JP2002298859A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2002298859A
JP2002298859A JP2001102895A JP2001102895A JP2002298859A JP 2002298859 A JP2002298859 A JP 2002298859A JP 2001102895 A JP2001102895 A JP 2001102895A JP 2001102895 A JP2001102895 A JP 2001102895A JP 2002298859 A JP2002298859 A JP 2002298859A
Authority
JP
Japan
Prior art keywords
water
gas flow
anode
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001102895A
Other languages
Japanese (ja)
Other versions
JP4372370B2 (en
Inventor
Takahiro Nitta
高弘 新田
Tetsuo Kikuchi
哲郎 菊地
Itsushin So
一新 曽
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2001102895A priority Critical patent/JP4372370B2/en
Publication of JP2002298859A publication Critical patent/JP2002298859A/en
Application granted granted Critical
Publication of JP4372370B2 publication Critical patent/JP4372370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electric power generation efficiency by improving the structure of a positive electrode of a fuel cell for efficiently draining formed water excessively generated during high-load operation and a long-term operation, while moisturizing an electrolyte film. SOLUTION: A positive electrode 3 and a negative electrode 4 are arranged with interposing an electrolyte film 2, and oxidization gas is supplier to a gas flow passage 51 of the positive electrode 3 side and fuel gas is supplied to a gas flow passage 61 of the negative electrode 4 side, to generate electric power. The positive electrode 3 includes a hydrophilic base material layer 31 and a water-repellant layer 32 partially formed on the side of the surface of the gas flow passage 51. The water-repellant layer 32 is formed on a surface, excluding the lower part of the base material layer 31 where excessive formation water formed by positive electrode reaction is retained, to accelerate draining of retaining formed water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質膜を用いた
燃料電池の陽極構造に関する。
[0001] The present invention relates to an anode structure of a fuel cell using an electrolyte membrane.

【0002】[0002]

【従来の技術】燃料電池は、一般に、電解質膜を挟んで
陽極と陰極を配置した単位セルを多数積層してなり、各
単位セルにおいて、陽極に接して設けたガス流路に酸素
を含む酸化性ガスを、陰極に接して設けたガス流路に水
素を含む燃料ガスを供給して、発電を行うものである。
陽極および陰極における反応は、それぞれ下記式
(1)、(2)のようになり、 陽極:(1/2)O2 +2H+ +2e- →H2 O・・・(1) 陰極: H2 →2H+ +2e- ・・・(2) これをまとめると、電池全体では下記式(3)のようになる。 H2 +(1/2)O2 →H2 O・・・(3)
2. Description of the Related Art In general, a fuel cell is formed by stacking a large number of unit cells each having an anode and a cathode with an electrolyte membrane interposed therebetween. In each unit cell, a gas flow path provided in contact with the anode contains an oxidizing gas containing oxygen. The fuel gas containing hydrogen is supplied to a gas flow path provided in contact with the cathode with the reactive gas to generate power.
The reactions at the anode and the cathode are represented by the following formulas (1) and (2), respectively: Anode: (1/2) O 2 + 2H + + 2e → H 2 O (1) Cathode: H 2 → 2H + + 2e (2) In summary, the following formula (3) is obtained for the whole battery. H 2 + (1 /) O 2 → H 2 O (3)

【0003】陽極および陰極は、導電性かつガス透過性
の材料、例えば、カーボンクロスからなり、陽極および
陰極とその外側に配設されるセパレータとの間にガス流
路が形成される。ここで、上記式(1)に示されるよう
に、陽極では、電極反応により水が生成するので、生成
水で電極が覆われてガスの供給が妨げられないように、
これを速やかに取り除くことが発電を安定して継続する
ために重要となる。そこで、従来より電極の排水機能を
向上させるために、種々の方法が提案されており、例え
ば、陽極の構成材中に、撥水効果をもつフッ素樹脂を混
合したり(特開平7−105957号公報)、親水性炭
素繊維からなる縦糸と、撥水性炭素繊維からなる横糸を
織り込んで電極を形成したりすることが行われている
(特開平7−105957号公報等)。
The anode and the cathode are made of a conductive and gas-permeable material, for example, carbon cloth, and a gas flow path is formed between the anode and the cathode and a separator provided outside the cathode and the cathode. Here, as shown in the above formula (1), since water is generated by the electrode reaction at the anode, the electrode is covered with the generated water so that the supply of gas is not hindered.
It is important to remove this promptly for stable and continuous power generation. Therefore, various methods have been conventionally proposed to improve the drainage function of the electrode. For example, a fluorine resin having a water-repellent effect is mixed in the constituent material of the anode (Japanese Patent Laid-Open No. 7-105957). Japanese Patent Application Laid-Open No. 7-105957 discloses a method of weaving a warp yarn made of a hydrophilic carbon fiber and a weft yarn made of a water-repellent carbon fiber to form an electrode.

【0004】ただし、電解質膜は湿潤状態を保つ必要が
あるため、生成水が排出されすぎることは好ましくな
い。このため、特開平9−245800号公報には、陽
極の基材に親水処理を施し、その表面に撥水層を形成す
ることが開示されている。この構造を、図4に示すと、
陽極11は、基材となるカーボンクロスを親水処理して
親水性基材層12を形成するとともに、親水性基材層1
2の電解質膜13側の表面に撥水性カーボンを塗布して
なる撥水層15と、親水性基材層12のガス流路14側
の表面に撥水性カーボンを塗布してなる撥水層16とを
有している。
However, since the electrolyte membrane needs to be kept in a wet state, it is not preferable that generated water is discharged too much. For this reason, Japanese Unexamined Patent Publication No. 9-245800 discloses that a base material of an anode is subjected to a hydrophilic treatment to form a water-repellent layer on the surface thereof. This structure is shown in FIG.
The anode 11 forms a hydrophilic substrate layer 12 by subjecting a carbon cloth serving as a substrate to hydrophilic treatment and forms the hydrophilic substrate layer 1.
2, a water-repellent layer 15 formed by applying water-repellent carbon to the surface on the electrolyte membrane 13 side, and a water-repellent layer 16 formed by applying water-repellent carbon to the surface of the hydrophilic base layer 12 on the gas flow path 14 side. And

【0005】ガス流路14から供給されるO2 は、陽極
11を透過して電解質膜13へ達し、陰極側から電解質
膜13内を拡散してきた水素イオンと上記(1)のよう
に反応して水を生成する。生成するH2 Oの一部は、撥
水層15によって電解質膜13側へ戻されて、電界質膜
13の湿潤を保つ。残るH2 Oの一部は親水性基材層1
2に吸入され、水蒸気のみ撥水層16を透過してガス流
路14を流れるガス中へ放散される。
[0005] O 2 supplied from the gas passage 14 passes through the anode 11 and reaches the electrolyte membrane 13, and reacts with hydrogen ions diffused in the electrolyte membrane 13 from the cathode side as described in (1) above. To produce water. Part of the generated H 2 O is returned to the electrolyte membrane 13 side by the water-repellent layer 15 to keep the electrolyte membrane 13 wet. Part of the remaining H 2 O is the hydrophilic substrate layer 1
2, only the water vapor is transmitted through the water-repellent layer 16 and diffused into the gas flowing through the gas flow path 14.

【0006】[0006]

【発明が解決しようとする課題】図4の従来構成は、反
応の初期状態あるいは一定条件の下で生成水のバランス
が取れている時には、効果が大きい。しかしながら、高
負荷運転時のように多量に生成水が生じる場合や、長時
間運転時に、親水性基材層12が生成水で一杯になって
しまい、その結果、発電効率が悪化してしまうことが判
明した。また、ガス過剰率(燃料電池を稼働させて所定
の電力を得るために理論的に必要なガス量に対する実際
に供給するガス量の割合)を下げることによって、発電
に費やすエネルギーを減少させ、発電効率を高める方法
があるが、ガス過剰率が下がると、ガス流量そのものが
減少するため、ガス流速が低下する。このため、発電に
よって生成された水が、ガス流路14を流れるガスによ
って持ち去られにくくなり、排水性が低下してしまうと
いう問題があった。
The conventional structure shown in FIG. 4 has a large effect when the generated water is balanced in the initial state of the reaction or under certain conditions. However, when a large amount of generated water is generated as in a high-load operation, or during a long-time operation, the hydrophilic base material layer 12 becomes full of the generated water, and as a result, the power generation efficiency is deteriorated. There was found. In addition, by reducing the excess gas ratio (the ratio of the amount of gas actually supplied to the amount of gas theoretically required to operate the fuel cell to obtain the predetermined power), the energy consumed for power generation is reduced, Although there is a method of increasing the efficiency, when the excess gas ratio decreases, the gas flow rate itself decreases, and the gas flow rate decreases. For this reason, there has been a problem that water generated by power generation is less likely to be carried away by the gas flowing through the gas flow path 14, and the drainage performance is reduced.

【0007】本発明は上記実情に鑑みなされたもので、
その目的は、燃料電池における陽極の構造を改良して、
電解質膜の保湿性を保持しつつ、高負荷運転時や長時間
運転時に過剰に生じる生成水を効率よく排水し、親水層
に生成水が滞留するのを防止して、発電効率を向上する
ことにある。
[0007] The present invention has been made in view of the above circumstances,
The aim is to improve the structure of the anode in fuel cells,
Improving power generation efficiency by maintaining the moisture retention of the electrolyte membrane, efficiently draining excessively generated water during high-load operation or long-time operation, and preventing the generated water from staying in the hydrophilic layer. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明請求項1の燃料電池は、電解質膜を挟んで陽
極と陰極を設置し、陽極に接して設けたガス流路に酸化
性ガスを、陰極に接して設けたガス流路に燃料ガスを供
給して、発電を行うものである。上記陽極は、親水性の
基材層と、該基材層の上記ガス流路側の表面に部分的に
形成される撥水層を有しており、上記撥水層は、陽極反
応で生成した過剰の生成水が滞留する部分を除く上記基
材層表面に形成されている。
According to a first aspect of the present invention, there is provided a fuel cell comprising: an anode and a cathode provided with an electrolyte membrane interposed therebetween; and an oxidizing gas passage provided in contact with the anode. The fuel gas is supplied to a gas flow path provided in contact with the cathode with the reactive gas to generate power. The anode has a hydrophilic substrate layer and a water-repellent layer formed partially on the surface of the substrate layer on the gas flow path side, and the water-repellent layer is formed by an anodic reaction. It is formed on the surface of the base material layer except for the portion where excess generated water stays.

【0009】上記構成によれば、陽極反応で生成した過
剰の生成水が、上記基材層の表面にスムーズに移動し、
上記ガス流路を流れるガス中に蒸散して、ガスとともに
排出されるので、上記基材層中に生成水が滞留すること
がなく、排水性が大幅に向上する。他の部分では上記撥
水層により必要以上に生成水が排水されることがなく、
電解質膜および陽極を適度に保湿することができる。よ
って、生成水を効率よく排水し、発電効率を向上するこ
とができる。
According to the above configuration, excess water generated by the anodic reaction smoothly moves to the surface of the base material layer,
Since the water evaporates into the gas flowing through the gas flow path and is discharged together with the gas, the generated water does not stay in the base material layer, and the drainage property is greatly improved. In other parts, the generated water is not drained more than necessary by the water repellent layer,
The electrolyte membrane and the anode can be appropriately moisturized. Therefore, the generated water can be efficiently drained, and the power generation efficiency can be improved.

【0010】請求項2のように、上記陽極を、親水性の
基材層と、該基材層の上記ガス流路側の表面に形成され
る撥水層とで構成し、上記基材層の、陽極反応で生成し
た過剰の生成水が滞留する部分の表面に形成される上記
撥水層の厚さを、他の表面に形成される上記撥水層の厚
さよりも薄くすることもできる。
According to a second aspect of the present invention, the anode comprises a hydrophilic substrate layer and a water-repellent layer formed on the surface of the substrate layer on the gas flow path side. Alternatively, the thickness of the water-repellent layer formed on the surface of the portion where excess water generated by the anodic reaction stays may be smaller than the thickness of the water-repellent layer formed on the other surface.

【0011】上記撥水層を部分的に形成する請求項1の
構成の他、上記撥水層を上記ガス流路側の表面に形成し
て、その厚さを部分的に変更するようにしてもよい。こ
の場合、生成水が滞留する部分に形成される上記撥水層
を十分薄くすることによって、同様の効果が得られる。
[0011] In addition to the constitution of claim 1, wherein the water-repellent layer is partially formed, the water-repellent layer may be formed on the surface on the gas flow path side and the thickness thereof may be partially changed. Good. In this case, the same effect can be obtained by sufficiently reducing the thickness of the water-repellent layer formed in the portion where the generated water stays.

【0012】請求項3のように、上記生成水が滞留する
部分は、例えば、使用姿勢において自重で下方に移動し
た水が滞留する部分、具体的には、請求項4のように、
上記基材層の下部であり、この部分を除いて上記撥水層
を形成し、または厚さを薄くすることで、上記効果が得
られる。
The portion where the generated water stays is, for example, a portion where the water which has moved downward by its own weight in the use posture stays, and more specifically, as in claim 4,
The above effect can be obtained by forming the water-repellent layer at a lower portion of the base material layer except for this portion or reducing the thickness.

【0013】あるいは、請求項5のように、上記生成水
が滞留する部分は、上記陽極に隣接する上記ガス流路の
ガス流れが停滞する部分、具体的には、請求項6のよう
に、上記ガス流路の屈曲部に対応する部分であり、この
部分を除いて上記撥水層を形成し、または厚さを薄くす
ることもできる。
Alternatively, as in claim 5, the portion where the generated water stays is a portion where the gas flow in the gas flow path adjacent to the anode stagnates, specifically, as in claim 6, The portion corresponding to the bent portion of the gas flow path. Excluding this portion, the water-repellent layer can be formed or the thickness can be reduced.

【0014】請求項7のように、上記撥水層を、上記陽
極に隣接する上記ガス流路のガス流れのパターンに応じ
て形成すると、より排水性を良好にすることができ、好
ましい。
It is preferable that the water-repellent layer is formed in accordance with the gas flow pattern of the gas flow path adjacent to the anode, as the drainage can be further improved.

【0015】請求項8のように、上記陽極を、上記基材
層の上記電解質膜側の表面に撥水層を有する構成とする
こともできる。このようにすると、陽極反応の生成水の
一部が上記撥水層の表面ではじかれて上記電解質膜側へ
戻ることにより、湿潤を保持する効果がある。
[0015] The anode may have a water-repellent layer on the surface of the base material layer on the electrolyte membrane side. In this case, a part of the water generated by the anodic reaction is repelled on the surface of the water-repellent layer and returns to the electrolyte membrane side, thereby having an effect of maintaining wetness.

【0016】[0016]

【発明の実施の形態】以下、図面により本発明の第1の
実施の形態を説明する。図1(b)、(c)は燃料電池
の主要部を構成する単位セル1の概略図で、単位セル1
は、電解質膜2と、電解質膜2の一方の面側に設けられ
た陽極3と、電解質膜2の他方の面側に設けられた陰極
4とを有し、陽極3および陰極4の外側にはセパレータ
5、6がそれぞれ配置されている。セパレータ5、6
は、陽極3または陰極4との間にガス流路51、61を
形成するとともに、隣り合うセル間を分離するもので、
燃料電池はこの単位セル1を多数積層したスタック構造
を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIGS. 1B and 1C are schematic views of a unit cell 1 constituting a main part of a fuel cell.
Has an electrolyte membrane 2, an anode 3 provided on one side of the electrolyte membrane 2, and a cathode 4 provided on the other side of the electrolyte membrane 2. Are provided with separators 5 and 6, respectively. Separator 5, 6
Is to form gas flow paths 51 and 61 between the anode 3 and the cathode 4 and to separate adjacent cells.
The fuel cell has a stack structure in which many unit cells 1 are stacked.

【0017】電解質膜2には、例えば、フッ素樹脂系の
プロトン導電性固体高分子電解質膜が用いられる。この
種の固体高分子電解質膜は、水和プロトンが電荷担体と
なって陰極4側から陽極3側へ移動するため、通常、含
水状態で使用され、不足する水を必要に応じて補給す
る。また、固体高分子電解質膜を用いた燃料電池は、比
較的作動温度が低く、通常、触媒を用いて電極反応を促
進している。触媒としては、例えば、白金または白金合
金等が用いられ、該触媒金属を含むカーボン粉をペース
ト化して電解質膜2の表面に塗布することにより担持さ
れる。あるいは、触媒金属を含むカーボン粉を陽極3ま
たは陰極4の電解質膜2側の表面に塗布するか、構成材
料中に添加することもできる。
As the electrolyte membrane 2, for example, a fluororesin-based proton conductive solid polymer electrolyte membrane is used. This type of solid polymer electrolyte membrane is usually used in a water-containing state because hydrated protons serve as charge carriers and move from the cathode 4 side to the anode 3 side, and replenish insufficient water as needed. In addition, a fuel cell using a solid polymer electrolyte membrane has a relatively low operating temperature and usually promotes an electrode reaction using a catalyst. As the catalyst, for example, platinum, a platinum alloy, or the like is used, and carbon powder containing the catalyst metal is made into a paste and applied to the surface of the electrolyte membrane 2 to be supported. Alternatively, carbon powder containing a catalytic metal can be applied to the surface of the anode 3 or the cathode 4 on the side of the electrolyte membrane 2 or can be added to the constituent material.

【0018】陽極3および陰極4は、導電性とガス透過
性を兼ね備えた材料、例えば、炭素繊維を平織にしたカ
ーボンクロスからなる。その他、炭素繊維を用いたカー
ボンペーパ等を、電極材料に用いることもできる。これ
ら陽極3および陰極4は、電解質膜2のほぼ全面に形成
され、陽極3には、ガス流路51から酸素を含む酸化性
ガスが、陰極4には、ガス流路61から水素を含む燃料
ガスがそれぞれ供給される。この時、陽極3では、下記
式(1)に示す電極反応により水が生成し、陰極4で
は、下記式(2)に示す電極反応により水素イオンが生
成する。 (1/2)O2 +2H+ +2e- →H2 O・・・(1) H2 →2H+ +2e- ・・・(2) 電池全体の反応は、式(3)のようになる。 H2 +(1/2)O2 →H2 O・・・(3)
The anode 3 and the cathode 4 are made of a material having both conductivity and gas permeability, for example, a carbon cloth formed by plain weaving of carbon fibers. In addition, carbon paper using carbon fiber or the like can be used as the electrode material. The anode 3 and the cathode 4 are formed on almost the entire surface of the electrolyte membrane 2. The anode 3 is provided with an oxidizing gas containing oxygen from a gas passage 51, and the cathode 4 is provided with a fuel containing hydrogen from a gas passage 61. Gas is supplied respectively. At this time, water is generated at the anode 3 by an electrode reaction represented by the following formula (1), and hydrogen ions are generated at the cathode 4 by an electrode reaction represented by the following formula (2). (1/2) O 2 + 2H + + 2e → H 2 O (1) H 2 → 2H + + 2e (2) The reaction of the whole battery is as shown in equation (3). H 2 + (1 /) O 2 → H 2 O (3)

【0019】セパレータ5、6は、ガス不透過性の材
料、例えば、圧縮カーボン等からなる。セパレータ5、
6の、陽極3または陰極4側の表面には、ガス流路5
1、61形状に応じてリブ52、62が突出形成してあ
り、例えば、図1(b)のように、セパレータ6の外周
縁に沿う矩形のリブ62aと、その左右側縁から交互に
水平方向に延びるリブ62bによって、蛇行する一続き
のガス流路61が形成される。ガス流路61の一端側
は、セパレータ6の上側部に設けたガス導入口63に接
続され、他端側は、セパレータ6の下側部に設けたガス
導出口64に接続される。ガス流路51も、ガス流路6
1と同様の形状に形成され、その一端側は、セパレータ
5の上側部に設けたガス導入口53に、他端側は、セパ
レータ5の下側部に設けたガス導出口54に接続されて
いる。
The separators 5 and 6 are made of a gas-impermeable material, for example, compressed carbon or the like. Separator 5,
6, a gas flow path 5 is provided on the surface of the anode 3 or the cathode 4 side.
The ribs 52 and 62 are formed so as to protrude according to the shapes of the ribs 1 and 61. For example, as shown in FIG. The meandering continuous gas flow path 61 is formed by the rib 62b extending in the direction. One end of the gas flow channel 61 is connected to a gas inlet 63 provided on an upper portion of the separator 6, and the other end is connected to a gas outlet 64 provided on a lower portion of the separator 6. The gas flow path 51 is also connected to the gas flow path 6.
1, one end of which is connected to a gas inlet 53 provided in the upper part of the separator 5 and the other end thereof is connected to a gas outlet 54 provided in the lower part of the separator 5. I have.

【0020】ここで、図1(a)に陽極3の詳細構造を
示す。陽極3は、カーボンクロスを親水処理してなる親
水性の基材層31と、そのガス流路51側の表面に部分
的に形成される撥水層32と、電解質膜2側の表面の全
面に形成される撥水層33からなる。カーボンクロスの
親水処理は、具体的には、SiO2 等の親水性物質を含
む溶液に、カーボンクロスを浸漬することによって行う
ことができる。基材層31中の親水性物質の含有量は、
溶液中の親水性物質の濃度によって調節することができ
るが、SiO2 は絶縁性物質であり含有量が多いと導電
性が低下するので、必要な導電性と親水性が得られるよ
うに適宜設定すればよい。このように、基材層31に親
水性を付与することにより、陽極反応で生成する水をガ
ス流路51側の表面へ速やかに移動させることができ
る。
Here, FIG. 1A shows a detailed structure of the anode 3. The anode 3 includes a hydrophilic base layer 31 formed by subjecting a carbon cloth to a hydrophilic treatment, a water-repellent layer 32 partially formed on the surface on the gas flow path 51 side, and the entire surface on the electrolyte membrane 2 side. And a water-repellent layer 33 formed on the substrate. Specifically, the hydrophilic treatment of the carbon cloth can be performed by immersing the carbon cloth in a solution containing a hydrophilic substance such as SiO 2 . The content of the hydrophilic substance in the base material layer 31 is:
It can be adjusted by the concentration of the hydrophilic substance in the solution, but SiO 2 is an insulating substance, and if the content is large, the conductivity is reduced. Therefore, it is appropriately set so that necessary conductivity and hydrophilicity can be obtained. do it. By imparting hydrophilicity to the base layer 31 in this manner, water generated by the anodic reaction can be promptly moved to the surface on the gas flow path 51 side.

【0021】撥水層32と、撥水層33は、基材層31
の表面に撥水処理を施すことによって形成される。撥水
処理は、撥水性のフッソ系樹脂、例えば、ポリテトラフ
ルオロエチレン(PTFE)等を表面に付着させた撥水
性カーボンを用い、これをエタノール等に分散させた溶
液を、基材層31の表面の所定部位に塗布することによ
って行う。この溶液を塗布した後、焼成することによっ
てエタノール等を除去し、撥水性カーボンからなる撥水
層32、33を形成することができる。なお、撥水性カ
ーボンは、例えば、PTFE等のフッソ系樹脂とカーボ
ン粉を分散剤とともに水に添加、混合し、濾過すること
によって作製される。
The water-repellent layer 32 and the water-repellent layer 33 are
Is formed by performing a water-repellent treatment on the surface of the substrate. The water-repellent treatment uses a water-repellent fluorine-based resin, for example, water-repellent carbon having polytetrafluoroethylene (PTFE) or the like adhered to the surface, and disperses the solution in ethanol or the like to form a solution for the base layer 31. It is carried out by applying it to a predetermined portion of the surface. After applying this solution, baking is performed to remove ethanol and the like, whereby water-repellent layers 32 and 33 made of water-repellent carbon can be formed. The water-repellent carbon is produced by, for example, adding a fluorine resin such as PTFE and carbon powder to water together with a dispersant, mixing, and filtering.

【0022】ここで、本実施の形態では、図1(b)に
示すように、ガス流路51側の撥水層32を、上記式
(1)の陽極反応で過剰の生成水が生じた時に、生成水
が滞留しやすい基材層31の下部を除く表面に形成す
る。図示するように、単位セル1の電解質膜2を立てた
状態で使用する場合、生成水は、親水性の基材層31を
伝って自重で下方へ移動するので、この部分に撥水層3
2を形成しないことで、排水をスムーズに行うことがで
きる。具体的には、ガス流路51の最下流部、すなわ
ち、ガス導出口54に連続する直線状の流路に対応する
基材層31の表面には撥水層32を形成せず、これより
上方の表面にのみ撥水層32を形成している。
Here, in the present embodiment, as shown in FIG. 1B, the water-repellent layer 32 on the gas flow path 51 side generated excessive water by the anodic reaction of the above formula (1). Occasionally, it is formed on the surface of the base material layer 31 except for the lower part where the generated water is likely to stay. As shown in the figure, when the electrolyte membrane 2 of the unit cell 1 is used in an upright state, the generated water moves downward by its own weight along the hydrophilic base material layer 31.
By not forming 2, drainage can be performed smoothly. Specifically, the water-repellent layer 32 is not formed on the most downstream portion of the gas flow path 51, that is, on the surface of the base material layer 31 corresponding to the linear flow path continuous to the gas outlet 54. The water-repellent layer 32 is formed only on the upper surface.

【0023】上記構成の燃料電池の作動を以下に説明す
る。図1(b)において、ガス導入口53に酸素を含む
酸化性ガス(通常、空気)を、ガス導入口63に水素を
含む燃料ガスを供給すると、これらガスはガス流路5
1、61に沿って流れる間に、上記式(1)、(2)の
ように反応し、ガス導出口54、64から排出される。
この時、陽極3では、図1(a)のように、酸素
(O2 )がガス流路51側から陽極3内を電解質膜2側
へ移動し、電解質膜2を拡散してきた水素イオンと反応
して水(H2 O)を生成する。生成するH2 Oの一部
は、基材層31の電解質膜2側に形成された撥水層33
によって電解質膜2側へ戻されて、電界質膜2の湿潤を
保つ。残るH2 Oは、撥水層33を通過して親水性の基
材層12に吸入され、水蒸気のみ撥水層32を透過して
ガス流路51中へ蒸散する。
The operation of the fuel cell having the above configuration will be described below. In FIG. 1B, when an oxidizing gas (normally, air) containing oxygen is supplied to a gas inlet 53 and a fuel gas containing hydrogen is supplied to a gas inlet 63, these gases are supplied to a gas passage 5.
While flowing along 1 and 61, they react as shown in the above formulas (1) and (2) and are discharged from the gas outlets 54 and 64.
At this time, in the anode 3, as shown in FIG. 1 (a), oxygen (O 2 ) moves from the gas flow path 51 side to the electrolyte membrane 2 side in the anode 3, and reacts with hydrogen ions diffused through the electrolyte membrane 2. Reacts to produce water (H 2 O). Part of the generated H 2 O is supplied to the water-repellent layer 33 formed on the electrolyte membrane 2 side of the base material layer 31.
Is returned to the electrolyte membrane 2 side to keep the electrolyte membrane 2 wet. The remaining H 2 O passes through the water repellent layer 33 and is sucked into the hydrophilic base material layer 12, and only water vapor passes through the water repellent layer 32 and evaporates into the gas flow path 51.

【0024】ここで、高負荷運転時のように多量にH2
Oが生成される時には、基材層31中のH2 Oが自重で
下方へ移動して、基材層31の下部に滞留する。滞留す
る水が過剰になると、ガス流路51から供給される酸化
性ガスが通過しにくくなるなど、電極反応が阻害される
おそれがあるが、上記構成では、基材層31の下部に撥
水層32を形成していないので、基材層31表面に達し
たH2 Oが蒸発しやすくなる。蒸発したH2 Oは、ガス
流路51のガス流れによって持ち去られる。このように
して、良好な排水性を実現でき、結果として発電効率を
向上させることができる。
Here, as in the case of high load operation, a large amount of H 2
When O is generated, H 2 O in the base layer 31 moves downward by its own weight and stays below the base layer 31. If the amount of retained water is excessive, the electrode reaction may be hindered, for example, the oxidizing gas supplied from the gas flow path 51 may be difficult to pass. Since the layer 32 is not formed, H 2 O reaching the surface of the base material layer 31 is easily evaporated. The evaporated H 2 O is carried away by the gas flow in the gas flow path 51. In this way, good drainage can be realized, and as a result, power generation efficiency can be improved.

【0025】上記第1の実施の形態では、撥水層32の
形成部位を、自重で下方へ移動した生成水が滞留する基
材層31の下部を除く部分としたが、必ずしもこれに限
るものではない。単位セル1の構成、例えば、ガス流路
51の形状によっては、ガス流れが停滞して対応する陽
極3表面の排水性が低下するので、このようにして生成
水が滞留しやすくなる部分に撥水層32を形成しないこ
とで、同様の効果が得られる。これを以下に説明する。
In the first embodiment, the formation site of the water-repellent layer 32 is a portion excluding the lower portion of the base material layer 31 in which the generated water moved downward by its own weight stays. However, the present invention is not limited to this. is not. Depending on the configuration of the unit cell 1, for example, the shape of the gas flow path 51, the gas flow stagnates and the drainage property of the corresponding anode 3 surface is reduced. The same effect can be obtained by not forming the water layer 32. This will be described below.

【0026】図2(a)は、ガス流路51のガス流れの
パターンの一例を示すもので、このように、流路の途中
に屈曲部55(図では2ヵ所)を有する場合、屈曲部5
5では、流れが停滞するために、対応する陽極3表面の
排水性が低下し、基材層31に生成水が滞留しやすくな
る。そこで、この部分についても撥水層32を形成しな
いことで、基材層31に生成水が滞留するのを防止する
ことができる。図2(b)の第2の実施の形態では、自
重での生成水の移動で、より水が滞留しやすい下流側の
屈曲部55に対応する基材層31の表面と、上記第1の
実施の形態と同様の基材層31の下部を除く部分に、撥
水層32を形成している。
FIG. 2A shows an example of a gas flow pattern in the gas flow path 51. As described above, when the flow path has a bent portion 55 (two places in the drawing), 5
In No. 5, since the flow is stagnant, the drainage property of the surface of the corresponding anode 3 is reduced, and the generated water is easily retained in the base material layer 31. Therefore, by not forming the water-repellent layer 32 in this portion as well, it is possible to prevent generated water from staying in the base material layer 31. In the second embodiment shown in FIG. 2B, the surface of the base material layer 31 corresponding to the bent portion 55 on the downstream side where water is more likely to stay due to the movement of the generated water by its own weight, The water-repellent layer 32 is formed in a portion except for the lower portion of the base material layer 31 similar to the embodiment.

【0027】また、図2(c)の第3の実施の形態のよ
うに、2ヵ所の屈曲部55の両方に対応する基材層31
の表面を除いて、撥水層32を形成する構成とすること
もできる。この場合は、屈曲部55に対応する部分を除
く、基材層31の下部(ガス流路51の最下流部に対応
する部分)にも撥水層32を形成している。あるいは、
図2(d)の第4の実施の形態のように、ガス流路51
全長に渡って、流路下半部に対応する部分に撥水層32
を形成しないようにしてもよく、この部分と屈曲部55
に対応する基材層31の表面にのみ撥水層32を形成し
ている。
Further, as in the third embodiment shown in FIG. 2C, the base material layers 31 corresponding to both of the two bent portions 55 are provided.
It is also possible to adopt a configuration in which the water-repellent layer 32 is formed except for the surface of. In this case, the water-repellent layer 32 is also formed on the lower portion of the base layer 31 (the portion corresponding to the most downstream portion of the gas flow path 51) except for the portion corresponding to the bent portion 55. Or,
As in the fourth embodiment shown in FIG.
A water-repellent layer 32 is provided on a portion corresponding to the lower half of the flow path over the entire length.
May not be formed, and this portion and the bent portion 55
The water-repellent layer 32 is formed only on the surface of the base material layer 31 corresponding to.

【0028】上記各実施の形態では、撥水層32を部分
的に形成し、生成水が滞留する部分に、撥水層32を形
成しないようにしたが、図3のように、基材層31のガ
ス流路51側の全面に撥水層32、34を形成して、そ
の厚さを変更することもできる。図3(a)はガス流れ
のパターンの一例で(図2(a)と同じ)、これに対
し、図3(b)の第5の実施の形態では、上記図2
(b)の第2の実施の形態と同様、下流側の屈曲部55
に対応する基材層31の表面と基材層31の下部を除く
部分に撥水層32を形成するとともに、それ以外の部分
に撥水層32より薄い撥水層34を形成する。あるい
は、図3(c)の第6の実施の形態のように、上記図2
(c)の第3の実施の形態と同様、2ヵ所の屈曲部55
の両方に対応する基材層31の表面を除いて撥水層32
を形成するとともに、それ以外の部分に撥水層32より
薄い撥水層34を形成することもできる。撥水層34の
厚さは、基材層31内の生成水の排水性を損なわないよ
うに、撥水層32より十分薄くするのがよい。
In each of the above embodiments, the water-repellent layer 32 is partially formed, and the water-repellent layer 32 is not formed in the portion where the generated water stays. However, as shown in FIG. The water-repellent layers 32 and 34 can be formed on the entire surface of the gas channel 51 on the side of the gas channel 51, and the thickness thereof can be changed. FIG. 3A shows an example of a gas flow pattern (same as that of FIG. 2A). On the other hand, in the fifth embodiment of FIG.
As in the second embodiment (b), the downstream bent portion 55
The water-repellent layer 32 is formed on the portion excluding the surface of the substrate layer 31 and the lower portion of the substrate layer 31 corresponding to the above, and the water-repellent layer 34 thinner than the water-repellent layer 32 is formed on other portions. Alternatively, as in the sixth embodiment shown in FIG.
As in the third embodiment (c), two bent portions 55 are provided.
The water-repellent layer 32 except for the surface of the base material layer 31 corresponding to both
And a water-repellent layer 34 thinner than the water-repellent layer 32 can be formed in other portions. The thickness of the water-repellent layer 34 is preferably sufficiently smaller than that of the water-repellent layer 32 so as not to impair the drainage of the generated water in the base material layer 31.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示し、(a)は陽
極の詳細構造を示す拡大断面図、(b)は単位セルの分
解斜視図、(b)は単位セルの部分断面図である。
1A and 1B show a first embodiment of the present invention, wherein FIG. 1A is an enlarged sectional view showing a detailed structure of an anode, FIG. 1B is an exploded perspective view of a unit cell, and FIG. FIG.

【図2】(a)はガス流れのパターンの一例を示す図、
(b)は本発明の第2の実施の形態における撥水層の形
成パターンを示す図、(c)は本発明の第3の実施の形
態における撥水層の形成パターンを示す図、(d)は本
発明の第4の実施の形態における撥水層の形成パターン
を示す図である。
FIG. 2A is a diagram showing an example of a gas flow pattern;
(B) is a diagram showing a water repellent layer formation pattern according to the second embodiment of the present invention, (c) is a diagram showing a water repellent layer formation pattern according to the third embodiment of the present invention, (d) () Is a diagram showing a formation pattern of a water-repellent layer in the fourth embodiment of the present invention.

【図3】(a)はガス流れのパターンの一例を示す図、
(b)は本発明の第5の実施の形態における撥水層の形
成パターンを示す図、(c)は本発明の第6の実施の形
態における撥水層の形成パターンを示す図、(d)は本
発明の第4の実施の形態
FIG. 3A is a diagram showing an example of a gas flow pattern;
(B) is a diagram showing a pattern for forming a water-repellent layer according to the fifth embodiment of the present invention, (c) is a diagram showing a pattern for forming a water-repellent layer according to the sixth embodiment of the present invention, (d) ) Is the fourth embodiment of the present invention.

【図4】従来の燃料電池の陽極の詳細構造を示す拡大断
面図である。
FIG. 4 is an enlarged sectional view showing a detailed structure of an anode of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1 単位セル 2 電解質膜 3 陽極 31 基材層 32、33、34 撥水層 4 陰極 5、6 セパレータ 51、61 ガス流路 52 屈曲部 52、62 リブ 53、63 ガス導入口 54、64 ガス導出口 DESCRIPTION OF SYMBOLS 1 Unit cell 2 Electrolyte membrane 3 Anode 31 Base layer 32, 33, 34 Water repellent layer 4 Cathode 5, 6 Separator 51, 61 Gas channel 52 Bent 52, 62 Rib 53, 63 Gas inlet 54, 64 Gas guide exit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 哲郎 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 曽 一新 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 高橋 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4D006 GA41 MA03 MA06 MB10 MC28 PB66 PC80 5H018 AA06 AS03 BB05 BB08 CC06 DD06 EE00 EE05 EE12 EE19 HH02 5H026 AA06 BB03 BB04 CC01 CX03 CX05 EE00 EE05 EE12 EE19 HH02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuro Kikuchi 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Inside the Japan Auto Parts Research Institute, Inc. (72) Inventor Takeshi Takahashi 1 Toyota Town, Toyota City, Aichi Prefecture F-term (reference) 4D006 GA41 MA03 MA06 MB10 MC28 PB66 PC80 5H018 AA06 AS03 BB05 BB08 CC06 DD06 EE00 EE05 EE12 EE19 HH02 5H026 AA06 BB03 BB04 CC01 CX03 CX05 EE00 EE05 EE12 EE19 HH02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を挟んで陽極と陰極を設置し、
陽極に接して設けたガス流路に酸化性ガスを、陰極に接
して設けたガス流路に燃料ガスを供給して、発電を行う
燃料電池であって、上記陽極が、親水性の基材層と、該
基材層の上記ガス流路側の表面に部分的に形成される撥
水層を有し、上記撥水層を、陽極反応で生成した過剰の
生成水が滞留する部分を除く上記基材層表面に形成した
ことを特徴とする燃料電池。
An anode and a cathode are provided with an electrolyte membrane interposed therebetween.
An oxidizing gas is supplied to a gas flow path provided in contact with an anode, and a fuel gas is supplied to a gas flow path provided in contact with a cathode to generate power, wherein the anode has a hydrophilic base material. Layer, and a water-repellent layer formed partially on the surface of the substrate layer on the gas flow path side, wherein the water-repellent layer excludes a portion where excess water generated by the anodic reaction stays. A fuel cell formed on the surface of a base material layer.
【請求項2】 電解質膜を挟んで陽極と陰極を設置し、
陽極に接して設けたガス流路に酸化性ガスを、陰極に接
して設けたガス流路に燃料ガスを供給して、発電を行う
燃料電池であって、上記陽極が、親水性の基材層と、該
基材層の上記ガス流路側の表面に形成される撥水層を有
し、上記基材層の、陽極反応で生成した過剰の生成水が
滞留する部分の表面に形成される上記撥水層の厚さを、
他の表面に形成される上記撥水層の厚さよりも薄くした
ことを特徴とする燃料電池。
2. An anode and a cathode are provided with an electrolyte membrane interposed therebetween,
An oxidizing gas is supplied to a gas flow path provided in contact with an anode, and a fuel gas is supplied to a gas flow path provided in contact with a cathode to generate power, wherein the anode has a hydrophilic base material. And a water-repellent layer formed on the surface of the base material layer on the gas flow path side, and formed on the surface of the base material layer where excess water generated by the anodic reaction stays. The thickness of the water-repellent layer,
A fuel cell, wherein the thickness of the water-repellent layer formed on another surface is smaller than that of the water-repellent layer.
【請求項3】 上記生成水が滞留する部分が、使用姿勢
において自重で下方に移動した水が滞留する部分である
請求項1または2記載の燃料電池。
3. The fuel cell according to claim 1, wherein the portion in which the generated water stays is a portion in which water moved downward by its own weight in the use posture stays.
【請求項4】 上記生成水が滞留する部分が、上記基材
層の下部である請求項3記載の燃料電池。
4. The fuel cell according to claim 3, wherein the portion where the generated water stays is a lower portion of the base layer.
【請求項5】 上記生成水が滞留する部分が、上記陽極
に隣接する上記ガス流路のガス流れが停滞する部分であ
る請求項1または2記載の燃料電池。
5. The fuel cell according to claim 1, wherein the portion where the generated water stays is a portion where the gas flow in the gas passage adjacent to the anode stagnates.
【請求項6】 上記生成水が滞留する部分が、上記ガス
流路の屈曲部に対応する部分である請求項5記載の燃料
電池。
6. The fuel cell according to claim 5, wherein the portion where the generated water stays is a portion corresponding to a bent portion of the gas flow path.
【請求項7】 上記撥水層を、上記陽極に隣接する上記
ガス流路のガス流れのパターンに応じて形成する請求項
1ないし6のいずれか記載の燃料電池。
7. The fuel cell according to claim 1, wherein the water-repellent layer is formed according to a gas flow pattern of the gas flow path adjacent to the anode.
【請求項8】 上記陽極が、上記基材層の上記電解質膜
側の表面に形成される撥水層を有する請求項1ないし5
のいずれか記載の燃料電池。
8. The anode according to claim 1, wherein the anode has a water-repellent layer formed on the surface of the base material layer on the electrolyte membrane side.
The fuel cell according to any one of the above.
JP2001102895A 2001-04-02 2001-04-02 Fuel cell Expired - Fee Related JP4372370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102895A JP4372370B2 (en) 2001-04-02 2001-04-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102895A JP4372370B2 (en) 2001-04-02 2001-04-02 Fuel cell

Publications (2)

Publication Number Publication Date
JP2002298859A true JP2002298859A (en) 2002-10-11
JP4372370B2 JP4372370B2 (en) 2009-11-25

Family

ID=18956034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102895A Expired - Fee Related JP4372370B2 (en) 2001-04-02 2001-04-02 Fuel cell

Country Status (1)

Country Link
JP (1) JP4372370B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2003092112A (en) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp Solid polymer fuel cell
WO2004006364A1 (en) * 2002-07-03 2004-01-15 Nec Corporation Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
US7482089B2 (en) 2003-03-10 2009-01-27 Honda Motor Co., Ltd. Fuel cell
JP2009076423A (en) * 2007-09-25 2009-04-09 Nippon Soken Inc Fuel cell
WO2009078302A1 (en) * 2007-12-17 2009-06-25 Kabushiki Kaisha Toshiba Fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH08167416A (en) * 1994-12-14 1996-06-25 Fuji Electric Co Ltd Cell for solid high polymer electrolyte fuel cell
JPH09245800A (en) * 1996-03-08 1997-09-19 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH09283153A (en) * 1996-04-09 1997-10-31 Ishikawajima Harima Heavy Ind Co Ltd Solid high molecular electrolyte fuel cell
JPH10326622A (en) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH08167416A (en) * 1994-12-14 1996-06-25 Fuji Electric Co Ltd Cell for solid high polymer electrolyte fuel cell
JPH09245800A (en) * 1996-03-08 1997-09-19 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH09283153A (en) * 1996-04-09 1997-10-31 Ishikawajima Harima Heavy Ind Co Ltd Solid high molecular electrolyte fuel cell
JPH10326622A (en) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP4610815B2 (en) * 2001-09-14 2011-01-12 東芝燃料電池システム株式会社 Polymer electrolyte fuel cell
JP2003092112A (en) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp Solid polymer fuel cell
WO2004006364A1 (en) * 2002-07-03 2004-01-15 Nec Corporation Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
US7482089B2 (en) 2003-03-10 2009-01-27 Honda Motor Co., Ltd. Fuel cell
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP4860616B2 (en) * 2004-08-06 2012-01-25 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
US7998638B2 (en) 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2009076423A (en) * 2007-09-25 2009-04-09 Nippon Soken Inc Fuel cell
WO2009078302A1 (en) * 2007-12-17 2009-06-25 Kabushiki Kaisha Toshiba Fuel cell

Also Published As

Publication number Publication date
JP4372370B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP3591123B2 (en) Fuel cell and fuel cell electrode
JP4923319B2 (en) Fuel cell
KR100984934B1 (en) Fuel cell
WO2001017047A1 (en) Polymer electrolyte type fuel cell
WO2005124903A1 (en) Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
JPH1116591A (en) Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JPH09283153A (en) Solid high molecular electrolyte fuel cell
TWI389381B (en) Method of operating fuel cell with high power and high power fuel cell system
JP4372370B2 (en) Fuel cell
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
JPH08130025A (en) Fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP2000082482A (en) Gas separator for fuel cell and the fuel cell, and gas distributing method for fuel cell
KR100896900B1 (en) Oxygen generator using a fuel cell and water electrolysis
JP2009289681A (en) Method of cleaning fuel cell
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JP3813406B2 (en) Fuel cell
KR101534948B1 (en) Fuelcell
JP4340417B2 (en) Polymer electrolyte fuel cell
KR20120072511A (en) Separator of fuel cell
JPH08130024A (en) Fuel cell
JP2007172966A (en) Polymer electrolyte fuel cell
JP2007273326A (en) Fuel battery cell
JP2005222898A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees