 18 and the oxidant gas outlet portion 19 is formed in a meandering shape, and the oxidant gas flow groove is formed. It has been proposed to reduce the flow passage cross-sectional area of 10 and increase the flow rate of the oxidant gas to blow excess water generated in the battery to the outside (US Patent USP).
No. 4988583, US Pat. No. 5,810,885.
No. 49). Reference numeral 20 is a fuel gas inlet portion, and reference numeral 21 is a fuel gas outlet portion.

【0018】また、酸化剤ガスは、図15(b)に示す
ように、入口部で、酸化剤ガスの湿度を低く抑えて電池
内に供給すると、入口側近くの酸化剤触媒層5が乾燥状
態となり、電池反応に寄与する酸化剤触媒層5の比表面
積が減少し、起電力の低下を招く。さらに、入口側近く
の固体高分子電解質膜1も乾燥し、固体高分子電解質膜
1の比抵抗が大きくなり、プロトン伝導性電解質として
の機能も低下し、相乗的に、起電力を低下させる要因に
なっている。
Further, as shown in FIG. 15B, when the oxidizing gas is supplied into the battery while keeping the humidity of the oxidizing gas low at the inlet, the oxidizing catalyst layer 5 near the inlet is dried. The specific surface area of the oxidant catalyst layer 5 that contributes to the battery reaction is reduced, and the electromotive force is reduced. Further, the solid polymer electrolyte membrane 1 near the inlet side also dries, the specific resistance of the solid polymer electrolyte membrane 1 becomes large, the function as a proton conductive electrolyte also deteriorates, and synergistically reducing the electromotive force. It has become.

【0019】図15(a)に示す水の過剰や、図15
(b)に示す水の過少に対する問題点を解消する他の手
段として、例えば特開2000−277130号公報に
記載されているように、酸化剤ガス入口部側の固体高分
子電解質膜1の含水率をその出口部側のそれに較べて大
きくする手法や、図17(a)に示すように、酸化剤ガ
ス拡散層6の出口側6bのガス透過性に較べその入口側
6aのガス透過性を小さくする手法(特開平11−15
4523号公報)や、特開2001−6698号公報に
記載されているように、酸化剤ガス拡散層6の入口側6
aにカーボン粒子を混入する手法(特開2001−67
08号公報)や、酸化剤ガス拡散層の出口側から入口側
に向って撥水剤含有量を増加させる手法(特開2001
−6708号公報)や、例えば図17(b)に示すよう
に、酸化剤ガス拡散層6の出口側6aから入口側6bに
向って厚みを増加させる手法や、また、特開2001−
135326号公報に記載されているように、酸化剤触
媒層5と酸化剤ガス拡散層6との間にフッ素樹脂とカー
ボンブラックとからなる混合層を介装するなどの数多く
の提案がなされている。
The excess water shown in FIG.
As another means for solving the problem of insufficient water shown in (b), for example, as described in JP-A-2000-277130, the water content of the solid polymer electrolyte membrane 1 on the oxidant gas inlet side is described. A method of increasing the ratio of the gas permeability of the inlet side 6a of the oxidizing gas diffusion layer 6 as compared with the gas permeability of the outlet side 6b of the oxidizing gas diffusion layer 6 as shown in FIG. 17 (a). Method for reducing the size (Japanese Patent Laid-Open No. 11-15
4523) or as described in JP 2001-6698 A, the inlet side 6 of the oxidant gas diffusion layer 6
Method of mixing carbon particles into a (Japanese Patent Laid-Open No. 2001-67
No. 08) or a method of increasing the content of the water repellent from the outlet side to the inlet side of the oxidant gas diffusion layer (Japanese Patent Laid-Open No. 2001-2001).
No. 6708), for example, as shown in FIG. 17B, a method of increasing the thickness from the outlet side 6a of the oxidant gas diffusion layer 6 toward the inlet side 6b, or JP-A-2001-2001.
As described in Japanese Patent No. 135326, many proposals have been made such as interposing a mixed layer composed of a fluororesin and carbon black between the oxidant catalyst layer 5 and the oxidant gas diffusion layer 6. .

【0020】[0020]

【発明が解決しようとする課題】従来の固体高分子形燃
料電池では、図15(a)に示す水の過剰や、図15
(b)に示す水の過少の問題点に対し、上述のとおり数
多くの解決手段が提案されている。
In the conventional polymer electrolyte fuel cell, the excess water shown in FIG.
As described above, many solutions have been proposed for the problem of insufficient water shown in (b).

【0021】しかし、これら数多くの解決手段が提案さ
れていても、未だ一抹の不安がある。すなわち、水の過
剰に対する図16に示した解決手段は、酸化剤ガス流通
溝10を蛇行状に形成しても酸化剤電極7に溢れた水を
吹き飛ばすことは難しい(米国特許USP−49885
83号公報、米国特許USP−5108849号公
報)。また、酸化剤ガス流通溝10が蛇行状になってい
ると、溝長さが長いために圧力損失が大きくなり、予め
酸化剤ガスを高圧化して供給しなければならず、動力の
消費につながる。また、酸化剤ガスを電池に供給する前
に高い湿度に加湿するには、過剰な熱が必要であり、プ
ラント熱効率の低下の要因にもなる。
[0021] However, even if many solutions to these problems have been proposed, there is still some concern. That is, it is difficult for the solution shown in FIG. 16 against excess water to blow off the water overflowing the oxidant electrode 7 even if the oxidant gas flow groove 10 is formed in a meandering shape (US Pat. No. 4,9885).
83, U.S. Pat. No. 5,108,849). Further, if the oxidant gas flow groove 10 has a meandering shape, the length of the groove is long, resulting in a large pressure loss, and the oxidant gas must be pressurized in advance and supplied, resulting in power consumption. . Further, excessive heat is required to humidify the oxidant gas to a high humidity before supplying it to the battery, which causes a decrease in plant thermal efficiency.

【0022】また、水の過剰や過少の問題点に対する特
開2000−277130号公報に記載された解決手段
では、含水率の低い固体高分子電解質膜1でプロトンの
移動が小さく、電池内に大きな電流密度分布を誘発する
おそれがある。
Further, in the means for solving the problems of excess and insufficient water, the solution disclosed in Japanese Patent Laid-Open No. 2000-277130 has small proton migration in the solid polymer electrolyte membrane 1 having a low water content and is large in the battery. May induce current density distribution.

【0023】また、特開平11−154523号公報、
特開2001−6698号公報、特開2001−670
8号公報では、酸化剤ガス拡散層6の気孔率、厚さ、撥
水剤含有量に面内分布を持たせ、酸化剤ガス拡散層6の
ガス透過性を考慮したものではあるが、酸化剤触媒層5
に酸化剤ガスを拡散させたり、生成される水を蒸発させ
て酸化剤ガス流通溝10に排出させたりするといった酸
化剤ガス拡散層6の本来の機能が損なわれ、電池反応効
率の低下につながるおそれがある。
Further, Japanese Patent Laid-Open No. 11-154523,
JP-A-2001-6698, JP-A-2001-670
In Japanese Patent Laid-Open No. 8-58, the porosity, thickness, and water repellent content of the oxidant gas diffusion layer 6 have an in-plane distribution, and the gas permeability of the oxidant gas diffusion layer 6 is taken into consideration. Agent catalyst layer 5
The original function of the oxidant gas diffusion layer 6 such as diffusing the oxidant gas into the air and evaporating the generated water to discharge it into the oxidant gas flow groove 10 is impaired, leading to a decrease in the battery reaction efficiency. There is a risk.

【0024】また、特開2001−135326号公報
では、混合層を水蒸気分圧により、入口側と出口側とで
厚さを変えているが、電流密度に比例して水が増加して
も、混合層を挟んで水蒸気分圧差が比例的に増加するこ
とはなく、負荷変動に対応できないおそれがある。
Further, in Japanese Patent Laid-Open No. 2001-135326, the thickness of the mixed layer is changed between the inlet side and the outlet side by the partial pressure of water vapor, but even if water increases in proportion to the current density, The partial pressure difference of water vapor does not increase proportionally across the mixed layer, and it may not be possible to cope with load fluctuations.

【0025】本発明は、このような問題点に対してなさ
れたもので、電池面内に大きな電流密度分布を生じさせ
ることなく、酸化剤ガスの入口側から出口側に向って固
体高分子電解質膜および酸化剤触媒層が経時的に乾燥す
ることもなく、かつ酸化剤ガスの出口側で生成される水
が溢れて酸化剤ガスの酸化剤触媒層への拡散を阻害する
ことがないようにする固体高分子形燃料電池を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and the solid polymer electrolyte is directed from the inlet side to the outlet side of the oxidant gas without causing a large current density distribution in the cell surface. The membrane and the oxidant catalyst layer do not dry over time, and the water generated at the outlet side of the oxidant gas does not overflow and hinder the diffusion of the oxidant gas into the oxidant catalyst layer. It is an object of the present invention to provide a polymer electrolyte fuel cell for

【0026】[0026]

【課題を解決するための手段】本発明に係る固体高分子
形燃料電池は、上述の目的を達成するために、請求項1
に記載したように、中央部に配置する固体高分子電解質
膜の両側のうち、一側に燃料電極を備え、他側に酸化剤
電極を備えるとともに、前記酸化剤電極は、前記固体高
分子電解質膜から外側の酸化剤セパレータに向って順
に、酸化剤触媒層、酸化剤ガス拡散層を配置する固体高
分子形燃料電池において、前記酸化剤触媒層と前記酸化
剤ガス拡散層との間に水蒸発制御用多孔層を備えたもの
である。
A polymer electrolyte fuel cell according to the present invention has the following object to attain the above objects.
As described above, of both sides of the solid polymer electrolyte membrane arranged in the central part, the fuel electrode is provided on one side and the oxidant electrode is provided on the other side, and the oxidant electrode is the solid polymer electrolyte. In a polymer electrolyte fuel cell in which an oxidant catalyst layer and an oxidant gas diffusion layer are arranged in this order from the membrane toward the oxidant separator on the outside, water is provided between the oxidant catalyst layer and the oxidant gas diffusion layer. It is provided with a porous layer for evaporation control.

【0027】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項3に記載した
ように、水蒸発制御用多孔層は、材料種類の分布、平均
気孔径分布および厚み分布のうち、いずれか少なくとも
一つ以上を酸化剤ガスの流れ方向に沿い、かつその入口
側からその出口側に向って傾斜状およびステップ状のう
ち、いずれか一方を選択して変化させるものである。
Further, in order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention has, as described in claim 3, the water vaporization controlling porous layer, in which the distribution of the material type and the average gas content are Select at least one of the pore size distribution and the thickness distribution along the flow direction of the oxidant gas, and select either one of the slope shape and the step shape from the inlet side toward the outlet side. It changes.

【0028】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項4に記載した
ように、水蒸発制御用多孔層は、撥水性材料および親水
性材料のうち、少なくとも一方を含有させるとともに、
前記撥水性材料の含有率および比表面積のうち、少なく
とも一方を酸化剤ガスの流れ方向に沿い、かつその入口
側から出口側に向って傾斜状およびステップ状のうち、
いずれか一方を選択して小さく形成させ、前記親水性材
料の含有率および比表面積のうち、少なくとも一方を酸
化剤ガスの流れ方向に沿い、かつその入口側からその出
口側に向って傾斜状およびステップ状のうち、いずれか
一方を選択して大きく形成させるものである。
Further, in order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention has, as described in claim 4, a water-repellent porous layer comprising a water-repellent material and a hydrophilic material. Of these, at least one is included,
Of the content and the specific surface area of the water repellent material, at least one is along the flow direction of the oxidant gas, and among the inclined shape and the step shape from the inlet side to the outlet side,
Either one is selected to be formed small, and at least one of the content rate and the specific surface area of the hydrophilic material is along the flow direction of the oxidant gas, and is inclined from its inlet side to its outlet side. One of the step shapes is selected to form a large size.

【0029】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項2に記載した
ように、水蒸発制御用多孔層は、酸化剤ガス拡散層の平
均気孔径に較べて小さくするものである。
In the polymer electrolyte fuel cell according to the present invention, in order to achieve the above-mentioned object, as described in claim 2, the water evaporation controlling porous layer is an average of the oxidant gas diffusion layers. It is smaller than the pore size.

【0030】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項5に記載した
ように、撥水性材料は、フッ素樹脂、フッ化カーボン、
カーボンおよび撥水処理剤で処理したカーボンのうち、
少なくとも1種類以上を含んでいるものである。
In the polymer electrolyte fuel cell according to the present invention, in order to achieve the above object, as described in claim 5, the water repellent material is a fluororesin, a carbon fluoride,
Of the carbon treated with carbon and water repellent,
It includes at least one kind.

【0031】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項6に記載した
ように、親水性材料は、酸化物、表面を親水処理した無
機粉末、表面を親水処理した金属粉末のうち、少なくと
も1種類以上を含んでいるものである。
In order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention has a hydrophilic material which is an oxide or an inorganic powder whose surface is hydrophilically treated. Among the metal powders whose surfaces have been hydrophilically treated, at least one kind is contained.

【0032】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項7に記載した
ように、酸化物は、酸化アルミニウム、酸化鉄、酸化
銅、酸化ジルコニウム、酸化チタン、酸化スズ、酸化マ
グネシウム、酸化ニッケル、酸化マンガン、酸化クロ
ム、酸化亜鉛のうち、少なくとも1種類以上を含んでい
るものである。
In order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention is characterized in that, as described in claim 7, the oxide is aluminum oxide, iron oxide, copper oxide, zirconium oxide. , At least one of titanium oxide, tin oxide, magnesium oxide, nickel oxide, manganese oxide, chromium oxide, and zinc oxide.

【0033】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項8に記載した
ように、酸化物は、OH基、SOH基、COOH基の
うち、少なくとも1種類以上を含んでいるものである。
In order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention is characterized in that the oxide contains an OH group, a SO 3 H group or a COOH group. Of these, at least one type is included.

【0034】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項9に記載した
ように、水蒸発制御用多孔層は、水に対する表面張力の
異なる少なくとも2種類の材料を含有させるとともに、
水に対する表面張力の小さい材料の分布を酸化剤ガスの
流れ方向に沿い、かつその入口側からその出口側に向っ
て傾斜状およびステップ状のうち、いずれか一方を選択
し、かつ多く含有させ、前記水に対する表面張力の大き
い材料の分布を酸化剤ガスの流れ方向に沿い、かつその
出口側からその入口側に向って傾斜状およびステップ状
のうち、いずれか一方を選択し、かつ多く含有させるも
のである。
Further, in order to achieve the above-mentioned object, the polymer electrolyte fuel cell according to the present invention has, as described in claim 9, the water vaporization controlling porous layer having at least different surface tensions with respect to water. Including two kinds of materials,
A distribution of a material having a small surface tension with respect to water is along the flow direction of the oxidant gas, and either one of an inclined shape and a step shape from the inlet side to the outlet side is selected, and a large amount is contained, The distribution of the material having a large surface tension with respect to water is selected along the flow direction of the oxidant gas from the outlet side toward the inlet side, and either one of a slope shape and a step shape is selected and a large amount is contained. It is a thing.

【0035】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項10に記載し
たように、水蒸発制御用多孔層は、平均気孔径の分布を
酸化剤ガスの流れ方向に沿い、かつその入口側からその
出口側に向って傾斜状およびステップ状のうち、いずれ
か一方を選択し、かつ小さく形成するものである。
Further, in the polymer electrolyte fuel cell according to the present invention, in order to achieve the above-mentioned object, as described in claim 10, the water evaporation controlling porous layer oxidizes the distribution of the average pore diameter. One of the inclined shape and the step shape is selected from the inlet side toward the outlet side along the flow direction of the agent gas, and is formed small.

【0036】また、本発明に係る固体高分子形燃料電池
は、上述の目的を達成するために、請求項11に記載し
たように、水蒸発制御用多孔層は、厚みの分布を酸化剤
ガスの流れ方向に沿い、かつその入口側から出口側に向
って、傾斜状およびステップ状のうち、いずれか一方を
選択し、かつ厚く形成するものである。
Further, in the polymer electrolyte fuel cell according to the present invention, in order to achieve the above-mentioned object, as described in claim 11, the water evaporation controlling porous layer has a thickness distribution of oxidant gas. One of the inclined shape and the stepped shape is selected along the flow direction of (1) from the inlet side to the outlet side and is formed thick.

【0037】[0037]

【発明の実施の形態】以下、本発明に係る固体高分子形
燃料電池の実施形態を図面および図面に付した符号を引
用して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a polymer electrolyte fuel cell according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

【0038】図1は、本発明に係る固体高分子形燃料電
池の第1実施形態を示す概念図である。
FIG. 1 is a conceptual diagram showing a first embodiment of a polymer electrolyte fuel cell according to the present invention.

【0039】本実施形態に係る固体高分子形燃料電池
は、中央部に配置した固体高分子電解質膜22と、この
固体高分子電解質膜22の両側のうち、一側に酸化剤電
極23と酸化剤ガス通路溝28を備える酸化剤セパレー
タ24とを層状に配置するとともに、他側に、燃料電極
25と燃料セパレータ26とを層状に配置し、一つの単
電池(単セル)27を構成するようになっている。な
お、燃料電極25および燃料セパレータ26は、本発明
に係る固体高分子形燃料電池の対象となっていないの
で、ここではその説明を省略する。
The solid polymer electrolyte fuel cell according to the present embodiment has a solid polymer electrolyte membrane 22 arranged at the center, and an oxidizer electrode 23 and an oxidizer electrode 23 on one side of both sides of the solid polymer electrolyte membrane 22. The oxidizer separator 24 having the agent gas passage groove 28 is arranged in layers, and the fuel electrode 25 and the fuel separator 26 are arranged in layers on the other side so that one unit cell (unit cell) 27 is formed. It has become. Since the fuel electrode 25 and the fuel separator 26 are not the targets of the polymer electrolyte fuel cell according to the present invention, the description thereof will be omitted here.

【0040】酸化剤電極23は、固体高分子電解質膜2
2からは外側の酸化剤セパレータ24に向って順に、酸
化剤触媒層29、水蒸発制御用多孔層30、酸化剤ガス
拡散層31を層状に配置する構成になっている。
The oxidant electrode 23 is the solid polymer electrolyte membrane 2
From 2, the oxidant catalyst layer 29, the water evaporation control porous layer 30, and the oxidant gas diffusion layer 31 are arranged in layers in this order from the outer oxidant separator 24.

【0041】また、水蒸発制御用多孔層30は、酸化剤
ガスの流れに沿って例えば、入口側水蒸発制御用多孔層
32、中間部水蒸発制御用多孔層33、出口側水蒸発制
御用多孔層34の三つに区分けして備え、固体高分子電
解質膜22や酸化剤触媒層29の酸化剤ガスの流れ方向
に沿って湿度がほぼ均一に分布するように、各多孔層3
2,33,34の撥水性材料の含有重量比率および比表
面積のうち、少なくとも一方をステップ状に変化させる
構成になっている。
Further, the water evaporation controlling porous layer 30 is, for example, along the flow of the oxidant gas, for example, an inlet side water evaporation controlling porous layer 32, an intermediate water evaporation controlling porous layer 33, and an outlet side water evaporation controlling. Each of the porous layers 3 is divided into three parts, that is, the porous layers 34, so that the humidity is substantially evenly distributed along the flow direction of the oxidant gas in the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29.
At least one of the weight ratio of the water repellent material and the specific surface area of the water repellent materials 2, 33, 34 is changed in a stepwise manner.

【0042】撥水性材料含有重量比率および比表面積
は、入口側水蒸発制御用多孔層32から出口側水蒸発制
御用多孔層34に向って低くなるように抑えている。
The water-repellent material-containing weight ratio and specific surface area are controlled so as to decrease from the inlet side water evaporation controlling porous layer 32 toward the outlet side water evaporation controlling porous layer 34.

【0043】入口側水蒸発制御用多孔層32は、撥水性
材料の含有重量比率および比表面積のうち、少なくとも
一方を高くしているのは次の理由に基づく。
The inlet side water evaporation controlling porous layer 32 has at least one of the weight ratio and the specific surface area of the water repellent material increased for the following reason.

【0044】入口側水蒸発制御用多孔層32の流入側
は、酸化剤ガスとして用いる空気が比較的乾燥状態にな
っている。このため、水は、反応熱を吸収して蒸発し易
い状態になっている。
On the inflow side of the inlet side water evaporation control porous layer 32, the air used as the oxidant gas is in a relatively dry state. Therefore, water is in a state where it absorbs reaction heat and is easily evaporated.

【0045】本実施形態は、このような点に着目したも
ので、本来、水蒸発制御用多孔層30に持たせた蒸発機
能を抑制させることを意図して入口側水蒸発制御用多孔
層32で、撥水性材料を多く含有させ、電池反応によっ
て酸化剤触媒層29に生成する水やプロトン(H)に
伴って燃料触媒層から酸化剤触媒層29へ移動してくる
水が入口側水蒸発制御用多孔層32の気孔内に浸入しな
いようにし、蒸発を抑制させるようにしている。
The present embodiment focuses on such a point, and the inlet side water evaporation controlling porous layer 32 is originally intended to suppress the evaporation function of the water evaporation controlling porous layer 30. Therefore, a large amount of water-repellent material is contained, and the water generated in the oxidant catalyst layer 29 by the cell reaction and the water moving from the fuel catalyst layer to the oxidant catalyst layer 29 along with the proton (H + ) are the inlet side water. The evaporation is prevented from entering the pores of the evaporation controlling porous layer 32 to suppress the evaporation.

【0046】また、出口側水蒸発制御用多孔層34は、
撥水性材料の含有重量比率および比表面積のうち、少な
くとも一方を低く抑えているのは次の理由に基づく。
Further, the outlet side water evaporation controlling porous layer 34 is
The reason why at least one of the content weight ratio and the specific surface area of the water-repellent material is kept low is as follows.

【0047】出口側水蒸発制御用多孔層34の吐出側
は、酸化剤ガスとして用いる空気が湿った状態になって
いる。このため、水は、蒸発しにくい状態になってい
る。
On the discharge side of the outlet side water evaporation control porous layer 34, the air used as the oxidant gas is in a wet state. Therefore, the water is in a state of being hard to evaporate.

【0048】本実施形態は、このような点に着目したも
ので、本来、水蒸発制御用多孔層30に持たせた蒸発機
能を促進させることを意図して出口側水蒸発制御用多孔
層34で、撥水性材料の含有重量比率および比表面積の
うち、少なくとも一方を低く抑え、親水性材料を含有さ
せ、電池反応によって酸化剤触媒層29に生成する水や
プロトン(H)に伴って燃料触媒層から酸化剤触媒層
29へ移動してくる水が出口側水蒸発制御用多孔層34
の気孔内に浸入し易いようにし、蒸発を促進させるよう
にしている。
The present embodiment focuses on such a point, and the outlet side water evaporation controlling porous layer 34 is originally intended to promote the evaporation function of the water evaporation controlling porous layer 30. At least one of the weight ratio and the specific surface area of the water-repellent material is kept low, the hydrophilic material is contained, and the fuel is generated along with water and protons (H + ) generated in the oxidant catalyst layer 29 by the cell reaction. The water moving from the catalyst layer to the oxidant catalyst layer 29 is the outlet side water evaporation control porous layer 34.
It is designed to facilitate the infiltration into the pores and promote the evaporation.

【0049】なお、中間部水蒸発制御用多孔層33は、
入口側水蒸発制御用多孔層32と出口側水蒸発制御用多
孔層34との中間的な含有重量比率の撥水性材料および
比表面積のうち、少なくとも一方や親水性材料を含有さ
せている。
The intermediate layer water evaporation controlling porous layer 33 is
At least one of the water-repellent material and the specific surface area having an intermediate content weight ratio between the inlet-side water evaporation control porous layer 32 and the outlet-side water evaporation control porous layer 34 and a hydrophilic material are contained.

【0050】図2は、入口側水蒸発制御用多孔層32、
中間部水蒸発制御用多孔層33、出口側水蒸発制御用多
孔層34のそれぞれに含まれる撥水性材料、親水性材料
の含有重量比率を変えた場合の水の蒸発速度を調査する
蒸発速度評価試験装置を示す概念図である。
FIG. 2 shows the porous layer 32 for controlling water vaporization on the inlet side.
Evaporation rate evaluation for investigating the evaporation rate of water when the content weight ratio of the water repellent material and the hydrophilic material contained in each of the intermediate layer water evaporation control porous layer 33 and the outlet side water evaporation control porous layer 34 is changed. It is a conceptual diagram which shows a test device.

【0051】この蒸発速度評価試験装置は、加湿器35
と蒸発速度テスト装置36とを備えている。
This evaporation rate evaluation test device is equipped with a humidifier 35.
And an evaporation rate test device 36.

【0052】加湿器35は、加湿水W1を充填する水槽
37に乾燥窒素配管38、加湿窒素配管39、加湿器水
位計40を備えるとともに、水槽37の外側を保温材4
1で被覆する一方、保温材41にヒータ42を装着して
いる。
The humidifier 35 includes a water tank 37 filled with the humidifying water W1 with a dry nitrogen pipe 38, a humidified nitrogen pipe 39, and a humidifier water level gauge 40.
While being covered with 1, the heater 42 is attached to the heat insulating material 41.

【0053】また、蒸発速度テスト装置36は、模擬水
W2を充填する容器43に上述の加湿窒素配管39に接
続する模擬酸化剤ガス流通溝44、酸化剤ガス拡散層4
5、上述の各多孔層32,33,34用のテスト材4
6、蒸発量評価水位計47を備えるとともに、容器43
の外側を保温材48で被覆する一方、保温材48および
テスト材46のそれぞれにヒータ49a,49a,49
bを装着している。
Further, the evaporation rate test device 36 includes a simulated oxidant gas flow groove 44 and an oxidant gas diffusion layer 4 which are connected to the humidified nitrogen pipe 39 in the container 43 filled with the simulated water W2.
5. Test material 4 for the above-mentioned porous layers 32, 33, 34
6. Equipped with an evaporation evaluation water level gauge 47 and a container 43
The outside of the heater is covered with a heat insulating material 48, while the heat insulating material 48 and the test material 46 are provided with heaters 49a, 49a, 49, respectively.
Wearing b.

【0054】このような構成を備える蒸発速度評価試験
装置を用いて撥水性材料および親水性材料の含有重量比
率の異なるテスト材46の蒸発速度評価試験を行うにあ
たり、まず、炭素繊維からなるカーボンペーパー製の酸
化剤ガス拡散層45に撥水処理を行ったカーボンを準備
し、フッ素樹脂の重量含有率が10%,20%,30
%,40%であるフッ素樹脂とカーボン粉の混合物を、
予め準備しておいた上述の酸化剤ガス拡散層45にテス
ト材46として被着する。
In carrying out the evaporation rate evaluation test of the test materials 46 having different content weight ratios of the water-repellent material and the hydrophilic material using the evaporation rate evaluation test apparatus having such a structure, first, the carbon paper made of carbon fiber is used. A water-repellent carbon is prepared for the oxidant gas diffusion layer 45 made of aluminum, and the weight content of the fluororesin is 10%, 20%, 30%.
%, 40% mixture of fluororesin and carbon powder,
A test material 46 is deposited on the above-described oxidant gas diffusion layer 45 prepared in advance.

【0055】このように、酸化剤ガス拡散層45にテス
ト材46を一体化し、4種類の供試体を用いて模擬水W
2がどの程度の速度で蒸発するかを実験的に評価する。
As described above, the test material 46 is integrated with the oxidant gas diffusion layer 45, and the simulated water W is formed by using the four kinds of specimens.
Experimentally evaluate how fast 2 vaporizes.

【0056】その際、テスト材46には、電池反応によ
る発熱を模擬するためのヒータ49bが装着される。こ
のヒータ49bは、入熱が一定になるよう制御される。
例えば、電流密度0.2A/cmの状態を模擬すると
き、発熱が1.7cal/min/cmとなるように
し、さらに、電流密度0.4A/cmのとき、発熱が
3.2cal/min/cmとなるように制御する。
At this time, the test material 46 is equipped with a heater 49b for simulating heat generation due to a battery reaction. The heater 49b is controlled so that the heat input is constant.
For example, when simulating a state where the current density is 0.2 A / cm 2 , the heat generation is set to 1.7 cal / min / cm 2 , and when the current density is 0.4 A / cm 2 , the heat generation is 3.2 cal. It is controlled to be / min / cm 2 .

【0057】また、水槽43には、電池反応で生成する
水および固体高分子電解質膜22を通してプロトン(H
)に伴って燃料触媒層から酸化剤触媒層29へ移動す
る水の両方を模擬する水W2がテスト材46と接するよ
うに充填される。この水W2をセル温度、例えば、80
℃に維持できるように、水槽37上、下部側に装着する
ヒータ42,42で温度制御する。テスト材46からの
水W2の蒸発量は、容器43に設けた蒸発量評価水位計
47によって評価する。
Further, in the water tank 43, protons (H
+ ), Water W2 simulating both of the water moving from the fuel catalyst layer to the oxidant catalyst layer 29 is filled so as to contact the test material 46. This water W2 is added to the cell temperature, for example, 80
The temperature is controlled by the heaters 42, 42 mounted on the upper and lower sides of the water tank 37 so that the temperature can be maintained at ° C. The evaporation amount of the water W2 from the test material 46 is evaluated by the evaporation amount evaluation water level gauge 47 provided in the container 43.

【0058】一方、テスト材46から蒸発する空気は、
酸化剤ガス拡散層45の頭部側に設ける模擬酸化剤ガス
流通溝44を通して大気に放出される。この模擬酸化剤
ガス流通溝44には、液体窒素を気化させた乾燥窒素を
水槽37で加湿した加湿窒素が供給される。
On the other hand, the air evaporated from the test material 46 is
It is released to the atmosphere through a simulated oxidant gas flow groove 44 provided on the head side of the oxidant gas diffusion layer 45. Humidified nitrogen obtained by humidifying dry nitrogen obtained by vaporizing liquid nitrogen in the water tank 37 is supplied to the simulated oxidant gas flow groove 44.

【0059】水槽37は、加湿水W1を充填した後、テ
スト材46のうち、入口側水蒸発制御用多孔層32の相
対湿度が、例えば30%、中間部水蒸発制御用多孔層3
3の相対湿度が、例えば60%、出口側水蒸発制御用多
孔層34の相対湿度が、例えば90%となるようにヒー
タ42で制御させている。そして、具体的な計測は、蒸
発速度テスト装置36の容器43に設けた蒸発量評価水
位計47で読み取った水位の変化で評価している。
In the water tank 37, after the humidifying water W1 is filled, the relative humidity of the inlet-side water evaporation control porous layer 32 of the test material 46 is, for example, 30%, and the intermediate water evaporation control porous layer 3 is 30%.
The relative humidity of No. 3 is 60%, and the relative humidity of the outlet-side water evaporation control porous layer 34 is controlled by the heater 42 so as to be 90%, for example. Then, the specific measurement is evaluated by the change in the water level read by the evaporation amount evaluation water level gauge 47 provided in the container 43 of the evaporation rate test device 36.

【0060】また、通常、固体高分子形燃料電池は、酸
化剤利用率が30〜70%の範囲で運転されるが、入口
側水蒸発制御用多孔層32の湿度、中間部水蒸発制御用
多孔層33の湿度および出口側水蒸発制御用多孔層34
の湿度を模擬したテストは、供給窒素の流量を大きく
し、テスト材46の全面をほぼ一様な温度にし、窒素の
供給量は、酸化剤ガス利用率相当の10%にしている。
Normally, the polymer electrolyte fuel cell is operated at an oxidizer utilization rate in the range of 30 to 70%, but the humidity of the inlet side water evaporation control porous layer 32 and the middle part water evaporation control are controlled. Porous layer 34 for controlling humidity and outlet side water evaporation of porous layer 33
In the test simulating the humidity, the flow rate of the supplied nitrogen is increased, the entire surface of the test material 46 is made to have a substantially uniform temperature, and the supply amount of nitrogen is 10% corresponding to the oxidant gas utilization rate.

【0061】図3は、図2で示した蒸発速度評価試験装
置を用いて得られたテスト材46の水蒸発速度線図であ
る。図中、黒塗りの点をプロットした線図が試験結果で
ある。
FIG. 3 is a water evaporation rate diagram of the test material 46 obtained by using the evaporation rate evaluation test apparatus shown in FIG. In the figure, the diagram in which the black dots are plotted is the test result.

【0062】この場合、テスト材46に装着したヒータ
49bの出力は、1.7cal/min/cmに設定
し、電流密度を0.2A/cmにしている。
In this case, the output of the heater 49b mounted on the test material 46 is set to 1.7 cal / min / cm 2 and the current density is 0.2 A / cm 2 .

【0063】試験結果は、テスト材46中のフッ素樹脂
重量含有率を10%,20%,30%,40%でパラメ
ータとしたときの加湿窒素の相対湿度に対する水の蒸発
速度である。
The test result is the evaporation rate of water with respect to the relative humidity of humidified nitrogen when the weight percentage of the fluororesin in the test material 46 is set to 10%, 20%, 30% and 40%.

【0064】また、図3は、実際の運転電流密度0.2
A/cm相当の電極反応によって生成する水とプロト
ン(H)に伴って燃料触媒層から酸化剤触媒層29へ
移動する水(0.2A/cm相当の生成水+移動水)
の合計が蒸発するために必要な蒸発速度の目安を破線で
示している。さらに、入口側水蒸発制御用多孔層(入口
部相当)32、中間部水蒸発制御用多孔層(中央部相
当)33および出口側水蒸発制御用多孔層(出口部相
当)34のそれぞれの相対湿度を一点鎖線で示してい
る。
FIG. 3 shows the actual operating current density of 0.2.
Water generated by the electrode reaction of A / cm 2 and water that moves from the fuel catalyst layer to the oxidant catalyst layer 29 along with protons (H + ) (generated water of 0.2 A / cm 2 + transferred water)
The dashed line shows the guideline of the evaporation rate required for the total of Eq. Further, the inlet side water evaporation control porous layer (corresponding to the inlet portion) 32, the intermediate water evaporation control porous layer (corresponding to the central portion) 33, and the outlet side water evaporation controlling porous layer (corresponding to the outlet portion) 34 are relative to each other. Humidity is indicated by a chain line.

【0065】破線と一点鎖線とが交わる点が水蒸発制御
用多孔層30のうち、入口側水蒸発制御用多孔層32、
中間部水蒸発制御用多孔層33および出口側水蒸発制御
用多孔層34のそれぞれに適するフッ素樹脂の重量含有
率としてあらわしている。
The point where the broken line and the alternate long and short dash line intersect is the inlet water evaporation control porous layer 32 of the water evaporation control porous layer 30.
The weight content of the fluororesin suitable for each of the intermediate layer water evaporation controlling porous layer 33 and the outlet side water evaporation controlling porous layer 34 is shown.

【0066】図3から、フッ素樹脂の重量含有率を読み
取ると、入口側水蒸発制御用多孔層32、中間部水蒸発
制御用多孔層33および出口側水蒸発制御用多孔層34
のそれぞれは、それぞれ37%,19%および10%未
満になっている。
When the weight content of the fluororesin is read from FIG. 3, the inlet side water evaporation control porous layer 32, the intermediate part water evaporation control porous layer 33 and the outlet side water evaporation control porous layer 34.
, Respectively, are less than 37%, 19% and 10%, respectively.

【0067】このように、本実施形態は、入口側水蒸発
制御用多孔層32に含まれる撥水性材料としてのフッ素
樹脂の重量含有率を多くし、中間部水蒸発制御用多孔層
33および出口側水蒸発制御用多孔層34に対するフッ
素樹脂の重量含有率を徐々に少なくしているので、酸化
剤ガスの流れ方向に沿って酸化剤触媒層29および固体
高分子電解質膜22のそれぞれの湿度を均一化すること
ができる。
As described above, in this embodiment, the weight content of the fluororesin as the water-repellent material contained in the inlet-side water evaporation control porous layer 32 is increased, and the intermediate water evaporation control porous layer 33 and the outlet are provided. Since the weight content of the fluororesin with respect to the side water evaporation control porous layer 34 is gradually decreased, the humidity of each of the oxidant catalyst layer 29 and the solid polymer electrolyte membrane 22 is adjusted along the flow direction of the oxidant gas. It can be made uniform.

【0068】但し、図3では、フッ素樹脂の重量含有率
を10%とするテスト材46の撥水性材料の重量含有率
を低く抑えているので、水W2がテスト材46の気孔内
に浸入し易くなっており、それに伴って蒸発速度も大き
くなっている。もっとも、図3で見る限り、その蒸発速
度は、必要蒸発速度を示す破線と出口側水蒸発制御用多
孔層(出口部相当)34の相対湿度を示す一点鎖線の交
点にまで至っていない。つまり、カーボン材90%+フ
ッ素樹脂が10%のテスト材46を用いても、酸化剤の
出口における相対湿度が高いと、蒸発速度が遅くなる。
However, in FIG. 3, since the weight content of the water repellent material of the test material 46 having the weight content of the fluororesin of 10% is kept low, the water W2 penetrates into the pores of the test material 46. It has become easier and the evaporation rate has increased accordingly. However, as seen in FIG. 3, the evaporation rate does not reach the intersection of the broken line indicating the required evaporation rate and the alternate long and short dash line indicating the relative humidity of the outlet-side water evaporation controlling porous layer (corresponding to the outlet) 34. That is, even if the test material 46 containing 90% of carbon material + 10% of fluororesin is used, the evaporation rate becomes slow when the relative humidity at the outlet of the oxidant is high.

【0069】このため、本実施形態では、テスト材46
に親水性材料を含有させ、より一層模擬水W2が浸入し
やすいようにし、蒸発速度を促進させた。親水性材料と
しては、一般に酸化物が優れているが、ここでは、酸化
物の例示として酸化ジルコニウム(以下、ジルコニアと
記す)を選択し、重量比率で5%,10%のものを含有
させた。そして、重量比率で、カーボン材85%+フッ
素樹脂10%+ジルコニア5%のテスト材46と、カー
ボン材80%+フッ素樹脂10%+ジルコニア10%の
テスト材46との2種類を準備した。
Therefore, in the present embodiment, the test material 46
A hydrophilic material was contained in the sample to make it easier for the simulated water W2 to enter, and to accelerate the evaporation rate. As a hydrophilic material, an oxide is generally excellent, but here, zirconium oxide (hereinafter referred to as zirconia) was selected as an example of the oxide, and 5% and 10% by weight were contained. . Then, two kinds of test materials 46 of carbon material 85% + fluororesin 10% + zirconia 5% and test material 46 of carbon material 80% + fluororesin 10% + zirconia 10% were prepared in terms of weight ratio.

【0070】また、図3では、試験結果を白抜きの点と
してプロットしている。この白抜き点をプロットした線
図からジルコニアを多く含有させる程、蒸発速度が高く
なることが認められた。詳しく考察してみると、ジルコ
ニアが5%と10%との間の8%程度に含有重量比率を
設定しておくと、出口側水蒸発制御用多孔層(出口部相
当)の相対湿度が90%を示す一点鎖線と必要蒸発速度
を示す破線とが交わっており、このことからジルコニア
含有重量比率を8%程度にすることにより、必要蒸発速
度を確保できることがわかった。
Further, in FIG. 3, the test results are plotted as white dots. From the diagram in which the white points are plotted, it was confirmed that the higher the content of zirconia, the higher the evaporation rate. Considering it in detail, if the content weight ratio of zirconia is set to about 8% between 5% and 10%, the relative humidity of the outlet side water evaporation control porous layer (corresponding to the outlet portion) is 90%. The alternate long and short dash line indicating% intersects with the broken line indicating the required evaporation rate. From this, it was found that the required evaporation rate can be secured by setting the zirconia-containing weight ratio to about 8%.

【0071】したがって、黒塗りの点としてプロットし
た線図と、白抜きの点としてプロットした線図とを総合
的に勘案して、入口側水蒸発制御用多孔層32の材料を
カーボン材63%+フッ素樹脂37%に組成し、中間部
水蒸発制御用多孔層33の材料をカーボン材81%+フ
ッ素樹脂19%に組成するとともに、出口側水蒸発制御
用多孔層34の材料をカーボン材82%+フッ素樹脂1
0%+ジルコニア8%に組成したものを組み合せて水蒸
発制御用多孔層30を製作すると、酸化剤ガスの流れに
沿って固体高分子電解質膜22および酸化剤触媒層29
の湿度分布を均一化できることがわかった。
Therefore, in consideration of the diagram plotted as a black dot and the diagram plotted as a white dot, the material of the inlet side water evaporation controlling porous layer 32 is made of the carbon material 63%. + Fluorine resin 37%, the material of the intermediate part water evaporation control porous layer 33 is carbon material 81% + Fluorine resin 19%, and the material of the outlet side water evaporation control porous layer 34 is carbon material 82 % + Fluororesin 1
When the water vaporization controlling porous layer 30 is manufactured by combining the composition of 0% + zirconia 8%, the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29 are formed along the flow of the oxidant gas.
It was found that the humidity distribution can be made uniform.

【0072】図4は、酸化剤ガス流れ方向に沿う触媒制
御用多孔層30に酸化剤ガスおよび酸化剤触媒層内の湿
度の分布を対応させた湿度分布線図である。
FIG. 4 is a humidity distribution diagram in which the catalyst control porous layer 30 along the flow direction of the oxidizing gas corresponds to the distribution of the humidity in the oxidizing gas and the oxidizing catalyst layer.

【0073】図4は、図3で得られたデータを基にする
計算結果であるが、この計算結果によれば、酸化剤触媒
層29内の湿度分布は鋸状になっているものの、高い湿
度に維持されている。
FIG. 4 is a calculation result based on the data obtained in FIG. 3. According to the calculation result, although the humidity distribution in the oxidant catalyst layer 29 is sawtooth, it is high. Maintained in humidity.

【0074】したがって、図4から、酸化剤触媒層29
内は、高い湿度に維持されているので、酸化剤ガス出口
側における酸化剤触媒層29内に水が溢れ、その酸化剤
触媒層29内を塞ぐ現象を解消することができる。ま
た、酸化剤ガス入口側において、固体高分子電解質膜2
2や酸化剤触媒層29が乾燥する現象も解消される。
Therefore, from FIG. 4, the oxidant catalyst layer 29
Since the inside is maintained at high humidity, it is possible to eliminate the phenomenon that water overflows into the oxidant catalyst layer 29 on the oxidant gas outlet side and closes the oxidant catalyst layer 29. Further, the solid polymer electrolyte membrane 2 is provided on the oxidant gas inlet side.
2 and the phenomenon that the oxidant catalyst layer 29 is dried are also eliminated.

【0075】このように、本実施形態は、酸化剤触媒層
29と酸化剤ガス拡散層31との間に水蒸発制御用多孔
層30を介装させるとともに、水蒸発制御用多孔層30
を例えば、入口側水蒸発制御用多孔層32、中間部水蒸
発制御用多孔層33および出口側水蒸発制御用多孔層3
4等の三つの種類に分け、各多孔層32,33,34で
水の吸収を制御させているので、固体高分子電解質膜2
2の全体に亘って比抵抗を低減させ、高いプロント伝導
性を確保させ、電池の全面に亘って高い酸化剤触媒機能
を維持させ、単電池を長時間に亘って高い起電力に維持
させることができる。
As described above, in this embodiment, the water evaporation control porous layer 30 is interposed between the oxidant catalyst layer 29 and the oxidant gas diffusion layer 31, and the water evaporation control porous layer 30 is provided.
For example, the inlet side water evaporation control porous layer 32, the intermediate part water evaporation control porous layer 33, and the outlet side water evaporation control porous layer 3
Since the absorption of water is controlled by each of the porous layers 32, 33 and 34, the solid polymer electrolyte membrane 2
2. To reduce the specific resistance over the whole, to secure high pronto conductivity, to maintain a high oxidant catalyst function over the entire surface of the battery, and to maintain a high electromotive force for a single cell for a long time. You can

【0076】なお、図3に示す水蒸発制御用多孔層30
の蒸発速度評価試験は、電流密度0.2A/cm
し、ヒータ49bの出力を1.7cal/min/cm
に固定している。
The water evaporation controlling porous layer 30 shown in FIG.
In the evaporation rate evaluation test, the current density was 0.2 A / cm 2 and the output of the heater 49b was 1.7 cal / min / cm.
It is fixed at 2 .

【0077】しかし、実機では負荷変動があり、この負
荷変動により、固体高分子電解質膜22や酸化剤触媒層
29の湿度分布が変動することが考えられる。
However, there is a load fluctuation in the actual machine, and it is considered that the humidity distribution of the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29 fluctuates due to the load fluctuation.

【0078】本実施形態は、このような点を考慮し、再
び図2に示した蒸発速度テスト装置36を用い、電流密
度を0.2A/cm、0.4A/cmおよび0.6
A/cmを考えて、それぞれの模擬反応熱を1.7c
al/min/cm、3.2cal/min/cm
および4.7cal/min/cmに設定した場合の
蒸発速度評価試験を実施した。
In consideration of such a point, the present embodiment uses the evaporation rate test device 36 shown in FIG. 2 again and sets the current density to 0.2 A / cm 2 , 0.4 A / cm 2 and 0.6 A / cm 2.
Considering A / cm 2 , each simulated reaction heat was 1.7c
al / min / cm 2 , 3.2 cal / min / cm 2
And an evaporation rate evaluation test when set to 4.7 cal / min / cm 2 .

【0079】この場合、水蒸発制御用多孔層30のテス
ト材46は、図3に示した試験結果を基に、入口側水蒸
発制御用多孔層32の材料をカーボン材63%+フッ素
樹脂37%にし、中間部水蒸発制御用多孔層33の材料
をカーボン材81%+フッ素樹脂19%にし、出口側水
蒸発制御用多孔層34の材料をカーボン材82%+フッ
素樹脂10%+ジルコニア8%にした。
In this case, the test material 46 of the water evaporation control porous layer 30 is made of the material of the inlet side water evaporation control porous layer 32 of carbon material 63% + fluorine resin 37 based on the test result shown in FIG. %, The material of the intermediate water evaporation control porous layer 33 is 81% of carbon material + fluorine resin 19%, and the material of the outlet side water evaporation control porous layer 34 is 82% of carbon material + 10% fluorine resin + 8 zirconia %.

【0080】また、加湿窒素の相対温度は、入口側水蒸
発制御用多孔層32のテスト材46を30%とし、中間
部水蒸発制御用多孔層33のテスト材46を60%と
し、出口側水蒸発制御用多孔層34のテスト材46を9
0%とした。さらに、供給窒素の流量は、酸化剤ガス利
用率相当の10%とした。さらに、また、図2に示した
容器43に充填した模擬水W2は80℃に設定した。
The relative temperature of humidified nitrogen was 30% for the test material 46 of the inlet side water evaporation control porous layer 32, 60% for the test material 46 of the intermediate water evaporation control porous layer 33, and at the outlet side. The test material 46 of the porous layer 34 for water evaporation control is 9
It was set to 0%. Further, the flow rate of the supplied nitrogen was set to 10%, which corresponds to the utilization rate of the oxidizing gas. Furthermore, the simulated water W2 filled in the container 43 shown in FIG. 2 was set to 80 ° C.

【0081】このような設定条件の下、図5に示す試験
データが得られた。
Under the above set conditions, the test data shown in FIG. 5 was obtained.

【0082】この図5から、入口側水蒸発制御用多孔層
32、中間部水蒸発制御用多孔層33、出口側水蒸発制
御用多孔層34のそれぞれのテスト材46は、蒸発速度
と模擬反応熱とが線形になっており、かつ傾きがほぼ同
じであることがわかった。
From FIG. 5, the test material 46 of each of the inlet side water evaporation controlling porous layer 32, the intermediate part water evaporation controlling porous layer 33, and the outlet side water evaporation controlling porous layer 34 is the evaporation rate and the simulated reaction. It was found that the heat was linear and the slope was almost the same.

【0083】一般に、燃料電池は、電流密度を増加させ
れば、それに比例して反応熱および水も増加する。この
水は、反応によって生成される水(生成水)やプロトン
(H )によって随伴される水(移動水)を含んでい
る。
In general, fuel cells have increased current density.
Then, the heat of reaction and water also increase proportionally. this
Water is water (produced water) or protons produced by the reaction.
(H +) Included with water (mobile water)
It

【0084】本実施形態は、この点に着目し、水蒸発制
御用多孔層30に水の蒸発速度を制御させる機能を持た
せたもので、水の蒸発速度を制御することにより負荷の
大小に関係なく酸化剤ガスの流れに沿い、入口側から出
口側に向って固体高分子電解質膜22や酸化剤触媒層2
9内の湿度分布を均一化させることができた。
In the present embodiment, attention is paid to this point, and the water evaporation control porous layer 30 is provided with a function of controlling the water evaporation rate. By controlling the water evaporation rate, the load is reduced. Regardless of the flow of the oxidant gas, the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 2 are directed from the inlet side toward the outlet side.
The humidity distribution within 9 could be made uniform.

【0085】次に、本発明に係る固体高分子形燃料電池
に適用する酸化剤電極の製造方法を説明する。
Next, a method for manufacturing an oxidizer electrode applied to the polymer electrolyte fuel cell according to the present invention will be described.

【0086】酸化剤電極23は、固体高分子電解質膜2
2、酸化剤触媒層29、水蒸発制御用多孔層30、酸化
剤ガス拡散層31、酸化剤セパレータ24を組み合せて
構成したものであるが、これらのうち、本実施形態に係
る酸化剤電極の製造方法は、図6に示すように、水蒸発
制御用多孔層30を適用対象としている。
The oxidant electrode 23 is the solid polymer electrolyte membrane 2
2. The oxidant catalyst layer 29, the water evaporation control porous layer 30, the oxidant gas diffusion layer 31, and the oxidant separator 24 are combined, and among these, the oxidant electrode according to the present embodiment is used. As shown in FIG. 6, the manufacturing method is applied to the water evaporation control porous layer 30.

【0087】この水蒸発制御用多孔層30は、上述のと
おり、入口側水蒸発制御用多孔層32、中間部水蒸発制
御用多孔層33、出口側水蒸発制御用多孔層34に区分
けされている。このため、各多孔層32,33,34
は、別々に製造した後、一体成形加工される。
The water evaporation controlling porous layer 30 is divided into the inlet side water evaporation controlling porous layer 32, the intermediate part water evaporation controlling porous layer 33 and the outlet side water evaporation controlling porous layer 34 as described above. There is. Therefore, each porous layer 32, 33, 34
Are manufactured separately and then integrally molded.

【0088】まず、入口側水蒸発制御用多孔層32を製
作するにあたり、重量含有率63%のカーボン粉末とし
て、例えば、ファーネストブラック、キャボット社製、
商品名VALCAN,XC72と、重量含有率37%の
撥水性材料として、例えば、ポリテトラフルオロエチレ
ン、デュポン社製、商品名テフロン(以下PTFEと記
す)を水に懸濁して混合する。この混合液は、酸化剤ガ
ス拡散層(例えば、カーボンペーパー、東レ社製TGP
H−120)31の全域のうち、1/3の領域にコーテ
ィングされる。
First, in producing the inlet-side water evaporation control porous layer 32, as carbon powder having a weight content of 63%, for example, Farnest Black, manufactured by Cabot Corporation,
Trade names VALCAN, XC72 and water-repellent material having a weight content of 37%, for example, polytetrafluoroethylene, manufactured by DuPont, trade name Teflon (hereinafter referred to as PTFE) are suspended in water and mixed. This mixed liquid is an oxidant gas diffusion layer (for example, carbon paper, TGP manufactured by Toray).
H-120) 31 is coated on 1/3 of the entire area.

【0089】混合液をコーティングした酸化剤ガス拡散
層31は、電気炉で350℃に焼成する。
The oxidant gas diffusion layer 31 coated with the mixed solution is fired at 350 ° C. in an electric furnace.

【0090】次に、中間部水蒸発制御用多孔層33は、
焼成後の酸化剤ガス拡散層31に重量含有率81%のカ
ーボン粉末と重量含有率19%のPTPFを水に懸濁
し、この混合液を酸化剤ガス拡散層31の残りのうち、
1/3の部分にコーティングし、電気炉で再び350℃
に焼成する。
Next, the intermediate water evaporation control porous layer 33 is
Carbon powder having a weight content of 81% and PTPF having a weight content of 19% were suspended in water in the oxidant gas diffusion layer 31 after firing, and this mixed liquid was
Coat 1/3 of the area and again 350 ° C in an electric furnace
Bake to.

【0091】さらに、出口側水蒸発制御用多孔層34
は、焼成後の酸化剤ガス拡散層31に重量含有率82%
のカーボン粉末と重量含有率10%のPTFEおよび重
量比率8%のジルコニアを水に懸濁し、この混合液を酸
化剤ガス拡散層31のうち、残りの部分にコーティング
し、電気炉で再び350℃に焼成する。
Further, the outlet side water evaporation controlling porous layer 34
Is 82% by weight in the oxidant gas diffusion layer 31 after firing.
Of the carbon powder, PTFE having a weight content of 10% and zirconia having a weight ratio of 8% are suspended in water, and the mixed solution is coated on the remaining portion of the oxidant gas diffusion layer 31, and again at 350 ° C. in an electric furnace. Bake to.

【0092】このように、一つの酸化剤ガス拡散層31
に被着させた入口側水蒸発制御用多孔層32、中間部水
蒸発制御用多孔層33および出口側水蒸発制御用多孔層
34は、高い平坦度に維持させるため、ローラ50a,
50bで表面調整が行われる。
As described above, one oxidant gas diffusion layer 31 is formed.
The inlet side water evaporation control porous layer 32, the intermediate part water evaporation control porous layer 33 and the outlet side water evaporation control porous layer 34 adhered to the rollers 50a,
Surface conditioning is performed at 50b.

【0093】なお、本実施形態は、親水性に優れた酸化
物としてジルコニアを選択したが、この例に限らず、酸
化アルミニウム、酸化鉄、酸化銅、酸化鉛、酸化チタ
ン、酸化スズ、酸化マグネシウム、酸化ニッケル、酸化
マンガン、酸化クロム、酸化亜鉛のうち、いずれかを選
択してもよく、これらを組み合せて選択してもよい。
In the present embodiment, zirconia was selected as the oxide having excellent hydrophilicity, but not limited to this example, aluminum oxide, iron oxide, copper oxide, lead oxide, titanium oxide, tin oxide, magnesium oxide may be used. , Nickel oxide, manganese oxide, chromium oxide, or zinc oxide may be selected, or a combination thereof may be selected.

【0094】また、表面だけを親水処理した無機粉末ま
たは金属粉末でもよい。例えば、ジルコニア等の無機粉
末を親水性処理するには、粒径が0.1μmの程度のも
のを1モルの硫酸に10分間程度浸漬させた後、800
〜1000℃の電気炉で熱処理すれば容易に実現するこ
とができる。
Further, inorganic powder or metal powder whose surface is hydrophilically treated may be used. For example, in order to hydrophilically treat an inorganic powder such as zirconia, a powder having a particle size of about 0.1 μm is immersed in 1 mol of sulfuric acid for about 10 minutes, and then 800
It can be easily realized by heat treatment in an electric furnace of up to 1000 ° C.

【0095】また、親水性材料として、OH基、SO
H基およびCOOH基等を持つ酸化物がある。例えば、
酸化物にOH基を持たせるには、粒径が0.1〜数μm
の酸化ジルコニア、酸化スズ、あるいは酸化チタンの粉
末を5モルの水酸化ナトリウム水溶液に10分間程度浸
漬させた後、200℃程度の電気炉で20分間程度の熱
処理をすれば容易に実現することができる。
Further, as the hydrophilic material, OH group, SO 3
There are oxides having H groups and COOH groups. For example,
To have OH groups in the oxide, the particle size should be 0.1 to several μm.
It can be easily realized by immersing the powder of zirconia, tin oxide or titanium oxide in 5 mol. Of sodium hydroxide aqueous solution for about 10 minutes and then performing a heat treatment for about 20 minutes in an electric furnace at about 200 ° C. it can.

【0096】また、本実施形態は、酸化剤ガス拡散層3
1に、例えば入口側水蒸発制御用多孔層32、中間部水
蒸発制御用多孔層33、出口側水蒸発制御用多孔層34
を順次被着させるが、その際、撥水性材料または表面張
力の大きい材料の重量含有率およ比表面積の少なくとも
一方を、入口側水蒸発制御用多孔層32でより大きく
し、中間部水蒸発制御用多孔層33および出口側水蒸発
制御用多孔層34に向って、ステップ状に酸化剤ガスの
流れに沿って徐々に小さくさせるか、あるいは、親水性
材料または表面張力の小さい材料の重量含有率およ比表
面積の少なくとも一方を、出口側水蒸発制御用多孔層3
4でより大きくし、中間部水蒸発制御用多孔層33およ
び入口側水蒸発制御用多孔層32に向ってステップ状に
酸化剤ガス流れに逆流して徐々に小さくさせるか、ある
いは、平均気孔径を入口側水蒸発制御用多孔層32でよ
り大きくし、中間部水蒸発制御用多孔層33および出口
側水蒸発制御用多孔層34に向ってステップ状に酸化剤
ガス流れに沿って徐々に小さくさせることで、酸化剤ガ
スの上流から下流の全域に亘って、水蒸発制御用多孔層
30からの水の蒸発量を一様化し、固体高分子電解質膜
22および酸化剤触媒層29の湿度分布の一様化を図っ
ている。
Further, in this embodiment, the oxidant gas diffusion layer 3 is used.
1, for example, the inlet side water evaporation control porous layer 32, the intermediate part water evaporation control porous layer 33, the outlet side water evaporation control porous layer 34.
In this case, at least one of the weight content ratio and the specific surface area of the water repellent material or the material having a large surface tension is made larger in the inlet side water evaporation controlling porous layer 32, and the intermediate part water evaporation is made. To the control porous layer 33 and the outlet-side water evaporation control porous layer 34, the amount of the hydrophilic material or the material having a small surface tension is gradually reduced in a stepwise manner along the flow of the oxidant gas. At least one of the rate and the specific surface area of the outlet side water evaporation control porous layer 3
4 to make it larger and to gradually reduce it by backflowing into the oxidizing gas flow stepwise toward the intermediate water evaporation control porous layer 33 and the inlet side water evaporation control porous layer 32, or the average pore diameter. At the inlet-side water evaporation control porous layer 32, and becomes gradually smaller along the oxidant gas flow stepwise toward the intermediate-portion water-evaporation-control porous layer 33 and the outlet-side water-evaporation control porous layer 34. By doing so, the evaporation amount of water from the water evaporation controlling porous layer 30 is made uniform over the entire area from the upstream side to the downstream side of the oxidizing gas, and the humidity distribution of the solid polymer electrolyte membrane 22 and the oxidizing catalyst layer 29 is distributed. Is being made uniform.

【0097】また、本実施形態は、例えば、入口側水蒸
発制御用多孔層32、中間部水蒸発制御用多孔層33、
出口側水蒸発制御用多孔層34を組み合せて構成する水
蒸発制御用多孔層30の平均気孔径を酸化剤ガス拡散層
31の平均気孔径に較べて相対的に小さくし、毛細管力
を高くする手法を適宜選択しているので、水の蒸発を精
度よく制御でき、これに伴って酸化剤ガスの流れに沿っ
て固体高分子電解質膜22や酸化剤ガス拡散層31内の
湿度分布を飽和蒸気圧に近い状態に均一に維持させてい
る。
Further, in the present embodiment, for example, the inlet side water evaporation control porous layer 32, the intermediate water evaporation control porous layer 33,
The average pore diameter of the water evaporation controlling porous layer 30 formed by combining the outlet side water evaporation controlling porous layer 34 is made relatively smaller than the average pore diameter of the oxidant gas diffusion layer 31, and the capillary force is increased. Since the method is appropriately selected, the evaporation of water can be controlled accurately, and along with this, the humidity distribution in the solid polymer electrolyte membrane 22 and the oxidant gas diffusion layer 31 is saturated with the saturated vapor along the flow of the oxidant gas. The pressure is kept close to the pressure evenly.

【0098】図7は、本発明に係る固体高分子形燃料電
池の第2実施形態を示す概念図である。
FIG. 7 is a conceptual diagram showing a second embodiment of the polymer electrolyte fuel cell according to the present invention.

【0099】本実施形態に係る固体高分子形燃料電池
は、酸化剤電極23を構成する固体高分子電解質膜2
2、酸化剤触媒層29、水蒸発制御用多孔層30、酸化
剤ガス拡散層31、酸化剤ガス流通溝28を備える酸化
剤セパレータ24のうち、水蒸発制御用多孔層30を、
酸化剤ガス流れ方向に沿い、かつ、その入口側からその
出口側に向って順に、例えば入口側水蒸発制御用多孔層
32、中間部水蒸発制御用多孔層33、出口側水蒸発制
御用多孔層34等の三つに区分けするとともに、これら
に対応して酸化剤ガス拡散層31も、入口側酸化剤ガス
拡散層51、中間部酸化剤ガス拡散層52、出口側酸化
剤ガス拡散層53に区分けしたものである。
The solid polymer electrolyte fuel cell according to the present embodiment has the solid polymer electrolyte membrane 2 forming the oxidizer electrode 23.
2, the oxidant catalyst layer 29, the water evaporation control porous layer 30, the oxidant gas diffusion layer 31, the oxidant gas circulation groove 28 of the oxidizer separator 24, the water evaporation control porous layer 30,
Along the oxidant gas flow direction, and in order from the inlet side to the outlet side thereof, for example, the inlet side water evaporation control porous layer 32, the intermediate water evaporation control porous layer 33, the outlet side water evaporation control porous layer The oxidant gas diffusion layer 31 is divided into three layers such as the layer 34 and the like, and the oxidant gas diffusion layer 31 corresponds to the inlet side oxidant gas diffusion layer 51, the intermediate oxidant gas diffusion layer 52, and the outlet side oxidant gas diffusion layer 53. It is divided into.

【0100】また、本実施形態に係る固体高分子形燃料
電池は、区分けした入口側水蒸発制御用多孔層32、中
間部水蒸発制御用多孔層33、出口側水蒸発制御用多孔
層34のうち、入口側水蒸発制御用多孔層32の厚みを
薄くし、中間部水蒸発制御用多孔層33および出口側水
蒸発制御用多孔層34の厚みを、入口側水蒸発制御用多
孔層32の厚みに較べて相対的にステップ状に厚くさ
せ、これに伴って入口側酸化剤ガス拡散層51の厚みを
厚く、中間部酸化剤ガス拡散層52および出口側酸化剤
ガス拡散層53の厚みステップ状に薄くし、水蒸発制御
用多孔層30と酸化剤ガス拡散層31との合計厚みを酸
化剤ガス流れ方向に沿って一定厚みにしたものである。
Further, the polymer electrolyte fuel cell according to the present embodiment is divided into the inlet side water evaporation controlling porous layer 32, the intermediate part water evaporation controlling porous layer 33 and the outlet side water evaporation controlling porous layer 34. Among them, the thickness of the inlet-side water evaporation control porous layer 32 is reduced, and the thickness of the middle-portion water-evaporation control porous layer 33 and the outlet-side water evaporation control porous layer 34 is set to the thickness of the inlet-side water evaporation control porous layer 32. The thickness of the inlet-side oxidant gas diffusion layer 51 is increased accordingly, and the thickness of the middle-side oxidant gas diffusion layer 52 and the outlet-side oxidant gas diffusion layer 53 is increased by a step. In this embodiment, the total thickness of the water evaporation control porous layer 30 and the oxidant gas diffusion layer 31 is made constant along the oxidant gas flow direction.

【0101】このように、本実施形態は、入口側水蒸発
制御用多孔層32の厚みを薄くし、伝熱面積を小さくし
て水の蒸発速度を低く抑えるとともに、中間部水蒸発制
御用多孔層33および出口側水蒸発制御用多孔層34の
厚みを、入口側水蒸発制御用多孔層32の厚みに較べて
相対的にステップ状に厚くさせ、各多孔層33,34の
伝熱面積を徐々に増加させ、酸化剤ガスの湿度分布があ
っても水の蒸発速度を一様にするので、酸化剤ガスの入
口側から出口側に至る全域に亘って固体高分子電解質膜
22や酸化剤触媒層29内の湿度分布を均一化させるこ
とができる。
As described above, in this embodiment, the thickness of the inlet side water evaporation controlling porous layer 32 is reduced, the heat transfer area is reduced to suppress the water evaporation rate, and the middle part water evaporation controlling porous layer 32 is formed. The thickness of the layer 33 and the outlet-side water evaporation control porous layer 34 is made relatively thicker than the thickness of the inlet-side water evaporation control porous layer 32 in order to increase the heat transfer area of each porous layer 33, 34. Since the evaporation rate of water is gradually increased to make the evaporation rate of water uniform even if there is a humidity distribution of the oxidant gas, the solid polymer electrolyte membrane 22 and the oxidizer are spread over the entire area from the inlet side to the outlet side of the oxidant gas. It is possible to make the humidity distribution in the catalyst layer 29 uniform.

【0102】図8は、本発明に係る固体高分子形燃料電
池の第3実施形態を示す概念図である。
FIG. 8 is a conceptual diagram showing a third embodiment of the polymer electrolyte fuel cell according to the present invention.

【0103】本実施形態に係る固体高分子形燃料電池
は、酸化剤電極23を構成する固体高分子電解質膜2
2、酸化剤触媒層29、水蒸発制御用多孔層30、酸化
剤拡散層31、酸化剤ガス通路溝28を備える酸化剤セ
パレータ24のうち、水蒸発制御用多孔層30を、酸化
剤ガス流れ方向に沿い、かつ、その入口側からその出口
側に向って順に、上述と同様に、撥水性材料の重量含有
率または比表面積、親水性材料の重量含有率または比表
面積、平均気孔率および厚みのそれぞれをステップ状に
異ならしめる入口側水蒸発制御用多孔層32、中間部水
蒸発制御用多孔層33、出口側水蒸発制御用多孔層34
の三つに区分けするとともに、酸化剤セパレータ24の
酸化剤ガス供給口54と酸化剤ガス排出口55とを互い
に接続させる酸化剤ガス通路溝28を、酸化剤セパレー
タ24の横断方向に対し、蛇行状に形成するものであ
る。
The solid polymer electrolyte fuel cell according to the present embodiment has the solid polymer electrolyte membrane 2 which constitutes the oxidant electrode 23.
2, the oxidant catalyst layer 29, the water evaporation control porous layer 30, the oxidant diffusion layer 31, and the oxidant gas passage groove 28, of the oxidizer separator 24, the water evaporation control porous layer 30, the oxidant gas flow. Along the direction, and in order from the inlet side to the outlet side, in the same manner as described above, the weight content or specific surface area of the water repellent material, the weight content or specific surface area of the hydrophilic material, the average porosity and the thickness. The inlet side water evaporation control porous layer 32, the middle part water evaporation control porous layer 33, and the outlet side water evaporation control porous layer 34, which are different from each other stepwise.
The oxidant gas passage groove 28, which connects the oxidant gas supply port 54 and the oxidant gas discharge port 55 of the oxidant separator 24 to each other, is meandered in the transverse direction of the oxidant separator 24. It is formed into a shape.

【0104】このように、本実施形態は、撥水性材料の
重量含有率等がそれぞれ異なる三つの入口側水蒸発制御
用多孔層32、中間部水蒸発制御用多孔層33、出口側
水蒸発制御用多孔層34を備える水蒸発制御用多孔層3
0と、蛇行状に形成する酸化剤ガス流通溝28とを組み
合わせ、図4に示すように、鋸状ではあるが全体として
相対湿度を高くしているので、酸化剤ガスの流れに沿
い、その入口側からその出口側に至る全域に亘って固体
高分子電解質膜22や酸化剤触媒層29内の湿度分布を
ほぼ均一化させることができる。
As described above, in the present embodiment, three inlet side water evaporation control porous layers 32, intermediate water evaporation control porous layers 33, and outlet side water evaporation control are provided, each having a different weight content of the water repellent material. Evaporation control porous layer 3 including a porous layer 34 for water
0 and a meandering oxidant gas flow groove 28 are combined to increase the relative humidity as a whole, as shown in FIG. 4, so that the oxidant gas flows along the flow of the oxidant gas. The humidity distribution in the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29 can be made substantially uniform over the entire area from the inlet side to the outlet side.

【0105】なお、本実施形態は、酸化剤ガス流通溝2
8の複数本同時に、蛇行状に形成しているが、この例に
限らず、例えば、第4実施形態の図9に示すように、酸
化剤ガス流通溝28の一本一本を蛇行状に形成してもよ
く、さらに、例えば、第5実施形態の図10に示すよう
に、酸化剤ガス通路溝28を、酸化剤ガス供給口54に
接続する第1酸化剤ガス通路溝56と酸化剤ガス排出口
55に接続する第2酸化剤ガス通路溝57とに分割さ
せ、第1および第2酸化剤ガス通路溝56,57を酸化
剤セパレータ24の途中で中断させ、この間、酸化剤ガ
ス拡散層31の表面を利用して第1酸化剤ガス流通溝5
6から第2酸化剤ガス流通溝57に酸化剤ガスを流して
もよい。また、図9および図10のそれぞれに示す水蒸
発制御用多孔層30を区分けする、例えば入口側水蒸発
制御用多孔層32、中間部水蒸発制御用多孔層33およ
び出口側水蒸発制御用多孔層34は、上述と同様に、撥
水性材料の重量含有率、親水性材料の重量含有率、平均
気孔率および厚みのそれぞれをステップ状に異ならしめ
て形成している。
In this embodiment, the oxidizing gas flow groove 2 is used.
Although a plurality of 8 are simultaneously formed in a meandering shape, the present invention is not limited to this example. For example, as shown in FIG. 9 of the fourth embodiment, each oxidant gas flow groove 28 is formed in a meandering shape. Further, for example, as shown in FIG. 10 of the fifth embodiment, the oxidant gas passage groove 28 and the first oxidant gas passage groove 56 connecting the oxidant gas passage groove 28 to the oxidant gas supply port 54 may be formed. It is divided into a second oxidant gas passage groove 57 connected to the gas outlet 55, and the first and second oxidant gas passage grooves 56, 57 are interrupted in the middle of the oxidant separator 24, and during this time, oxidant gas diffusion Using the surface of the layer 31, the first oxidant gas flow groove 5
The oxidant gas may be caused to flow from 6 to the second oxidant gas flow groove 57. Further, the water evaporation control porous layer 30 shown in each of FIGS. 9 and 10 is divided into sections, for example, an inlet side water evaporation control porous layer 32, an intermediate water evaporation control porous layer 33 and an outlet side water evaporation control porous layer. Similarly to the above, the layer 34 is formed by stepwise varying the weight content of the water repellent material, the weight content of the hydrophilic material, the average porosity, and the thickness.

【0106】また、図1に示す第1実施形態、図7に示
す第2実施形態、図8に示す第3実施形態、図9に示す
第4実施形態および図10に示す第5実施形態において
は、水蒸発制御用多孔層は30を三つのステップに分割
した場合を例に採って、説明した。
In addition, in the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 7, the third embodiment shown in FIG. 8, the fourth embodiment shown in FIG. 9 and the fifth embodiment shown in FIG. In the above description, the case where the porous layer for controlling water evaporation is divided into 30 steps is described as an example.

【0107】しかし、こうしたステップの数は2以上の
複数であれば、固体高分子電解質膜22や酸化剤触媒層
29内の湿度分布を一様化する効果を有している。そし
て、ステップ数が多い程、図4で示した鋸の山数が増
え、固体高分子電解質膜22や酸化剤触媒層29内の湿
度分布は一層一様化されることになる。
However, if the number of such steps is two or more, it has the effect of making the humidity distribution in the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29 uniform. As the number of steps increases, the number of saw teeth shown in FIG. 4 increases, and the humidity distribution in the solid polymer electrolyte membrane 22 and the oxidant catalyst layer 29 becomes more uniform.

【0108】図11は、本発明に係る固体高分子形燃料
電池の第6実施形態を示すもので、酸化剤ガス流れ方向
に沿う水蒸発制御用多孔層に酸化剤ガスおよび酸化剤触
媒層内の湿度の分布を対応させた湿度分布線図である。
FIG. 11 shows a sixth embodiment of the polymer electrolyte fuel cell according to the present invention, in which the oxidizing gas and the oxidizing catalyst layer are formed in the water evaporation controlling porous layer along the flowing direction of the oxidizing gas. It is a humidity distribution line diagram corresponding to the distribution of the humidity of.

【0109】本実施形態に係る固体高分子形燃料電池
は、酸化剤電極23を構成する固体高分子電解質膜2
2、酸化剤触媒層29、水蒸発制御用多孔層30、酸化
剤ガス流通溝28を備える酸化剤セパレータ24のう
ち、水蒸発制御用多孔層30を、酸化剤ガス流れ方向に
沿い、かつ、その入口側からその出口側に向って順に、
例えば、入口側水蒸発制御用多孔層32、中間部水蒸発
制御用多孔層58,59、出口側水蒸発制御用多孔層3
4等の撥水性材料の重量含有率または比表面積、あるい
は親水性材料の重量含有率または比表面積、あるいは材
料表面張力あるいは平均気孔率、あるいは厚みの少なく
とも一つを連続的かつ傾斜的に異ならしめて形成してい
る。ここで、傾斜状とは、厚み方向に対して直線的傾
斜、概略的傾斜、曲線的傾斜等を含む。
The solid polymer electrolyte fuel cell according to the present embodiment has the solid polymer electrolyte membrane 2 which constitutes the oxidant electrode 23.
2, among the oxidizer separator 24 including the oxidant catalyst layer 29, the water evaporation control porous layer 30, and the oxidant gas flow groove 28, the water evaporation control porous layer 30 is arranged along the oxidant gas flow direction, and From the entrance side to the exit side,
For example, the inlet side water evaporation control porous layer 32, the intermediate part water evaporation control porous layers 58 and 59, the outlet side water evaporation control porous layer 3
4. At least one of the weight content or specific surface area of the water repellent material, the weight content or specific surface area of the hydrophilic material, the material surface tension or the average porosity, or the thickness is continuously and gradually different. Is forming. Here, the inclined shape includes a linear inclination, a general inclination, a curvilinear inclination, and the like with respect to the thickness direction.

【0110】このように、本実施形態は、水蒸発制御用
多孔層30の材質、平均気孔率、あるいは厚みを連続的
かつ傾斜的に異ならしめることで、図11に示すよう
に、酸化剤ガスの流れ方向に沿い、かつ、その入口側か
らその出口側に向って昇り傾斜の酸化剤ガス湿度分布に
対して、酸化剤触媒層29内の湿度分布を均一に維持さ
せることができる。
As described above, according to the present embodiment, the material, the average porosity, or the thickness of the water evaporation controlling porous layer 30 is continuously and obliquely varied, so that the oxidizer gas is changed as shown in FIG. The humidity distribution in the oxidant catalyst layer 29 can be maintained uniform with respect to the oxidant gas humidity distribution in which the oxidant gas humidity distribution rises from the inlet side toward the outlet side along the flow direction of.

【0111】したがって、本実施形態によれば、酸化剤
触媒層29内の湿度分布を酸化剤ガスの流れに沿い、か
つ、その入口側からその出口側に向って均一に維持させ
ているので、固体高分子電解質膜22の全体に亘って比
抵抗を低減させ、高いプロント伝導性を確保させ、電池
の全面に亘って高い酸化剤触媒機能を維持させ、単電池
を長時間に亘って高い起電力に維持させることができ
る。
Therefore, according to the present embodiment, the humidity distribution in the oxidant catalyst layer 29 is kept uniform along the flow of the oxidant gas and from its inlet side to its outlet side. The specific resistance is reduced over the entire solid polymer electrolyte membrane 22, a high pronto conductivity is ensured, a high oxidant catalytic function is maintained over the entire surface of the battery, and the cell is highly activated for a long time. Can be maintained at power.

【0112】[0112]

【発明の効果】以上の説明のとおり、本発明に係る固体
高分子形燃料電池は、中央部に位置する固体高分子電解
質膜の両側に備える燃料電極と酸化剤電極とのうち、酸
化剤電極を、固体高分子電解質膜から外側に向って順に
配置する酸化剤触媒層、水蒸発制御用多孔層、酸化剤ガ
ス拡散層、酸化剤ガス通路溝を備える酸化剤セパレータ
で構成するとともに、水蒸発制御用多孔層を、例えば、
入口側水蒸発制御用多孔層、中間部水蒸発制御用多孔
層、出口側水蒸発制御用多孔層等の複数層部のうち、幾
つかを組み合せて複数に区分けし、各多孔層の撥水性材
料含有率、親水性材料含有率、平均気孔率、厚み等の分
布のうち、少なくともいずれかを選択して酸化剤ガスの
流れ方向に沿い、かつ、その入口側からその出口側に向
って異ならしめて傾斜状、またはステップ状等に形成す
る一方、各多孔層の溶液の一つ一つを酸化剤ガス拡散層
にコーティングし、焼成し、一体成形加工して製作する
ので、各多孔層を酸化剤ガス拡散層に確実に被着するこ
とができ、酸化剤ガスの流れ方向に沿って固体高分子電
解質膜および酸化剤触媒層内の湿度分布を高く、かつ均
一に維持させることができる。
As described above, the solid polymer electrolyte fuel cell according to the present invention includes the oxidant electrode among the fuel electrode and the oxidant electrode provided on both sides of the solid polymer electrolyte membrane located in the central portion. Is composed of an oxidizer catalyst layer, a water evaporation control porous layer, an oxidizer gas diffusion layer, and an oxidizer separator provided with an oxidizer gas passage groove, which are sequentially arranged from the solid polymer electrolyte membrane toward the outside. The control porous layer, for example,
Of the multiple layer parts such as the inlet side water evaporation control porous layer, the intermediate part water evaporation control porous layer, and the outlet side water evaporation control porous layer, some are combined and divided into a plurality, and the water repellency of each porous layer At least one of the distributions of material content, hydrophilic material content, average porosity, thickness, etc. is selected to be different along the flow direction of the oxidant gas and from the inlet side to the outlet side. The oxidant gas diffusion layer is coated with each of the solutions of each porous layer, baked, and integrally molded to produce each porous layer. It can be surely adhered to the agent gas diffusion layer, and the humidity distribution in the solid polymer electrolyte membrane and the oxidant catalyst layer can be kept high and uniform along the flow direction of the oxidant gas.

【0113】したがって、本発明に係る固体高分子形燃
料電池によれば、酸化剤ガスの流れ方向に沿い、かつ、
その入口側からその出口側に向って固体高分子電解質膜
および酸化剤触媒層内の湿度分布を高く、かつ一様に維
持させているので、固体高分子電解質膜の比抵抗を少な
くさせ、高いプロント伝導性を確保させ、酸化剤触媒機
能を充分に発揮させ、単電池を長時間に亘って高い起電
力に維持させることができ、発電効率をより一層高く維
持させることができる。
Therefore, according to the polymer electrolyte fuel cell of the present invention, along the flow direction of the oxidant gas, and
Since the humidity distribution in the solid polymer electrolyte membrane and the oxidizer catalyst layer is kept high and uniform from the inlet side to the outlet side, the specific resistance of the solid polymer electrolyte membrane is reduced and the high Proton conductivity can be ensured, the oxidant catalyst function can be sufficiently exerted, the unit cell can be maintained at a high electromotive force for a long time, and the power generation efficiency can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体高分子形燃料電池の第1実施
形態を示す概念図。
FIG. 1 is a conceptual diagram showing a first embodiment of a polymer electrolyte fuel cell according to the present invention.

【図2】本発明に係る固体高分子形燃料電池に適用する
水蒸発制御用多孔層のテスト材を試験する蒸発速度評価
試験装置の概念図。
FIG. 2 is a conceptual diagram of an evaporation rate evaluation test device for testing a test material for a water evaporation control porous layer applied to the polymer electrolyte fuel cell according to the present invention.

【図3】図2で示した蒸発速度評価試験装置を用いて得
られたテスト材の水蒸発速度線図。
FIG. 3 is a water evaporation rate diagram of a test material obtained by using the evaporation rate evaluation test apparatus shown in FIG.

【図4】本発明に係る固体高分子形燃料電池に適用する
水蒸発制御用多孔層において、酸化剤ガス流れ方向に沿
う水蒸発制御用多孔層と酸化剤ガスおよび酸化剤触媒層
内の湿度の分布を対応させた湿度分布線図。
FIG. 4 is a diagram showing a water vaporization control porous layer applied to the polymer electrolyte fuel cell according to the present invention, wherein the water vaporization control porous layer along the oxidant gas flow direction and the humidity in the oxidant gas and the oxidant catalyst layer. Of humidity distribution that correspond to the distribution of.

【図5】本発明に係る固体高分子形燃料電池に適用する
水蒸発制御用多孔層のテスト材の実験によって得られた
蒸発速度と模擬反応熱との関係を示す線図。
FIG. 5 is a diagram showing a relationship between an evaporation rate and a simulated reaction heat obtained by an experiment of a test material of a water evaporation controlling porous layer applied to the polymer electrolyte fuel cell according to the present invention.

【図6】本発明に係る固体高分子形燃料電池に適用する
酸化剤電極の製造方法を説明するために用いる概念図。
FIG. 6 is a conceptual diagram used for explaining a method of manufacturing an oxidizer electrode applied to a polymer electrolyte fuel cell according to the present invention.

【図7】本発明に係る固体高分子形燃料電池の第2実施
形態を示す概念図。
FIG. 7 is a conceptual diagram showing a second embodiment of the polymer electrolyte fuel cell according to the present invention.

【図8】本発明に係る固体高分子形燃料電池の第3実施
形態を示す概念図。
FIG. 8 is a conceptual diagram showing a third embodiment of the polymer electrolyte fuel cell according to the present invention.

【図9】本発明に係る固体高分子形燃料電池の第4実施
形態を示す概念図。
FIG. 9 is a conceptual diagram showing a fourth embodiment of the polymer electrolyte fuel cell according to the present invention.

【図10】本発明に係る固体高分子形燃料電池の第5実
施形態を示す概念図。
FIG. 10 is a conceptual diagram showing a fifth embodiment of the polymer electrolyte fuel cell according to the present invention.

【図11】本発明に係る固体高分子形燃料電池の第6実
施形態を示すもので、酸化剤ガス流れ方向に沿って、水
蒸発制御用多孔層と酸化剤ガスおよび酸化剤触媒層内の
湿度の分布を対応させた湿度分布線図。
FIG. 11 shows a sixth embodiment of the polymer electrolyte fuel cell according to the present invention, in which the water evaporation controlling porous layer and the oxidant gas and the oxidant catalyst layer are formed along the oxidant gas flow direction. Humidity distribution diagram with corresponding humidity distribution.

【図12】従来の固体高分子形燃料電池における単電池
を示す概念図。
FIG. 12 is a conceptual diagram showing a unit cell in a conventional polymer electrolyte fuel cell.

【図13】従来の固体高分子形燃料電池における燃料電
池積層体を示す概念図。
FIG. 13 is a conceptual diagram showing a fuel cell stack in a conventional polymer electrolyte fuel cell.

【図14】従来の固体高分子形燃料電池における単電池
を示す概念図。
FIG. 14 is a conceptual diagram showing a unit cell in a conventional polymer electrolyte fuel cell.

【図15】従来の固体高分子形燃料電池における酸化剤
ガスの湿度を示す湿度分布線図で、(a)は酸化剤ガス
出口部で湿度が過剰な場合を示し、(b)は酸化剤ガス
入口で過少な場合を示す線図。
FIG. 15 is a humidity distribution diagram showing the humidity of an oxidant gas in a conventional polymer electrolyte fuel cell, (a) shows the case where the humidity is excessive at the oxidant gas outlet, and (b) shows the oxidant. A diagram showing a case where the gas inlet is insufficient.

【図16】従来の固体高分子形燃料電池における酸化剤
ガスセパレータを示す平面概念図。
FIG. 16 is a conceptual plan view showing an oxidant gas separator in a conventional polymer electrolyte fuel cell.

【図17】従来の固体高分子形燃料電池における酸化剤
ガス拡散層の入口のガス透過性を調整する例を示す概念
図で、(a)は入口のガス透過性を少なくさせる例を示
す概念図、(b)は入口から出口に向って酸化剤ガス拡
散層の厚さを徐々に薄くし、ガス透過性に分布をもたせ
た例を示す概念図。
FIG. 17 is a conceptual diagram showing an example of adjusting the gas permeability of an inlet of an oxidant gas diffusion layer in a conventional polymer electrolyte fuel cell, and (a) is a concept showing an example of reducing the gas permeability of the inlet. FIG. 1B is a conceptual diagram showing an example in which the thickness of the oxidant gas diffusion layer is gradually reduced from the inlet to the outlet so that the gas permeability has a distribution.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2 燃料触媒層 3 燃料ガス拡散層 4 燃料電極 5 酸化剤触媒層 6 酸化剤ガス拡散層 6a 入口側 6b 出口側 7 酸化剤電極 8 燃料ガス流通溝 9 燃料セパレータ 10 酸化剤ガス流通溝 11 酸化剤セパレータ 12 単電池 13 燃料電池積層体 14 冷却剤流通溝 15 冷却板 16 燃料ガス多孔層 17 酸化剤ガス多孔層 18 酸化剤ガス入口部 19 酸化剤ガス出口部 20 燃料ガス入口部 21 燃料ガス出口部 22 固体高分子電解質膜 23 酸化剤電極 24 酸化剤セパレータ 25 燃料電極 26 燃料セパレータ 27 単電池 28 酸化剤ガス流通溝 29 酸化剤触媒層 30 水蒸発制御用多孔層 31 酸化剤ガス拡散層 32 入口側水蒸発制御用多孔層 33 中間部水蒸発制御用多孔層 34 出口側水蒸発制御用多孔層 35 加湿器 36 蒸発速度テスト装置 37 水槽 38 乾燥窒素配管 39 加湿窒素配管 40 加湿器水位計 41 保温材 42 ヒータ 43 容器 44 模擬酸化剤ガス流通溝 45 酸化剤ガス拡散層 46 テスト材 47 蒸発量評価水位計 48 保温材 49a,49b ヒータ 50a,50b ローラ 51 入口側酸化剤ガス拡散層 52 中間部酸化剤ガス拡散層 53 出口側酸化剤ガス拡散層 54 酸化剤ガス供給口 55 酸化剤ガス排出口 56 第1酸化剤ガス流通溝 57 第2酸化剤ガス流通溝 58,59 中間部水蒸発制御用多孔層 1 Solid polymer electrolyte membrane 2 Fuel catalyst layer 3 Fuel gas diffusion layer 4 Fuel electrode 5 Oxidizing agent catalyst layer 6 Oxidant gas diffusion layer 6a entrance side 6b Exit side 7 Oxidizer electrode 8 Fuel gas distribution groove 9 Fuel separator 10 Oxidant gas distribution groove 11 Oxidizer separator 12 cells 13 Fuel cell stack 14 Coolant distribution groove 15 Cooling plate 16 Fuel gas porous layer 17 Oxidant gas porous layer 18 Oxidant gas inlet 19 Oxidant gas outlet 20 Fuel gas inlet 21 Fuel gas outlet 22 Solid polymer electrolyte membrane 23 Oxidizer electrode 24 Oxidizer separator 25 Fuel electrode 26 Fuel separator 27 cells 28 Oxidant gas distribution groove 29 Oxidizing agent catalyst layer 30 Water evaporation control porous layer 31 Oxidant gas diffusion layer 32 Inlet-side water evaporation control porous layer 33 Middle part water evaporation control porous layer 34 Outlet side water evaporation control porous layer 35 Humidifier 36 Evaporation rate tester 37 aquarium 38 Dry nitrogen piping 39 Humidification nitrogen piping 40 Humidifier water level meter 41 Heat insulation material 42 heater 43 containers 44 Simulated oxidant gas distribution groove 45 Oxidant gas diffusion layer 46 Test material 47 Evaporation evaluation water level gauge 48 Thermal insulation 49a, 49b heater 50a, 50b rollers 51 Inlet side oxidant gas diffusion layer 52 Intermediate part oxidant gas diffusion layer 53 Outlet side oxidant gas diffusion layer 54 Oxidant gas supply port 55 Oxidant gas outlet 56 First oxidant gas flow groove 57 Second Oxidant Gas Flow Groove 58,59 Middle part water evaporation control porous layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 Fターム(参考) 5H018 AA06 AS03 BB01 BB05 BB08 BB12 EE02 EE08 EE11 EE12 EE19 5H026 AA06 CC03 CX05 EE02 EE05 EE11 EE12 EE19 5H027 AA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/10 H01M 8/10 F term (reference) 5H018 AA06 AS03 BB01 BB05 BB08 BB12 EE02 EE08 EE11 EE12 EE19 5H026 AA06 CC03 CX05 EE02 EE05 EE11 EE12 EE19 5H027 AA06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 中央部に配置する固体高分子電解質膜の
両側のうち、一側に燃料電極を備え、他側に酸化剤電極
を備えるとともに、前記酸化剤電極は、前記固体高分子
電解質膜から外側の酸化剤セパレータに向って順に、酸
化剤触媒層、酸化剤ガス拡散層を配置する固体高分子形
燃料電池において、前記酸化剤触媒層と前記酸化剤ガス
拡散層との間に水蒸発制御用多孔層を備えたことを特徴
とする固体高分子形燃料電池。
1. A fuel electrode is provided on one side and an oxidant electrode is provided on the other side of both sides of the solid polymer electrolyte membrane arranged in the central portion, and the oxidant electrode is the solid polymer electrolyte membrane. In the solid polymer fuel cell in which the oxidant catalyst layer and the oxidant gas diffusion layer are arranged in this order from the oxidant catalyst layer to the outer oxidant separator, water evaporation is caused between the oxidant catalyst layer and the oxidant gas diffusion layer. A polymer electrolyte fuel cell comprising a control porous layer.
【請求項2】 水蒸発制御用多孔層は、酸化剤ガス拡散
層の平均気孔径に較べて小さくすることを特徴とする請
求項1記載の固体高分子形燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the water evaporation controlling porous layer is made smaller than the average pore diameter of the oxidant gas diffusion layer.
【請求項3】 水蒸発制御用多孔層は、材料種類の分
布、平均気孔径分布および厚み分布のうち、いずれか少
なくとも一つ以上を酸化剤ガスの流れ方向に沿い、かつ
その入口側からその出口側に向って傾斜状およびステッ
プ状のうち、いずれか一方を選択して変化させることを
特徴とする請求項1または2記載の固体高分子形燃料電
池。
3. The water evaporation control porous layer comprises at least one selected from a material type distribution, an average pore size distribution and a thickness distribution along the flow direction of the oxidant gas and from the inlet side thereof. The polymer electrolyte fuel cell according to claim 1 or 2, wherein one of an inclined shape and a step shape is selected and changed toward the outlet side.
【請求項4】 水蒸発制御用多孔層は、撥水性材料およ
び親水性材料のうち、少なくとも一方を含有させるとと
もに、前記撥水性材料の含有率および比表面積のうち、
少なくとも一方を酸化剤ガスの流れ方向に沿い、かつそ
の入口側から出口側に向って傾斜状およびステップ状の
うち、いずれか一方を選択して小さく形成させ、前記親
水性材料の含有率および比表面積のうち、少なくとも一
方を酸化剤ガスの流れ方向に沿い、かつその入口側から
その出口側に向って傾斜状およびステップ状のうち、い
ずれか一方を選択して大きく形成させることを特徴とす
る請求項1または2記載の固体高分子形燃料電池。
4. The water evaporation control porous layer contains at least one of a water repellent material and a hydrophilic material, and in the content ratio and the specific surface area of the water repellent material,
At least one is along the flow direction of the oxidant gas, and one of the inclined shape and the step shape from the inlet side toward the outlet side is selected to form a small size, and the content and ratio of the hydrophilic material are set. At least one of the surface areas is formed along the flow direction of the oxidant gas, and one of an inclined shape and a step shape from the inlet side to the outlet side is selected to be formed large. The polymer electrolyte fuel cell according to claim 1.
【請求項5】 撥水性材料は、フッ素樹脂、フッ化カー
ボン、カーボンおよび撥水処理剤で処理したカーボンの
うち、少なくとも1種類以上を含んでいることを特徴と
する請求項4記載の固体高分子形燃料電池。
5. The solid height according to claim 4, wherein the water repellent material contains at least one kind of fluororesin, carbon fluoride, carbon and carbon treated with a water repellent agent. Molecular fuel cell.
【請求項6】 親水性材料は、酸化物、表面を親水処理
した無機粉末、表面を親水処理した金属粉末のうち、少
なくとも1種類以上を含んでいることを特徴とする請求
項4記載の固体高分子形燃料電池。
6. The solid according to claim 4, wherein the hydrophilic material contains at least one kind of oxide, an inorganic powder whose surface is hydrophilically treated, and a metal powder whose surface is hydrophilically treated. Polymer fuel cell.
【請求項7】 酸化物は、酸化アルミニウム、酸化鉄、
酸化銅、酸化ジルコニウム、酸化チタン、酸化スズ、酸
化マグネシウム、酸化ニッケル、酸化マンガン、酸化ク
ロム、酸化亜鉛のうち、少なくとも1種類以上を含んで
いることを特徴とする請求項6記載の固体高分子形燃料
電池。
7. The oxide is aluminum oxide, iron oxide,
7. The solid polymer according to claim 6, containing at least one or more of copper oxide, zirconium oxide, titanium oxide, tin oxide, magnesium oxide, nickel oxide, manganese oxide, chromium oxide, and zinc oxide. Type fuel cell.
【請求項8】 酸化物は、OH基、SOH基、COO
H基のうち、少なくとも1種類以上を含んでいることを
特徴とする請求項6記載の固体高分子形燃料電池。
8. The oxide is an OH group, SO 3 H group or COO.
7. The polymer electrolyte fuel cell according to claim 6, wherein at least one kind of H group is contained.
【請求項9】 水蒸発制御用多孔層は、水に対する表面
張力の異なる少なくとも2種類の材料を含有させるとと
もに、水に対する表面張力の小さい材料の分布を酸化剤
ガスの流れ方向に沿い、かつその入口側からその出口側
に向って傾斜状およびステップ状のうち、いずれか一方
を選択し、かつ多く含有させ、前記水に対する表面張力
の大きい材料の分布を酸化剤ガスの流れ方向に沿い、か
つその出口側からその入口側に向って傾斜状およびステ
ップ状のうち、いずれか一方を選択し、かつ多く含有さ
せることを特徴とする請求項1または2記載の固体高分
子形燃料電池。
9. The porous layer for controlling water evaporation contains at least two kinds of materials having different surface tensions with respect to water, and distributes the material having a small surface tension with respect to water along the flow direction of the oxidant gas. One of a sloped shape and a stepped shape is selected from the inlet side toward the outlet side, and one of them is contained in a large amount, and the distribution of the material having a large surface tension with respect to water is along the flow direction of the oxidant gas, and 3. The polymer electrolyte fuel cell according to claim 1 or 2, wherein one of an inclined shape and a step shape is selected from the outlet side toward the inlet side, and a large amount is contained.
【請求項10】 水蒸発制御用多孔層は、平均気孔径の
分布を酸化剤ガスの流れ方向に沿い、かつその入口側か
らその出口側に向って傾斜状およびステップ状のうち、
いずれか一方を選択し、かつ小さく形成することを特徴
とする請求項3記載の固体高分子形燃料電池。
10. The water evaporation control porous layer has a distribution of average pore diameters along the flow direction of the oxidant gas, and from the inlet side to the outlet side thereof, a sloped shape and a stepped shape,
The polymer electrolyte fuel cell according to claim 3, wherein either one of them is selected and formed into a small size.
【請求項11】 水蒸発制御用多孔層は、厚みの分布を
酸化剤ガスの流れ方向に沿い、かつその入口側から出口
側に向って、傾斜状およびステップ状のうち、いずれか
一方を選択し、かつ厚く形成することを特徴とする請求
項3記載の固体高分子形燃料電池。
11. The water vaporization control porous layer has a thickness distribution along the flow direction of the oxidant gas, and is selected from one of an inclined shape and a step shape from the inlet side to the outlet side. The polymer electrolyte fuel cell according to claim 3, wherein the polymer electrolyte fuel cell is formed to be thick and thick.
JP2001280472A 2001-09-14 2001-09-14 Polymer electrolyte fuel cell Expired - Lifetime JP4610815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280472A JP4610815B2 (en) 2001-09-14 2001-09-14 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280472A JP4610815B2 (en) 2001-09-14 2001-09-14 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003092112A true JP2003092112A (en) 2003-03-28
JP4610815B2 JP4610815B2 (en) 2011-01-12

Family

ID=19104463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280472A Expired - Lifetime JP4610815B2 (en) 2001-09-14 2001-09-14 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4610815B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2006172949A (en) * 2004-12-16 2006-06-29 Daido Gakuen Solid polymer fuel cell, solid polymer fuel cell system and operation method for solid polymer fuel cell
JP2006527466A (en) * 2003-06-10 2006-11-30 バラード パワー システムズ インコーポレイティド Electrochemical fuel cell using fluid distribution layer with non-uniform permeability
JP2007018742A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Fuel cell
JP2007323939A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell
JP2008010173A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Membrane/electrode assembly for fuel cell
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2009070637A (en) * 2007-09-12 2009-04-02 Equos Research Co Ltd Fuel cell, diffusion layer for fuel cell and fuel cell system
JP2009076423A (en) * 2007-09-25 2009-04-09 Nippon Soken Inc Fuel cell
WO2010150871A1 (en) * 2009-06-26 2010-12-29 日産自動車株式会社 Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
KR101142908B1 (en) * 2008-03-25 2012-05-10 한국과학기술연구원 Gas diffusion layer for fuel cell and fuel cell using the same
US8790848B2 (en) 2006-03-09 2014-07-29 Toyota Jidosha Kabushiki Kaisha Process for producing separator and separator
EP2416415A4 (en) * 2009-03-31 2016-07-06 Toyota Auto Body Co Ltd Fuel battery
JP2016225271A (en) * 2015-05-29 2016-12-28 トヨタ自動車株式会社 Method of manufacturing diffusion layer formation paste and gas diffusion layer
CN107732257A (en) * 2017-11-06 2018-02-23 深圳大学 Gradient electrode and solid-oxide battery
CN111373585A (en) * 2017-11-20 2020-07-03 罗伯特·博世有限公司 Fuel cell with variable water permeability
KR20210098139A (en) * 2020-01-31 2021-08-10 서울대학교산학협력단 Gas diffusion layer of polymer electrolyte membrane fuel cell
EP3709409A4 (en) * 2017-11-06 2021-08-25 CRRC Qingdao Sifang Co., Ltd. Microporous layer structure of fuel cell and preparation method therefor, and fuel cell cathode assembly
CN116845256A (en) * 2023-08-30 2023-10-03 中石油深圳新能源研究院有限公司 Battery anode, preparation method thereof, fuel battery and battery assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006708A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Solid high polymer fuel cell
JP2001057218A (en) * 1999-08-18 2001-02-27 Toshiba Corp Solid polymer type fuel cell and manufacture thereof
JP2001135326A (en) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd Solid high molecular electrolyte fuel cell and stack of the same
JP2001307749A (en) * 2000-04-21 2001-11-02 Sanyo Electric Co Ltd Solid polymer fuel battery and stack of the same
JP2002042823A (en) * 2000-07-25 2002-02-08 Toyota Motor Corp Fuel cell
JP2002298859A (en) * 2001-04-02 2002-10-11 Nippon Soken Inc Fuel cell
JP2002319411A (en) * 2001-04-23 2002-10-31 Matsushita Electric Ind Co Ltd Gas diffusion electrode and fuel cell using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006708A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Solid high polymer fuel cell
JP2001057218A (en) * 1999-08-18 2001-02-27 Toshiba Corp Solid polymer type fuel cell and manufacture thereof
JP2001135326A (en) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd Solid high molecular electrolyte fuel cell and stack of the same
JP2001307749A (en) * 2000-04-21 2001-11-02 Sanyo Electric Co Ltd Solid polymer fuel battery and stack of the same
JP2002042823A (en) * 2000-07-25 2002-02-08 Toyota Motor Corp Fuel cell
JP2002298859A (en) * 2001-04-02 2002-10-11 Nippon Soken Inc Fuel cell
JP2002319411A (en) * 2001-04-23 2002-10-31 Matsushita Electric Ind Co Ltd Gas diffusion electrode and fuel cell using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527466A (en) * 2003-06-10 2006-11-30 バラード パワー システムズ インコーポレイティド Electrochemical fuel cell using fluid distribution layer with non-uniform permeability
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP4860616B2 (en) * 2004-08-06 2012-01-25 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2006172949A (en) * 2004-12-16 2006-06-29 Daido Gakuen Solid polymer fuel cell, solid polymer fuel cell system and operation method for solid polymer fuel cell
JP2007018742A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Fuel cell
US8790848B2 (en) 2006-03-09 2014-07-29 Toyota Jidosha Kabushiki Kaisha Process for producing separator and separator
JP2007323939A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell
JP2008010173A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Membrane/electrode assembly for fuel cell
JP2009070637A (en) * 2007-09-12 2009-04-02 Equos Research Co Ltd Fuel cell, diffusion layer for fuel cell and fuel cell system
JP2009076423A (en) * 2007-09-25 2009-04-09 Nippon Soken Inc Fuel cell
KR101142908B1 (en) * 2008-03-25 2012-05-10 한국과학기술연구원 Gas diffusion layer for fuel cell and fuel cell using the same
EP2416415A4 (en) * 2009-03-31 2016-07-06 Toyota Auto Body Co Ltd Fuel battery
WO2010150871A1 (en) * 2009-06-26 2010-12-29 日産自動車株式会社 Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
JP2011029171A (en) * 2009-06-26 2011-02-10 Nissan Motor Co Ltd Gas diffusion electrode and production method for same, membrane electrode assembly, and production method for same
US9029045B2 (en) 2009-06-26 2015-05-12 Nissan Motor Co., Ltd. Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
JP2016225271A (en) * 2015-05-29 2016-12-28 トヨタ自動車株式会社 Method of manufacturing diffusion layer formation paste and gas diffusion layer
EP3709409A4 (en) * 2017-11-06 2021-08-25 CRRC Qingdao Sifang Co., Ltd. Microporous layer structure of fuel cell and preparation method therefor, and fuel cell cathode assembly
CN107732257A (en) * 2017-11-06 2018-02-23 深圳大学 Gradient electrode and solid-oxide battery
US11289720B2 (en) 2017-11-20 2022-03-29 Robert Bosch Gmbh Fuel cell having a variable water permeability
JP2021500722A (en) * 2017-11-20 2021-01-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Fuel cell with variable permeability
CN111373585A (en) * 2017-11-20 2020-07-03 罗伯特·博世有限公司 Fuel cell with variable water permeability
JP7184493B2 (en) 2017-11-20 2022-12-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Fuel cell with variable permeability
CN111373585B (en) * 2017-11-20 2023-07-14 罗伯特·博世有限公司 Fuel cell with variable water permeability
KR20210098139A (en) * 2020-01-31 2021-08-10 서울대학교산학협력단 Gas diffusion layer of polymer electrolyte membrane fuel cell
KR102288898B1 (en) * 2020-01-31 2021-08-11 서울대학교산학협력단 Gas diffusion layer of polymer electrolyte membrane fuel cell
CN116845256A (en) * 2023-08-30 2023-10-03 中石油深圳新能源研究院有限公司 Battery anode, preparation method thereof, fuel battery and battery assembly
CN116845256B (en) * 2023-08-30 2023-11-24 中石油深圳新能源研究院有限公司 Battery anode, preparation method thereof, fuel battery and battery assembly

Also Published As

Publication number Publication date
JP4610815B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4610815B2 (en) Polymer electrolyte fuel cell
EP1513208B1 (en) Polymer electrolyte fuel cell system and operation method thereof
JP4309966B1 (en) Fuel cell
CN100461518C (en) Fuel cell having hydrophilic substrate layer
JP4233208B2 (en) Fuel cell
JP2000058073A (en) Fuel cell
JP2003517186A (en) Fuel cells with interdigitated flow channels and water transfer plates
JPH09245800A (en) Fuel cell and electrode for fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP7304524B2 (en) Fuel cell cathode catalyst layer and fuel cell
US7820334B2 (en) Fuel cell and oxidant distribution plate for fuel cell
JP2002367655A (en) Fuel cell
KR101223082B1 (en) Fuel cell
JP2001006708A (en) Solid high polymer fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JP2003288915A (en) Membrane-electrode joint body for solid polymer fuel cell
JP3813406B2 (en) Fuel cell
US20190252705A1 (en) Method Of Manufacturing An Integrated Water Vapor Transfer Device And Fuel Cell-II
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP3843838B2 (en) Fuel cell
US7060383B2 (en) Fuel cell
JP3485032B2 (en) Fuel cell and solid polymer electrolyte membrane
JP4506164B2 (en) Membrane electrode assembly and method of using the same
JP2008282620A (en) Fuel cell and its manufacturing method
Russell et al. Experimental investigation of the effects of catalyst layer composition on the performance of proton exchange membrane fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term